Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A COMPUTER-BASED ENVIRONMENT FOR
COLLABORATIVE DESIGN

Sergio Tadeo Mujica December 1990
CSD-900050

UNIVERSITY OF CALIFORNIA
Los Angeles

A Computer-based Environment

for Collaborative Design

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Sergio Tadeo Mujica

1991

The dissertation of Sergio Tadeo Mujica is approved.

Marvin Adelson

[% % VL Cit“C\

Rajive L. Bagrodia

Charles Eastman

?K@;J =

Gerald Estrin, Committee Chair

University of California, Los Angeles

it

To Estela,
Macarena and

Sergio Alfonso

1ii

TABLE OF CONTENTS

1 INEPOAUCLION ...ttt eese e s s e e 1

2. Related WOrK. ... et e es s 6

2.1. Computer Based COnferencing..............cocoeeooveecerrososroseesesreosess oo, 7
2.1.1. NLS and AUGMENTccooimemureemeeeeseeeeeeee s ee e 9
2.1.2. RTCAL and Mblink, real-time conferences...........ooooeeemvvmorii, 12

2.1.2.1. Real-Time Conferences for Scheduling
MEELINIES oottt e e eereees s sase s e s st e e e 12

2.1.2.2. A Shared Bitmap System........c..ccoeeuerveeeeivevnrreerreeeereeeres 13

2.1.2.3. Design Issues in Computer-Based

Conference SYStOMSccvviuuivvereeeeeereeeeseeeereeeeeeseese st eeseeeesees e 14
2.1.3. COLAB: Beyond the Chalkboard..........coooouoveeeoeeeeeeeeerneeeeoee e, 16
2.1.3.1. Implementation Issues in COLAB......cc.coocoovivevvseennnn. 18
2.1.3.2, ObSErvationscoueueeeeimereseeeseeieisesssssoceseesssssessssssssoeeeeas 19
2.1.4. Data Sharing for Collaboration........c.oceceeoveevvvvesveeeresesrerrereseennn. 21
2.1.5. Design of Cooperative Workceieeveeeeeeveereeeeeeeeeeeeeeesesessesesesns 24
2.1.6. Conversations for ACHIONccovueevieieceeeecieeceeeee s 25
2.1.6.1. Other Types of Conversation.........cocoeeeveereeveeverrceressnecna. 27

iv

2.2. Design Methods and Design Environments.............cooooooooooooooooo 28
2.2.1. The SARA Design Method and To0lSo.oovevvomooeoeooe, 2

2.2.2. StP: Software through Pictures.........oocoocoeeeoeeoeoeeceeeeeoeoeoeeeo, 3

2.2.3. STATEMATE ...t sees e eeeeeeees s ess s 34

2.2.4. ATCAIA ...ttt et ee e 35

2.2.5. The Programmer's APPrentice ... eomroomecomrvesscesssoonsooo. 38
2.2.5.1. The Assistant Approach..........cocoeeevveeeoeeeeceeeereeeereeeen. 38

2.2.5.2. Inspection Methods...........coveueereeecceeeerenceeeeeneeeeeeee e eees e 39

2.2.5.3. The Plan Calculus......ouu.eeereeerereenieireee e cesees e os 40

2.2.5.4. The Hybrid Reasoning Systemcooovvvveevvveeerereennn, 41

2.2.5.5. Programmer's Apprentice Scenarios.....c.ccoeeovevrnnn.... 42

2.3. USer INtErfaces.........vcviurreeriniereeececee et eeeseseeseses s seeesessse s s 43
2.4. Concurrency Control And Recovery in Database Systems. 44
2.4.1. TranSACtIONScoceererrrrririensee e e seseesnssse s et eeseeseeeseesses s rean 4

2.4.2. SerialiZabiliLyccoviveeesiecieseiesecenssessseesoeseesesesesesss s es s 47

2.4.3. ReCOVETabILItYocevvertreeceeeee st es et s e e, 49

2.4.4. Concurrency control with 10€KScovueeeeececovreeeeoeeeeee oo, 0

2.4.5. Deadlocks and Livelocksc..couuvuoeeeeoeeeeereee e 52

2.4.6. Two-Phase LOCKINGv.evvuieeeeeeeereem e esees e en s 5

2.4.7, Locking Hierarchical Itemsccocecovemeveevviveesnsreeeseseeesesees oo, 55

2.4.8. Long Transactions.......c....e.eiecercovseesressessessssesssesssssesssessses s ssseee s 56

2.5. Object-Oriented SYSEEmMSeoeveveeseeereeeeesesesseseees s seseseeses st eeeeeee oo 57
2.6. Recent Research ReSultsouuueccueceenieeeeeeeaceoes s seesseeeeere s 57
2.6.1. Software and Hardware Environments............ccocccccecvvervnereennn... 57
2.6.1.1. The Rapport Conference System..........cccocovevvevcvvvorerrnennn. 59

2.6.1.2. Mermaid: a Distributed, Multimedia

CONTETENCE SYSLEML.....ecueeeeeccreteeiieeeca et et ereess et a0
2.6.1.3. The TeleCollaboration Projectcoooveeeeeeeeioreeereerenennn. 61
2.6.1.4. The ISL SYStEIM........cocceirerie e cerrrerereseses e oo ene s nesseeens 62
2.6.1.5. GROVEocrctrsnsseste st sses st st 63
2.6.1.6. Arizona Meeting Roomcceeevrerveceeeeireecee e, 64
2.6.1.7. The Capture Lab...........ccoooeeeeeeeereeie e 65
2.6.2. Object-oriented SYStEMScvuuvveereeemrieeesreieesee e ceseseeeeeee e 65

2.6.2.1. Distributed Objects in Smalltalk-80............coooveioveoe, 66

2.6.2.2, The Mneme Object Systemoocooveeoveeooeooeo 67

2.6.2.3. Integrated Design SyStemsoveveeeveereeeeceeemeosooo. 67

3. Functional Requirements and High-Level Design................. 68
3.1. Functionality to Support Collaborative Designooooveveoeeooeeoooe 69
3.1.1. Functionality to Share Design Objects 70

3.1.2. Functionality for Communicationoooeoeeoveoveeooveroroon, 72

3.1.3. Functionality for Coordination............ccoveueuevemveveeemeereeeeeeoess oo, 74

3.1.4. Functionality for Management and Use of the Design

EDNVITONIMENLcooirrmrineenene e seeseeeeeesesnes s es e sesssesne s e s (6]
3.1.4.1. User INterface......ccovuverrrneeereeesinceeeisesaessseeeeeeseseseenes s 75

3.1.4.2. Functionality for Initialization and Recovery................ 76

3.1.4.3. Functionality for EXtension........c....cveeeeovveeeeeeereeonon. T

3.2. High Level Structural Design........ovooueeeeeeeeeeeeeeereeress oo 79

4. OREL: An Object-Oriented System for Interactive,

Distributed Sharing of Data.................coeuouveeoemeeeeeeeeeeeeeeeeeee oo 86
4.1, INtrOAUCHIONeoceceerrett et ers bt seeese e ssnesesse et ses s ss s ee s ens 87
4.1.1. Object Oriented Programming Systems.cooeereereeeeervsrennnnn. 87

4.1.2. Computer Supported Cooperative Work (CSCW) ...vovvvoooo, 91

4.1.3. Contributions of OREL...........cc.cceeeiiieemeeeseeeesseeos oo R
4.2. OREL Data MOAElNg «.......ou.oeeeeeeeeereees e eeeeeeeeeseee oo eeesoeeeeoeee o 9%
4.2.1. Inheritance Network and Primitive Types of Objects................ %
4.2.2. Simple Classes and Protocols..........ooweeeeeeeeemeoeoeeooooeeoeeooeee. B
4.2.3. SlOtS...ouceeceesitreerceeeste st et e s 100
4.2.4. Relations and mapping constraintscoooveoveveevoovoeooooo 101
4.2.5. CompPOSite ODJECES wivu.mvveeereceecreeeerseeeeeees oo, 110
4.3. Distributed operation of OREL 0bJeCtSvevvvevvneeeeeeeeeee oo 120
4.3.1. The Object world model.............coomreommueeeeeeeeeeeeeeeeoeeeeeee, 120
4.3.2. OREL Objects and Broadcast Methods.............ooevveeooeeoeoeeov 122
4.3.3. Concurrency CONEIO]ouuccceeerreeeeeeeeeseesseseeeeeesesses s, 126
4.4. A CLOS based implementation 0f ORELooouvmeomeooeeeeooooeeoeeoeooeo 134
4.4.1. CLOS SChEIMAL.....coo vttt eeseeeseese e ees s oo 136
4.4.2. CLOS implementation of distributed operation.............coouo........ 139

4.4.2.1, A CLOS-based implementation of

replication on demand...........c.ooeeereeeoeeeeeeeeeeeeeeeee 140

viii

4.5. The power 0f OREL..........ooiiieciiee s eseesescesssees e seeeesseseeesseseese s e 151

4.6. Related WOrk........c vt e 154
4.6.1. SMAlltalk ...ttt e 154
4.6.2. CommonLisp Object Systemceouereecoiueceieeeeeieeeeeeeee e 157
4.6.3. ORIONccoceiecencennrssirsassssnss e smesssssssss s sssssesesssosasceseeseeeesseseon 159
4.6.4. The Augmented Entity-Relationship Model......ccocoomrveevnnr.ee. 160
4.7. Review of contributions and directions for future work.......oco.ovvvuenn... 165
4.7.1. A review of claimed contributions...........ccooveeeieervieeiveeeceinereeee 165
4.7.2. FULULe WOTK. ..ottt et ssessa st e s 168
4.7.3. Supporting operation by geographically remote sites................. 168
4.7.4. Concurrency CONtIoloeireceeeeecvererreerieeistsnesee e seeessseeons e 169

4.7.5. Object-oriented data modeling language design..........................169

4.7.6. Optimizing the implementation of OREL.........ccoouvvvvevevereenene. 170
5. Tool Modeling and Integration Methodology...........cccooeeceevmeeenn... 172
8.1, INEFOGUCLION ..ottt ettt s 173
5.2, Tool REQUITEMENLS........cocoorereeerrcieeeiee e ere e sestse s ceneeeeeeeeesesese st seseenreeneneens 178
5.3. User interface model and development system..........c.c.cocccoecovrviiernnnnn. 179

ix

5.3.1. The user interface MOodel......c..o.ooeeeeeeeeeeeeeeeeeoseeeeeeeoeeoeeeoe 184

5.3.2. The user interface creation procedure..............oooeeevvvvoooeoo, 191
5.3.3. Specification of user interfaces using SARA ..o, 14
5.4, Data MOGel........ooieeceireurireens st ses o coness s ecssessss s sesssssess s se e e ss e 213
9.9. Tool integration ProCedUTe..........ooeveeeeeeeeeeeeeeeeees oo 215
9.5.1. GMB to DCM translation..............oc.eceeveeeenreeeeoreeressceesrenseos oo, 217
9.5.2. A fully integrated too]c.oweeceeeeeeeieeeereeeee oo e 218
5.5.3. A partially integrated tool.............coevveueoeeeeeeeeeeeeeeereeeeeeeeeo, 220
9.6. Related WOTK.........ccvivrierieinreetee e eeceeeecessetseees s oee s es s 222
5.6.1. Software through Pictures (StP)ooovveve v 222
8.6.2. ATCAAIAou ettt ee s e steeee et e s 225
5.6.3. SARA/IDEAScoomeetreetereeessiessssssessssssssensesenessessessseessese s 28
5.6.4. SASSATTAS ...ttt se s 231
D.6.5. ULIDS......cooiieerent sttt e st ssssassess sssese e esee st ess e esesseenr s 233
5.6.6. SUININATY ..ovuveeeeeerteeee et ereeeee s st eseseeseesess s seee e 236
5.7. Review of contributions and directions for future Work.......coeeervooo.... 236
5.7.1. Review of contributionscooeeiueieeiveise oo 236

5.7.2. Directions for fOture WOTKooceeeeeveeeereevesreeeseeeeeeese et eeeeet e 238

6. Conclusions...............cooiccrernecreineeerire s e e 240
6.1. Review of CONtribDULIONScovuvveveerereeee et 241
B.2. FULUTE WOTK.......om ettt ettt s et se e e, 244

6.2.1. Problems related to object-oriented systems...........ocoveeeerveeveeeenne. 244

6.2.2. Problems related to tool integration and user

INEETEACES. ...tiiscencecececrrsetects s ses et bessa s en s s es s s st e menn s e snne s e 247
6.2.3. Modeling of multi-user design protocols........ooovveveeeeereeerenne. 248
6.2.4. Management of design hiStory.........ccooeeeeceiereeieeeee e 249
6.3, SUININATY c.vvvveeivececetcceeeeeceeeies et eesssteesseeeessseseaseeaesrenesssensasssessssesesssesesssesesessssranss 251
Appendix I: SARA PrimiitiVes .o eeeeeeeeeeeeeesseeeeesesesesseeesesssssesessseesses s ens 253
Appendix II: OREL object Protocols ... oeeeeesererereesereseeesesee s esseseranons 267
I1.1. Simple-object Protocol........oeeieeivmsiiveniineenereeeeseeneseeeeeseseseeesene s 268
I1.2. Relation-object protocol..........ccvciererrmemrereeeeeensesse e 270
I1.3. composite-0bhject Protocol...........uvueererivireirenieer e s 272

Appendix III: Code generated for SARA objects by OREL

EEATISLATOT ..ot s e se st e e eeesem s s e sresseseesaseeseseneseaseseeeesessseessasesee e, 275

x1

LIST OF FIGURES
Figure 2.1: Conversation for action model............oo.ovuvuooooooooeooooeoooo
Figure 2.2: SARA Design Methodooveovoveeoeeoeoeoeeoeoeoeeoeeoeoeoeooooooooo

Figure 2.3: SARA 0018 tT€€..u.....meeeeeeeereerese e eeeeeees oo

Figure 3.2: Structural of the collaborative design environment.................
Figure 3.3: The CommonLisp environm_ent ...
Figure 4.1: Basic inheritance network of OREL classes ...
Figure 4.2: SIMPLE-OBJECT Protocol......c.eeeoeoooeeeereees oo

Figure 4.3: The class SOCKET ... moveoeeeeeeeeeeeeeeoeeoeeoeeeeeeoeeoeoeeeeo

xii

Figure 4.10: Correspondence of control arcs and data arcs across

MOdule BOUNAATIES ... vttt eeeseseeeseeeessressssses s e e ee e 108
Figure 4.11: GMB-SOCKET Telation..........c.eeeeeoeeveeeeeeeeereeese oo, 109
Figure 4.12: OREL model of SARA 0bJects.......ccuevrvevreerremrosresceeeeeeeeeeeeeeeesoeoo 112
Figure 4.13: Inheritance network after definition of module...........o............ 114
Figure 4.14: OREL Primitive ClasSesooveeueerereemeessesssessserseesesssessesoe oo, 115
Figure 4.15: Relation MAappingsov..ooeeeeereeeereeeeeeseeeseesees s ees s seesoees e 116
Figure 4.16: OREL ProtoCOlSocueeeeeeeeeeeeeeeeeeeees e 117
Figure 4.17: Example usage of OREL protocols...........coveeeeeeveveveveeererererrenseon. 118

Figure 4.18: Dataflow model of the process to build or alter a data

INOAEL ettt ettt st b s sttt e et cens et sesee e se s se e eeesere 135
Figure 4.19: Expansion of de fhroadtast . rreersecoreseesseorsscessrss oo 150
Figure 4.20: Example tree structure of GNU Emacs info.........oovevveooovveeon, 152
Figure 4.21: OREL model of GNU Emacs info nodesoovovvvovvoeomooosorn 153
Figure 4.22: AERM diagram of SARA control graphs..........cccocevevevevvemeeennn. 162
Figure 4.23: Example of AERMo.oiooiueevmeeiieeeeeeeeeeseeesseessssesssessessceeseee s 164
Figure 5.1: Model 0of COSARA.........oeou oo eeeeeeeeeeee e e eeees e 185
Figure 5.2: Model of SESSI0M-1 ...ucuucueerirernsecsersrsseersesnessecsseesensessesssssssessessssesossossens 186

xiil

Figure 5.3: Dataflow model of the process to build and extend

BOOIS oottt ettt e st ss e s b st et et e ee et s s st e et e e e 192
Figure 5.4: Operational view of the ZOOMeccoemeeeveeecorreee oo 196
Figure 5.5: Changing the rectangle in SM Zoom Canvasoocovvevonn... 197

Figure 5.6: Changing the viewport of SM Editor Canvas..........cccooo............... 198

Figure 5.7: SARA model 0f the ZOOIoooveveeveeereeeeeeeeeeeeece oo eeseoe s 201
Figure 5.7-1: SARA model of the Zoom (execution trace)eeweeeeveove,.. 202
Figure 5.7-2: SARA model of the Zoom (execution trace)ooevveeemeveovnenn.. 205
Figure 5.7-3: SARA model of the Zoom (execution trace)oevmreereve... 206
Figure 5.7-4: SARA model of the Zoom (execution trace)oooveoeevveerreenn... 207
Figure 5.7-5: SARA model of the Zoom (execution trace)oomovcovoinn.. 208
Figure 5.7-6: SARA model of the Zoom (execution trace)eeeeeeevennn 209
Figure 5.7-7: SARA model of the Zoom (execution trace)oeeeverivn.. 210
Figure 5.7-8: SARA model of the Zoom (execution trace)cooevvervvnne.. 211
Figure 5.7-9: SARA model of the Zoom (execution trace)ococoevvveerenn... 212
Figure 5.8: Generic TOOL data model ... ooeeecoeeeeeeeeeee oo ee e 214
Figure 5.9: Data model of the Zoom-t00] Class.........cc.ovrvererevemereererseeerseeeressenennnn 219

Xiv

Figure 5.10: A dialog DOX ..cuoccovvuvueitiineeieeeiemseeeecesres s sasesssessessseesessesesseeesess s 221

Figure 1.1: Summary of structural modeling primitives...............oooveene...., 254
Figure 1.2: Behavioral model primitives.........c.coueoveeeevereeereorrsseees oo, 257
Figure 1.3: Behavioral model primitives..............ocooeeeereeeeeeeeeeesereeseerereeen) 258
Figure 1.4: Structural model of BUFFER........oooevooeeeeeeeeeeeeeeseveeeoeseoeeeo. 262
Figure 1.5: Control flow model 6f BUFFER ..o 263
Figure 1.6: Data flow model of BUFFER........oouoovoeeeoer oot 265

Xv

LIST OF TABLES

Table 2.1: Execution of reservation transactions

Table 2.2: Deadlock situation

..

..

..

xvi

ACKNOWLEDGMENTS

I wish to thank the many people who have contributed to the

successful course of my studies.

In particular I wish to express my gratitude to Professor Gerald
Estrin, chair of my dissertation committee, who has been a friend, a
teacher and much more during these years. He always gave me his
support when I needed it. His guidance helped me improve myself in

many ways.

The members of my committee Professors Marvin Adelson, Rajive
Bagrodia, Daniel Berry, Charles Eastman and Michel Melkanoff
provided a very rich interaction and helped me to achieve a clear

understanding of my research.

The members of the SARA group enriched my work in long hours of
discussion and made great contributions to my research. All of them
have been great friends and I thank all of them for their

encouragement.

The SARA group implemented a prototype system that exhibits the
results of my research. Steve Berson worked on the object world, the
OREL translator and the grapher; Katie Chong did the SARA to DCM
translator and participated in the GMB editor; Maneesh Dahgat built

the token machine interpreter; Armando Delgado contributed the

xvii

control flow analyzer; Yadran Eterovic built a library of contacts, the
GMB editor, the zoom tool and the zoom tool example of Chapter 5;
Silvie Grilo joined forces with Delgado in building the control flow
analyzer, Carmem Hara has worked on implementing a performance
analysis tool; Poman Leung together with Berson did the object world
and a TROLL interface to CommonLisp; Dorab Patel acted as a
general consultant; Ivan Tou helped organize the source code and
provided thoughtful comments on my writing; Elsie Wu did many
things, she built a library of geometric figures, a graphic editor a
selection tool helped to build the OREL graphic editor and maintained

the computer system of our lab.

I also wish to thank all my friends who helped make this years
enjoyable. In particular I would like to mention Yadran Eterovic, my

friend of many, many years and the father of my only godson.

And of course I am greatly indebted to my wife Estela, and my
children Macarena and Sergio Alfonso. They mostly gave up having a

husband and father for the past five years.

xviil

1976

1978

1978

1978-1980

1980-1981

1981

1980-1982

1982-

1982-1984

1985-1987

VITA
Graduated from Pontificia Universidad Catolica de Chile
M.S., University of California, Los Angeles

Teaching Assistant,

University of California, Los Angeles

Assistant Professor,

Pontificia Universidad Catolica de Chile

Associate Professor,
and Chair of Computer Science,

Pontificia Universidad Catolica de Chile
Distinguished Service Award, IEEE Section Chile

Member of the Board of Directors,
IEEE Section Chile

Associate Professor,

Universidad de Santiago de Chile

Chair, Computer Engineering Area,

Universidad de Santiago de Chile

Post-graduate Research Engineer,

University of California, Los Angeles

Xix

1987-1990

1990-

Research Associate,

University of California, Los Angeles

Sr. Computer Scientist,

Perceptronics, Woodland Hills, California

XX

ABSTRACT OF THE DISSERTATION

A Computer-based Environment

for Collaborative Design

by

Sergio Tadeo Mujica

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991
Professor Gerald Estrin, Chair

This research explores the extent to which computer systems can
support teamwork by small groups involved in the design and
realization of complex systems. Our attention is on groups such as:
engineers collaborating on a system design; customers, users and
developers seeking agreement on system requirements; and other
groups which may be able to use the computer support to expose and
reconcile differences in viewpoint. Toward those goals, this research
has created a laboratory, containing software and hardware systems
that encourage fundamental and systematic experimentation. The
driving force, and main contribution, of this research is the creation of
such an environment, to establish a proof of concept for feasibility of

effective collaborative design environments.

This research has also produced an object-oriented system for

distributed, interactive sharing of data that includes: a graphic

XX1

language for modeling using concepts of objects and relations, a
programming system for building programs that manipulate data,
support for distributed interactive sharing of data, and persistent
storage of data; and a tool modeling and integration method that
includes a tool model for environment extensibility and interactive tool
sharing that allows partial and full integration of tools, enables tools to
operate on interactively shared objects, and supports the incremental
extension of the environment. The tool modeling and integration
method also includes a user interface model that allows sharing of
interaction mechanisms, provides support for modeling behavioral
response to multi-user actions, and enables early testing and analysis

of user interfaces.

xx1i

CHAPTER 1
Introduction

Exploration of computer-supported cooperative work (Greif [1988 1), and
investigation of groupware technologies (Groupware Technology
Workshop [1989]) have accelerated during recent years. This research
explores the extent to which computer systems can support teamwork
by small groups involved in the design and realization of complex
systems. Currently we are overwhelmed by the dearth of support for
reasoning and arguing about the validity of design models and design
decisions before they display themselves in unpredicted behavior of
working systems. Our attention is on groups such as: engineers
collaborating on a system design; customers, users and developers
seeking agreement on system requirements; and other groups which
may be able to use the computer support to expose and reconcile
differences in viewpoint. Toward those goals, this research has created
a laboratory, containing software and hardware systems that encourage
fundamental and systematic experimentation. Problems which we have
investigated in order to create an effective collaborative design laboratory

are:

* How to enable interactive sharing of design objects by a small
group of designers, such that all collaborators have up-to-date
knowledge about changes taking place.

* How to integrate new methods and tools which can be used by

collaborators without excessive artifact.

* How to manage display which is common to all collaborators,

¢ How to capture the essence of face-to-face discussions or remote

computer-based teleconference sessions.

* How to expose feasible solution spaces when there are conflicts

in the goals of the collaborators?

This research effort has created an environment for collaborative
design, called coSARA, whose development has been motivated and
focused by previous work on design methods and tools to support design
of computer based systems in a UCLA project called SARA (System
ARchitect’s Apprentice) (Estrin et al. [1986]). coSARA contains software
and hardware systems, that will encourage fundamental and
systematic experimentation towards understanding of those problems
outlined above. It is necessary to uncover the nature of computer
support that would prove to be effective in augmenting group
capabilities, exposing weaknesses and infertile avenués, and testing the

suitability of enabling computer technology used in its implementation.

The driving force, and main contribution, of this research is the creation
of such an environment, to establish a proof of concept for feasibility of

effective collaborative design environments.

This research has also produced two other significant contributions that
provide a foundation for building computer-based collaborative

environments:

* An object-oriented system for distributed, interactive sharing of

data. This system includes: a graphic language for modeling

data using concepts of objects and relations, a programming
system for building programs that manipulate data, support for
distributed interactive sharing of data, and persistent storage of

data.

* A tool modeling and integration method. This method: includes
a tool model for environment extensibility and interactive tool
sharing that allows partial and full integration of tools; enables
tools to operate on interactively shared objects; and supports the
incremental extension of the environment. It also includes a
user interface model that allows sharing of interaction
mechanisms, provides support for modeling behavioral
response to multi-user actions, and enables early testing and

analysis of user interfaces.
This dissertation is organized in 6 chapters:
Chapter 1 is this introduction.

Chapter 2 contains a survey of related work and presents a number of

concepts that will be used in the following chapters.

Chapter 3 defines a set of functional requirements that characterize

the coSARA environment for collaborative design.

Chapter 4 describes OREL, an object oriented system for distributed

interactive sharing of data.

Chapter 5 discusses the coSARA tool modeling and integration
methodology.

Chapter 6 presents conclusions and directions for future research.

CHAPTER 2
Related Work

Computer-Supported Cooperative Work (CSCW) is a relatively new
area of research and development which deals with the role of
computers in group work, exposing ways in which usage of
computers can enhance the ability to do effective work by groups of

people who are cooperatively pursuing a goal (Greif [1988]).

Work in CSCW encompasses a broad area of knowledge. Computer
science foundations are essential in building the complex hardware
and software systems that are required. Social sciences are of great
relevance, because the proper understanding of human behavior will
determine, to a significant extent, the impact of introducing

computer technology for group work.

In this chapter we review research by others who have been dealing
with problems closely related to this study. The areas covered include
computer based conferencing, design environments, user interfaces,
concurency control in database systems, object oriented systems, and
very recent results reported at an August 89 workshop on groupware

technology.

2.1. Computer Based Conferencing

A conference is the interaction of two or more people who do it to
accomplish a defined goal. When computer-based tools are used to
support a conference, we talk of a computer-based conference. The

key issue in this area is that computer-based tools have the potential

to provide support beyond that of a simple communication medium.

An example of using the computer as a communication medium is
the commonly used Unix™1 <talk” program that allows a pair of
users to exchange messages in real-time. It does not make a record
of the conversation, nor provide access to other processing abilities.
We regard the kind of support provided by *“talk” as a weak example
of a computer-based conference, because of the absolute lack of
processing capability. We require that a computer-based conference
offers some sort of processing capability that can be applied in useful

ways to the contents of the conference.

Computer-based conferences can be classified according to two
coordinates: location and timing. They can occur at one place in face-
to-face settings or they can occur with participants in geographically

remote locations. Conferences can occur:

* Inreal-time when all participants are required to be present
and act in the conference simultaneously (for example in a
face-to-face meeting), in synchronization with each other's

actions (not everyone talks at the same time.)

* In a non-synchronized way when the simultaneous presence
of participants is not required; participants can review the

progress of the conference and provide input as desired (for

1 Unix is registered trademark of AT&T.

example, a discussion that uses electronic mail or a bulletin

board).

In the following sections we describe systems that have been built or

proposed to support computer-based conferences.

2.1.1. NLS and AUGMENT

An early project that explored the area of CSCW was led by Douglas
Engelbart at the Stanford Research Institute (Engelbart & English
[1968]). This research was aimed at developing principles and
techniques for designing an “augmentation system.” Engelbart and

English describes this notion as follows:

“This includes concern not only for the technology of
providing interactive computer service, but also for
changes both in ways of conceptualizing, visualizing and
organizing working material, and in procedures and

methods for working individually and cooperatively...

Among the special activities of the group, are the
evolutionary development of a complex hardware-software
system, the design of new task procedures for the systems'
users, and careful documentation of the evolving system

design and user procedures.

The group also has the usual activities of managing its
activities, keeping up with outside developments, publishing

reports, etc.

Hence, the particulars of the augmentation system evolving
here will reflect the nature of these tasks—i.e., the system is

aimed at augmenting a system-development project team.”

The SRI project developed an experimental laboratory centered
around an “interactive, multiconsole computer-display system.”
The system included a conference room equipped with six displays,
meant to be used by up to twenty participants in face-to-face to
meetings. One participant would control the system and all displays
would show the same view. The capability of true collaboration,
giving each participant the possibility of controlling a workstation in
significant ways, was not present in this early work. | It was viewed

as a needed improvement:

“We are anxious to see what special conventions and
procedures will evolve to allow us to harness a number of
independent consoles within a conference group. This

obviously has considerable potential.”

The software system underlying this development effort, called the
On-Line System (NLS) was built using a set of translators that would
generate the internal parts of NLS given a specification of a control

processor and of a library of subroutines. The control processor

10

receives and processes successive user actions and calls upon
subroutines to provide services such as: displaying feedback on the
screen, locating data in files, manipulating working data,
constructing a display view of specified data according to given

viewing parameters, etc.

More recently, support for multi-party collaboration, using the
principles of NLS has been implemented in AUGMENT (Engelbart
[1984]), a text processing system marketed by Tymeshare Inc.2 for a
multi-user, network environment.

This support amounts to:

* A mail system for asynchronous communication, in which
links among messages can be made, in a hypertext style
(Conklin [1987]). Engelbart highlights this functionality as

useful for recording and managing discussions.

* Shared-screen teleconferencing, that allows two users to
operate as if they were sitting in front of the same terminal,
seeing the same screen and with the ability to alternatively
take the controls. When two users enter this mode of
operation from remotely located workstations, their screen
will look exactly the same and there are provisions for

passing control back and forth between workers. There are

2 Cupertino, California.

11

also provisions for the subsequent entry and departure of

other conference participants.

2.1.2. RTCAL and Mblink, real-time conferences

Irene Greif and Sunil Sarin have done extensive research in the
nature of computer-based tools to support real-time conferences and
have identified important issues in the design of such (Sarin & Greif
[1985]). They have developed two prototype systems that demonstrate
two ends of the spectrum of possible implementation strategies. The
first, RTCAL, supports a single application activity in a real-time
conference. The second, Mblink, is an example of a generic facility

that can be used for multiple applications.
2.1.2.1. Real-Time Conferences for Scheduling Meetings

The first prototype, RTCAL, supports meeting scheduling by building
a shared workspace of information form participants' on-line

calendars. Some of the most notable features of RTCAL are:

. Provision of shared and private spaces to the users. The
common calendar view is shared and visible by all the users;

each user has also a view of his or her own private calendar.

. Separation of application and conference control. It is
intended that different applications that can run in a
conference setting, have a uniform set of commands for

conference control.

. Definition of conference roles. There is a chairperson who
oversees all the activity of the conference and determines who
has control at any given time, and is the only person who can

terminate the conference.

. Alignment of information in the shared and private spaces.
Windows are automatically scrolled so both display the same

range of data and time.

. Voting as a means to support group decision processes is

incorporated in the system.

. Participants can leave the conference at any time and re-
enter it at a later time. The shared space is automatically
refreshed upon re-entry. The participants however do not

have autonomy to individually browse private calendars.
2.1.2.2. A Shared Bitmap System

Mblink is a shared bitmap system that is an example of a general
facility usable for multiple different applications. Some

characteristics of this system are:

. Applications run in a central mainframe and display in
workstations. Each workstation reports the position of its
mouse and the state of the mouse buttons to the bit-map

module on the the mainframe.

. Each participant can see, on his workstation screen, the

position of every participant's mouse.

. A participant has two different views of his or her own
cursor: the first is tracked by the local system and the second
is echoed by the mainframe. When the mouse is moved the
echoed version lags a small amount of time (Sarin & Greif
[1985] report about half a second), The intended application of
this feature is to let users know what other users are viewing
in their screen, as indicated by the cursor image echoed by

the mainframe.

Sarin & Greif [1985] report that Mblink has been successfully used in
implementing an application for experimenting with different
internetwork congestion-control algorithms. They claim the

implementation effort was small.
2.1.2.3. Design Issues in Computer-Based Conference Systems
Greif and Sarin identify the following design issues:

* User interface uniformity.

Provision of a consistent set of commands to support
conference control across the complete range of applications,
and a consistent user interface for conference work as well as

for individual work—i.e., the editing commands should be

14

the same regardless of whether the user is editing in a

conference session or is working individually.
Shared vs. individual views.

Indications of special meanings that an object may have to a
user are necessary, For example a user needs to know that
he or she owns a lock on a particular object or that another

user is locking some object.
Access control.

It is often appropriate to control who can gain access to a
particular conference and shared data. Existing access
control techniques can be applied to decide which users will
be granted those privileges. For example a person could find
out about a conference in progress and submit a request to
Join it. The request could then be either approved or denied by

a participant who is empowered to do so.
Concurrency control.

If two or more users are working simultaneously on the
same shared data space, it is likely that conflicting updates
occur. Concurrency contrel mechanisms to prevent this are
necessary. Two key issues are the granularity at which data
objects are locked and the policies for passing control from

one participant to another.

. Constraints on real-time conference designs.

Because of the demand on processing and communication
originated by real-time conferences, a limit in the range of
conference sizes may be necessary. Also, conferences should
run at the level of support that is the least common

denominator of the workstations involved in the process.

2.1.3. COLAB: Beyond the Chalkboard

Colab (Stefik et al. [1987]) is a meeting room that includes a
workstation for each participant and a large screen at the front of the
room with an independent controlling device. All the workstations as
well as the large screen are connected in a common local-area
network. The large screen makes a shared space of data visible to all
the participants at the same time. Colab has been used as a platform
to test tools for collaboration. Stefik et al. [1987] report the usage of two
tools: the Cognoter, a tool to aid in brainstorming sessions; and
Argnoter, a tool to support the evaluation of specific proposals. These
tools reflect an important property of Colab: the existence of process

models for problem solving.

Colab has a multi-user interface (Foster [1986]) that is claimed to let
participants interact with each other easily and immediately through

a computer medium. The paradigm on which this interface is based

has been called WYSIWIS (What You See Is What I See) referring to

16

the presentation of consistent images of shared information to all

participants.

Stefik et al. [1987] report that the usage of a strict form of WYSIWIS
is too restricting. For example it is often necessary to view private
information (as is done in RTCAL), action that would violate the
strict WYSIWIS principle. The simultaneous display of the pointers
of all active participants has also been found to be excessively
distracting. These and other experiences with the use of this system
are reported by the same group (Stefik et al. [1987], “WYSYWIS
Revised:...”), and evaluated by considering constraints on four
dimensions of WYSIWIS: display space, time of display, subgroup
population, and congruence of view. Possible relaxations of

WYSIWIS along these dimensions are discussed.

The usage of the electronic board (the large screen) irs interesting,
since it provides a tool to focus the attention of the group, giving a
common view of data at the same time and in the same place to all
participants. It is built to provide functionality similar to a common
chalkboard. It has a large drawing area, chalk, eraser, etc. To draw
one picks up the chalk clicking on the the chalk icon. Using this
device it is possible to make free-hand sketches. These marks can be

eliminated with the eraser, that is also represented as an icon.

17

2.1.3.1. Implementation Issues in COLAB

The software system is implemented on Xerox Lisp Machines using
Loops, an object oriented language (Stefik & Bobrow [1983]). Initial
goals placed on Colab were: short time to get information, short delay
in changing information, the database should converge quickly to a
consistent state and the database should not be vulnerable to user

mistakes or equipment failures.

A cooperative model of concurrency control is used. In this approach
each machine has a copy of the database, and changes are installed
broadcasting the changes without any synchronization. This method
can of course lead to conflicting updates in data due to race
conditions. Since the participants of Colab sessions are aware of this
problem, they will use verbal cues to coordinate their behavior (the
concurrency control problem is in fact left to the social system of the
meeting to solve.) It is also expected that the mechanisms that may
later be provided in Colab to coordinate group work activities would

help in this respect.

The result of this solution to the problem of concurrency control is
reported to be unsatisfactory and an intention to investigate the use of

two-phase locking and time stamps is declared.3

3Concurrency control techniques such as two-phase locking and time stamps are
discussed thoroughly in (Bernstein, Hadzilacos & Goodman [19871)

In Colab, the term conversation refers to a set of machines, Colab
tools and participants working together to solve a problem.
Communication in conversations is done by several layers of
protocols over an Ethernet. Communication among Colab tools is
accomplished via a programming abstraction that they call broadcast
methods. When a broadcast method is invoked on one machine, it is

also executed in all the machines that are part of the conversation.
2.1.3.2. Observations

One starting premise in Colab was that ideally equal participation

characterizes collaboration (stefik et al. [1987]):

“...By equalizing access of all participants to displays and
shared data, The Colab's interface enhances flexibility as to
roles and discourages control over the activity by one

participant.”

However limitations in this regard imposed by current technology
turned out to be useful. For example, the fact that a particular
writing technology allows only one person to write at a time, forces a
shared focus on that person's actions, maintaining a common

context for the group and helping to expose roles.

It has been observed that the meetings using the Colab's Cognoter
tool are composed of cycles, in which unstructured verbal interaction
is followed by short periods of time when each participant works on

the computer to join again in verbal exchange of ideas. The verbal

exchanges are used by participants to set up immediate goals and

short term plans of action.

It also seems to be a valid conclusion of the experimentation done in
the Colab environment that meeting participants not only need
access to the finished product of each other, but also to the production

process itself.
Some relevant design issues discussed in this report are:

* The WYSIWIS display of cursors from multiple users is

unacceptably distracting.

* Small grain size of data allows small grain size collaboration

but is computationally too expensive.

* Multiple shared spaces of data are often needed
simultaneously. but current screen technology may not

provide enough space to display all of them.

* The screen may become crowded with screens used by other

participants.

* When all the shared data can not be viewed (most likely
because of the display size) it is not possible to quickly assess

what is changing and by how much.

2.1.4. Data Sharing for Collaboration

One central concern in CSCW is coordinated access to shared data by
collaborators. Greif & Sarin [1987] discuss data management
requirements of CSCW applications and identify areas requiring

further development, as presented below.

A major bottleneck in the development process and in performance
as well, is the need to manage data outside of the address space of an
executing program; including long-lived data that persists between
program invocations and data that are communicated between
program address spaces in real time. These issues are addressed in

later sections.

The dissociation between data models used in programming
languages and database systems is also a problem in utilizing the
latter to support data management in CSCW applications. There is
currently a trend in development of object oriented database systems
that provide a point of convergence for programming languages and

database technology.

RTCAL (Sarin & Greif [1985]), a real-time conferencing system for
scheduling meetings exhibits the need for display of shared and
private information as well as the use of roles to control access to the

information.

21

CES (Seliger [1985], a system for collaborative editing of
hierarchically arranged documents, exemplifies locking
requirements. It promotes the use of unobtrusive lock operations.
When several writers attempt to edit the same section of a document
one is granted a lock and the others are informed of who holds the
lock. Locks are obtained implicitly when editing starts and is held as
long as some editing activity continues. The lock will be released to a
new author after some idle period. This requires frequent updates of
the information in permanent storage while an item is locked. If the
lock is released without the explicit consent of the author, the

committed changes will still be incorporated in the document.

CES also incorporates the concept of dirty reading, allowing users to
read text that is being modified. The readers view will be refreshed

periodically as the section is updated.

Access and concurrency control are critical issues in managing
shared data for CSCW applications. A problem with current
technology for access control is that the facilities usually provided by
system software operate at the file level as it happens in UNIX.
Access rights to files usually depend on the user and file that are

involved in the access operation.

On the other hand it is usual that for collaboration purposes, access
control is needed at finer grain. For example, in RTCAL it is
necessary to control access to the operations for creating, viewing and

modifying calendar entries. To accomplish this finer level of access

control, in a system that supports access control at the level of files,
either the files are left unprotected, making the system vulnerable to
accidental or malicious modification, or the programs that enforce

the access rights to data are run in a privileged mode.

The typical UNIX-like access criteria based on owner, group and
public is often insufficient to implement the richness of control
required in a cooperative application like RTCAL. Other properties
may be used to determine access: Users may play different roles and
therefore have different access privileges depending on their current
role; access may depend on the creator of a data item For example, in
the calendar application, only the creator of a meeting may be
allowed to cancel the meeting. Different users may be allowed to
violate particular database integrity constraints, for example a
trusted group of users may enter conflicting entries in a calendar,

but the public may not be allowed to do so.

Long-lived transactions take a long elapsed time to complete; for
example a document editing session can be considered to be a long
lived transaction, a cash withdrawal at an automatic teller machine
would not be a long-lived transaction. Long transactions are more
vulnerable than short ones to system failures. This can be alleviated
by supporting saving points within a transaction. A transaction in
this domain need not be limited to a single user session. The user
who is operating on the system may choose to interrupt the work and

resume it at a later time. In other scenarios, the actions that need to

be performed may be known in advance and can be recorded in a

script to guarantee its execution.

Transaction schedulers are often quite rigid in their ways to
determine which transaction should wait or abort in case of conflict.
More flexible ways to resolve conflicts are required by cooperative
work. The CES lock timeout exemplifies this notion, providing a
measure of fairness to the co-authors of a document. In general, it
is useful to provide information regarding the holders of locks when

conflict arises, allowing informal negotiation of schedules.

2.1.5. Design of Cooperative Work

Winograd and Flores present a perspective on computer-based
systems, that takes language as the primary dimension of human
cooperative activity , (Winograd [1986]; Winograd & Flores 1986)).
This approach has been the basis for The Coordinator4, a
commercial system, based on the theoretical work done by Winograd

and Flores.

The concept ““People act through language,” is exemplified by
Winograd (Winograd [1986]; section 2) as follows:

“Consider a situation in which a hospital nurse calls the

pharmacy, finds out what drugs are available and orders

4The Coordinator is asystem created by Action Technologies, Inc. The
coordinator is a registered trademark of Action Technologies.

one of them for a patient. From an information-processing
perspective, we could focus on the database of information
about the drugs and the rules for deciding what drug to
order. From a language/action perspective, we focus on the
act of ordering and on the patterns of interaction in related
conversations, such as the preliminary conversation about
drug availability and the subsequent conversation that
unfolds in the process of fulfilling the orders. From other
perspectives we might consider such things as the personal
relationship between nurse and pharmacist, the cost-
effectiveness of making the communication over a phone, or

the legal status of orders placed by a nurse.”

2.1.6. Conversations for Action

Speech acts are not unrelated events, they participate in larger
conversation structures. An important example is the “‘conversation
for action,” in which one party A makes a request to another party, B.
This conversation can be modeled using the state transition diagram
of Figure 2.1. After A's initial request, interpreted by B as having
certain conditions for satisfaction, B can accept and thereby promise
to satisfy those conditions; decline, ending the conversation: or

counter with alternative conditions, etc.

The diagram intends to show how the conversation proceeds towards
mutual recognition that the requested action has been done or that

the the conversation is complete without it having been done.

B:decline
A:cancel

State transition network representing a
conversation for action initiated by a request from
speaker A to speaker B. The circles represent
conversation states and the labeled line represent
speech acts. Double-line circles represent states of
completion. (This figure is adapted from (Winograd
& Flores [1986], page 65.)

Figure 2.1: Conversation for action model

2.1.6.1. Other Types of Conversation

There are several kinds of language acts that do not participate
directly in conversations for action. For example, a remark such as
“They are planning to remodel Boelter Hall next year” need not relate
directly to any specific future action of speaker or hearer. The

following classify different kinds of conversation:
* Conversations for clarification.

This type of conversation occurs when there is a background
that is partially shared or that needs to be negotiated. For
example, the request “Give me a glass of water” might evoke

a response like “Large or small?.”
* Conversations for possibilities.

In this type of conversation the principal activity is
speculation anticipating the subsequent generation of
conversations for action. Brainstorming sessions such as
those supported by Cognoter in the Colab are an example of

conversations for possibilities.
* Conversations for orientation.

These conversations are for creation of a shared background

as a basis for future interpretation of other conversations.

2.1.6.2. Analysis and conclusions

Winograd and Flores consider conversations for action to be the
central coordinating structure of human organizations. The
emphasis is on language as an activity, not as the transmission of
information or expression of thought. Only the control structure of
the conversation is modeled, specifying how control is passed from

one speaker to the other by speech acts.

The Coordinator is an example of basing a system on language
theories without attempting to program understanding of natural
language. All interpretations are made by the people that use the
system. The only model of conversation known by The Coordinator is
that of conversations for actions, and its main function is to monitor
the completion of such conversations. It has no capability to

introduce new conversation models.

i Desi i n
This section reviews several existing and proposed environments for
design as well as current research projects in the area.
2.2.1. The SARA Design Method and Tools
SARA (System ARchitects' Apprentice) promotes an interactive
design philosophy and a framework within which computer-based

tools can extend the capabilities of computer system designers and

analysts (Estrin et al. [1986]).

This is a requirement driven design method, that prescribes a
combination of top-down partition and bottom-up composition of
systems with particular focus on interface between modules. The

essence of the method is illustrated in Figure 2.2.

The steps in the process of design as prescribed in the method

Top-dow
or
bottom-up*

Partition Composition

Composition
Evaluation

Partition
Evaluation

implemen-
tation

Figure 2.2: SARA Design Method

supported by SARA are:

* Initialization of design for any system or subsystem: establish
requirements and constraints and their corresponding
evaluation criteria; define assumptions about the behavior of
the environment to which the system under design will
interface; define behavioral models of the system and its
environment; define a model of a test environment. No
formal methods exist currently to support the definition of

environment assumptions nor system requirements.

* Decide to proceed bottom-up or top-down: if there are
predefined building blocks which can be composed to meet
requirements, then a composition step can be taken.
Otherwise the design continues with a partition of the

system.

* Partition: the current structural model into submodules and
initialize the design for each one of the resulting submodules.

Build behavioral models for the resulting structure.

* Evaluation of partition: test the system applying evaluation

criteria for requirements and constraints.

* Composition: build a composite behavioral and structural

model from models of predefined building blocks.

* Evaluation of composition: test the composed model. If the test
is successful and all subsystems have already been composed
proceed with the implementation, otherwise continue the
composition. If the test of the system fails then step back in
the design and decide whether to proceed top-down or bottom-

up.

* Implementation: Prepare documentation, manufacture,

packaging.

SARA supports modeling of hierarchical modular structures and of
behavior in three domains: control, data and interpretation. Graphic

modeling primitives are discussed in Appendix I.

The SARA design method is supported by a collection of tools which
are organized in the tree hierarchy shown in Figure 2.3. The role of

each one of these tools is explained below:

* The SM editor allows the user to prepare a structural model
of a system, that lays down the modules into which the
system has been partitioned and the interconnections that

model their relationships.

* The GMB editor supports the creation and modification of
behavioral models of modules, that include models of control
flow, dataflow and the interpretation of the transformations

done in the data flow model.

31

SARA Tools

/

Editing
/ Analysis
SM GMB
Simulator Contro! Performance
Flow

Flgure 2.3: SARA tools tree

The GMB simulator is a tool for observing the behavior of
systems and for interactive debugging of models. It provides
animated graphical output and breakpoint and trace

facilities.

The control flow analyzer applies analysis algorithms to the
control flow model of a system for detecting deadlocks and

possible nonterminating states.

The performance analyzer is a tool that allows queueing
network modeling to be integrated with the behavioral model
of a system. It uses the GMB simulator to produce

performance measurements.

2.2.2. StP: Software through Pictures

StP (Wasserman & Pircher [1987)) is an environment that embodies
a multitude of tools for software engineering based on structured
design (Stevens & Myers [1974]). The system utilizes a powerful
graphical interface that allows graphics editing of models of the
system being analyzed or designed in data and control domains. The
system is aimed at generation of substantial amounts of code from

the models of the system built using the tools.

StP operates using the TROLL relational database system as a basis.
It supports the rapid prototyping of user interfaces using
RAPID/USE that is described in the section on user interfaces and

provides facilities for integration of new tools.

Recently Wasserman, Pircher & Muller [1989] presented an object
oriented, structured design method for code generation, whose

integration in the StP environment is claimed to be in progress.

The method leans on a graphical language to specify classes and
objects, in which operations are denoted explicitly. The notion of
information cluster is introduced, matching the classical concept of
object and class, as a module that encapsulates data and behavior.
Use of a cluster by some other module is then represented by a
connection between the user module and the representation of the
operation that is used in the cluster. Only those operations that are

actually used are represented graphically.

The model includes primitives to support features such as separate
compilation of lexical units, clearly targeted in Ada Department of

Defense [1983]).

Inheritance is treated from the point of view of data generalization,

resembling generic packages in Ada.

The design method also accounts for the asynchronous activation of a
module, supporting fork/join synchronization and message passing,

as well as Ada's rendezvous.

2.2.3. STATEMATE

STATEMATE (Harel et al. 1988) is the implementation of a set of tools
to model and analyze “reactive systems.” Reactive systems cannot be
adequately described by a statement of the functions from inputs to
outputs, but involve the allowable combinations of inputs and outputs
in time. The systems under design are viewed in three different
ways, a structural view, a functional view, and a behavioral view.

The structural view is similar to the SM, but it distinguishes modules
that are intended to serve as data stores. It also distinguishes the
system under design from its environment. The functional model is
like the dataflow model, and it incorporates the control mapping. The
behavioral model is a control model. The resulting graphs are not too

messy due to the AND/OR decomposition of nodes.

2.2.4. Arcadia

The goals of the Arcadia project are: the discovery and development
of environment architecture principles and creation of novel software

development tools (Taylor et al. [1986]).

The term architecture is used to denote the set of rules and support
infrastructure which characterize, bind together and enable
utilization of the software development support tools existing within
an environment. Object managers, user interface tools and tool
activation managers may all be elements of an environment

architecture.

Two principal qualities sought in the development of Arcadia are:
extensibility, which refers to the ease of adding new capabilities to the
environment; and integration, which refers to consistent user
interfaces, easy context switching, efficient communication between

tools.

The tools and objects manipulated in Arcadia are classified in three

broad categories:

Basic components: these include the internal representation
for programs, suitable for compilation, interpretation,

analysis and program transformation.

Tool-building tools: these include tools such as lexer and

parser generators.

Analysis tools: These include testing and debugging tools,
design analysis tools and other tools applicable in pre-

implementation stages of software development.

The process of developing software in Arcadia, depends on the
process of creating, organizing, augmenting and exploiting a
collection of persistent objects and aggregates of information.
Arcadia users are encouraged to think of their work in these terms.

Taylor et al. [1986] give the following example:

“..rather than requesting the execution of a program, the
user will request the display of the output of a program as

applied to a specified set of data.”

Objects in Arcadia are typed and are organized in a structure known
as the Object Derivation Graph (ODG), which defines how objects are
derived from other objects. This organization is compared by Taylor
et al (1986) to that of RCS (Tichy [1982]), a system for version control.
Hierarchy is also used to organize the object store. Users may define
arrays or structures of objects that may be in turn organized as

arrays and structures.

Arcadia is designed to support cooperative activities of teams of
software developers and maintainers, working in separate
workstations connected in a network. Each worker has a separate
store of persistent software objects in his/her own workstation and

also has access to objects stored in different workstations. Sharing of

objects is done using the principles of Software Federation

(Heimbigner & McLeod [1985]).

In Arcadia a tool is a collection of tool fragments, temporarily allied,
under the control of the environment, to complete some activity. For
example, the tool fragments may be connected in a Unix pipeline.
This notion contrasts with the more conventional concept in which a
tool is more or less equivalent to a single program, Arcadia tools may
be either passive or active. Active tools are executed without direct
invocation by users. They perform according to predefined plans,
and are invoked by Arcadia using devices such as timers and

daemons that watch for relevant changes in the object store.

Creating larger tool capabilities out of smaller more general tool
fragments is beneficial because, if the tool fragments are well chosen
they will be usable for composing a variety of larger tools, at alower
cost. For example a pretty-printer can be composed using pieces

such as a parser, a lexer and a formatter.

In many cases it is possible to determine which tool fragments will
have to be invoked and in which order to accomplish a given task.
However, there are cases when this is not possible. For example,
consider a two-pass dataflow analyzer, that determines the order of
analysis of the second pass during the first pass. The design of
Arcadia includes a planning tool fragment whose job is to

dynamically create tool fragment invocation sequences.

Arcadia tools are objects too, and there are tools to manipulate them.
Using this approach a method for incorporating new tools is defined.
It is required that at least one tool to create instances of new tools be

written initially.

Inter-tool communication is done by remote procedure calls. When
tight integration is desired, tools must share a set of common data

structures, which are implemented as monitors.

2.2.5. The Programmer's Apprentice

The near-term goal of the Programmer's Apprentice (Rich & Waters
[1988]) is to develop a system to provide “...intelligent assistance in all
phases of the programming task.” In the long-term the goals of this
project are to develop a theory of how expert programmers analyze,

synthesize, modify, explain, specify, verify and document programs.

The two basic principles underlying the Programmer's Apprentice
are the assistant approach and inspection methods; it is realized

using a Plan Calculus and a hybrid reasoning system.
2.2.5.1. The Assistant Approach

It is recognized that complete automation of the programming task is
not a realistic near-term goal. A fundamental difficulty with a
complete automation approach is the trade-off between the generality

of a specification language and its ease of use and compilation

(writing a complete specification in first-order logic may be much

harder than writing a program.)

An alternative approach is to assist programmers rather than
replacing them. This was proposed by Harlan Mills in the form of
chief-programmer teams in the early 70s. The goal is to provide each
programmer with an computer-based assistant, called the
Programmer's Apprentice. The Apprentice is regarded as a new
agent in the software process rather than as a tool. It should interact
with the programmer and have access to the tools that exist in the
programming environment. The communication between the
programmer and the Apprentice must be based on a substantial

amount of shared knowledge.
2.2.5.2. Inspection Methods

Human programmers usually think in terms of commonly used
combinations of elements with familiar names (called cliches.) For
example, “device driver” is a cliche. An essential property of cliches
is their relation to one another. For example a cliche may be a
specific case or an extension of another cliche. Algorithm and data
structure cliches may be related as possible implementations of

specification cliches.

Given a library of cliches it may be possible to perform many
programming tasks by inspection rather than by reasoning. In

analysis by inspection, properties of a program are deduced

recognizing cliches. In synthesis by inspection, implementation

decisions are made by recognizing specification cliches.

The Programmer's Apprentice focuses on the use of inspection
methods to automate programming, rather than methods like

deductive synthesis or program transformations.
2.2.5.3. The Plan Calculus

To apply inspection methods the cliches are represented in a
concrete, machine-processable form: the Plan Calculus. This is
essentially a hierarchical graph structure made up of different kinds
of boxes representing operations and tests, and arrows representing
flow of data and control. The representation has a graphical notation
(Rich & Waters [1988, sidebar in page 13]) and a formal semantics

for reasoning.

Taxonomic relationships between cliches, like specialization, are
handled by special-purpose mechanisms in the cliche library. The
relation between a specification and an implementation is
represented by an “overlay”, which defines a mapping from a set of
instances of the implementation plan to the set of instances of the

specifications.

2.2.5.4. The Hybrid Reasoning System

The approach used to reasoning about structured objects (programs,
specifications, requirements) and their properties, is to use a
combination of special-purpose techniques and general logic
reasoning. Special-purpose representations and algorithms are used
to avoid the combinatorial explosion of general logical reasoning
systems. logic-based reasoning is used as the “glue” between
inferences made in special purpose representations. This is
implemented in a system called Cake, that is being used as base for

the development of the Programmer's Apprentice.
Cake is structured in four layers:

L The Propositional Logic Layer performs simple one-step

deductions, records dependencies, and detects contradictions.

2. The Algebraic Layer contains special-purpose decision
procedures for congruence closure, common algebraic
properties of operators (commutativity, etc.) partial functions

and the algebra of sets.

3. The Frames Layer of Cake support the notions of inheritance

and instantiation.

4. The Plan Calculus Layer supports graph-theoretic

manipulations of plan and overlay diagrams, such as

4

following ares. It also implements the formal semantics of

the Plan Calculus.
2.2.5.5. Programmer's Apprentice Scenarios

Rich & Waters [1988] describe three target scenarios for the usage of
the Programmer’'s Apprentice, two in the area of implementation

and design and one in the area of requirements.

In the first case, KBEmacs (knowledge-based editor in Emacs
(Stallman [1981]) is used to demonstrate how implementation cliches
aid in the construction of programs. KBEmacs adds a higher level of
editing commands to the existing text and syntax based commands of
Emacs. Changes in the algorithmic structure of a program can be
achieved with a single command and may involve widespread textual

modifications.

Two important capabilities of KBEmacs are the generation of
program documentation, explaining the functionality in terms of the
cliches used, and programming language independence. KBEmacs
was originally written to handle Lisp programs and has been

extended to operate on Ada programs with little effort.

KBEmacs was implemented before Cake was available, and the Plan
Calculus is essentially the graph formalism without the associated

logical reasoning.

The second case is the Design Apprentice, which extends the
capabilities of KBEmacs into the realms of design. It is based on: a
declarative input language, detection and explanation of
programmer errors, and automatic selection of possible
implementation choices. The Design Apprentice emphasizes the use

of Cake to detect and explain programmer errors.

The third case is the Requirements Apprentice, that uses Cake as the
underlying knowledge representation and reasoning system. Work
on this prototype is at a very early stage of development. The
Requirements Apprentice is expected to be of use in several stages of
the requirements acquisition process, like achieving consensus
among a group of end-users about what they want and in the

transition from informal to formal requirements.

2.3, User Interfaces

The user interface of a system is that component of a system that
collects input data from users of the system, passes collected data on
to the system for processing and presents output data to users of the
system. For example the user interface of a text editor collects text
and editing commands form a user and displays the current state of
the file text that is being edited. These concepts are discussed in

detail in Chapter 5.

2.4, Concurrency Control And Recovery in Database Svstems,
A typical example that illustrates the nature and need for
concurrency control, is the airline reservation system. The problem
is that many agents may be using the same data, and if this is not
done “carefully”, the same seat may be reserved twice. Processes that
read and write the same data, should not run concurrently in
conflicting ways. We regard operations that use shared data
occurring atomically, as a transaction. The concept of serializability
of transaction provides a basis for correctness. It is also necessary to
consider the case when transaction fail for any reason; actions
should be taken to prevent failed transactions from corrupting the

database. A thorough discussion of these issues can be found in

(Bernstein, Hadzilacos & Goodman [1987]; Ullman [1988)).

2.4.1. Transactions

A transaction is a single execution of a program that reads and
writes data. Several independent executions of the same program
may be in progress simultaneously; each is an independent
transaction. It may also be the case that a number of different
programs are being executed concurrently; each is an independent

transaction as well.

A component of database systems is the transaction manager.
Transaction management makes complex operations that read and

write data appear atomic. That is:

* They act on shared data without interfering with other

transactions.

* If they are completed normally, their effects are made

permanent,

* If they are not completed normally, they have no effect on the
data.

When a transaction execution is completed, its effects are made
permanent in the database and it is said to be committed. Ifa
transaction fails, and can not be brought to completion satisfactorily,
it is said to abort. A transaction that has not yet committed or aborted
is said to be active. A transaction that is uncommitted if it is either

aborted or active.
A transaction may abort for a number of different reasons:

* The transaction itself issues an abort in face of errors from
which it can not recover (you may be withdrawing money in

an ATM, and do not have enough funds.)

* A system failure may interrupt the execution of the

transaction (somebody accidentally unplugs the computer.)

* The database may abort a transaction because it detects that
it has returned a wrong value to the transaction in response

to a read operation (maybe, because another transaction has

been aborted, and we were given an uncommitted value

written by that transaction.)

Commitment of a transaction guarantees that the effects of the
transaction will be made permanent. (You do not want to leave the

bank until the teller commits your deposit!)

For example, we consider an airline reservation system, we can
define a “reservation” procedure R(C) for a customer C as the

sequence of operations:

1. S « read next available seat
2. mark S as reserved for C
3. write S

If two transactions that execute the reservation procedure are issued
concurrently, say R;(Cy) and Rao(Co) it is possible that the same seat
So be reserved for both customers, C 1and Co. Table 2.1 shows a
possible sequence of execution of steps in R that would lead to this
situation, assuming that the list of next available seats is: <Sp, S1,.>
and that the seat is no longer available for reservation when it is

marked reserved for some customer.

ity
e er—

Rj R3

1 S « read (= Sgp)

2 S « read (= Sp)

3 | mark S reserved for Cy

4 write S

5 mark S reserved for C;

“ 6 write S

Table 2.1: Execution of reservation transactions

It is easy to see how C; and Cg ended having the same seat reserved;
if the transactions had not been executed concurrently, but serially
one after the other, different seats were reserved. Selling exactly the
same seat twice is incorrect; assigning each seat only once would be
correct but it would not be necessary that you get exactly the same
seat under every possible order of execution of the transactions. If the
transactions are executed as (R;;R2) the assignment of seats will be

different than if they are executed in the order (Rg;Rj).

2.4.2. Serializability

An execution is serial if for every pair of transactions all the
operations of one of them are done before any of the operations of the

other transaction. Intuitively we can say that serial executions are

47

correct because each transaction is individually correct by
assumption, and transactions that execute serially cannot interfere

with each other.

It is clear that a strictly serial execution would make poor usage of
resources. In general, it is desired to interleave the execution of
transactions. We say that a concurrent execution of a set of
transactions is serializable if and only if it produces the same output
and has the same effect on the database as a serial one. Since serial
executions are assumed to be correct, serializability implies

correctness.

All serial executions are equally correct according to this criterion.
Therefore a set of transactions may execute in any order as long as
the effect is the same as that of some serial order. It is of course
possible that not all serial executions produce the same effect. If a
particular order is preferred, it is the user's responsibility to ensure
that the preferred order actually occurs. For example, in the case of
reservation transactions discussed earlier, if two reservations are
run for two different customers, they may get different seats
depending on the actual order in which the transactions' operations
are interleaved. If a particular assignment is desired, the burden of

producing it is left to the user.

2.4.3. Recoverability

Database systems usually include a recovery subsystem (or recovery
manager) whose mission is to make the database system behave as if
the database contains all the effects of committed transactions and

none of the uncommitted transactions.

If transactions never abort, then recovery is trivial because all
transactions eventually commit. The recovery problem appears when

transactions potentially abort.

When a transaction T aborts, the database system must remove its
effects by restoring each data item written by T to a value it it would
have if T had not taken place. Undoing a transaction is usually
called “roll-back”. Rolling back one transaction may give rise to
cascading roll-backs that are often very expensive. This happens
when transactions read uncommitted data. Let us consider the

following example from (Bernstein, Gooman & Hadzilacos [1987]):

Suppose that the initial values of x and y are I, and suppose
T and T issue operations that the database system

executes in the following order:
Write(x, 2); Reada(x); Writeg(y, 3);

The subscript on each Read and Write denotes the
transaction that issued it. Suppose that T'; aborts and

Writej(x, 2) is undone restoring x to the value 1. Since T9

reads the value of x written by T; 12 must be aborted too.

Now, let us build the notion of recoverability. We say that a

transaction T reads x from transaction T; if:
1 Tjreadsx after it has been written by Tj;
2. T; does not abort before T} reads x; and

3. every transaction that writes x between the time when T}
writes x and the time when T; reads x, aborts before T; reads

X

A transaction T} reads from T; if it reads some data item from 7.
An execution is recoverable if for every transaction 7' that commits,
it commits after every other transaction from which it reads.
Recoverability is required to ensure that an already committed

transaction is not rolled-back.

Recoverability, however does not guarantee that cascading roll-backs
will not occur. To avoid them we must ensure that every transaction

reads only values written by committed transactions.
2.4.4. Concurrency control with locks
We previously said that transactions read and write data. To be

more precise we will define the notion of item, as those units of data

to which access is controlled. In general, the nature and size of items

is for the designer to choose. For example, in relational databases,
items could be entire relations, tuples or elements of tuples; in an
object oriented database items could be classes, objects or slots

(attributes) of objects.

The most common way to implement concurrency control is the use
of locks. A lock manager is that part of the database system that
records for each item I, whether one or more transactions are
reading or writing any part of I. If so the lock manager will not

grant locks to other transactions.

Choosing a large granularity of data items reduces the system
overhead needed to maintain locks but may cut down allowable

concurrency.

Concurrency control can also be implemented using other methods
(timestamps, serializability, graph testing and certificators) to decide

the legality of read and write operations on shared data.

We can define lock and unlock operations on data items, such that
when a transaction locks a data item, that item cannot be used by any
other transaction. In actual implementations there may be many

different types of locks, permitting varying degrees of compatibility.

We will model the transactions as being composed of the following
operations: start, commit, abort, read, write, lock and unlock which

have the obvious meanings. We will also restrict the possible

51

sequences to: start (read | write | lock | unlock)* (commit | abort),

using regular expression notation.

Sequences of these operations will have an effect on the properties of
the transactions, such as serializability, recoverability, deadlocks and

cascading roll-backs. Below we explain such effects.

2.4.5. Deadlocks and Livelocks

A deadiock is a situation in which two or more tasks can not proceed
because each one of them is holding a lock on some data item that the
other transaction needs. Not being able to proceed, they are not able to

release the locks either.

For example assume that we have transactions T; and T which are
executions of:
(progn
(lock A)

(lock B)
)

and
(progn

(lock B)
(lock A)

respectively.

Also assume that the computation proceeds as shown in Table 2.2. At
time 3, none of the transactions can proceed since it will be
impossible to grant the requested lock to one transaction without

aborting the other one.

Ty Ta

1 lock A

2 lock B

Table 2.2: Deadlock situation

Corrective actions include: detecting that deadlocks exist and
aborting or restarting the transactions involved; granting all locks in
a block, either all locks requested by a transaction are granted or
none is granted; linearly ordering the resources to lock, and
requiring the requests to be made in the predefined linear order. The
first method (abort/restart) lets deadlocks occur. The last two avoid
deadlocks.

Another situation, called livelock, may happen if a many
transactions are requesting a lock on the same data item, let us say A,
and they either get the lock or they have to re-issue the request. It is
possible that every time some transaction T issues a request for A the

lock is not granted. T will never be executed. A solution to this

problem is to schedule the execution of the transaction in a FCFS

manner (a scheduler with priorities and aging could also be used.)

2.4.6. Two-Phase Locking

Another problem that must be faced when designing a transaction
system is how to guarantee correctness of the concurrent execution of
sets of transactions. One solution is to use a protocol called two-phase
locking (2PL for short.) In this case the transactions are divided in
two consecutive phases. In the first lock are acquired and in the
second locks are released. That is, no lock is released before all locks
have been acquired. It has been proven that 2PL guarantees
serializability of transactions (Bernstaein, Goodman & Hadzilacos

[1987, Section 3.3)).

There are several variations of the 2PL protocol: conservative 2PL,
and strict 2PL, which are of importance in different cases.
Conservative 2PL requires that transactions request all locks before
any other operation of the transaction is submitted for execution; the
purpose of this scheme is to avoid aborting transactions because of
deadlocks. Strict 2PL requires that transactions release all locks
together when the transaction ends, after it is committed (or aborted);
the purpose is to guarantee recoverability and avoid cascading roll-

backs.

2.4.7. Locking Hierarchical Items

In many cases the data items are organized as hierarchical items.
For example the modules in SARA models are hierarchically
organized by the module-submodule relation. It is therefore

convenient to devise locking mechanisms to handle these cases.

There are two basic approaches to this problem. The first is to lock
individual objects in the hierarchy, the second is to lock complete

subtrees.

To implement the first one, we use a locking protocol called tree-

locking, that proceeds according to the following rules:

* The transaction locks a first item, which must not be locked

by any other transaction.

¢ To lock a data item other than the first one, the transaction

must hold a lock on the parent of the data item.

. When a transaction holds a lock in an item, it can release the

lock of its parent.
Tree-locking guarantees serializability.

To implement locking of complete subtrees, a protocol called tree-

warning, that works according to the following rules.

* To obtain a lock on a data item, a warning must be placed on
every data item in the path from the root of the hierarchy to

the data item.
®* Alock on a data item implies a lock on all its descendants.

¢ The compatibility of locks and warnings is: warnings coexist
with other warnings and exclude locks. Locks exclude

warnings and locks.

Tree-warning locking requires 2PL to ensure serializability.

2.4.8. Long Transactions

It has been suggested by some authors (Greif &Sarin [1987]; Korth,
Kim &Bancilhon [1987]) that the enforcement of serializability is not
appropriate for long-lived interactive transactions, beacause it
hinders concurrency and because it may be necessary to undo
significant amounts of work. It is also pointed out that long-lived
transactions are vulnerable to failures recurring during the

transactions' life.

Proposals to alleviate these problems include the use of frequent
saving points to ease recovery, human-handled cooperative
scheduling for resolution of conflicts, and use of nested transactions

that refine to fine-grain short transactions.

2.5, Object-Oriented Svyst

Object-oriented systems have their roots in programming languages
such as Simula (Dahl & Nygaard [1966]) and Smalltalk (Goldberg &
Robson [1984]). Lochovsky [1989] contains a set of articles that review
the state of the art in object-oriented systems. Concepts of object-

oriented systems are discussed in detail in Chapter 4.

2.6, Recent Research Results

In this section we review current research closely related to our own
work on collaborative design. This section is organized to cover
recent work on: software and hardware environments for computer
supported cooperative work, object oriented programming systems
and databases, integrated design environments and computer system
design methodology. Most of the material discussed here was
presented at the Groupware Technology Workshop (IFIP Groupware
Technology Workshop [1989]).

2.6.1. Software and Hardware Environments

There is a significant number of projects under development to
produce software and hardware environments to support cooperative
work. All known projects are aimed at providing basic and general
support for cooperative activity, usually providing simple

functionality for conferencing and editing.

The focus of many research projects is on dealing with multiple
media, supporting voice, video and data, to enhance remote meetings.
We describe below system that were discussed in the Groupware
Technology Workshop: Rapport, Mermaid, the TeleCollaboration
project, and ISI's Multimedia Conferencing project. Other current
projects that deal with integration of video, audio and computer
technologies in multimedia systems to support collaboration are:
MMS5 at Olivetti Research Center, VIDEOQ at Xerox PARC, MMConf at
BBN and Bellcore's Integrated Media Architecture Laboratory.

Other systems focus more strongly on the mechanisms used to
collaborate, such as concurrency control, viewing of shared data,
coordination mechanisms, and others. The GROVE editor being
developped at MCC focuses on concurrency control issues; the
product under development at Brainstorm Inc. is intended to provide
support for group decisions; work done at IBM T.J. Watson Research
Center focuses on the communication of user actions among
workstations, using animation techniques to smoothly reveal screen

activities of other participants in meeting.

There are projects that have made efforts to deal with meeting room
layouts to enhance collaboration, such as the University of Arizona's
project and the Capture Lab of the Center for Machine Intelligence,
Michigan. Both are described below.

2.6.1.1, The Rapport Conference System

The Rapport multimedia conferencing system has been developed at
AT&T Bell Laboratories. It allows a group of people to hold real-time

conferences sharing data, voice and images.

During a conference, the participants interact to produce and edit
identical screens on their workstation screens, that contain

information produced by conventional, single-user applications.

Rapport software provides two basic functions: support for interaction
among conference participants, permitting initiation, conduct and
termination of meetings; and support for sharing of displays among
conference participants, coordinating the execution of application

programs and maintaining consistency.

The original implementations of Rapport worked on the basis of
single-user (collaboration-transparent applications. The attention of
the implementors is shifting now to multi-user (collaboration-aware)
applications. This is being explored with a program that allows its
users to have both private and shared annotations, with both private
and shared views of an underlying document. Private and shared
annotations and views are implemented using private and shared

workspaces.

Rapport is geared for remote, non face to face communication, and its

suite of tools include the ability to display pictures of the conference

participants, associating them with different colors for easy

identification of telepointers.

In the case of Rapport the use of single-user, collaboration
transparent tools, and the strict WYSIWIS approach, suggests that
sharing is done mainly at the display level. It is not clear how data

consistency is maintained.

2.6.1.2. Mermaid: a Distributed, Multimedia conference

system

Mermaid, a system under development at the C&C System Research
Laboratories of NEC Corporation, is a multimedia communication
system to support collaborative work among multiple participants in
a distributed office environment. The architecture of the system
defines protocols for exchange of multimedia documents and
conference coordination. Both, synchronous and asynchronous

communication are supported in Mermaid.

The system operates using a client-server model. The clients supply
functionality for preparing conferences, opening and closing
conferences and other operations. Servers are classified into master,

conference and domain servers.

The system contains a single master server, that supervises all the
conferences that are conducted and replies to client inquiries about

conference details.

One conference server is allocated per existing conference. These are
responsible for conference control operations such as: convening,
opening, closing, dynamic joining and leaving, presentation and floor

passing.

A domain corresponds roughly to a set of workstations connected in a
local area network. A domain server is responsible for data

communication within its domain and between domains.
2.6.1.3. The TeleCollaboration Project

The TeleCollaboration Project project, being done at U.S. WEST
Advanced Technologies, uses an iterative approach to designing and
building collaborative systems, using a cycle of prototype development

followed by cbservations via behavioral research methods.

The current prototype is used in support of a research organization
that is intentionally dispersed geographically. The multimedia
environment provides functionality for communication via video,
audio, facsimile, remote control, data, text, shared computing and

various combinations of these.

Communication is supported by several metaphors, such as phone
calls and hallway wandering via video. There is a major concern
about social issues in this project, as is demonstrated by the research
approach used and the participation of social scientists in the

research group.

2,6.1.4. The ISI system

The Multimedia Conferencing project has developed an
“experimental facility for realtime multisite conferencing”. It is
aimed at geographically dispersed sites, and the emphasis is on

multimedia technology and realtime communication.

This system can support up to four sites, each of which contributes
video images that are displayed in a quadrant of a video screen

located in the conference room.

MMConf is used as basic software to share single-user applications
in a conference. There is no integration of the MMConf software with
the conference room setup. Video and voice control software operates

independently of MMConf.

Problems that have been perceived with usage of this system are:
floor negotiation, which has to be done verbally due to delayed
response of the software system; screen space management for video
images, to accommodate more than four participants; resolution
quality of video, transmitted using a packet switching mechanism in

which packet damage or loss is common.

Usage of headphones has been perceived as better than loudspeakers.
Using loudspeakers makes the conversations feel farther away and
people tend to shout. Communication is more relaxed when

headphones are used.

2.6.1.5. GROVE

GROVE is a simple outline editor, built at MCC, specifically designed
for use by a group of people interacting synchronously. It is intended

to support both, face to face and remote operation.

GROVE has been used as a prototype to explore implementation
alternatives and problems of multi-user tools, and to collect informal

observations on its use.

The main functionality of GROVE is to provide fine-grained
concurrent editing capability. Several people could type into the same
sentence at the same time and see each other's changes immediately.

The main concepts embodied by GROVE are:

Session: A session is a set of GROVE processes engaged in
editing the same outline. Each process is associated with a
user who can enter and leave the session at any time. A

session ends when there are no GROVE processes running.

Group window: A group window is a collection of individual
windows, that may appear on different display surface (e.g.,
different workstations). All the windows that comprise a
group window are maintained in identical state. For
example scrolling one individual window, causes all the

individual windows in the group to be scrolled identically.

View: A view is a portion of the outline being edited. There are
three types of view: private, which contains items that only a
particular user can access; shared, that contains items that a
subset of all the users can access; and public, that contains

items accessible by all the users.

This system maintains replicated copies of the data in each
participant’s workstation. The concurrency control algorithm used

guarantees consistency of copies.
2.6.1.6. Arizona Meeting Room

The University of Arizona's Management Information Systems
Department has created a relatively large meeting room, equipped

with audio and video facilities.

The layout of the room is a U-shaped plan, with a large screen
located at the open end of the U. It is claimed that the introduction of
computer hardware does not affect the line of sight, so the group

members have a good sight of each other.

The software provides explicit support for facilitation, and is aimed at
brainstorming processes in which each user may add items

anonymously.

The authors place a great amount of attention on the planning
necessary for the introduction of this kind of meeting rooms in

existing organizations.

2.6.1.7. The Capture Lab

The Capture Lab at the Center for Machine Intelligence, is a
meeting room with software to support face to face meetings. As well
as the Arizona meeting facility, this room makes an issue of not
obstructing the participants line of sight and using a non-intrusive

workstation plan.

The software system provides functionality to handle one large
screen as a shared, WYSIWIS space, and treats the workstation's
screens as private workspaces. The system is intended to support
collaboration-transparent applications, so as to provide flexibility in

the group's choice of tools.

2.6.2. Object-oriented Systems

There is agreement that object oriented systems constitute a solid

foundation for the implementation of collaborative systems.

We describe below two important research efforts in the area of object
oriented systems, that have as a goal to provide efficient management
of shared persistent objects in distributed environments. Decouchant
(Decouchant [1989]) focuses on extending Smalltalk with these
features, whereas Moss (Moss [1989]) is trying to smoothly integrate
database and programming languages concepts. The latter is a
particularly promising approach, that seems to fit well with our own
interest, but there is yet little information as to how that goal is

accomplished.

2.6.2.1. Distributed Objects in Smalltalk-80

The distributed object manager for Smalltalk-80 [.decouchant 1989] is
based on: location transparency and uniform object naming, unique
object representation and use of symbolic links for remote access,

possibility of object migration, and distributed garbage collection.

The object manager is implelmented as a collection of cooperating
local object managers, which run on each workstation. Local object
managers provide a set of primitives to share and name objects
without programmer awareness of the object's actual location. Other
functionality of object managers include migration, garbage

collection, connection and disconnection of sites.

In this system, an object name is always a reference to a local object.
For remote references, there is a particular type of object called a

“proxy” that locally represents a remote object.

The structure of the object manager consists of three processes: the
network manager, the main memory manager and the secondary
memory manager. These processes are used by client Smalltalk

processes.

The network manager executes remote accesses on remote objects,
serves requests from other network managers and controls the local
processes. The main memory manager relocates objects, frees space,
collects garbage, and resolves objects faults. The secondary memory

manager stores and retrieves objects in secondary memory.

2.6.2.2. The Mneme Object System

The goal of the Mneme system (Moss [1989]) is to support cooperative,
concurrent and reliable use of large , distributed collections of objects.
The need for and benefits of independent collections of objects are

described and implications on addressing issues are examined.
2.6.2.3. Integrated Design Systems

Collaboration transparency is accepted as an important problem in
the design and implementation of environments for collaboration,
because it allows existing tools, such as editors and spreadsheets, to

be used within collaboration sessions.

A simple approach to attack this problem is to use shared window
systems. In this case an application interacts with a shared
window server, via a virtual terminal protocol. The shared window
server routes the requests to individual window servers, to produce
exactly the same window presentation in all the workstations

involved.

The idea of a virtual terminal protocol can be traced back to the NLS
project (Engelbart & English [1968]).

Shared window systems of this class help in integrating arbitrary
tools into environments for collaboration, but bring sharing to a very
low level of abstraction and do not contribute to solve problems of data

sharing that are critical in collaboration.

CHAPTER 3

Functional Requirements and
High Level Structural Design

68

Functional requirements to support collaborative design are
described in two dimensions, requirements to support collaborative
design activities, and requirements to support interaction and
management of the software environment used for collaborative

design.

A high level structural model of the collaborative design environment
is described as a response to functional requirements. This high-
level design motivates the introduction of an object oriented data
model and a user interface development system in the following

chapters.

.1. Functionali r 1] rative Design

The functionality to support collaborative design should enable small
groups of designers to share a common set of design objects, having a
common view of the design process, established by agreement on a

sharable design paradigm.

Sharing of design objects and cooperating in following a common
design paradigm require that the designers communicate with each
other and coordinate joint activities. Communication refers to the
functionality needed to support exchange of information among
members of a group, and coordination refers to the functionality
needed for the group work to progress towards mutually agreed upon

goals.

69

A design paradigm is sharable by a group of designers if it can be
used as a basis to discuss and record design issues, make and record
group decisions, perform and record design operations, and compile

and trace design history.

3.1.1. Functionality to Share Design Objects

The design objects are design representations, design history, and
design tools. Design representations encode models of a system that
is being designed or has been designed. Design history contains
information about prior design activity. Design tools are used to
create and change design representations, to analyze and evaluate
designs, to record and browse the history of the design, and to

coordinate joint design activity.

As an example of sharing a design representation, consider a design
model that has been partitioned into several modules, two of which
are A and B. Ferruccio is working on A and Petroushka is working
on B, It should be possible for both Ferruccio and Petroushka to see
modules A and B on their respective workstations at the same time,
for purposes of design discussion, e.g., agreement on the interface
between A and B. Also, Ferruccio should not be allowed to make
changes in B at the same time that Petroushka is changing B, unless
both of them agree on a partition of B into two or more submodules,

and work independently on each of them.

70

As an example of sharing design history, consider a case in which
the two designers are making a design decision. Ferruccio and
Petroushka may be examining the design history to determine
possible interaction between the decision they are about to make and
previous decisions. For this purpose they share the design history
object, and share a common focus on the history object, i.e., the part of
the history that is being observed. Once they have reached a decision,
the design history must be updated by one of them, who will record
the decision and its rationale. Sharing of design history is necessary

for both communication and coordination.

As an example of sharing design tools, consider a tool for
establishing the focus of a session, i.e., selecting a set of design objects
to work with. There are two cases, the designers work with
independent session foci wherein each uses a different instance of
the tool, and the designers share a session focus by sharing the same

instance of the tool.

It is required that design objects be sharable according to the

following rules:

* The existence of all objects must be knowable by all of the
collaborating designers at all times. The designers should
know at least the name of the object and the name of the

designers who are using it.

71

* A design object can be modified by one designer at a time; it
can be viewed and used, but not modified, by more than one

designer at a time,

* Changes, made to an object that is shared by two or more
designers, can be seen by designers as they are made, unless
the designer who is modifying the object has chosen to
restrict access to it in order to prevent other designers from

seeing changes until they are done.
3.1.2. Functionality for Communication
There are two modes of communication that must be supported by the

system, synchronous and asynchronous communication.

Communication may be either face to face or remote (Figure 3.1).

Face-to-face Remote
*Rapid response *Rapid response,
Synchronous +Social interaction «Restricted communication
Asynchronous *Delayed response *Delayed response
*Social interaction *Restricted communication

Figure 3.1: Location/Timing diagram for communication

72

Synchronous communication occurs when messages are exchanged
between designers interactively, and each message requires a
response, which is expected to occur in a short term. To enable
synchronous communication among designers, the system must
provide support to work on a common space in such a way that the
action of one designer can be observed by other designers and to

exchange and record short unstructured messages.

Asynchronous communication occurs when messages are
exchanged between designers non-interactively. A response is not
always required by senders of messages and if it is, it is not expected
to occur in a short term. This form of communication does not
require the simultaneous presence in the environment of designers

other than the sender of the message.

It is necessary to distinguish between face-to-face and remote
communication, because functionality that may be acceptable in one
case may not be appropriate in the other. A tool that provides a
highly structured communication may be appropriate for a remote
conference, but provide too low a bandwidth for face-to-face
interaction. On the other hand, in a face-to-face setting, it may be
possible to rely on socially unstructured communication among
designers to quickly achieve agreement on some coordination issue
without support from the computer; this may not be realizable in a
setting in which designers are interacting remotely, but may become

feasible in a teleconferencing setting with multimedia support.

73

3.1.3. Functionality for Coordination

The functionality for coordination should enable group work to
progress towards mutually agreed goals. Functionality is required
for management of group focus, management of coordination

milestones, group organization, and facilitation.

The system should provide a way to focus the attention of the group or
any sub-group on a common set of design objects, for presentation
and discussion purposes. The mechanism for setting the group focus
should be able to operate in a strict WYSIWIS form(What You See Is
What I See; section 2.1.1.2), displaying exactly the same picture
either on a common large screen or in a designated window on each
designers screen. It should also be able to operate in a relaxed
WYSIWIS form, selecting a set of objects that would be displayed
on designers' private screens following whatever preferences for

graphical display each designer has.

Group coordination milestones are actions taken by the group as
a whole, when deliverables are required to proceed with the design.
For example, assume that Ferruccio and Petroushka are designing
a system X that has been partitioned into modules A and B that
interact with each other. To proceed to test the integration of modules
A and B it is necessary that both modules have been designed and
tested previously. The integration testing would therefore be a group
coordination milestone. The functionality required for management

of coordination milestones is; definition of coordination milestones,

74

recording of milestones in the design history, scheduling milestones,
review of pending milestones and recording completion of

milestones.

The functionality required to organize the design group in useful
ways is: admitting and deleting group members, passing or
relinquishing control of design discussion, partitioning the group

into subgroups, and merging subgroups.

The functionality required to support facilitation of group work is:
provision of support for group interaction based on established group
design protocols, provision of advice about following the design
paradigm, assistance for recording discussion and design decisions

in the design history and assistance for tracing the design history.
3.1.4. Functionality for Management and Use of the Design

Environment

Functionality is required to support the following areas of the
software environment: user interface, initialization, recovery and

extension.

3.1.4.1. User Interface

The design environment should provide a user interface that the
designers will use to manage the design objects. It is required that

the user interface:

75

¢ Be able to work with graphical representations of design

objects.

* Provide mechanisms to handle the graphical complexity of
large models within the limited space of current

workstations' screens.
* Give access to system documentation and help information.
* Offer direct manipulation of objects (Schneiderman [1983]).

* Allow the user to maintain multiple threads of control

(Hill [1987.]).
3.1.4.2. Functionality for Initialization and Recovery

Functionality should be provided to initialize the system under four
different circumstances system generation and configuration,
Initialization of work on a new design, initialization of a group

session, and initialization of an individual designer's session.

Functionality should be provided to recover gracefully from either
hardware, software and user errors. It should be possible to bring
the system to the most recent consistent state, after operation has

been aborted while objects are in an uncommitted state.

A recovery procedure should reinitialize the system to the same mode
of operation that it had before the failure. For example, if a designer

aborts a transaction his or her session should be brought to the state

76

it had before the transaction was initiated, and no one else's session
should be affected at all. If recovery is started after a failure that
encompasses the whole system. For example, for a network failure,
all existing sessions should be reinitialized and brought to a

consistent state.
3.1.4.3. Functionality for Extension

There is a growing literature on CADIS (Computer Aided Design
Information Systems) and CASE (Computer Aided Software
Engineering.) In this work, it is assumed that demonstrable effective
design methods and supporting tools will become candidates for

integration into the Collaborative Design Environment (CDE).

Functionality must be provided to enable access to existing classes of
design objects, and to create new classes of design objects and relate
them to other, possibly existing, classes of objects. At later stages, it
will be desirable to introduce new design tools and design paradigms.

Three scenarios will be considered for the introduction of new tools;

Full integration: In this case the tool is built to operate on data
that obeys the CDE's model of data. This is usually the case of
tools built from scratch or of foreign tools that are built in
such a way that it is possible to tailor them to the

environments' model of data.

Partial Integration: In this case the tool is treated as an atomic

piece. It should be possible to implement translation

77

procedures that map data in the CDE's data model to
whatever format is required by the tool and vice-versa. These
translation procedures are specific for each foreign tool that
is partially integrated in the CDE. It is an open question
whether this transslation process can be generalized. The
invocation of the foreign tool would occur by means of a
method that is installed in the CDE that would spawn a
UNIX process running the foreign tool and would instantiate
the translation procedures. In this case the partially

integrated tool would operate under its own user interface.

Unintegrated: Ifit is not feasible to provide some partial
integration of a foreign tool into the CDE, it would still be
possible for any foreign tool to be invoked from the CDE,
creating a method that would start a process running the
tool. Even though the foreign tool is not integrated in the
sense that its output cannot be the input of ancther integrated
tool, it should be possible to display the output on the screen
and a designer should be able to inject the results of

unintegrated tool usage into the design decision porcess.

78

3.2 High Level Structural Desi

This section describes a high level structural model of the
collaborative design environment, which is shown in Figure 3.2 as a
SARA structural model (Estrin et al. 1986)' and a number of
preliminary design decisions made regarding the implementation of

the collaborative design environment.

Figure 3.2 displays a SARA model of the coSARA design. The two top
modules in this design are the System module and the Environment

module. The following assumptions are made about Environment:

* At most K designers may exist in Environment simulta-
neously, where K is a small integer (we expect 2 to 6 to be

representative group sizes).
* Each designer uses a workstation to interact with System.
* System is reconfigured to include the newcomer designer.

* Designers issue requests to System using a workstation's
mouse and keyboard, and read output from System on a

workstation's display.

1See section 2.2 and Appendix | for a decription of SARA.

79

Manages shared objects Manages environment

'‘models sinitialization

shistory F—1R crecovery

tools *meeting configuration
stools

object world sys-manager

—]

» provides multi-user awareness

common-Ul
- -
System e
]
designer-1 s designer-K
]]
ASSUMPTIONS

-at most K designers are active at the same time
designers may join or leave on going group meetings
designers work with mice, keyboards and displays

Environment

| coSARA

Figure 3.2: Structural model of the Collaborative Design

Environment

80

The first partition of System contains the following modules:

common-Ul: this module accepts requests from designers and
interprets them, updating information contained in object-
world as needed. common-UI also present output data to

designers.

object-world: this module provides a common database to all the
designers, such that the design objects created and used by
designers and those provided by the system can be shared as
required in Section 3.1.1 on sharable design objects. The
functionality provided by this module includes: storage and

retrieval of design objects, and transaction management.

sys-manager: this module takes care of initialization and
recovery procedures, addition and removal of meeting
participants, partitioning and merging of meeting groups

and initiation of tools.

The following preliminary design decisions have been made about

the implementations of the design described here.

* The collaborative design environment is initialized with the
SARA design tools (Estrin et al. [1986]). There has been a
great deal of effort put into the definition of these tools. We
are also aware of several other tools which should be added

to the set of SARA tools.

81

The collaborative design environment will initially provide
support for the SARA design paradigm (Estrin et al. [1986]).
At a later time we will seek to extend the design paradigm ro
deal with constraint management, reliability analysis,

aplication of utility functions, etc.

The collaborative design environment data model will be

implemented using OREL (Chapter 4).

The system is to be written using an object-oriented
programming paradigm (Keene [1989]; Bobrow & Stefik
[1986]; Goldberg & Robson [1984]), using CLOS (Steele [1990]).

This decision is based on the following reasoning:

Modularity: in writing object oriented software, there is a
natural modularization guideline in the data
structures. The inheritance mechanism also helps to
exploit abstraction and generalization when common

properties of several classes of objects are factored out.

Extensibility: the ability to extend the meaning of pre-
defined classes using the inheritance mechanism
provides extensibility at a low cost. By manipulating
the class structure it is possible to substantially
redefine the semantics of the data. The ability to
combine collections of methods in different ways is a

powerful tool to incrementally develop systems.

82

Design paradigm: the design paradigms that will be
supported are based on the management of design
objects. Therefore an object oriented design and
implementation should reduce the semantic gap

between the end-product and its realization.

Window management and graphics operation are done using

X Windows (Scheiffler & Gettys [1986]) for portability.

The system is to be written in CommonLisp (Steele [1990]) for

the following reasons:

Ease of implementation: usage of Lisp in general (not
necessarily CommonLisp) provides an interactive
interpretive environment, which allows incremental
modification of the code and enables the programmer
to work at source code level. These facts ease
debugging, (it must be noted however, that the
available processors of CommonLisp do not possess

particularly strong debuggers.)

Availability of CLOS: CLOS, described in section 4.6.2, is
an object system for CommonLisp, which provides
needed support for object oriented programming.
CLOS however does not provide any support for

persistent, shared objects.

83

Portability: It is clear the CommonLisp is becoming a
widely used form of Lisp. Other approaches might have
been to use languages as C, C++, Ada, etc. However
these do not provide an interpretive environment.
Furthermore, C does not have facilities for object

oriented programming.

Ability to use off-the-shelf modules: Several
components that seem to be essential for our
implementation effort have been developed for
CommonLisp. These include: PCL (Portable Common
Loops) an implementation of the CLOS specification
done at Xerox PARC; CLUE (CommonLisp User
interface Environment,) an object oriented toolkit for
X11 written at Texas Instrument (Kimbrough & Oren
[1988]); and CLX, a CommonLisp library to operate the
X11 protocol, designed and written at the MIT X
Consortium and Texas Instrument (Scheiffler et al.
[1989]). There are no such components for other
combinations of Lisp (such as T (Slade [1987]))
processors with the X Window System. There are of
course other environments, such as Interlisp, that
have similar modules and more, but they are closed

and our portability requirements would not be met.

84

Figure 3.2 shows the composition of the CommonLisp environment

using PCL, CLX and CLUE, in a “‘uses-relation" diagram.

CLUE cLx
{T1, X11 toolkit for
; MIT/TI Common-
CommonLisp PCL / Lisp library for X11
XEROX PARC, CLOS
implementation
USES Lucid
—_— :
CommonLisp
implementation

Figure 3.3: The Common Lisp Environment

Two versions of CommonLisp were evaluated: KCL (Kyoto
CommonLisp), a public domain implementation that did not offer
enough functionality and robustness for our requirements; and Lucid
(Lucid CommonLisp manual, Lucid Inc. [1988]), which was found to
be quite robust; it also offers good performance and integrates well
with the software packages mentioned above. Lucid also offers

multitasking, but no IPC (Inter-Process Communication) facility.

85

CHAPTER 4

OREL: An Object-Oriented
System for Distributed,
Interactive Sharing of Data

4.1. Introduction
This chapter discusses an object-oriented system for distributed
interactive sharing of data, based on a graphic data modeling

language that includes objects and relations as its principal

elements. The system is named OREL (Object-RELation).

An essential set of OREL data modeling primitives is defined. An
interactive graphic editor then supports construction of an OREL
data model which can be translated, on the one hand , into DBMS
schema and, on the other hand, into CommonLisp Object System
(CLOS) code (Steel [19901). The CLOS code and a set of library
functions support the distributed operation of interactively shared

data objects.

This research has been motivated and focused by previous work on
design methods and tools to support design of computer-based
systems in a UCLA project called SARA (System ARchitect's
Apprentice) (Estrin et al. {1986]). The challenge to the effort described
here has been to create a collaborative design environment which we

call coSARA. OREL is a foundation for coSARA

4.1.1. Object Oriented Programming Systems.

Object-oriented systems have their roots in programming languages

such as Simula (Dahl & Nygaard {1966]) and Smalltalk (Goldberg &

Robson [1984]). Lochovsky {1989] contains a set of articles that review

the state of the art in object-oriented systems.

The most basic concept is that of object. Although there is not a
generally agreed upon definition of object, we provide here a working
definition for the purposes of this paper. An object is an entity that
encapsulates state and behavior., Every object has the capability of
storing data, which define the state of the object. For the purpose of
data storage, objects have slots, each of which can store one data
item. The behavior of an object defines the ways in which the object’s
state can be changed or the possible questions that can be answered

about the state of the object.

Objects are grouped in classes that denote sets of similar objects, for
example, the class "rectangle” denotes all objects whose state and
behavior correspond to the common notion of rectangle, Similarly we

can have classes stack, queue, hash-table.

An object-based computation proceeds by messages sent from one
object to another. Message sending is a form of procedure invocation.
When the behavior of an object (requester object) requires that
another object (target object) be interrogated about its state (for
example, “is that window visible on the screen?”) or that another
object's state be changed (for example, “convert that window into an
icon”), a message is sent from the requester object to the target object.

The target object will perform a procedure, called a method, which

is selected according to the name of the message which denotes a

function and a set of arguments that are the contents of the message.

A set of related messages defines a protocol. The same protocol could
be implemented in more than one way. For example a protocol to
manage pictures on the screen could be composed of the messages:
move, draw, erase, highlight and reshape. One implementation of
this protocol to manage pictures on the screen could exist for the X
Window System (Scheiffler & Gettys [1986]) while another could be
made for the GKS graphic package. The software that is built using
this protocol could then run indifferently under both the X Window
System and GKS.

The concept of protocol leads naturally to the concept of
polymorphism. We define polymorphism as the ability of several
classes of objects to respond to the same protocol. For example,
rectangle and circle could be classes that respond to the protocol to

manage pictures on the screen.

Classes and protocols contribute to modularity in the construction of
programs. Another basic concept, inheritance, contributes largely to

re-usability of modules.

Inheritance allows the definition of classes of objects that are almost
like objects of another class. Suppose that class A inherits from class

B. Then objects of A have all the properties that objects of B have, plus

some additional properties that can be specified for A. We say that A

is a subclass of B and that B is a superclass of A.

Several models of inheritance have been proposed and implemented.
Simple inheritance exists when each class is allowed to have only
one direct superclass (Dahl & N ygaard [1966]; Goldberg & Robson
[19841). Multiple inheritance occurs when each class may have more
than one direct superclass (Stefik & Bobrow [1983]; Bobrow et al.
[1988]). In actor languages (Hewitt [197 7]; Lieberman [1981}) a form of
inheritance called delegation is used, in which an object may
delegate any other object to handle a received request. This is a very
general form of inheritance, that seems too unstructured to be of

practical use.

For a long time, object-orientation has been confined to programming
languages. Now there is a strong trend to bring database technology
and object orientation together to a point of convergence where one of
the essential ingredients is the persistence of objects over
time.(Lochovsky [1987), editorial note). Several experimental systems
and commercial products have been developed and are currently
being developed, leaving many research questions open in this field
(Nierstrasz [1989.)). We can point to Gemstone from Servio Logic,
which is based on Smalltalk (Purdy, Schuchardt & Maier [1987)),
IRIS from Hewlett-Packard Labs (Derret [1985]; Fishman [1987]) and
Orion, an effort carried out at MCC {Banerjee et al. [1987]).

4.1.2, Computer Supported Cooperative Work (CSCW)

Exploration of computer-supported cooperative work (Greif [1988)
and investigation of groupware technologies (Groupware Technology
Workshop [1989]) have accelerated during recent years. This
research explores the extent to which computer systems can support
teamwork by small groups involved in the design and realization of
complex systems. Currently we are all overwhelmed by the dearth of
support for reasoning and arguing about the validity of design
models and design decisions before they display themselves in
unpredicted behavior of working systems. Our attention is on groups
such as: engineers collaborating on a system design; customers,
users and developers seeking agreement on system requirements;
and other groups which may be able to use the computer support to
expose and reconcile differences in viewpoint. Toward those goals,
this research has created a laboratory, containing software and
hardware systems that encourage fundamental and systematic
experimentation. Some technical problems which we have been
investigating in order to create an effective collaborative design

laboratory are:

* How to enable interactive sharing of design objects by a small
group of designers, such that all collaborators have up-to-date
knowledge about changes taking place.

g1

* How to integrate new methods and tools which can be used by

collaborators without excessive artifact.
* How to manage display which is common to all collaborators.

* How to capture the essence of face-to-face discussions or

remote computer-based teleconference sessions.

* How to expose feasible solution spaces when there are

conflicts in the goals of the collaborators?

The subject of this paper is the first topic listed above: enabling
interactive sharing of design objects by a small group of designers
having a common view of the design process. That common view is
established through agreement on a sharable design paradigm.
Interactive sharing, in turn, requires supported communication
among designers and supported coordination to help the group
progress toward mutually agreed upon goals. Design objects include

design representations, design history, and design tools.

4.1.3. Contributions of ORFL
The main contributions of our work on OREL are:

* Adistributed system in support of interactive sharing of

data objects with persistent storage.

* An object-oriented graphic language for modeling data, that

includes: classes and multiple inheritance, recursive

composition of objects, relations as first class objects and

integrity constraints on relations.

A programming interface that allows manipulation of

distributed, interactively shared data objects..

We define the concept of interactive sharing of data objects by the

following rules:

The existence of all objects must be knowable by all of the

collaborating designers at all times.

A design object is modifiable by only one designer at a time;
it can be used, but not meodified, by more than one designer at

a time,

Changes, made to an object that is shared by two or more
designers, can be seen by other designers as they are made,
unless the designer who is modifying the object has chosen to

restrict access until changes have been completed.

The classical notion of object defined in the previous subsection, is

extended to make possible the implementation of these features. The

extensions are:

objects are accessed from many sites simultaneously,
objects may contain site-dependent data,

objects have unique, site-independent identifiers,

* objects may have symbolic names, which are not necessarily

unique,

* objects are used within long transactions and are subject to

locking.

There are current research efforts aiming at efficient management
of shared, persistent objects. Decouchant [1989], focuses on
extending Smalltalk with these features, Moss [1989] is working to
smoothly integrate database and programming language concepts.
None of the current research, however, has reported interactive
sharing of data objects. We believe this to be a unique characteristic

of our work.

Other researchers have found that the combination of object-oriented
techniques and relational database concepts constitutes a powerful
data modeling methodology. Chen [1976] uses entities and relations
as modeling primitives. Entities denote sets of data objects, similar to
classes in object-oriented systems. Relations do not have an explicit
correspondence and constitute an enrichment, expressing more
information than can be done with class definitions. Landis [1988]
proposes a number of augmentations to Chen's entity-relationship
model for modeling complex design data. Landis' augmentations
were targeted at the modeling and implementation of SARA/IDEAS
(Landis [1988]; Worley [1986]) and are discussed in more detail in
Section 4.6.4 on related work.

Our data modeling language makes use of relations as a way to
increase expressiveness and to enable management of constraints.
Unlike previous work, OREL relations are first class objects.
Moreover, recursive composition provides an effective way to manage

complexity of design data.

We have built a prototype of coSARA using an implementation of
OREL based on CLOS. The existence and behavior of that

environment is a proof of concept for OREL.
This Chapter is divided in seven sections:
4.1. this introduction,
4.2. the OREL data modeling language,
4.3. description of OREL's distributed operation,
44. description of an implementation of OREL based on CLOS,

4.5. demonstration of the expressive power of OREL by applying it

to the construction of a hypertext,
4.6. review of related work, and

4.7. Conclusions and directions for future work.

4.2, OREL Data Modeling

In this section we introduce: the essential set of OREL primitives for
data modeling, their graphic representations and CommonLisp
functionality associated with them. We start by describing the way in
which inheritance is defined in OREL. We proceed then to describe
the different primitive types of objects that are supported in OREL
and their inheritance relations. After establishing an understanding
of the primitive types of objects we describe them one by one using
examples. We do not attempt to fully define the functionality
associated with each OREL primitive here; instead we define the
principal functionality. A full description of the functionality
associated with OREL primitives can be found in Appendix II (OREL

Protocols).

Our examples of OREL primitives are based on modeling data objects
which are required for SARA models. A semantic description of all

SARA design primitives is found in Appendix I,
4.2.1. Inheritance Network and Primitive Types of Objects

OREL supports multiple inheritance, in which a class may inherit
properties from more than one superclass. The subclass
relationship is treated as a lattice, in which each class is
represented by a node and precedence between classes is
represented by arcs. In the graphic representation that we use,

superclasses are drawn to the left and subclasses to the right. Arcs

always go from a superclass attached to its right extreme to a
subclass attached to its left extreme. Figure 4.1 shows the graphic
representation of the basic inheritance network of OREL, that
specifies the inheritance relations between the different primitive

types of objects.

The inheritance network of figure 4.1 includes six primitive OREL
classes: SIMPLE-OBJECT, COMPOSITE-OBJECT, RELATION-
OBJECT, PAIR-OBJECT, UNDIRECTED-PAIR-OBJECT and
DIRECTED-PAIR-OBJECT. We explain this classes of objects in the
following sections. Figures 4.14 and 4.15 contain a brief description
of OREL primitives and Figure 4.16 contains a list of the OREL

protocols.

COMPOSITE—Gp
SIMPLE~ORIECT —
RELA non-oanWmnm-mn-omm

DliicT[[;-ﬁ‘u.OF l[{—.“l

Figure 4.1: Basic inheritance network of OREL primitive classes

4.2.2, Simple Classes and Protocols

Let us begin our discussion of the OREL primitives describing the
simple-object class. SARA structural models have three primitives:
modules, sockets and interconnections. Sockets are objects with no
other property than providing connectors for modules. A socket is
known inside and outside a module and provides a named place for
delivery of either a service provided by the module that contains the
socket or a service required from some other module. When a
module uses a service provided by some other module, both modules
are connected by an interconnection that attaches to the

corresponding sockets.

We can model a socket as a SIMPLE-OBJECT. A SIMPLE-OBJECT
belongs to a simple class and has a state represented by a collection
of data. The state of a SIMPLE-OBJECT can be altered and queried by
sending messages to the object. A set of such messages is called a
protocol, and is represented graphically as a hexagon. Figure 4.2
displays the representation of the SIMPLE-OBJECT protocol. Each
simple class has a set of associated protocols that embody the

messages that can be used to operate on the simple class’ objects.

SIMPLE-OBJECT

Figure 4.2: SIMPLE-OBJECT protocol

A simple class is drawn as a rectangle with a label that indicates the
name of the class. The protocols supported by a simple class are
drawn on the border of the class’ rectangle. Figure 4.3 shows the

class SOCKET.

SOCKET

Figure 4.3: The class SOCKET

Figure 4.4 shows the inheritance network of OREL after we have
added the simple class SOCKET. We can see in this figure that there
is a connection from SIMPLE-OBJECT to SOCKET, that goes left to
right. This says that SOCKET is a subclass of SIMPLE-OBJECT and
therefore SOCKET objects inherit all the properties of SIMPLE-
OBJECTS.

COMPOSITE~ORIECT]

UNDRECTED —aik=0B1EC7 |
N I£r<rbluc1'to-ma-ol|£Cﬂ

SIMPLE=OBIECT

Figure 4.4: Inheritance network after definition of SOCKET

4.2.3. Slots

Each object has a set of slots to store state data. Each slot is capable
of holding one data item. A data item may be any CommonLisp object
or any OREL object. There are two types of slots, class-allocated
slots and object-allocated slots. A class-allocated slot has a common
value for all objects of the class. An object-allocated slot has a

different value for each object of the class.

Sockets are named. This fact implies that we need a way to store the
name of a socket, query a socket for its name and possibly alter the
name of the socket. We can model the name of a socket as an
instance-allocated slot in the class socket. Figure 4.5 shows the

graphic representation of the class socket showing the slot "name".

name :string
<- "unnamed"

SOCKET

Figure 4.5: Class SOCKET with slot "name"

The graphic representation of slots includes textual information to

specify the following properties of slots:

Type: The type of a slot may be any defined class or any defined
type of CommonLisp. The type is specified as :type following

100

the slot's name. For example in Figure 4.5 the type of the slot

name is "string”.

Initial value: The initial value of a slot is specified by «value.
For example the slot name of the class socket in Figure 4.5 is

specified to have an initial value of "unnamed".

For each slot there is an initialization argument keyword that can be
used when an object is made. This is a keyword of the form :sloz-
name, where slot-name is the name of the slot. For example there is

a keyword :name to optionally initialize the name slot of sockets.
4.2.4, Relations and mapping constraints

A relation is a set of tuples; each tuple represents a relation among
a set of objects. The participation of objects in a relation is defined by
mappings, where a relation has one mapping for each one of the
classes it relates. Several types of constraints can be placed on the
way in which classes participate in relations. We call these mapping
constraints. Mapping constraints include: cardinality constraints,
completeness constraints, direction constraints and order
constraints. The precise meaning of mapping constraints will be

explained by means of examples below.

There are three types of relation: undirected pairs, directed pairs and
general relations. The simplest one is an UNDIRECTED-PAIR-
OBJECT. An UNDIRECTED-PAIR-OBJECT is a relation in which

each tuple is a pair of objects listed in any order. We can use an

101

UNDIRECTED-PAIR-OBJECT to model interconnections. To
represent the class of interconnections we use an undirected pair
class INTER as shown in Figure 4.6. An UNDIRECTED-PAIR-
OBJECT is represented graphically as a multi-segment manhattan-

INTER
i A;
" name :strin
1 i

style line.

- "unnamed"”

SOCKET

Figure 4.6: The undirected pair class INTER

We have said that an interconnection connects a pair of sockets, and
that each socket can participate in only one interconnection outwards
from its module and one inwards to its module. The undirected pair
class INTER connects the simple class socket to itself. This means
that the pair INTER is composed of pairs of sockets. The undirected-
ness of the pair implies that when two sockets S1 and S2 are related
by INTER, it does not matter in which order the sockets are related to
each other. The behavior is as if both pairs (S1,52) and (S2,S1) were in
the relation. IfS1 and S2 are related by an INTER pair, given S1 we
can obtain S2 and given S2 we can obtain S1. This would not be the

case if the pair were directed.

102

Let us turn attention to the constraints that have been placed on the
INTER pair. We have placed cardinality mapping constraints 1 on
both ends of the arc that represents the undirected pair INTER. A
cardinality constraint of 1 means that each socket may participate in
only one pair of the relation. Another constraint (or lack thereof) is
that we have specified a completeness constraint "partial”
(represented in Figure 4.6 as hollow circles). A "partial” constraint
means that not all sockets need to participate in an INTER relation.
If a "total" completeness constraint had been used instead of
“partial”, all sockets would have to participate in some
interconnection. We will find examples of this type of constraint
when we discuss the modeling of the relation that we use to represent

the mapping of control nodes to data processors in the GMB.

So far we have stated that each socket may participate in only one
INTER pair. Examination of Figure 4.7 reveals that a socket may
indeed participate in more than one SARA interconnection. This
apparent conflict with the model that we show in Figure 4.6 is not a
problem because interconnections are classified in several sets, each
set corresponding to one module. Thus there is an instance of the
simple class INTER in the module UNIVERSE and a different
instance in the module System. Each one of these two INTER objects
group a different set of interconnections. Hence pairs of sockets can

be related by INTER objects that belong to different modules.

103

M

fp

| | P | o | e | ey | e e
R |
T T |
o
Nl
L
Enviromment System
UNJVeRSE

Figure 4.7: Example SM model

104

A DIRECTED-PAIR-OBJECT is similar to an UNDIRECTED-PAIR-
OBJECT, except that the order in which pairs of objects are related is
important. We can use as an example the modeling of the relation
between control arcs and control nodes in the Graph Model of
Behavior (GMB)1. Control arcs go from one set of control nodes to
another set of control nodes. The source nodes are said to be the tail
set of the control arc and the destination nodes are said to be the
head set of the control arc. For example in Figure 4.8 {n1, n2} is the
tail set of control arc a, and {n3, n4, n5} is the head set of that same

control arc a.

Figure 4.8: A control graph

We can model this relation between control arcs and control nodes
using two directed pair classes, TAIL-SET and HEAD-SET, as shown
in Figure 4.9 where CONTROL-NODE and CONTROL-ARC are

1See Appendix I

105

simple classes. The direction specifies that given a control arc we
can find control nodes in its head-set and control nodes in its tail set.
We have placed the cardinality mapping constraints 1 in the side of
CONTROL-ARC and N in the side of the CONTROL-NODE to
represent the fact that one control arc may have zero or more tail
control nodes and zero or more head control nodes. In this case given
a control arc we can retrieve its head set and its tail set. However,
unlike the case of undirected pairs, given a control node we cannot
retrieve a control arc because the relation is directed from

CONTROL-ARC to CONTROL-NODE.

CONTROL-NODE

N N 1 1
HEAD-SET | INPUT-ARC
TAIL-SET | QUTPUT-ARCS

1{L1N*N

CONTROL-ARC

Figure 4.9: OREL model of control nodes and control arcs

106

In this example we have placed completeness constraints2 on the
pairs: HEAD-SET, TAIL-SET, INPUT-ARCS and OUTPUT-ARCS,

meaning:
L Every control node must have input arcs and output arcs.

2. Every control node must be either in the head set of some arc

or in the tail set of some arec.

3. A control arc may have an empty head set and an empty tail

set.

In the next paragraphs we will discuss the class of general
RELATION-OBJECTs, showing how we can use relation objects to
model the association between a GMB and the module that contains

it.

We explained in our discussion of the SARA primitives that control
arcs and data arcs may be connected to sockets; however in that case
the sequence in which they are connected is significant. Figure 4.10
shows an example in which two modules are interconnected through
sockets S1 and S2. Assume that the arrangement of control arcs

and data arcs is such that:

* Control ares al, a2, and a8 of module M1 correspond to

control arcs a4, a5 and a6 in module M2, and

2See Figure 4.15.

107

* data arcs d1 and d2 of module M1 correspond to data arcs d3
and d4 of module M2.

al a4
a2 | a5
- ab
a3 /\C>
dai | . ’ d3
d2 d4
M1 M2L—

Figure 4.10: Correspondence of control arcs and data arcs

across module boundaries

We can model this association between control arcs, data arcs and
sockets using a a three-way RELATION-OBJECT as is shown in
Figure 4.11. RELATION-OBJECTS are members of a relation class
and are graphically represented by a diamond. RELATION-
OBJECTs inherit from SIMPLE-OBJECT as shown in Figure 4.1. A
RELATION-OBJECT is a collection of tuples, each of which has one
component for each one of the related classes. In this case a relation-
object GMB-SOCKET will be a collection of triples of objects of classes
CONTROL-ARC, DATA-ARC, and SOCKET.

108

DATA-ARC

CONTROL-NODE

CONTROL-ARC

\ GMB-SOCKET

N

_INTER

- name :string
"unnamed”

SOCKET

Figure 4.11: GMB-SOCKET relation

In this example we have introduced an order mapping constraint
(black rectangle). This constraint, applied in Figure 4.11 to
CONTROL-ARC and DATA-ARC, specifies that control arcs and
data arcs are ordered in the relation. Then, given that a set of control
nodes related to a specific socket is retrieved, it is guaranteed that the

control nodes will be ordered.

All relations are subclasses of SIMPLE-OBJECT. Therefore they

have the same inheritance properties as simple classes. In the case

109

of relations, inheritance is interpreted differently. It is not the
RELATION-OBJECT which inherits properties from the -
superclasses. Instead the tuple objects inherit properties from the
superclasses of the relation class. In this way we can associate
properties with a group of objects that are related by some relation
object. For example in Figure 4.11 we show pairs INPUT-ARCS and
OUTPUT-ARCS relating the simple classes CONTROL-ARC and
CONTROL-NODE. In this case we can specify that the pair relations
INPUT-ARCS and OUTPUT-ARCS inherit from a LOGIC-
FORMULA class to represent the input and output logic of a control
node. We do not show the class LOGIC-FORMULA in the figure for
simplicity. The fact that both CONTROL-ARC and CONTROL-NODE
are subclasses of LOGIC-FORMULA is expressed in the inheritance

network.
4.2.5. Composite objects

COMPOSITE-OBJECTS aggregate a number of other objects. For
example SARA modules are composite objects that aggregate sockets,

interconnections, a GMB and possibly other modules.

In general a COMPOSITE-OBJECT is composed of any number of
SIMPLE-OBJECTs, COMPOSITE-OBJECTSs and RELATION-
OBJECTs. We define a composite class by enumeration of the classes
of objects that are aggregated in a COMPOSITE-OBJECT. The

graphic representation of a composite class is a rectangle with

110

rounded corners that contains the representation of all its

components (Figure 4.14)

A composite may contain objects of its own class. In this case we say
that the composite is recursive. The graphic representation of a
recursive COMPOSITE-OBJECT is a shaded rectangle with rounded
corners. For example, we need to use recursive composition to model
module objects. Figure 4.12 shows a model of SARA objects, which

includes the recursive composite class MODULE.

As specified in Appendix I, a module contains other modules,
sockets, interconnections and a GMB. A module is restricted to
either contain any number of other modules or to contain a single

GMB.

In previous examples in this section, which led to discussion of
Figures 4.3, 4.5, 4.6, 4.9, 4.10 and 4.11 we have built the model of
Figure 4.12 step by step and demonstrated how this model represents
the SARA objects described in Appendix I, except for modules which

we discuss below.

111

GENERIC-DATA-SET

HEAD-SBT |y UT/ARES 1
TAIL-SET| o rpyUT-ARdS DATA-ARC l
1 ATA-REL N

DATA-PROCESSOR

(CONTROLGRAPH | | | paTa-GRAP

1
I GMB-MAPPINGJ

awl N

N V4
GMB-SOCKET
- AN J
INTER
1
1
1
SOCKET O
MODULE

Figure 4.12: OREL model of SARA objects

112

The model of the composite class MODULE shown in Figure 4.12
specifies SOCKET as one of the MODULE object components. This
specifies that any number of SOCKET objects may compose a single
MODULE object. There is no provision for constraining the number
of objects of a given class that can be part of a composite-object. For
example in the case of the GMB component of MODULE we know in
advance that there will always be at most one GMB object. However
we cannot express this fact. The same is valid for the undirected pair

class INTER.

Composite objects are also simple objects as can be seen in the
inheritance diagram shown in Figure 4.4. Therefore all the
properties that we have discussed for simple objects also apply to

composite objects.

Figure 4.13 shows extension of the inheritance network after

definition of MODULE.

Figure 4.14 and 4.15 summarize the OREL primitive classes and the
relation mappings described before. Figure 4.16 lists the OREL
protocols, which are documented in detail in Appendix II. There
are three protocols: SIMPLE-OBJECT, COMPOSITE-OBJECT and
RELATION-OBJECT protocols. The Figure 4.16 enumerates the

messages that compose each of these protocols.

113

D——limpua-oamcr COMPOSITE-OBJECT [—{ MODULE |

UNDIRECTED-PAIR-OBJECT |

RELATION-OBJECT PAIR-OBJECT

DIRECTED-PAIR-OBJECT I

Figure 4.13: Inheritance network after definition of module

114

Simple class[rectangle]: Encapsulates
the state and behavior of its objects.

Each supported protocol [hexagon] is
specified for the class. A protocol
denotes a set of methods that can be
applied to the instances of the class.
Basic functionality of all OREL objects
includes functionality to make and
initialize objects.

protocol-1
protocol-2

simple class
{superclasses)

Relation[diamond]: Relations support
a protocol that includes functionality to
relation relate and unrelate objects, select a
subset of the tuples in the relation, and
apply functions to selected tuples.

e Composite class[shaded round-
component corners rectangle]: A composite class
aggregates other classes and relations.
Each component is a set of objects of the
composite ¢lass corresponding class or relation. A
composite class may be recursive
[shaded rectangle]. In this case the
class has components of its own class.
Composites support functionality to
create composites, add objects to
composites, remove objects from
composites, and test membership in a
composite.

component

_ recursive composite p

Slot[shaded rectangle]: Is a data
attribute that determines the state of an
object. Simple classes, composites and
relations have slots as holders of state
data. Slots have the following attributes:
type, initial value and class vs. instance
allocation.

instance slot
pe<-value :

Figure 4.14 OREL Primitive Classes

115

Relation Mappinglarc]: Defines the way in which a class
participates in a relation. There are four mapping types that can
be combined with each other.

_;<>
=0

Cardinality: N specifies that
many tuples of the relation may
contain an instance of the
associated class and 7 specifies
that at most one tuple may contain
an instance of the associated class.

total

mapping

partial
mapping

Completeness: total when all the
instances of the participating class
must be in the relation, partial
otherwise.

directed
mapping

Direction: establishes a direction
for the relation.

ordered
mapping

Order: tuples are
lexicographically ordered by the
value of its components.

Figure 4.15: Relation Mappings

116

Messages

* initialize-instance
* print-object
describe-object
class-of
class-name
<slot-name>
make-<name>
components-of
comp-<component name>
comp-parent
comp-ancestors
compositep
component-of-p
descendant-p
add-component
delete-component
component-assoc
map-composite
make-<name>
relate

unrelate
find-objects
map-relation

* make-<name>
l—-...—._._,_____,__—______

Protocol
Simple-object

Composite-object

Relation-object

* & 0 9|l & 5 & & ¢ " 0 8 0 0 o|le o e

Figure 4.16: OREL Protocols

The data model of Figure 4.12 makes available OREL protocols listed
in Figure 4.16 for programming routines that perform operations
using the SARA objects. A brief example of how OREL protocols are
used is presented next. Only a few of the messages listed in Figure

4.16 are used in this example. Words that are used in Figure 4.17 are

117

typeset in boldface in the text and in a plain typeface in Figure 4.1.
OREL protocol message names are typeset underlined both in the
text and in the Figure.

1 (defun traverse-interconnections (s 1)

2 (let {((next (find-objects i s)))

3 (if next

4, (let* ((s-parent (comp-parents))

5. (next-parent (comp-parent next))

6 (nextd (f (descendantp s-parent next-parent)
7. (first {(comp-interconnections next-parent))
8 (first (comp-interconnections

g, (comp-parent next-parent))))))
10. {traverse-interconnections next nexti))

11

s))

Figure 4.17: Example usage of OREL protocols

Figure 4.17 shows a function for traversing a path of interconnected
sockets as far as possible. The function traverse-
interconnections takes two arguments: a socket and an
interconnection relation. The interconnection relation contains a
tuple that represents the interconnection leading from the starting
socket to another socket. The function traverse-interconnections
“hops” from socket to socket, using interconnections, until a socket is

reached that has no further interconnections.

Let us analyze the code of Figure 4.17 in greater detail. The first
thing to do is to find the socket to which the starting socket s is

118

connected through the relation i. The OREL message _find-objects,
which belongs to the RELATION-OBJECT protocol has a specialized
method for handling pairs. This method receives two arguments: a
pair and an object. The method returns either a single object or a list
of objects, depending on the cardinality constraint of the mapping by
which the class of the retrieved object participates in the pair. If the
cardinality constraint is 1 find-objects returns a single object,
otherwise if the cardinality constraint is N it returns the list of all the
objects associated to the argument object using the argument pair.
The call to find-objects in line 2 returns the socket connected to s

using the interconnection i.

The message comp-parent that belongs to the COMPOSITE-
OBJECT protocol returns the composite of which its argument is a
component. If the argument to comp-parent is not a component of
any composite nil is returned. The call to comp-parent in line 4

returns the module that contains socket s.

The message descendant-p returnst either if its second argument
is a component of its first argument or if parent composite of its
second argument is a descendant of its first argument. It returns
nil otherwise. The call to descendant-p in line 6 returns t if

module next-parent is contained in module module s-parent.

For each composite, a set of methods are defined to access its

components. The message comp-interconnections will return

the list of the interconnections of its argument. We know that a

119

module has only one set of interconnections, therefore the list
returned by comp-interconnections will always be of length one,
hence we must use first to obtain the pair that is needed in lines 7

and 8.

(3. Distributed ion of OREL obi

OREL objects are intended to be used in a distributed environment in
which several users, working at different workstations and
connected through a communication network, interactively share a
set of objects. This section describes the semantic model used to
conceptualize the distributed operation of OREL objects and the

mechanisms that a tool designer can use to operate on shared objects.
4.3.1. The Object world model.

Distributed operation of OREL objects takes place in the OREL object
world. We envision the object world as a storehouse of objects, where

users can find and operate on objects in coordination with each other.

Coordination among users is achieved by using transactions. To
perform some task that will affect shared objects, a user must start a
transaction. When the task is finished, or when the user decides
that a break is convenient, the transaction is ended and committed.
Of course, at any point the user may decide to abort the transaction,
restoring the objects that were modified to the state they had prior to

the beginning of the transaction.

While executing an operation within a transaction, a user acquires
locks on objects at any time and in any arbitrary sequence. All locks
are released atomically when the transaction is committed to prevent
cascading roll-backs. The locking scheme is a non-strict 2-phase
locking protocol (Bernstein, Hadzilacos & Goodman [19871), that may
lead to deadlocks. We rely on the fact that these are long interactive
transactions, controlled by human users, and permitting resolution
of deadlocks by social negotiation among users. The object world

provides all necessary information to carry on such negotiations.

For example consider the following scenario: designer 1 needs to
have exclusive access to modules A and B to perform some task.
Designer 1 successfully obtains a lock on module A, but locking
module B fails and designer 1 is informed that designer 2 already has
a lock on module B. Designer 1 then asks designer 2 for how long she
plans to use module B. Designer 2 answers that she will use module
B only for a few minutes as soon as she gets a lock on module A. At
this time designer 1 realizes that a deadlock exists and informs
designer 2 that he already has a lock on A. Designer 1 then agrees to

release his lock on A and wait until designer 2 is done.

The interaction illustrated by this example is possible because the
object world provides information such that designer 1 could identify
designer 2 as the current owner of a lock on module B. The
interaction could be carried out easily because designer 1 and

designer 2 were working face-to-face and therefore it was easy to talk.

121

The following three rules summarize the properties of the OREL

object world:

* The existence of all objects is knowable by all collaborating

users at all times.

* An object is modifiable by only one user at a time; it can be

used, but not modified by more than one user at a time.

* Changes made to an object that is shared by two or more
users, can be seen by other users as they are made, unless the
user who is modifying the object has chosen to restrict such

access until changes have been completed.

4.3.2. OREL Objects and Broadcast Methods

Broadcast methods are used to operate on OREL objects that are
interactively shared by several users. This section describes the
semantics of broadcast methods after clarifying the problem posed by

shared object-oriented computation.

We explained in the section on object-oriented systems background,
how an object-oriented computation proceeds by messages sent from
one object to another. The response of an object to a message is
encapsulated in a method. When the message is received, the

corresponding method is invoked.

Let us consider now the case when an object is shared by more than

one user. We will say that each user has a replica of the shared

object, and our objective is to keep all replicas identical to each other
at all times, following the rules for sharing as defined in the object
world. The most straightforward way to achieve sharing of objects,
according to the rules stated for the object world, is to make the
smallest possible change to the object’s state be applied to all existing
replicas in the system atomically and exclusive of any other operation
that may involve the object. The smallest possible change to the state
of an object is to change the value stored in one of the object’s slots.
Therefore, this approach would consist of defining transactions to

change the slot values of an object.
There are some problems with the approach just described:

* Transactions would require excessively large amounts of
CPU cycles and network bandwidth. Assuming that these
operations were implemented in a distributed system, each
individual change of the state of an object would require at
least a 2-phase commit operation at a cost of 3n messages,
when there are n processes participating in the 2-phase
commit and no failures occur (Bernstein, Goodman &
Hadzilacos [1987], page 236).3 Each access to an object’s slot

would carry all the transaction processing overhead.

3This cost is cuadratic when there are failures.

* Changes would be distracting when they propagate to each

user’s replica in fine-grained fragments,.

To alleviate these problems we have adopted a different technique in
which we define a class of methods, called broadcast methods, that
operate on all the existing replicas of an object simultaneously but do
not include any concurrency control mechanism. Using broadecast
methods we give control to the tool implementor to determine the
proper grain size of state changes that a collaborating user will see in

a shared object.

For example, consider the class of shared rectangles. One operation
that can be done on rectangles is to reshape them, changing one or
more of: height, width and position. The user is given two operations

for reshaping a rectangle:

try-shape: takes four arguments, rectangle, height, width and
position. Rectangle is temporarily displayed in a shape
specified by the remaining three arguments. Height and
width can be either an integer number or a null value. When
a null value is received as argument, the rectangle’s original
values are used; otherwise the integer number is used for the
corresponding dimension. The position argument can be
either a pair of integers denoting the coordinates of the upper
left corner of the rectangle or a null value. A non-null value
changes the position of the rectangle. try-shape changes the
shape of the rectangle only temporarily and displays the

rectangle in its temporary shape. When the next operation
on the rectangle is performed, its original shape is used and

the temporary one is discarded.

set-shape: takes no argument and replaces the rectangle shape

with a temporary shape set by try-shape.

Now the tool designer can choose what will be the grain size of
changes made to a rectangle that will be seen by all users who have a
replica of the rectangle. If both try-shape and set-shape are made
broadcast methods, every shape that the user who is reshaping the
object tries would be seen by others. However, it is possible that the
tool designer decides that collaborating users do not need to see the
intermediate shapes tried by the user who is reshaping the rectangle.
The tool designer would therefore make try-shape a non-broadcast
method and set-shape a broadcast method. If the process of finding
the right shape for a rectangle is intended to be done as a group
activity, try-shape would have to be a broadcast method.

We describe now the precise semantics of broadcast methods. A
broadeast method takes an arbitrary number of arguments as input,
which may be either OREL objects or any CommonLisp object, which
is not an OREL object (for example the integer 5).. In the discussion
that follows, let 01, ... On be the OREL objects that are given to the
broadcast method as argument and W(OQj{) be the set of workstations
that have replicas of the object Of. Execution of a broadcast method is

done in three steps:

1. Copies of all objects O1,..., On are dispatched to interested
workstations. We define interested workstations to be the
union of the sets W(0j) for i=1,...,,n. This step is necessary
to avoid the problem that arises when a broadcast method,
executed in a remote workstation tries to use an object for

which a replica does not exist in that remote workstation.

2. The method is executed locally in the workstation that
invoked the broadcast method.

3. Arequest to execute the method in the interested

workstations is broadcast.

4.3.3. Concurrency control

Sharing objects poses a problem of concurrency control. It is
necessary that one user does not destroy other users' work. In the
example given in the previous sections, suppose that set-shape is a
broadcast method and that try-shape is not a broadcast method. If
two users working at different workstations issue a set-shape at the
same time, it is not possible to predict the results. If both executions
of set-shape are interleaved, it could happen that the resulting
shape is composed by the height set by the first user and the width
and position set by the second user. Furthermore, one could ask,
what is the meaning of two users trying different shapes for the same
rectangle? The answer to this question is methodological. It depends

on the collaboration process that the tools are intended to support. It

1s convenient that a concurrency control mechanism be as flexible as
possible in allowing the tool designer to make this sort of decision

from a methodological point of view.

We share objects in this system to collaborate on the process of
designing a computer system, Such a collaborative process requires
that one user’s actions be quickly propagated to other users. This is,
group members should be able to observe work done by any other
group member in real-time, as it is done, without the need to leave

their workstations and look over the working user’s shoulder.

There are several possible concurrency control methods for

collaborative work.

Optimistic concurrency control: does not enforce any form of
concurrency control in hopes that conflicts will not arise.
These systems offer a good response because of the lack of
concurrency control overhead, but often need to resort to
personal interaction among members of a group of
collaborators to resolve conflicts that do arise. Strong
assumptions are necessary about shortness of the time frame
in which one users actions are seen by the rest of the group
and the ability to communicate personally, independently of

the shared space in which the group works.

Locking: This is the simplest method of concurrency control.

Objects are locked before their state is changed. Deadlock

avoidance can be handled by standard techniques, such as
pre-locking all objects to be modified and locking objects in a
predefined order (Bernstein, Goodman & Hadzilacos [1987]).
Perhaps the biggest problem with locking is the grain size
that locks should have, and how locks are acquired. A large
grain size of locks will prevent parallelism in the group
activities. A small grain size will allow greater parallelism
in the group’s work, but will also introduce a larger
overhead. Locks can be acquired explicitly by the user when
an object needs to be modified. If the grain size of lock is
rather large this is not a problem. If the grain size is too
small the user may be overwhelmed by the process of
acquiring and releasing locks. Therefore for finer grain
locks it becomes necessary to design mechanisms that will
automatically acquire locks on behalf of the uéer. Let us
consider the rectangle example that we described earlier.
The operation set-shape could acquire a lock and release it

after the shape of the rectangle has been redefined.

Transactions: It is not possible to consider transactions as valid
mechanisms for concurrency control in a system in which
objects are interactively shared according to the rules
established for the object world. The problem with
conventional transactions, used in database systems, is that
transactions in a database system are designed to give the

user the illusion that the database system is a single user

system, hiding the intermediate states of objects being
modified by other transactions. This property may conflict
with the rules of the object world that say that work done on
one object should be visible to all users, in real-time. In the
simplest case, the most elementary changes to the state of an
object would be transactions. In our terms, changing the
value of each slot would be a transaction. The cost incurred
In managing such small transactions could be unaffordable.
There are also methodological considerations regarding the
grain size of transactions, analog to those discussed for

locking in the previous paragraph.

Floor passing: Another simple system of concurrency control
that some conferencing systems use is that of floor passing,
in which one user at a time can act on the system. Floor
passing from one user to another may be controlled by
software or by social agreement. The great disadvantage of
floor passing is that there is no parallelism possible in the
group’s actions. Only one group member can work at any

time.

The concurrency control mechanisms that we have decided to use in
OREL are transactions and hierarchical, implied locks on composite

objects.

Let us first describe the transaction model that we use. OREL

transactions are long, interactive transactions, controlled by the

user. A user may have several transactions in existence at any time
but only one can be active. The intent is to provide a way in which the
user can organize a set of on-going tasks. The operations that we can

do on transactions are:

start: creates a new transaction for the user who issues the
request and enters the transaction in a transaction directory
pertaining to the object world. This is necessary to provide
users with enough information for social discussion and

negotiation of potential conflicts.

add a lock: obtains a new lock and adds it to the transaction list
of locks. Locks are acquired in any arbitrary order using a
non-strict 2-phase locking protocol. This protocel guarantees
serializability, but does not prevent deadlock. We leave the
resolution of deadlock conflicts to social interaction between
users, based on the information provided by the system
according to the rules of the object world. Mainly, the
existence of all objects is known to all collaborating users,

and any user may know who is using an object at any time.

commit: this operation ends the transaction. All the locks
owned by the transaction on behalf of its user are released,
the state of the objects that were written is committed in the
database, the transaction is removed from the system’s

directories and the transaction is ended.

commit-restart: enables users to save work at any time without
giving up the transaction. The only effect of this operation 1s
to commit the state of written objects in the database. The

locks are not released and the transaction is not ended.

abort: the transaction is ended and the state of modified objects is

restored to the state they had when the transaction started.

The locks used in transactions are hierarchically implied locks on
composite objects. This means that if an object x is composed of
objects a and b, then locking x locks a and b as well. The algorithm
used to lock composite objects is the simple tree-warning algorithm
described by Ullman [1987 (Section 9.7, page 504}1. In this algorithm
we introduce a write-warning type of lock. When an object is locked
for writing all its ancestors, are given a write-warning lock. When
an object has a write-warning lock, it means that one or more of its
components have been locked for writing. We define lock
compatibilities in such a way that write-warning locks are
compatible with all types of locks but write locks. Therefore, we are
prevented from acquiring a write lock on an object that already has a

write-warning lock.

One requirement is that work done on any object must be visible to all
users at any time, unless that user who is changing the state of the
object chooses to make the changes invisible until they are done. This
requirement leads us to define a type of lock that enables us to read

an object while it is being written by some transaction. We call this

131

type of lock dirty-read locks. A dirty read lock enables one user to see
changes to an object as they are made in real-time. It also warns the
user that the state of the object, as it is seen, is unreliable because the
user who is making changes may abort his transaction, because
delays in the network may not maintain strictly the real-time
requirement, or because of failures in the communications system.
We mean to warn the user who has a dirty-read lock because it is
possible that the user is misled by the “dirty” state of objects displayed
and may proceed to base work on such an unreliable state,
destroying the strictness of the transaction model. Such user
mistakes could lead to manual cascading roll-backs. Dirty-reading is
meant to be used for discussion purposes and joint decision
processes. It is not meant to be used in support of individual

decisions.

Other types of locks are more conventional: write and read locks for
normal operation and write-warning locks in support of the tree-
warning algorithm for locking composite objects. A lock

compatibility matrix is shown in Figure 4.17.

132

[P ——
write read dirty- write-
read warning

write no no yes no
read no yes yes no
dirty- yes yes yes yes
read
write- no no yes yes
warning)

Table 4.1 Lock compatibility matrix

Following the general style set by broadcast methods, locks are not
enforced by the system. The observance of locks is left to the tool
implementor. In this way we avoid checking for locks

unnecessarily. The primitive operations for handling locks are:

lock-object: takes two arguments, the object to be locked and the
type of the lock, which is one of write, read, dirty-read and
write-warning, If a lock is requested, whose type produces a
conflict according to the lock compatibility matrix of Table 4.1,

a condition is raised that must be handled by a tool.

with-lock: denotes a body of text within which a set of locking
conditions must be observed. The locking conditions that
must be observed are specified as a list of pairs <object, lock-
type>, where object must hold a lock of type lock-type. If
some object does not satisfy the locking condition specified, a

condition is raised that must be handled by a tool.

In summary, the user must manage transactions, lock objects and
negotiate solutions to conflicts using the information provided by the
object world. The tool implementor must define the granularity with
which remote updating of shared objects is done using broadcast
methods and provide functionality to handle conditions raised by

locking failures.
(4, A CLOS } 1 impl ; f OREL

This section describes the process to build and modify an OREL data
model. Figure 4.18 displays a SARA dataflow model of that process
(see SARA GMB primitives in Appendix I). The dataset (rectangle}
labeled OREL Data Model, contains an object representing the data
model. This data model representation is created and changed using
the OREL Graphic Editor data processor, which is a graphic editor
for the OREL graphic language. The OREL Data Model is input to
the CLOS Translator and to the Schema Translator. The CLOS
Translator produces CommonLisp/CLOS code, that contains
definitions of classes and associated functionality to implement the

stored OREL Data Model. The Schema Translator produces database

134

schema that allow the storage and retrieval of OREL objects to and
from secondary storage devices using a data base management
system. The data processor (hexagon) labeled OREL Graphic Editor
is used to create or change the OREL Data Model.

OREL
Graphic Editar

OREL Data Model p—--—-—

Schema Translator CLOS Translator

DBMS Schema CLOS Code

Figure 4.18: Dataflow model of the process to build or alter a data

model

The code generated by the CLOS Translator and predefined
functionality contained in a library (not shown in the figure), are an
implementation of the OREL protocols discussed earlier. Such
protocols constitute the programming interface used to manipulate

data that conforms to an OREL data model. Programmers make use

of OREL protocols to implement tools that handle data objects

according to the corresponding OREL data model.

Each time that an OREL data model is created from scratch the full
process described in Figure 4.18 must be followed to obtain Common-
Lisp code for manipulating OREL objects or to store OREL objects in a
database. When the data model is changed, the process must also be
completed to obtain up-to-date code that reflects the current state of
the model.

Changes to the data model may impact existing, user-written code in
varying degrees of severity. Some changes to the data model, in
particular those that add extra features may have no impact at all.
Other changes, such as removal of some classes from the data model
may have a significant impact and require reworking of code to
conform to the changes. Version control helps to manage such

problems.

4.4.1. CLOS schema
In this section we describe how the different OREL primitives are
implemented in CLOS. OREL simple classes, composite classes and

relation classes are all represented using CLOS standard classes

and use the inheritance network defined in Figure 4.1.

There is a problem due to the loose coupling of classes and methods

in CLOS. In CLOS, classes and methods are independent entities

136

and there is no encapsulation of data in a set of classes and related

methods. In CLOS all slots of every class are visible to all methods.

CLOS also lacks a strong notion of protocol in the sense used by
OREL. There is no entity in CLOS that will group a set of methods
and allow treating them collectively as protocol. The notion of

protocol, is left to the mind of the CLOS programmer.

In our implementation we have chosen to follow the CLOS flavor for
simplicity of prototyping. We have not implemented enforcement of

OREL encapsulation rules, although they are available.

The following rules determine how CLOS schema are generated

from a given OREL data model:

Simple classes: For each slot in the OREL class there is a
corresponding slot in the CLOS class. Besides, when the
OREL class is part of a composite, the CLOS class has a slot
that points to the corresponding parent composite object. The
list of superclasses is determined from the OREL inheritance
network. In particular, the SIMPLE-OBJECT class is

always a superclass of any simple class.

Composite classes: For each slot of the composite class, there is
a corresponding slot in the CLOS class. Besides, when the
OREL composite class is a part of a composite, the CLOS
class has a slot that points to the parent composite object. For

each component of the composite there is a slot in the CLOS

class that stores a list of components. The list of superclasses
is determined from the OREL inheritance network . In
particular, the COMPOSITE-OBJECT class is always a

superclass of any composite class.

Relation classes: For each OREL relation class, two CLOS
classes are created. One CLOS class represents the relation
object and the other CLOS class represents tuples of the
relation. The CLOS class that represents the relation object
has one slot for each one of the slots defined for the OREL
relation. It also has a slot pointing to its parent composite
when it is part of a composite object. The CLOS
representation of relation objects stores the relation’s tuples
as a list in a slot. The only superclass of a CLOS relation
class is the class RELATION-OBJECT. The CLOS class that
represents tuples has one slot for each class that participates
in the relation. The superclasses of a CLOS tuple class are

determined from the OREL inheritance network.

Pair classes: Pair classes include both directed and undirected
pair objects. Each OREL pair class is represented by two
CLOS classes. The pair object has one slot to point to its list
of tuples and, when it is part of a composite, a slot to point to
its parent composite object. The only superclass of the pair
object is the class PAIR-OBJECT. The CLOS tuple class

contains no slots, and serves as a place holder for the

138

superclasses defined for the OREL pair class. The actual
pairs are stored as pointers in the related objects themselves
rather than in a separate list of tuples as occurs with general

relation objects.

Appendix II contains the code generated for the model of SARA
objects shown in Figure 4.12.

4.4.2. CLOS implementation of distributed operation

There are several possible approaches to build an implementation of
the object world, some of which have been used successfully in other
systems, We will discuss in this section the following models:
centralized storage, proxy objects (Decouchant [1989]), full replication
of objects (Stefik et al. [1987]), and finally replication of objects on
demand, which is the method that we have chosen for our

implementation.

Centralized storage: In a centralized storage system, all objects
reside in a single machine, and all operation on the objects is
done by the machine that stores the objects. It is obvious that
the single machine where all operation is done will be heavily

taxed.

Proxy objects: In a proxy object system, each object is stored in
one machine. Not all objects need to be stored in the same
machine, one would expect that object storage is evenly

distributed on a set of machines but this is not necessarily

139

true. When a user tries to operate on an object that is stored
in a machine different from his’her own, a proxy object is
used to represent the remote object in the machine that

issued the operation request.

Fully Replicated data: In this model all the machines have an
exact copy of all the objects in the system.

Replication on demand: In this model each machine has only
a copy of those objects that have been requested locally. All
copies of an object which reside in some subset of the

machines are maintained up to date.
4421 A CLOS- implementation of replication on demand.

An active collaborative design session has a centralized server and
zero or more client sessions. The server provides three services:
locking of objects, management of persistent object storage and
management of meeting configuration. A client consists of a main
Lisp session plus several processes that implement network services
needed by the client to send and receive shared objects, and to send
and receive requests for operation on shared objects. The sending
and receiving of objects between clients is done synchronously. Each
time a method is performed on a shared object, a request to apply the
method is broadcast to all the other participants using an

asynchronous broadcast channel.

140

The operation of the system requires that a server be running. To
Join an existing design session, a client tells the server that it is
Jjoining and requests from the server a site from which it can get a
copy of the current data structures. Clients are forced to join sessions
on client at a time. This guarantees that each client has an up to date
copy of system-wide data structures, therefore the server can choose
any arbitrary site to send session data to the newly joined client. If
this is the first client to join (and therefore no other site can supply
the data structures), the client data structures are initialized to be
empty. When a client leaves a session, the server is notified so that it
will not refer data structure requests of any newly joining sessions to
the departing client. The other clients are also notified so that they
can update their tables to prevent sending of requests for objects to the

departed client.

Our system is based upon the storable class of objects which is a
superclass of the SIMPLE-OBJECT class. Storable objects4can be
encoded into an ascii representation. This representation is the form
in which objects are sent between sites and to the database. Each site

can then reconstruct the object from its encoded representation.

The object world is implemented using three levels of storage that

allow management of storable objects:

4Here and in the rest of this section, when we use the term storable objects, we
will mean any object whose class is a subclass of storable.

141

Local cache: is local to single workstations and contains a set of
replicas of objects that are stored in the local workstation.
This is implemented using a hash table that provides access
to an object using either its unique identifier or a combination
of object class and symbolic name, which is not necessarily

unique,

Global cache: is the union of all the local caches. Each
workstation has a global directory listing all the objects that
are stored in some local cache. The global cache is
implemented as a pair of hash tables that provide access to
objects based either on its unique identifier or on its name
and type. Each entry of the global directory has a list of the

machines that store replicas of the object.

Central secondary storage: The central secondary storage is
resident on disk devices and stores objects permanently. This
store is managed by a central server and is accessed through

a directory that is maintained by the central server.

The following functionality exists for handling objects stored in the

object world.

read-object: takes as arguments either the unique identifier of
an object or its name and type. It will search the local cache,

the global cache and the central secondary storage in that

142

order. If the object is found the function returns it otherwise

it returns nil.

save-object: takes an object as argument. The object is saved to
disk, sending an encoded representation to the central server
over the network. If the object is a composite its components

are saved recursively.

delete-object: takes an object as argument. The object is marked

as deleted for later removal by a garbage collector process.

rename-object: takes an object and a string as arguments. The
name of the object is made to be the string argument. All

tables are updated accordingly.

copy-object: takes as argument an object and creates a new
instance of the object, copying all its slot values. If the object

is a composite the components are copied recursively.

encode-object: takes as argument an object and produces a
string that contains the unique id of the object, its symbolic
name, the name of its class and a list of slot name and value
pairs. The slot names and values are those of the CLOS class

that represents the OREL classes.

construct-object: takes as argument a string that contains the
encoding of an OREL object and produces an instance of the

object.

143

If the slots of an object contain data such as numbers, symbols, and
strings, the object can be encoded trivially. However, storable objects
often contain data that cannot be encoded trivially. Two specific types
of data that we have had to deal with are pointers to other storable

objects, and site-specific data.

Site-specific data is necessary for dealing with objects in the Lisp/X
Window System interface. Objects dealing with windows have
pointers to several device dependent data structures. We have
written specializations of encode-object and construct-object for such

objects.

Pointers to storable objects are encoded as a call to read-object. An
example will help make this clear® . Consider this class definition of

a binary search tree:

{defclass search-tree (storable)
{ (key :accessor key :initform 0)
{left :accessor left :initform nil)

{right :accessor right :initform nil}))

An object of this class would have three slots (besides the slots of its
superclasses), one for its left subtree, one for the right subtree, and a
slot for the key of the node. Assume that we evaluate the following

two forms:

5 CommonLisp/CLOS syntax is used and the code is formatted in a typewriter
font (Courier).

144

(setq root {(make-instance ‘search-tree))

(setf (key root) 15)

Make-instance creates an instance of this class and then we assign
a value of 15 to the slot key. Evaluation of {(encode-object root)

produces the following representation:

* (SEARCH-TREE NIL
“RA.asa-105558"
(KEY . 15)
(LEFT . NIL)

(RIGHT . NIL))}”

We can create two more nodes in this tree evaluating the following

forms:

(setqg node-1 (make-instance ‘search-tree))
(setqg node-2 (make-instance °search-tree})
(setf (key node-1}) 10)

(setf (key node-2) 20)

{setf (left root) node-1)

{(setf (right root) node-2)

Evaluation of (encode-object root) will yield now the following

encoded representation of root.

“ (SEARCH-TREE NIL

“RA.asa-105558"

145

(KEY . 15)
(LEFT . {(read-cbject :id “RA.asa-105560"))

(RIGHT . (read-object :id “RA.asa-105561")})"

The string “RA.asa-105558” and similar ones are the unique
identifiers of the objects. So the representation of root shows that
the key is (still) 15, but the left and right subtrees now have a
value which is a function to read in the correct subtrees. The
decode-object function, when reading in this description and
filling in the value for the left and right slots, will evaluate the
calls to read~object. This will occur recursively, so if node-1 and
node-2 have their own subtrees, these will all be read in all the way

down to the leaves.

Broadcast methods are implemented in three parts. The first and
second parts are run on the local machine, while the third is
executed on remote machines only. Broadcast methods are
implemented by a Lisp macro called defbroadcast. Defbroadcast
generates three different methods, representing the following three

parts:
1. Code that implements that method's functionality.

2. An :after method that broadcasts a request to invoke the

method over the network.

3. A plain version of the method without an :after method. This

is the version that other sites will run in support of the

146

original method. If they were to try to run the original
method, the system would be caught in an infinite broadcast

loop.

We present an example of a class counter object to clarify this
conceptS. Counter objects have one slot which contains their current
value. The counter class has several methods defined on it
including value, increment, decrement, and reset. Value
returns the current counter value. Increment (decrement) adds
(subtracts) one to the current counter value. Reset sets the counter
value to zero. Increment, decrement and reset all return the

counter object. We define the counter class, using

CommonLisp/CLOS, as follows:

(defclass counter {(storable)

{(value ‘:accessor value :initform 0)))

In this definition, the class counter is a subclass of the storable
class. We have one slot named value which has an initial value of
zero and whose value can be accessed by value. We create an
instance of this class and do two increment operations by the

command:

(setf count-1 {(make-instance 'counter)}

{(increment (increment (reset count-1)})}

6This example was developed as an early test for broadcast methods by S.
Berson.

147

We use the defbroadcast macro to define broadcast methods. Our

definition for the increment broadcast method used above is:

(defbroadcast increment ((c counter)})
(setf (value ¢} (+ 1 (value c}))

<)

The broadcast method increment takes a counter as an argument,
adds one to the counter's value, and returns the counter object.
When the increment method is invoked, two things happen. First,
the actual incrementing of the counter occurs. Then the :after
method is executed broadcasting this method to other sites. Remote
sites execute a version of this method that does not broadcast. The
macro-expanded code for the increment method is shown in Figure

4.19.

There is a problem that can cause extra messages to be broadcast
erroneously. This happens if one broadcast method calls another
broadcast method. On receiving the first broadcast, the remote sites
will execute the no-broadeast versions of the same method, which
calls a broadcast method. That broadcast method has to be smart
enough not to broadcast since other sites are independently applying
that method. But the local site must be smart enough not to
broadcast the second method or else all the remote sites will do the
second operation twice. This problem is dealt with by having a
dynamically scoped variable named *sync* which is set to true if a

broadcast method is currently being executed. The dynamic scoping

148

(really indefinite scope and dynamic extent) means that the variable
can be referenced anywhere as long as its binding is currently in

effect.

Another problem is that a single method may apply to several objects.
Some of these objects (but not others) may exist on other sites. Ifa
method of this nature is executed, remote sites may apply the (no-
broadcast) method to objects that do not exist on that site. The
send-args function resolves that problem by making sure all objects
mentioned in the method's argument list are stored at the sites

where the broadcast method will be executed.

The macro generates the :after method, which handles the
broadcasting. The broadcast-message function sends a message to a
specific Unix socket using UDP datagrams, in this case, the update
socket to which all participants listen for updates. The message
contains a function call to propagate-update. The function
propagate-update takes a list of sites and a form encoded as a
string which is to be evaluated. Each site, on receiving through the
update socket a propagate-update message, will check the site list.
If it finds itself on the site list, it evaluates the form. In this case, the

function call is to nb-increment.

149

(defmethod increment ((c counter))
(if =syncs
{progn '
(setf (value ¢) {(+ 1 (value c)})
¢)
(let ((#synce t))
(declare (special esyncs))
(send—args (farten—out (list (get—id c))))
{setf (value ¢) (+ 1 (value c)))
c)))

(defmethod izcrement :after {((c counter))
{(if (not ssyncw)
(broadcast—message
(ow—update—socket ob ject-world::vows)
{(concatenate 'string
"(propagate~-update
(package—name spackages)
(get—dests (flatten—out (list {get—id c)})))
(write—to—string (cons ’nb—increment (list (encode—all ¢))))

“3)))

{defmethod nbo-increment ({c counter))
(if ssvoce
(progn
{setf (value c) (+ 1 (value c)))
c)
(let ((=synce t))
{declare {special ssynce))
(setf (vadue ¢) (+ 1 (value c}))
c)))

Figure: 4.19 Expansion of defbroadcast

4.5, The power of OREL

Section 4.2 showed how OREL is used to model SARA primitives. In
Chapter 5 we show how to use OREL to build a data model of a
general tool object for coSARA (Figure 5.8) and how to build a a data
model of one of the tools of coSARA,

In this section we present one more example of modeling data using
OREL. GNU Emacs (Stallman [1981]) has a hypertext system
(Conklin [1987] is a survey of hypertext systems) to store manuals of
the GNU software called Info. This hypertext system stores a
collection of named text nodes as a tree hierarchy. All brother nodes
in the tree are linked together in such a way that it is possible to
traverse them left-to-right and right-to-left. Arbitrary cross
references between nodes also exists. Figure 4.20 shows an example

of tree structure supported by GNU Emacs' Info.

The operation of GNU Emacs Info is as follows. The tree hierarchy is
contained in the text of the node in the form of a menu. Cross
references are also contained by the text of the node and occur at
specific points in the text. The user of Info can navigate the hypertext

in two ways:

¢ The user can traverse the tree hierarchy moving from a node
to any of its children nodes chosen from the nodes' menu; the
user can move from a node to either the node that precedes it

in the menu or the node that follows it in the menu; the user

151

can move up from a node to the node's parent (except for the

root node).

tree link

g brotherlink

— — —p cross-reference link

Figure 4.20: Example tree structure of GNU Emacs Info

* The user can move from one node to any other node that is

linked using a cross reference link.

* The user can move to any arbitrary node by using the nodes

name.

Figure 4.21 shows an OREL data model of GNU Emacs Info nodes.
The class of nodes is represented by INFO-NODE. This node is
related to itself using the directed pairs UP, PREV and NEXT to
manage moving in the tree hierarchy up to the parent node and

between brother nodes.

The class TEXT stands for the text of a node. It is related to INFO-
NODE through the directed pairs: INFO-TEXT that associates a piece

152

The class TEXT stands for the text of a node. It is related to INFO-
NODE through the directed pairs: INFO-TEXT that associates a piece
of text with a node and MENU, that associates a piece of text with a
list of nodes. XREF-POINT is a class of objects that represent cross-
references that occur within a piece of text. INFO-NODE, TEXT and
XREF-POINT are related by XREF which given a piece of text and a
cross-reference will produce the node linked through the cross

reference.

To support arbitrary access by name, node names are stored as
objects of class NAME, which is related to INFO-NODE by the
directed pair NODE-NAME.

1 1
N NODE-NAMEJ__
INFO-NCODE
1
MkNU
INFP-TEXT
1
1 1 —
TEXT XREF-POINT

Figure 4.21 OREL model of GNU Emacs info nodes

153

4.6, Related work

In this section we discuss work related to OREL. We review some of
the most significant efforts: Smalltalk (Goldberg [1984]), CLOS
(Bobrow et al. [1988]), ORION (Kim et al [1987]) and Augmented
entity-relationship models (AERM) (L.andis [1988])

4.6.1. Smalltalk

In the early 1970s, at the Xerox Palo Alto Research Center, the
Learning Research Group started the Smalltalk project. Smalltalk is
currently a commercial product. The goals of the proposed project

are described by Goldberg & Robson [1984, Preface] as:

“..to create a powerful information system, one in
which the user can store, access and manipulate
information so that the system can grow as the user's

ideas grow.”

To realize the Smalltalk vision, research focused on two principal
areas: a language description and a user interface which matches

the human communication system to that of the computer.

The Smalltalk project exemplifies object oriented systems and
provides a vocabulary for further discourse (Goldberg [1984];
Goldberg & Robson [1984]).

Smalltalk-80 is an integrated programming environment. In

addition to a programming language and an interactive graphics

14

system it provides functions normally associated with an operating
system, These functions include memory management, a file

system, processor scheduling, display handling, and compilation.

The Smalltalk system itself is fully object-oriented. At the highest
level the user's interaction with the system can be viewed as an
interaction between two super-objects, the User and Smalltalk. All
data in Smalltalk are objects. Each object type can be further
classified into more specialized subtypes. The most important

concepts in Smalltalk are classes, objects, methods, and messages.

In the Smalltalk programming language, the primary unit of data
organization is the object. Everything in the system is represented
and manipulated as an object. An object is a data structure
consisting of local private memory and a set of operations, called
methods, to manipulate information stored in the private memory or
to perform actions based on that information. The only way to access
the private memory of an object is through the methods defined for
that object. An object is similar to the concept of an abstract data type
in other programming languages. Other examples of objects include
numbers, character strings, queues, rectangles, file directories,

compilers, text editors, and programs.

A class is a description of a set of objects of the same type. The

individual objects described by a class are its instances.

The methods of an object are its interface with the other objects in the
system. The medium of communication between objects is the
message. Whenever an object A (the sender) wants to get another
object B (the receiver) to do something, A sends B a message which is
interpreted by B's message interface. The message initiates
execution of one of B's methods which calculates a response, and B
then returns this response to the sender. This is the primary way of

making things happen in Smalltalk.

Another important concept of object-oriented programming in
Smalltalk is the subclass. A subclass is a class of objects possessing
all the variables and methods of some other class, called its
superclass, except for certain explicitly stated additions that extend
or override the variables and methods of the superclass. A simple
analogy to the subclass can be found in traditional dictionary
definitions of English words. For example, a man can be defined as a
male adult human. A father can be defined as a man who has one or
more children. The class father is a subclass of the class man, and
the class man is a superclass of the class father. Notice that father is
defined in terms of man but is more specialized. In order for an
object to be a father it must not only be a man but it must also have
one or more children. All fathers are men but not all men are

fathers. A subclass is thus a proper subset of its superclass.

Another idea important to subclasses is inheritance. A subclass is

said to inherit all the attributes of its superclass. A father possesses

156

all the attributes of a man, with some additional attributes not
required of the man class. A Smalltalk subclass inherits all the
variables and methods of its superclass but it also adds new variables
and methods in its implementation description, or it may override a
method of its superclass with a new definition. Inheritance is
transitive. If class B is a superclass of class C and class A is a
superclass of B then by the definition of inheritance class C inherits

the attributes of class A is well as B.

Smalltalk is an interactive programming environment with a
graphical interface. Designing a Smalltalk program requires an
implementation of each of the program's objects including a
visualization of that object, which need not be graphical. To support
the desired graphical interaction, Smalltalk expects a high-
resolution graphical display screen and pointing device such as a
mouse; besides the Smalltalk programming environment includes
extensive graphics facilities in the form of library classes (for

example, arc, rectangle, pen, etc.)

4,6.2, CommonLisp Object System

The CommonLisp Object System (CLOS) is an object system
integrated in CommonLisp (Steele [1990]). It provides the usual
features found in current object oriented programming systems:
multiple inheritance, classes, metaclasses, instance and class
variables, polymorphic functions. Less usual, is the method

combination mechanism. We will discuss how CLOS integrates into

157

CommonLisp, the treatment of behavior encapsulation in the form of
methods and the method combination mechanism. The other

concepts have already been discussed.

In CommonLisp every Lisp object has a type and a number of
operations are defined for handling types. CLOS introduces classes.
Each class is a CommonLisp type, and the same operations that are
available for handling basic CommonLisp types are alse available for

classes. Thus, CLOS augments the CommonLisp type system.

Methods are integrated in CommonLisp using generic functions as a
base. To the caller generic functions appear exactly like any
ordinary Lisp function. No syntactic difference is made. The
implementation of a generic function is done by a set of methods. A
particular method implementation is used when a generic function

is invoked, depending on the classes of its arguments.

In other languages, like T (Slade [1987]), methods are dispatched
according to the type of only one argument, providing a strong
encapsulation of behavior in the corresponding class. In CLOS
however, the selection of a method to be invoked is done based on the
types (or classes) of all the arguments. This means that the
encapsulation is weaker. For example, a method F is defined to have
arguments of classes X and Y. How do we decide the encapsulation

of F? 1Is it encapsulated by class X or Y?

158

Methods can be combined according to a given set of rules. A method
can be defined to be invoked before, after or around a primary method
associated with the same generic function. A primary method does
not have any method combination specified for its execution, and
usually does the principal part of the implementation of the generic
function. A before method is executed before the primary method. An
after method is executed after the primary method. An around
method shadows the primary method and the decision of choosing
when to call a primary method is left to the implementation of the

around method.

Keene [1989] gives a thorough exposition of CLOS and illustrates how
programming can be done effectively in the realm of CLOS.

4.6.3. ORION

Orion is a “prototype database system that adds persistence and
sharability to object created and manipulated in object-oriented

applications” (Banerjee et al. [1987]).

Orion supports all of the traditional object oriented features of
programming languages, including multiple inheritance, with the
added capability of letting the user define the permutation of the
superclasses used for determining inherited properties. This is

flexible, but may introduce undesired confusion in the programming.

Other features present in Orion that deserve mention are: composite

objects, version control, locking types suited to support of long

159

transactions, and an evolutionary data schema that can change as

defined by an established evolution taxonomy and rules.

4.6.4. The Augmented Entity-Relationship Model

The basic ERM (Chen [1976]) uses entities and relations as modeling
primitives. Entities denote sets of data objects, similar to classes in
object oriented programming systems. Relations do not have an
explicit correspondence in object oriented programming systems and
constitute an enrichment, expressing more information than can be
done using common class definitions, such as those of CLOS.
Relations can be considered to be special classes of objects that store
an association between other objects. Roles seem to be a concept

similar to subclasses.
The augmentations proposed by Landis [1988] are:

* Generalization: this augmentation is equivalent to simple
inheritance, and therefore not enough to match the power of
multiple inheritance found in current object oriented
programming systems. Landis claims the reduction in
redundancy of property specifications as a justification of the

introduction of this feature in the ERM.

* Aggregation: This is a form of composition in which higher
level objects called aggregates are defined to be composed of
other objects and relations. They can be referred to as a

whole and are in general treated as an entity. Landis

160

definitions: exclude recursive aggregation forcing the use of
recursive relations, that in turn require the use of roles; and
restrict the domain of objects that can take part in a relation
tuple. Aggregation is not found in object oriented
programming systems, and is desired as an enrichment of
such systems. For example, a control-graph is an
aggregation of control nodes, control arcs and the relations
that associate control nodes and control arcs (an AERM
diagram is shown in Figure 4.22) Other parts of the model
can make reference to control-graph as it were an entity. In
particular it may be a component of a GMB aggregate. It is
claimed that this augmentation is essential for modeling
entities like the SARA control graph, which is composed of

other entities.

The main purpose of roles in the original ERM was to provide
a naming scheme to eliminate ambiguities in relations in
which the same entity would participate more than once. For
example, in Landis' modeling of the module-submodule
relation, the entity module participates twice, one in the role
of parent and another in the role of child. Landis proposes to
attach properties to roles so as to associate properties with
subsets of entities (those participating in the role involved.)
This mechanism does not have a clear semantic definition
however, and conflicts arise for example in recursive

relations such as the one used to represent the module-

161

submodule relation. Landis does not present any case in
which role properties are necessary or convenient for
modeling SARA objects. The use of existential constraints in
roles is shown to aid in the modeling the relation between

sockets and interconnections.

control node

control arc

Figure 4.22:AERM diagram of SARA control graphs

Property types: text (ASCII files), code (programs) and
references (pointers to other objects), are defined as valid
types of properties. In an object oriented programming
system the slots of a class can have any type that is valid in

the system. AERM properties are equivalent to CLOS slots.

162

This augmentation should be extended to cover any value that

would be a valid CommonLisp object.

It is not demonstrated how this augmentation is essential or

convenient for modeling SARA objects.

¢ Mapping class: a relation in the basic ERM can have a
mapping class (1:1, 1:n, n:m), and a dependency or identity
constraint. Additional mapping classes that lead to other
integrity constraints constraints are introduced in the
AERM: completeness, direction and order. All these are

ways to capture additional semantics.

Only total and ordered relations are justified as necessary.
The first is used for modeling the control-data mapping in
the GMB. Ordered relations are claimed to be needed to model

input/output logic of control nodes in the GMB.

The AERM defines the following methods for operating on data that

abides by the model's rules:

Find: selects and returns a unique set of identifiers for which
some qualification clause is true. For example, in Figure 4.23
there is an AERM that has an entity called OPERA with
properties NAME and TENOR, a find operation might be of

the form:

find OPERA where NAME = “Otello”

163

Retrieval: is initiated after a unique identifier has been

established using find.

Insertion/deletion: allow objects to be placed in the database or

removed form the database. For example:

insert OPERA(NAME = “Otello”, TENOR = “Domingo”)

Modification: allows changes in the value of properties attached
to entities and relations. For example, if X is the unique

identifier established by:

find OPERA where NAME = “QOtelloc”

and TENCR = “Domingo”
then the following would update the state of this instance of OPERA:

change TENOR = “Domingo” of X toc “Vinay”

OPERA

Figure 4.23: Example AERM

164

7. Review of contributi | directions for f K

4.7.1. A review of claimed contributions
The main contributions of our work on OREL are:

* Adistributed system in support of interactive sharing of

data objects with persistent storage (section 4.3 and section

4.4)).

* An object-oriented graphic language for modeling data, that
includes: classes and multiple inheritance, recursive
composition of objects, relations as first class objects and

integrity constraints on relations (section 4.2).

* Aprogramming interface that allows manipulation of
distributed, interactively shared data objects (section 4.2 and
Appendix II).

It was necessary to extend the classical notion of object to make

possible the implementation of OREL. The extensions are:
* objects are accessed from many sites simultaneously,
* objects may contain site dependent data,
* objects have unique, site-independent identifiers,

* objects may have symbolic names, which are not necessarily

unique,

165

* objects are used within long transactions and are subject to

locking.

There are current research efforts aiming at efficient management
of shared, persistent objects. Decouchant [1989], focuses on
extending Smalltalk with these features, Moss [1989] is working to
smoothly integrate database an programming language concepts.
None of the current research, however, achieves interactive sharing
of data objects. This is a unique characteristic of our work. Section 3
shows how we have designed an implemented OREL to support

interactive sharing of data objects.

Other researchers have found that the combination of object-oriented
techniques and relational database concepts constitutes a powerful
data modeling methodology. Chen [1976] uses entities and relations
as modeling primitives. Entities denote sets of data objects, similar to
classes in object-oriented systems. Relations do not have an explicit
correspondence and constitute an enrichment, expressing more
information than can be done with class definitions. Landis [1988]
proposes a number of augmentations to Chen's entity-relationship
model for modeling complex design data. Landis' augmentations
were targeted at the modeling and implementation of SARA/IDEAS
(Landis [1988]; Worley [1986]) and are discused in detail in the section

on related work.

Our data modeling language makes use of relations as a way to

increase expressiveness and to enable management of constraints.

166

Unlike previous work, OREL relations are first class objects.
Recursive composition also provides an effective way to manage

complexity of design data.

The capability to interactively share data objects is the key notion that
enables collaborative work by a group of designers. Distributed
operation is essential if the system is to support of group of
collaborating designers, that will each be operating the system from
his’her own workstation. Persistent storage of data objects is
necessary because the amount of data invelved in a design task is
such that it is not possible to build the data from scratch when
starting a session and it is necessary to keep track of work progress

across session boundaries.

We have used OREL to model SARA objects (Figure 4.12, page 16).
The model that we produced is quite compact (fits in one page) and
enables us to deal with the complexity of SARA objects. In particular
we would like to highlight the modeling of modules as recursive
composites and the use of directed pair relations in modeling GMB
objects, where the hyperarc structure of the control graph is of great
complexity. We have translated this model following the procedures
described in this Chapter and produced code that is currently used in

our implementation of coSARA.

We have built a prototype of the UCLA SARA Collaborative Design

Environment, using the implementation of OREL that is discussed

167

here. The existence and behavior of that environment is a proof of

concept for OREL.

4.7.2, Future work

Our research has produced a number of problems for future work.
The main problems that are open for work are in the areas of
supporting operation by geographically remote sites, concurrency
control, object-oriented data modeling language design, abstractions
for programming with objects and relations and implementation

optimizations. We discuss these issues below.
4.7.3. Supporting operation by geographically remote sites

Currently, OREL operates correctly on a single local area network.
This is because we take advantage of built-in facilities for
broadcasting messages, that guarantee that every site will see the
same sequence of messages. If this feature is removed, then sites on
different local area networks might see different sequences of
messages. We know that there is a need for computer supported
cooperative work to span more than a single local area network. In
particular, support for collaboration is even more important when
two or more geographically separate design groups work on related

parts of a design.

In anticipation of new high speed network technologies, we are
developing new protocols to expand OREL to support such multiple

geographically remote local area networks, and understand that

168

inherent artifacts will change the quality of collaboration as

compared with collocation.

We believe that extensions to TCP/IP for multicasting and broad-
casting would provide the necessary functionality to build support for
geographically remote operation. Such extensions would be used as a

foundation for the implementation of broadcast methods.
4.7.4. Concurrency control

Concurrency control needs of computer supported cooperative work
are very different from conventional requirements. The traditional
database model of transactions is inadequate. In conventional
systems the intent is to give each individual user the illusion of being
the only person operating the system. In collaborative systems the
aim is the opposite. We intend to make each user of the system as

aware as possible of other users actions.
4.7.5. Object-oriented data modeling language design

In the operation of coSARA there is a natural amount of parallelism
due to the activities of the collaborating designers. An object model
similar to actors (Hewit & Lieberman [1981]) could have an impact
on the ability to model and program a system such as coSARA.

Further research is necessary to evaluate this conjecture.

In section 4.2 we demonstrated the use of OREL for creation of a data

model of design data used by SARA tools in support of the SARA

169

design methodology. In the process of creating this model and using
it as the base for programming coSARA, several issues about the use
of OREL emerged. The essential problem is how to set the
programmer's mind to think of relations. It is necessary to research
which are adequate abstractions for using a system such as OREL.
For example, before we started to seriously focus on the modeling of
SARA objects there were no pair objects in OREL, only general
relations. During the process of modeling the SARA objects it
became clear that many relations defined in the model were simply
relating pairs of objects. This resulted in the inclusion of directed
and undirected pairs as useful abstractions. We made use of this
abstractions to introduce some optimization in their implementation,

relative to the implementation of general relations.
4.7.6. Optimizing the implementation of OREL

OREL influences the performance of a system built with it in two
ways: broadecast methods impose a significant overhead, and the

generality of OREL protocols also carries an overhead.

There are not many ways to improve the overhead of broadcast
methods other than careful programming of their implementation

and judicious use of them.

The overhead of the OREL protocol is more amenable to
improvement. Since the protocol is composed of messages, it is easy

to redefine methods for specific OREL classes. For example, the

170

messages relate, unrelate, and find-objects could be redefined for

certain pair classes to use hash tables to store the relation pairs.

171

CHAPTER 5

Tool Modeling and Integration
Methodology

172

2.1, Introduction
This chapter reports research work on a methodology for modeling
and integration of tools into integrated extensible environments. The

modeling and integration methodology includes the case of partial

integration of foreign, pre-existing tools.

For the purpose of this work we define an integrated, extensible
environment as a system that provides a common user interface and
a common data management system for a set of tools. coSARA is
such an integrated, extensible envirqnment aimed at providing
computer support for collaborative design. The collaborative nature

of coSARA imposes two basic requirements on the environment:
* Availability of a multi-user interface, and
* ability to interactively share design objects.

We use OREL [Chapter 4] as a common data management system for
all tools built according to our tool model. It has been shown
previously how OREL satisfies the requirement of providing support
for interactive sharing of design objects. OREL also provides a data
modeling language and data model support that is used to model
tools and to model data objects handled by tools.

The main contributions of this research in the area of tool modeling

and integration methodology are:

173

®* The coSARA tool model for environment extensibility and
interactive tool sharing: allows partial and full integration of
tools; enables tools to operate on interactively shared objects;

and supports incremental extension of the environment.

* The coSARA user interface model and user interface
development system: allows sharing of interaction
mechanisms; provides support for expressing behavioral
response to multi-user actions and enables early testing and

analysis of user interfaces.

A great deal of research effort is being currently devoted to the
problem of building integrated extensible systems (Henderson &
Notkin [1987], editorial note), with particular attention to the
management of pre-existing tools. Some of these efforts lead to
systems that are said to be open, in the sense that they offer a model
of data and control that newly written applications can adopt. There
is no known solution however to the automatic inclusion of a pre-
existing tool into an integrated environment. In this sense,
integration and extension represent conflicting forces. The tighter
the integration, the more similar application tools have to be. More
general extensibility capabilities, that account for inclusion of foreign
pre-existing tools, require that the coupling between application tools

be as loose as possible.

Our research has produced a methodology for modeling and

integration of tools that is not found in other systems. The approach

174

is to allow varying degrees of tightness in the integration of a foreign
pre-existing tool in order to deal with conflicting forces that arise
from the integration vs. extensibility issue. The methodology requires
the construction of modules to bridge user interface interaction
between the coSARA multi-user interface and the foreign tools as
well as the construction of modules to bridge interaction between the
foreign tools and the object world. Given the formalism of OREL we
envision providing computer support in the construction of such
bridge modules. However, in this current work we have not gone so
far as to provide algorithms that would allow such automatic

support.

User interface development systems have also been a productive field
of research for the past decade (Myers [1989]). In particular, some
researchers have attacked fundamental issues in supporting multi-
user operation. Focus has been on finding good devices to convey the
multi-user activity to each individual, how to deal with public and
private information, and how to share display devices (Greif &
Sharin [1987]; Stefik et al. [1987}; Ellis et all [1990]; Gust [1988]:
Lantz & Lawers [1990]).

Little or no attention has been paid to formal methods for multi-user
interface specifications that allow modeling of behavior in response to
multiple user actions and that allow modeling of group processes.
Approaches to sharing displays and therefore user interface devices

using shared window servers are also unsatisfactory. Use of shared

175

window servers for this purpose results in a relatively easy way to
port a single user tool into a collaborative environment but it does not
support what we believe is an essential characteristic of collaborative
systems: make each individual as aware of other users’ actions as
possible, as opposed to the aim of conventional systems that intend to
give each individual the illusion of being the single user of the

system.

Our research in user interface methodology has resulted in a unique
approach: to formal modeling of user interfaces that are aware of
multi-user actions, to allowing true semantic sharing of user
interface objects and to allowing modeling of group processes into the
user interface. Our user interface formalism is based on SARA and
OREL. SARA allows us to model concurrent systems and provides
tools and methods for early simulation and analysis. By modeling a
group of designers as a concurrent system we can incorporate group
process models in the user interface. Use of OREL for modeling and
construction of user interface objects results in true semantic
sharing of user interface objects such as windows buttons, menus,
etc. In this report we define precisely the user interface objects that

are used in the coSARA environment.

176

This Chapter is organized in the following sections:

5.1.

5.2,

5.3.

54.

5.5.

5.6.

This introduction.

Description of requirements for tools and for tool modeling

and integration methodology.

A user interface development system composed of a user
interface model, a specification method and a procedure for
construction of user interfaces. We show how this user
interface development environment satisfies the requirement
of providing a multi-user interface which is common to all
tools that operate in the coSARA environment. The user
interface of specific tools is specified by SARA models. These
models provide a formalism that enables early testing and
analysis of user interfaces and allow modelin-gr of tool
behavior in response to concurrent actions performed by

multiple designers.

A data model of generic tool objects that encapsulates
properties which are commeon to all tools. This section also

shows how this general model is specialized for specific tools.

A procedure for tool integration that provides a method for
building new integrated tools and for partial integration of

pre-existing foreign tools.

A review of related work.

177

5.7. Review of contributions and directions for future work.
5.2, Tool Requirements
The following are requirements that tools must satisfy for the

purposes of a computer-supported collaborative design environment

such as coSARA:
* Tools should be adaptable to designer and group needs.

* Tools should affect the shared objects under the control of a

designer or under the control of other tools.
* Tools should be objects defined in the coSARA data model.

* Tools that are integrated into coSARA, use the common data
model and may require the modification of an existing data

model to behave as intended.

The following are requirements for the tool modeling and integration

methodology:

* The tool modeling and integration methodology should be
able to deal with foreign tools.

* The tool modeling and integration methodology should allow
incremental extension of the environment by integration of
single tools without need to rebuild the environment. It is

admissible, however, that the environment be rebuilt when a

178

tool requires drastic changes either in the common data

model or in the common multi-user interface.

* The tool modeling and integration methodology should allow
modeling of behavior in response to actions performed by

multiple users

Tools are passive in the sense that they do not take control of the
environment as would happen in Unix when a program is started (if
you run v1, you talk to vi!) Tools are not programs in this sense. Tools
are objects, and provide functionality for the invocation of methods
that act on data objects. In our view, tools are artifacts that are
plugged to the user interface in order to define specific ways in which

the system is going to react to gestures made by designers.

A tool provides access to a set of one or more related methods to
change or to analyze design models. For example, the GMB
Simulator is a tool that provides methods to simulate the behavior of a
model, do performance analysis and do interactive debugging. The
methods that are accessed by a tool are written in CommonLisp,
operate on data defined in the collaborative design environment data

model and may invoke other similar methods.
The user interface of a system is the component that collects input

data from users of the system, passes collected data on to the system

for processing and presents output data to users of the system. For

179

example the user interface of a text editor collects text and editing
commands from a user and displays the current state of the file text

that is being edited.

The user interface code usually accounts for a large part of the code
in the implementation of a system. Surveys of artificial intelligence
applications report that about half of the code and runtime memory
are devoted to the user interface (Myers (1989]; Bobrow, Mittal& Stefik
[1986]).

An important kind of user interface is direct-manipulation
interfaces. These let the user operate directly on objects that are

visible on the screen (Schneiderman [1983]); Myers [1989]) says:

“..The easy-to-use direct-manipulation interfaces popular
on many modern systems are among the most difficult to

implement...

...Direct-manipulation interfaces are difficult to create
because they often provide elaborate graphics, many ways to
give the same command, many asynchronous input devices,

a mode-free interface and rapid semantic feedback.”

One important aspect of user interfaces is how they communicate
with the applications at run-time. Two main styles are used (Myers

[1989]):

180

Internal control: The application program calls the interface
procedures when input is desired and when output data

must be presented.

External control: The user interface procedures call the
application when the user gives a command. This allows the
user interface to handle scheduling and sequencing of

actions in response to user actions.

Communication through external control can be further classified by
the form in which data and control are transferred between the user
interface and the application programs. This may be done by
callbacks, where the application passes to the user interface names of
procedures to be invoked; or by shared memory, with user interface

and application programs each polling the data to check for changes.

An important communication issue is the bandwidth between the
application and the user interface. Early models advocated narrow
band communication, tending to make the application independent of
the user interface. However, to satisfy the rapid semantic feedback
required by modern direct-manipulation interfaces, the user
interface and applications must communicate in a tighter and more
frequent form, for example, to determine legal positions when an
object is dragged on the screen. Proposed user interface models
address this issue by enabling the user interface and applications to
share data. Sharing data and still providing good modularity is
currently an open research issue (Myers [1989]; Szekely [1988]).

181

To alleviate the problem of building interfaces, methods and tools
have been developed to aid in the process of user interface
construction. One simple approach is the provision of a toolkit, that
embodies a number of procedures for support of interaction between
the user and the applications. A more thorough approach is found
in User Interface Development Systems (or User Interface

Management Systems, as they are sometimes called.)

A user interface development system provides functionality to
support all aspects of the user interface development and use:
specification of user interfaces, management of different input
devices, validation of inputs and error handling, provision of
feedback to show that input has been received, presentation of output
data, help and facilitation of usage of the system and interaction

with the systems's semantic processor.

To do this user interface development systems are usually composed

of:

User interface toolkit: A user interface toolkit is a collection of
data structures and associated procedures to support

collection and presentation of data.

Dialog manager: The dialog manager is a module that accepts

valid sequences of input from the user.

182

Programming interface: The programming interface is used
to implement the interaction between the semantic processor

and the user interface.

Layout editor: A layout editor allows the specification of the
layout of different regions of the screen that will be used for

interaction between the user and the system.

Analysis components: Analysis components are used to test
and evaluate the user interface in early prototype stages as

well as during production usage.

There are several ways in which a user interface designer can
specify the interface. The specifications may be based on; menu
networks, state transition diagrams, grammars, event languages,
declarative languages, object oriented languages and knowledge
based systems. There are interfaces that are “created by
demonstration,” like Peridot (Myers [1988.]). Some of these concepts
are discussed in greater detail as we review significant development

efforts and current research projects in the area of User Interfaces.

UIDS which are based on state transition diagrams use a finite state
machine to recognize the dialog language. These are augmented
with calls to routines that implement the semantics. This idea has
been expanded to use more powerful formalisms, like ATNs (Worley
[1986]) and pushdown automata (Olsen [1984]). Practical current

systems use a formalism called Recursive Transition Networks

183

(RTN) in which subnetworks can be invoked as parameterless
subroutines. It can be shown that RTNs have a recognition power
equivalent to deterministic pushdown automata. In any case

processing proceeds by simply walking the graph.

An example of this method is RAPID/USE. (Wasserman &
Shewmake [1982]). RApid Prototypes of Interactive Dialogues
(RAPID) is a tool to support the User Software Engineering (USE)
method (Wasserman & Shewmake [1982]). This method is similar to
other methods proposed recently (Jacob [1985]; Jacob [1986]). A
description of RAPID/USE is found in subsection 6.1. On related
work (page 22). Modern approaches tend to favor event based
interfaces, use of the object-oriented paradigm and knowledge based

systems
5.3.1. The user interface model

The multi-user interface model that we use in coSARA 1s shown as a
SARA model in Figure 5.1. This model is a refinement of the High
level model of Figure 3.2.

We assume that a small group of designers operate the coSARA
system from the environment making gestures on displays with
mice, keyboards and other input devices. A gesture may be to move
the mouse, to press a button of the mouse, to release a button of the

mouse, to click a button of the mouse, to type using the keys of the

184

keyboard. The system responds to gestures with graphic output on

displays and possible other types of feedback such as audio and video.

oo

FBK-1 L
ST-2 FHRE
FBK-2 S
ST-3
FBK-3
— f {
. _k
-

a
T

AR

S
o

: Environment

b SIS

System

Figure 5.1: Model of coSARA

The Common-interface module is composed of one session; (i=1,...,3)!
module. Each session; module corresponds to one designer in the
environment. The individual sessions that compose the Common-

interface module do not communicate directly with each other. The

TWe use the number 3 here just as an example value.

185

different sessions communicate and coordinate by sharing objects

that are stored in the object-world module.

The designer's gestures are received by the common-Ul module
through its GST-i, (i=1,...,3)2 sockets. The common-UI module then

delivers system feedback to designers through its FBK-i sockets.

Dialog -manag

ik
er %‘
e oot

ik

session-1

Figure 5.2: Model of session-1

Figure 5.2 shows a partition of a session module. It has the following

component modules;

2in the following presentation we will refer to sockets such as GST-1, GST-2 and
GST-3 collectively as GST.

186

tool-proxys represents the tool objects that are used by the
designer who is operating the session at a given time. We
call tools that are in use active tools. The real tool objects
reside in the object-world. The properties of the object-world

assure that tools can be shared by two or more designers.

CN-proxys represents the contact objects used by active tools. The
real contact objects reside in the object world. The properties
of the object-world assure that contacts can be shared by two

or more designers.

ftool-proxys represents foreign tools. A foreign tool proxy acts
similarly to a tool proxy except that interaction between a tool
proxy and its environment is subject to translation

procedures performed by CN-gate, DM-gate and OW-gate.

Dialog-manager is a module that controls the flow of control in
the user interface activities. This module translates user

actions into invocations of tool methods.

CN-gate receives feedback from the foreign tool through its proxy

and translates it into a form that a contact can interpret.

DM-gate receives callbacks from ftool-proxys through the CBK
socket. These callbacks are translated into coSARA callbacks
and delivered to the Dialog-manager for further processing.

DM-gate also receives method invocations from the Dialog

187

manager, which it translates in whatever form is necessary

to invoke functionality of the foreign tool.

OW-gate transforms operations on data objects from the original
form of the foreign tool into a form that is understandable by

the object-world module.

Let us study now the behavior of the common-UI module. The
common-UI module receives gestures from the designers that reside
in the Environment module. These gestures are given to the session-i
module that corresponds to the designer who made the gesture.
Gestures are used by the common-ui to drive tools that will produce
feedback for the designers as a result of their operation. As we said
before, gestures are received through GST sockets and feedback is

delivered through FBK sockets.

The first component of a session-i module that processes a gesture is
the module CN-proxys. This module translates a gesture into a
contact callback that is delivered through the socket CBK. This
socket is connected to the socket CBK in the Dialog-manager module
for the purpose of delivering the callback to the Dialog-manager. The
CN-proxys receives feedback information from both the tool-proxys
module and the ftool-proxys module, the latter through the CN-gate
module. Feedback is processed by contacts, whose proxys reside in
CN-proxys, which make whatever transformations are necessary for
presentation to the designer. For example coSARA has contacts for

drawing graphics that make coordinate transformations. Another

188

example is a contact that presents a request for input as a menu on
the screen while a second contact presents the same request for input

using audio.

The tool-proxys module receives method invocation from the Dialog-
manager module throught the socket CTL. Invocation of a tool
method results either in feedback sent to CN-proxys through the
socket FBK or in callbacks being generated by the tool and sent to the
Dialog-manager throught the socket CBK, or both. A method
invocation will usually produce alteration of objects in the object
world. Connection between the tool-proxys and the real tool objects is

done through the socket QP.

The structure and behavior of ftool-proxys, the module that
represents foreign tools, is similar to that of tool-proxys, except that
all its communication with other modules is done through gateway
modules (CN-gate, DM-gate and OW-gate). The behavior of CN-gate,
DM-gate and OW-gate was already described.

The structure of Contact-proxys and Tool-proxys is determined by the
activation of tool objects and their subsequent removal. The SARA
modeling methods do not allow dynamic reconfiguration of system
structure. For example, a session has a set of active tools
represented in the tool-proxys and ftool-proxys modules. When a new
tool is activated it becomes necessary to modify the internal structure

of these modules. We have worked around this problem using an

189

external procedure, not present in our model of the coSARA system,

that knows how to reconfigure a working system.

Our user interface model is based on event processing, operates
under external control, has a high bandwidth of communication
with the application tools and uses an object oriented programming

style.
This user interface model includes:

* Interactive sharing of arbitrary contacts and tools at a
semantic level: Contacts and tools are stored in the Object-
world, which provides that kind of object sharing (In
Chapter 4 we showed how OREL allows interactive sharing of
objects).. This is a novel feature, that cannot be found in
other systems. Functionality to share user interface objects
can be found only at the level of sharing windows through
shared window servers (Gust [1988]), shared display areas

(Stefik et al. [1987]).

* Incremental extension of the user interface: Each tool
provides its own piece of code that is invoked by the user
interface dialog manager. In this way the system does not

need to be rebuilt when a new tool is brought into the system.

* Satisfaction of the common user interface requirement: All
tools interact with the designers through a common set of

contacts and are driven by a single dialog manager.

190

* Provides support for foreign tools: The contact and callback
gateways allow interaction between foreign tools and the

common user interface.
5.3.2. The user interface creation procedure

A procedure for building and extending the multi-user interface of
an integrated system such as coSARA is required to produce
interfaces according to the model previously described and to enable
incremental introduction of new tools into the environment. Tool
implementors should be able to formally specify user interfaces of
new tools. Such a process for building and extending the user
interface should make use of an extensible library of contacts and an
extensible library of tools that perform various user interface tasks.
The process to build and extend the user interface should translate
the formal specification of a tool's user interface intol working code.
Figure 5.3 displays a dataflow model of the process to build and
extend tools that is implemented in coSARA.

Contacts are specified using SARA models. A Contact Specification
can be graphically created and edited using SARA Editors, possibly
using other predefined contact models stored in the SARA Building
Block Library by a separate process. A Dialog Control Module (DCM)

Specification can be defined similarly.

191

SARA
to be done building-block
library

Contact
model

Contact

translator GMB to DCM

translation

Contact COSARA Tool library
library data model

Figure 5.3: Dataflow model of the process to build and extend tools3

The Contact Translator processor converts a Contact Specification into
data structures and executable code that implements the contact
behavior. It also updates the coSARA Data Model. The executable
code is stored in the Contact Library. Similarly, the SARA Model to
DCM Translator converts a Dialog Control Module (DCM) Specification
into data structures and executable code, to be used by the run time
dialog manager, and updates the coSARA Data Model. The executable
code is stored in the Tool Library.

3The shading of the elements of this figure indicates the status of the
implementation at the time this dissertation was filed.

192

The system is initialized with a set of basic contacts (screen buttons,
menus, text collectors, dialog boxes, graphers and canvases) and a set
of basic user interface tools, stored in the different libraries. The
contacts implement simple techniques for interaction between the
system and the designers, and can be used to compose more complex

contacts, The basic user interface tools are:

Zoom: provides functionality for management of graphic space
in canvases. It presents a view of all graphic objects in a
canvas and provides functionality to define a subset of objects
to be displayed in one or more canvases. The subset of objects

is selected by drawing a box around them.

Selection: allows designers to select an arbitrary set of selected
objects that are displayed on a canvas for subsequent

operation on them.

Graphic editor: allows one to create and edit graphic objects on

canvases.

Basic contacts and basic user interface tools constitute a toolkit for
our user interface development system. The dialog manager is
provided by SARA in the form of a token machine interpreter, which
is part of the SARA GMB simulation tool. Analysis components of
SARA (simulation, control flow analysis and performance analysis
tools) provide a set of analysis tools for our user interface

development system.

193

5.3.3. Specification of user interfaces using SARA

We specify a user interface using SARA models to describe the
behavior of a tool in response to user actions. In this section we
explain the approach to modeling tool behavior using SARA by
means of an example drawn from the coSARA system. We use

SARA to model the coSARA zoom tool.
Let us first describe the operation of the zoom tool.

An operational view of the zoom tool is illustrated by Figure 5.4. The
zoom tool is part of the library of basic_: user interface tools.described
in the previous section. The purpose of this tool is to manage screen
space for graphic operations, providing functionality to zoom and
pan. It uses two canvases, which are contacts with graphic
capabilities, on which graphics on a world coordinate system (Foley &
van Dam [1990)) can be seen using an arbitrary viewport. The SM
Editor canvas is used to do graphic editing, This canvas is of type
Editor-canvas, meaning that it provides the callbacks and the
functionality necessary to support the operation of the selection tool
and the graphic editor tool that were described in the previous
section; the SM Zoom canvas, of type Zoom-canvas is used to control
the viewport for SM Editor. A Zoom-canvasis a type of contact that
provides the callbacks and the functionality necessary to support the

operation of a zoom tool.

194

The SM Editor canvas has a button labeled zoom, for popping up and
hiding the SM Zoom canvas. The SM Zoom canvas has four buttons,
labeled edit, zoom, pop and reset. It also highlights a rectangular
region of the screen that defines a viewport in the world coordinate
system. The designer can manipulate this rectangle using the
mouse. Pressing a button of the mouse sets the upper left corner of
the rectangle and dragging the mouse defines the bottom right
corner of the rectangle. When the button of the mouse is released, the
new rectangular region is highlighted. Figure 5.5 shows a view of
the SM Zoom canvas after setting a new rectangular region by
dragging the mouse. The edit button is used to set the viewport of the
SM Editor canvas to the current rectangle displayed in the SM Zoom
canvas (Figure 5.6). The zoom button sets the viewport of the SM
Zoom canvas, stacking the previous viewport. The pop button restores
the most recently stacked viewport in the SM Zoom canvas. The reset
button sets the viewport of the SM Zoom canvas to be the complete
world coordinate system and clears the the stack where the zoom

viewports are stacked.

The operation of the Zoom tool corresponds to a dialog, that can be
modeled using SARA as shown in Figure 5.7. This figure has a
number of simplifications intended to improve clarity in the limited
space allowed by a single page. Simplifications include not
displaying in full the models of Designers, Editor-canvas, Zoom-
canvas, View and Buttons. All the contact models are stored in the

building block database described before. These models are retrieved

195

from that database to be used for composing the model of a new

system.

M Editor Canvas
i [
e ,GST-1 rLGST-l
3 : X
: FFBK-1 HFBK-l
D FqGST=2 EGST-2 i
: e DAk
- : FBK -2 HFBK-Z .}
: OGST-3 HGST-s
- o
FBK-3 K-3
. S
‘? S e
% ; e e
2
” : common-U]
2 .&

Srqunix []mix
- L L
i :
‘Environment 3

coSARA

CLTTT

Figure 5.4: Operational view of the zoom

196

M Editor Canvas

System

c0SARA SM Zoom Canvas

edit] zoom | pop { reset |

feaccessnanarsswewnsnnnnens

Figure 5.5: Changing the rectangle in SM Zoom Canvas

197

SM Eduor Canvas

common-Ul

remmaany

g

Figure 5.6 Changing the viewport of SM Editor Canvas

198

Let us understand now the overall structure of the model of the zoom
tool. Module Environment, includes a module Designers to represent
designers who operate the zoom tool4. Designer's actions are
accepted by the Editor-canvas and Zoom-canvas contacts. These
contacts respond to the user actions applying callbacks. The name of
the callbacks that are provided by the contacts are attached to the
control arcs of the corresponding modules. In the case of Editor-
canvas we only show the behavior to activate and suspend the Zoom-
tool module. The Position data arc in Zoom-canvas is used to provide
the position of the mouse inside of the canvas, relative to the upper

left corner of the canvas.

Module Zoom-tool defines the behavior of the zoom tool in response to
the callbacks applied by the contacts in Environment. We have
partitioned the Zoom-tool module into two submodules: View-
manager and Zoom-manager. The module View-manager provides
functionality to change the viewport displayed by the zoom in the
zooms' canvas as a highlighted rectangular region. The module
Zoom-manager provides functionality to set the viewport of the Editor-
canvas or the viewport of the Zoom canvas, actions that are

performed in response to clicks on the zoom buttons.

4In this case we have chosen to include two designers to illustrate how modeling
tools with SARA allows us 1o model group processes. In this case we have chosen
to use a simple baton-passing protocol between two designers.

199

Let us first focus attention on the processing of press-move-release
sequences. Initially there is a token in control arc al, module View-
manager (Figure 5.7-1). When the user presses a button of the
mouse, a token is put in the control arc Press of the module View of
Zoom-canvas. Because of the structural interconnections this token
will be available as input to the node nl. The initial conditions shown
in Figure 5.7-1 specify that a token exists initially in the control arc
al. The input logic of node n1 is *, therefore having tokens in both
input arcs the node becomes active and the interpretation associated
to data processor Start-focus is executed. The procedure followed by
StartFocus is to read the dataset Position, which is written from the
environment with the current position of the mouse, and set the new
upper left corner of the rectangular region, writing this information

to the dataset Temporary-focus.

200

OM- oy

it @)
e o
Ay

-
... @.2?_5.

SEALRES- KO

WoGZ-AH|)

Wo7

np- N0

WHLHOAUD

ssaudisa(]

WIXY.

Figure 5.7: SARA model of the Zoom

201

W)/

(001- WKz [DETTTATIINT 5

woo7 g SeAUE- J01PT]
=T
Ly

Figure 5.7-1: SARA model of the Zoom (Execution trace)
202

Upon completion, the control node nl outputs a token to arc a2. The
new state of the control graph is shown in Figure 5.7-2. Arc a2
enables activation of either node n2 or node n3. Moving the mouse
after pressing a button will result in a token being put on arc Move
(Figure 5.7-4). Existence of tokens on arcs a2 and Move triggers
activation of node n2, that in turns trigger execution of the
interpretation procedure of dataprocessor Size-focus. Size-focus
updates the rectangular area of the zoom and writes this data to the
dataset Temporary-focus. Upon completion the node n2 outputs a
token to arc a2, enabling either n2 or n3 for activation (Figure 5.7-5).
A sequence of tokens in Move, consequence of moving the mouse,
will produce a sequence of updates of the rectangular region stored
as numerical data in dataset Temporary-focus. When the button of
the mouse is finally released, a token will be put in arc Release
(Figure 5.7-6), triggering activation of node n3, mapped to
dataprocessor End-focus. The interpretation of End-focus defines the
new rectangular region of the zoom, storing it in the dataset Focus.
Upon deactivation, node n3 will output a token to are al(Figure 5.7-7),
enabling in this way further activations of node n1 or nodes n4

through n7 in module Zoom-manager.

Now, let us turn to the behavior of the zoom tool in response to the set
of buttons of the Zoom-canvas. We will analyze the response to each

of: Click-zoom, Click-pop, Click-reset and Click-edit in turn.

203

When a token is put in the arc Click-zoom (Figure 5.7-8), node n4 is
activated in the module Zoom-manager. The interpretation of the
dataprocessor associated to nd saves the current viewport of the
Zoom-canvas pushing it into a stack, reads the new rectangular
region from the dataset Focus in module View-manager and sets the
viewport of the Zoom-canvas to be the area defined by the new
rectangular region. Upon completion, node n4 outputs a token to arc
al (Figure 5.7-9). A token in arc al enables either sequences of press-

move-release actions or clicking any of the Zoom-canvas buttons.

In the following paragraphs we explain the processing of clicks on the
rest of the Zoom-canvas buttons. Since they are all similar to the zoom

button, we will not use a graphic representation to follow the process.

A token in arc Click-pop trigger activation of node n5. The inter-
pretation of dataprocessor Pop-viewport is executed, popping the
Zoom-canvas viewport stored at the top of the stack (dataset stack),
discards the current Zoom-canvas viewport and sets the Zoom-canvas
viewport to the value that was retrieved from stack. When node n5 is
deactivated it outputs a token to arc al. A token in arc Click-reset will
activate node n6, which is mapped to dataprocessor Reset-viewport.
The interpretation of Reset-viewport is to set the stack empty, restore
the initial viewport of the Zoom-canvas and display an initial default
rectangular region. Upon completion node n6 outputs a token to arc
al, enabling sequences of mouse press-move-release or clicking any

button.

204

001 wioz

SEALED. S0P

WOOZ- 24)

woorz

@Wa;...i

HITE THTATTENT =

Wi

Figure 5.7-2: SARA model of the Zoom (Execution trace)

205

[001- LU

SEAURD-JONK |

wooz- ¥

WHMOZ

.
rere,, FEANEATOY

SEAUED LOUZ

WDUIKH I ALLY

Wp- 30

WOZ- Y1)

SUOTNY

S1uF183(]

WX

Figure 5.7-3: SARA model of the Zoom (Execution trace)

206

OO U7

sionpe-atendn

Dieuew - Wz

"~ SEALES- 10N

wWooz- NI}

wooZ

....... JIEANY
aas)

SEAURD- 00T

WAHDUOILALL]

npa- 31D

sraudhsag)

WXy,

Figure 5.7-4: SARA model of the Zoom (Execution trace)

207

1901 WOOZ,

Beurw- wouz

S0 ey

dmaia-wooz
odmata-1asd -

“.jonisog

woog SEAUED-JONPT
_Eunw:m..@

@M_aéﬁq

Wo2-Y31)

wouy

SEALED-LIO0Z

RN

LIS ALL

srudisagg

W)/

Figure 5.7-5: SARA model of the Zoom (Execution trace)

208

001 WOZ,

W07 SEALED- 1OV
e

T

00T XU

worz

SEANED- IIOOZ

UGS AL

npa- 11D

WK

Figure 5.7-6: SARA model of the Zoom (Execution trace)

209

(001 WIKYZ

JHHUUC ALY
woogZ SEAUED-J0IPY|
puadsng .@
(LI
G~ WOOZAND)
*
W07
...... nIEATIOY
SEAUEI-WO0Z
ssufisog

(Lo]

218 8§74

Figure 5.7-7: SARA model of the Zoom (Execution trace)

210

[O01- W

sionpa- epdn)

LB AL
SEAUED- 101PY]
G
18 o
ac& wooz-Y M|
-
wooZ
(%.... @.HEU(
saufisaqy

np3- 321,y

WX

Figure 5.7-8: SARA model of the Zoom (Execution trace)

211

1001- Wy 2

T
e,

(3

SEAUED-JOIP

IUALUUTALY

slauisacy

Wiy

Figure 5.7-9: SARA model of the Zoom (Execution trace)

212

Finally, a token in arc Click-edit activates node n7 mapped to
dataprocessor Update-editors. The interpretation of this
dataprocessor is to set the viewport of the editor canvases controlled
by the zoom tool to the current rectangular region stored in dataset
Focus. As well as n4, n5 and n6, node n7 will output a token to arc al

upon completion, enabling further action.

Module designer represents the model of a group process in which to
designers share the zoom according to a baton-passing protocol. In
the model, designer-1 has control initially being enabled to operate on
the zoom. At any time designer-1 may choose to deliver control to
designer-2. The behavior of designer-2 becomes then identical to the

initial behavior of designer-1.

This example shows how the specification of tool behavior can be
done using SARA models. The formal methods and analysis tools
allow early simulation and analysis of such models, one of the goals
of our work. The example also shows how we can use SARA models
to incorporate in the tools a model of group processes in which the

protocols followed by designers to interact are expressed explicitly.

5.4, Data Model

Figure 5.8 shows a data model of tools. TOOL is the class that
encapsulates the properties common to all classes of tools. We will
refer to the class TOOL as the generic tool class. Specific tools are

defined as subclasses of this generic tool and therefore inherit all its

213

properties. A particular tool class may have its own data slots and
participate in other relations as we will show in an example later in

this section.

* TOOL objects have a DCM which is an
encoding of the behavior of the tool in
response to user actions.

» TOOL objects are related to other
TOOL objects by the pair USES. There
is one USER tool and many USED tools.
The mapping labeled used is ordered.
The used tools must be installed in the
order specified by this mapping.

« MESSAGE-OBJECT is the class that
represents the messages used by the
TOOL object

CONTACT e CONTACT is the class of user
interface contacts

* TOOL objects, CONTACT objects and
N MESSAGE objects are related by the a
relation object CALLBACKS. The
meaning of a CALLBACK relationship
is defined in the section on the user
MESSAGE-OBJECT interface model.

CALLBACKS
7

Figure 5.8: Generic TOOL data model

To model a particular tool we specialize the class TOOL, defining
subclasses of TOOL. For example the zoom tool discussed previously
is an object whose class is defined as subclass of TOOL. Subclasses of
TOOL may then participate in relation and have any other arbitrary
property. The data model that defines the class of a tool must be
integrated into the coSARA data model. This step is done by editing

214

the coSARA data model using the OREL graphic editor mentioned in

Figure 5.3.

As an example of such specialization, Figure 5.9 shows the OREL
definition of the class ZOOM. The slots of the ZOOM class are derived
from its behavioral model by a procedure (GMB to DCM translation)

that we will explain in the following section.
5 5 I] [] I I. !
The following is the integration procedure for fully integrated tools:

1. Modify the common OREL data model as needed by the tool,
adding new definitions for the model of the tool object as well

as any subsidiary objects that are needed.

2 Build a SARA model of the tool's behavior and implement the
tool functionality which is included in the interpretation

domain of the tool's behavioral model.

3. Process the too! model specifications, both OREL and SARA,
to produce working code to be included in an operating

environment.

The following is the integration procedure for partially integrated

tools:

215

1L Modify the common OREL datamodel as needed by the tool,
adding new definitions for the model of the tool object as well

as any subsidiary objects that are needed.

2 Specify the Dialog-gateway using SARA models. Process this

gateway to obtain code for dialog management.

3. Build the required Contact-gateway, Dialog-gateway and
Data-gateway.

The condition that any foreign tool has to meet in order to be partially
integrable into the coSARA environment is that the above mentioned

gateways be constructible.

These procedures allow incremental extension of the environment.
We have shown how the user interface model and construction
procedure permits the incremental integration of individual tools
into the common user interface. We have shown by way of the
procedures stated above that a tool can be incrementally integrated
into the coSARA environment provided that we only add to the
common data model. If the existing data model is altered in ways
other than additions, it may be necessary to rebuild tools and
reinitialize the Object-world database where persistent objects are
stored. We have also shown the existence of a procedure to integrate
a foreign tool into the coSARA environment. We will show an
example of how we have achieved integration of text editors into the

coSARA environment.

216

5.5.1. GMB to DCM translation

This section describes the rules for deriving a DCM from SARA
model. Appendix I includes the code generated for the zoom tool

whose specification was discussed in previous sections (Figure 5.7).

From the SARA model used to specify the Zoom tool the following

information can be extracted:
. The Zoom-tool uses an Editor-canvas and a Zoom-canvas.
e The Zoom-tool does not use any other tool.

e The Zoom-too!l uses the zoom callback provided by the Editor-
canvas, the Click-edit, Click-zoom, Click-pop and Click-reset
provided by the buttons of the Zoom-canvas and the Press,
Move and Release callbacks provided by the Zoom-canvas

View contact.

s The Zoom-tool obtains the value of the dataset Position from

the Editor-canvas.

e The flow of control is simple, there is no concurrency and

each callback results in a single control node activation.

s The Zoom tool class contains a rectangle, a stack and a list of

Editor-canvases.

Using this information a procedure to initialize a Zoom tool is

generated by the SARA Model to DCM Translator. An OREL data

217

model of Zoom-tool objects is also generated as shown in Figure 5.9.
In this figure the class Zoom-tool is defined to be a subclass of Tool.
The data slots of the class Zoom-tool correspond to the datasets in the

SARA model of the Zoom-tool.

The GMB to DCM translation procedure is the basis that sustains the

feasibility of incremental user interface extension.

5.5.2. A fully integrated tool

In this section we show how our tool integration procedure is used to

integrate the zoom tool into the coSARA system.

The first step is to modify the coSARA datamodel to include an OREL
model of the zoom tool (Figure 5.9). This modification of the coSARA
datamodel is purely additive and no further consideration of its effect
on other tools is necessary. In the following steps we store the zoom
model (Figure 5.7) in a building block library. We process the zoom
model using the GMB to DCM translator to obtain code that we place
in the tool library.

The Zoom-tool object is a subclass of the Tool class shown in Figure
5.8 and it inherits all its properties. The Zoom-tool class provides
specialization in support of the tool’s behavior whose model is shown
in Figure 5.7. The slots of the Zoom-tool class correspond to the
datasets defined in the SARA model of the zoom defined in Figure 5.7.
Their exact meaning is defined by the behavioral model of the Zoom-

tool shown in Figure 5.7.

218

Temporary-focus

Position

Focus

Stack

Zoom-viewport Zoom-tool

Figure 5.9: Data model of the Zoom-tool class.

The slot Temporary-focus contains the position of the mouse and the
size of the rectangle while it is being dragged to define a new
rectangular region for the zoom. The slot Position contains the
screen coordinates of the mouse. The slot Focus contains the upper
left corner position, width and height of the current rectangular
region defined for the zoom. This is the region defined by the last
complete sequence of press-move-release actions done with the
mouse on the Zoom-canvas contact. The slot Stack contains a list
rectangular areas that are stored when the viewport of the Zoom-
canvas is changed. The Zoom-viewport slot contains the current

viewport of the Zoom-canvas.

219

Having the OREL data model of the zoom tool built into the coSARA
data model and the code derived from its SARA model in the

corresponding libraries completes the integration procedure.

When the sys-manager (Figure 5.1) receives a request to install the
zoom tool, it searches the libraries and installs the code generated by
the GMB-to-DCM translator in the Dialog manager and the Dialog
manager directs the tool-proxys module to create a proxy for the zoom

tool object
5.5.3. A partially integrated tool

One of our contact classes, dialog-box, requires collection and editing
of text. Whereas the contact provides some basic editing capabilities,
such as erasing characters, it is often necessary to resort to more
powerful editing functionality. For this purpose we have partially
integrated GNU Emacs (Stallman [1981]) in coSARA.

Figure 5.10 shows a dialog box. When a control character is input in
the text area, an Emacs window pops up with the contents of the
dialog box displayed in an Emacs buffer. The designer can edit this
text using Emacs and upon exit the text is displayed again in the
dialog box. Not all the functionality of OREL objects is available while
the user operates in Emacs. Updates to the text of the dialog box can

not be seen from other workstations until editing is complete.

220

[Enler annotation J [Cancel '}

This is the text of some random
annotation meant to be an example.

Figure 5.10: A dialog box

To partially integrate Emacs we built the gateway modules shown in
Figure 5.2: CN-gate, OW-gate and DM-gate. These gateways are

implemented as follows:

CN-gate: this gateway is null because Emacs does not interact

with any coSARA contact for its own input/output.

OW-gate: this gateway has two parts one that extracts the text of
the dialog box as a string and writes the string to a file for
editing; the second part restores the value, reading it from
the file written by the first part after edition is complete.
These parts are implemented as simple ComonLisp

functions.

DM-gate: this gateway is implemented as a lisp function that
responds to a callback from the dialog manager by sending a
message to the UNIX system that runs Emacs waits for its
completion. When Emacs completes it sends a message to
the Emacs proxy to update the dialog box object with the new

text collected from Emacs.

221

Dialog specification is trivial since only one gesture of the user
(typing a control character) must be specified. No modifications to

the data model are required by this tool.

2.6, Related work

In this section we review Important related work in the area of

integrated environments and user interface development systems.

5.6.1. Software through Pictures (StP)

StP (Wasserman & Pircher [1987]) is an environment that embodies a
multitude of tools for software engineering based on structured
design (Myers & Stevens [1974]). The system utilizes a powerful
graphical interface that allows graphics editing of models of the
system being analyzed or designed in data and control domains. The
system is aimed at generation of substantial amounts of code from

the models of the system built using the tools.

StP operates using the TROLL relational database system as a basis.
It supports the rapid prototyping of user interfaces using
RAPID/USE that is described in the section on user interfaces and

provides facilities for integration of new tools.

The dialog specification language of RAPID is based on an RTN,

which is represented as a diagram that consists of two major parts:

222

L Nodes: the specification of nodes consists of a list in which the
output associated with each node is specified. This output is

strictly textual.

2. Arcs: The specification of arcs is done by listing all the nodes
and for each node listing all the transitions that go out of that
node. A transition specification is composed of a condition

and an action.
Conditions used in transitions may be one of:
Empty: is true when a single carriage return has been input.
Skip: indicates that no input is to be read.
Else: else is true when no other condition is true.

Alarm: this condition becomes true when no user input has been

received in the indicated amount of time.

On: if the parameter is a string, it is true when the user inputs
the parameter string. If the parameter is a variable, the next

input is read into that variable.

Key: takes a single character as parameter. Is true if the when
the user hits the key that corresponds to that character in the

keyboard.

Actions specified in transitions are of two classes: a transition to a

new state or to a subdiagram, and invocation of application routines.

223

An application routine may be specified by name with both value and
reference parameters. A multi-way branch may be done based on
the value returned by the application routine, which must be an

integer.

The system is implemented using a Transition Diagram Interpreter
(TDI) that walks the graph of the state transition diagram, and an
Action Linker which links the TDI to action routines written in
some programming language (like C, Fortran, etc.) RAPID also
provides access to a database system directly from the state

transition diagram or form the application routines.

RAPID is a complete UIDS; it is sufficiently powerful to fully
support the class of interfaces to which it is targeted. It has been
used to implement several “‘real” interfaces of commercial product

quality for the StP software.

Recently Wasserman & Pircher [1989] presented an object oriented,
structured design method for code generation, whose integration in

the StP environment is claimed to be in progress.

The method leans on a graphical language to specify classes and
objects, in which operations are denoted explicitly. The notion of
information cluster is introduced, matching the classical concept of
object and class, as a module that encapsulates data and behavior.
Use of a cluster by some other module is then represented by a

connection between the user module and the representation of the

224

operation that is used in the cluster. Only those operations that are

actually used are represented graphically.

The model includes primitives to support features such as separate

compilation of lexical units, clearly targeted in Ada.

Inheritance is treated from the point of view of data generalization,
resembling generic packages in Ada. The design method also
accounts for the asynchronous activation of a module, supporting
fork/join synchronization and message passing, as well as Ada's

rendezvous.

95.6.2. Arcadia

The goals of the Arcadia project are: the discovery and development of
environment architecture principles and creation of novel software

development tools (Taylor & Osterweil [1986]).

The term architecture is used to denote the set of rules and support
infrastructure which characterize, bind together and enable
utilization of the software development support tools existing within
an environment. Object managers, user interface tools and tool
activation managers may all be elements of an environment

architecture.

Two principal qualities sought in the development of Arcadia are:
extensibility, which refers to the ease of adding new capabilities to the

environment; and integration, which refers to consistent user

225

interfaces, easy context switching, efficient communication between

tools.

The tools and objects manipulated in Arcadia are classified in three

broad categories:

Basic components:These include the internal representation for
programs, suitable for compilation, interpretation, analysis

and program transformation.

Tool-building tools: These include tools such as lexer and

parser generators.

Analysis tools: These include testing and debugging tools,
design analysis tools and other tools applicable in pre-

implementation stages of software development.

The process of developing software in Arcadia, depends on the
process of creating, organizing, augmenting and exploiting a
collection of persistent objects and aggregates of information.
Arcadia users are encouraged to think of their work in these terms.

Taylor & Osterweil [1986] give the following example':

“...rather than requesting the execution of a program, the
user will request the display of the output of a program as

applied to a specified set of data.”

Objects in Arcadia are typed and are organized in a structure known

as the Object Derivation Graph (ODG), which defines how objects are

226

derived from other objects. This organization is compared to that of
RCS (Tichy [1982]), a system for version control. Hierarchy is also
used to organize the object store. Users may define arrays or
structures of objects that may be in turn organized as arrays and

structures.

Arcadia is designed to support cooperative activities of teams of
software developers and maintainers, working in separate
workstations connected in a network. Each worker has a separate
store of persistent software objects in his/her own workstation and
also has access to objects stored in different workstations. Sharing of
objects is done using the principles of Software Federation (Mcleod

{1985]).

In Arcadia a tool is a collection of tool fragments, temporarily allied,
under the control of the environment, to complete some activity. For
example, the tool fragments may be connected in a Unix pipeline.
This notion contrasts with the more conventional concept in which a
tool is more or less equivalent to a single program. Arcadia tools may
be either passive or active. Active tools are executed without direct
invocation by users. They perform according to predefined plans,
and are invoked by Arcadia using devices such as timers and

daemons that watch for relevant changes in the object store.

Creating larger tool capabilities out of smaller more general tool
fragments is beneficial because, if the tool fragments are well chosen

they will be usable for composing a variety of larger tools, at a lower

227

cost. For example a pretty-printer can be composed using pieces

such as a parser, a lexer and a formatter.

In many cases it is possible to determine which tool fragments will
have to be invoked and in which order to accomplish a given task,
However, there are cases when this is not possible. For example,
consider a two-pass dataflow analyzer, that determines the order of
analysis of the second pass during the first pass. The design of
Arcadia includes a planning tool fragment whose job is to

dynamically create tool fragment invocation sequences.

Arcadia tools are objects too, and there are tools to manipulate them.
Using this approach a method for incorporating new tools is defined.
It is required that at least one tool to create instances of new tools be

written initially.

Inter-tool communication is done by remote procedure calls, When
tight integration is desired, tools must share a set of common data

structures, which are implemented as monitors.

5.6.3. SARA/IDEAS

The SARA/Ideas User Interface Management System (UIMS) was
designed to be part a part of the system to support integrated
environments for computer aided design of computer systems
(Worley [1986]; Landis [1988]). The SARA/Ideas UIMS shows a
strong correlation with the method proposed by Worley to create and
integrate new tools in the design environment. The UIMS that

228

supports Worley's interface proposal has provisions for integral help,

device independence and bidirectional execution.
The process of creating a new tool is divided into four phases:

Conceptual phase: the first step in which the tool designer
identifies the objects upon which the tool will operate, their
relationships and the operations that the user of the tool will

apply to these objects.

Syntactic phase: in which the tool developer is concerned with
the tool's user interface. Factors such as: the syntax of
users' inputs, semantic response to inputs, object

representation, screen layout, etc.

Logical device phase: in which the tool designer focuses
attention on the devices that will be used to interact with the
user®. An example of a logical device is a ““pick-device" used

to “pick” objects that are represented on the screen.

Physical device phase: in which access to the physical devices
for interaction that are available is provided together with a

binding of logical to physical devices.

SWorley's concept of logical device seems 1o be similar (if not equivalent) to the
now common notion of interaction technigue.

229

This phase is implemented by a method based on the use of
Augmented Transition Networks (ATN). The dialog syntax is
specifies using an LL(1) grammar, which is translated into an
equivalent ATN. The user interface is then driven by an ATN
interpreter. The processor that performs this translation is called
the Grammar Compiler. Worley, however, envisioned that a more

direct representation than that offered by grammars was convenient:

“It is conceivable and perhaps desirable that instead of
writing a linear representation of the syntax of a tool, a tool
with graphical interaction could be offered to the syntax
definer This tool could allow the direct expression of ATNs
in a graphical form and perform that LL(1) analysis upon

user request...”

The logical and physical device phases also make use of special
purpose languages for description of devices available to the tool
designer, that allow the construction of interaction tasks (Foley &
Van Dam [1990]) and providing various libraries to implement the
mapping of device dependent information to device independent

procedures used at the higher levels of the interface.

In general, Worley's proposal was aimed at introducing an indirect
style of interaction, based on the metaphor of a dialog or conversation-
--contrasting with the concept of direct-manipulation interface

(Schneiderman [1983]).

230

5.6.4. Sassafras

The major contributions made by (Hill [1987]) in the development of
SASSAFRAS are: support for multiple concurrent dialogs (including
synchronization and communication), and a technique to specify

dialog syntax that deals with localized concurrency.

System responses to user inputs are specified as Event-Response
Systems (ERS). Communication among and synchronization of the
modules that make up the interface are achieved using the Local

Event Broadcast Method (LEBM). Both notions are explained below:

ERS are language recognition automata that have a power equivalent
to that of finite automata (i.e. they recognize regular languages.) An
operation denominated concurrent-composition is defined for the
class of regular languages, and is proven to be closed on the regular
languages (Hill [1987), Appendix A). Thus it is possible to write
independent ERS specifications of concurrent dialogs and then
merge them using the concurrent-composition operation. The
advantage over finite state automata claimed by Hill is that ERS do

not radically increase in size when dealing with concurrent dialogs.

A practical dialog specification can not be directly specified in ERS.
A specification language, called Event-Response Language (ERL),
has been developed around ERS, adding output and a few other
features. The main elements of ERL are incoming events, outgoing

events, and flags. An event is a signal that something has happened

231

and may carry data relevant to the event. Events are the only form of
I/O available. Flags are local variables used to encode the state of the

system.

An ERL specification consists of a list of rules. Each rule specifies
either the response to some external event or an action to be taken

when some state is entered.

The LEBM is a run-time structure that supports communication and
synchronization among the modules that constitute an interactive
system and schedules their execution. LEBM works on modules and
clusters. A module is a component of the user interface that
exchanges information and synchronizes with other modules via the
LEBM event passing mechanism. Each module does only one of:
input/output, dialog control, application routines. Clusters are
groups of modules linked by a single instance of the LEBM structure.
Although, it may be expected that one cluster per interface exists, it is
reasonable to believe that a large and complex interface would be
partitioned into several clusters. LEBM allows modules within a
cluster to communicate sending events. This event mechanism is

similar to asynchronous, non-blocking message passing.

Besides implementations of ERS, ERL and LEBM, SASSAFRAS
contains an interaction module, icon libraries, and an interface

assembler,

232

5.6.5. UIDS

The User-Interface Development Environment (UIDE) is a
knowledge based system to user interface design and implementation
(Foley et al. [1989]). It utilizes a knowledge-based representation of
the interface's conceptual design based on an object-oriented data

model and on an operation-oriented control model.
The UIDE knowledge representation consists of:
* The class hierarchy. 6
* Properties of objects.
¢ Actions that can be performed on the objects.
* Units of information required by the actions.
* Preconditions and postconditions for the actions.

The knowledge base has several uses: Producing a description of the
design in IDL (Foley et al. [1989]), checking the conceptual interface
design for consistency and completeness, transforming the
knowledge base into a functionally equivalent interface via a set of
transformation algorithms, providing input to the interface,
evaluating the interface speed of use using a keystroke analysis

model, and automatically generating run-time help.

80Only simple inheritance is supported} of the objects in the system.

233

The design specification of an interface is done in three major

definition stages:
1 Building the design knowledge base.
2. Checking it for completeness.
3. Analyzing it for consistency.

Completeness checks verify that all frames in the knowledge base
contain enough information for the transformation system to operate
and for the Simple User Interface Management System (will be
described in following paragraphs) to implement the interface.
Consistency checks examine the overall design knowledge base, for

the existence of potential inconsistencies.

It is typical that in the design phase several conceptual models of an
interface are evaluated, Using transformations, UIDE can
automatically generate alternative designs that are slight variations
of one another. Several generic design paradigms have been
implemented, including: factoring, establishing a selected set as a
generalization of the selected object concept, establishing initial
defaults, specializing and generalizing commands based on object
and command hierarchies, modifying the scope of some types of
commands. Foley et al. [1989] present an example in which an
interface that operates on a single selected object is transformed into

another that operates on a selection set.

234

Using transformation algorithms, many functionally equivalent
designs for an application can be produced. Dialog syntax,
presentation style and interaction techniques are ignored so far. The
Simple User Interface Management System (SUIMS) is used to
define this information. A set of definitions done through the SUIM
is used across sets of functionally equivalent interfaces obtained by

transformations. SUIMS follows the following procedure:
1. Establish and update the screen layout.
2. Check all preconditons and recognize enabled actions.
3. Accept the action the user has selected.
4. Process each parameter according to its kind.
5. Access parameter values.
6. Confirm or cancel actions.
7. Execute actions.
8. Evaluate postconditions.

UIDE uses the conceptual design and SUIMS runtime knowledge
base to generate context sensitive help messages about command
semantics and explaining why a specific command cannot be used

at some specific time.

235

5.6.6. Summary

None of the work we have reviewed achieves interactive sharing of
data objects and in particular of user interface objects. None of the
user interface methodologies reviewed deals with the formal
specification of behavioral response to concurrent actions by multiple

users.

i i ion irecti r rk

9.7.1. Review of contributions

The main contributions of this research in the area of tool modeling

and integration methodology are:

* The coSARA tool model for environment extensibility and
interactive tool sharing: allows partial and full integration of
tools; enable tools to operate on interactively shared objects;
and supports incremental extension of the environment

(section 5.5).

®* The coSARA user interface model and user interface
development system: allows sharing of interaction
mechanisms; provides support for expressing behavioral
response to multi-user actions and enables early testing and

analysis of user interfaces (section 5.3).

Our research has produced a methodology for modeling and

integration of tools that is not found in other systems. The approach

236

is to allow varying degrees of tightness in the integration of a foreign
pre-existing tool in order to deal with conflicting forces that arise
from the integration vs. extensibility issue. Such varying degree of
tightness is enabled by the existence of the gateway modules shown
in Figure 5.2. The methodology requires the construction of modules
to bridge user interface interaction between the coSARA multi-user
interface and the foreign tools as well as the construction of modules
to bridge interaction between the foreign tools and the object world.
Given the formalism of OREL we envision providing computer
support in the construction of such bridge modules. However, in this
current work we have not gone so far as to provide algorithms that

would allow such automatic support.

Our research in user interface methodology has resulted in a unique
approach: to formal modeling of user interfaces that are aware of
multi-user actions, to allowing true semantic sharing of user
interface objects and to allowing modeling of group processes into the
user interface (section 5.3). Our user interface formalism is based on
SARA and OREL. SARA allows us to model concurrent systems and
provides tools and methods for early simulation and analysis. By
modeling a group of designers as a concurrent system we can
incorporate group process models in the user interface (section 5.3).
Use of OREL for modeling and construction of user interface objects
results in true semantic sharing of user interface objects such as

windows buttons, and menus (Chapter 4 and section 5.3.2).

237

8.7.2. Directions for future work

Our research work has unveiled a number of problems for future
research. Below we describe these problems and suggest directions

for approaching them.

There is a mismatch between SARA modeling power and the need to
model dynamically changing structures. The case when the
structure of the system changes dynamically arises frequently in
user interfaces. For example take the case of linking a new canvas to
an existing zoom tool. Since the environment of the zoom must
contain a model of all the contacts and other tools that are used by the
zoom, it becomes necessary to alter the structure of the environment

module of the zoom.

We have adopted a pragmatic solution that is not quite satisfactory.
There is a privileged process that knows how to alter the structure of
a running system. This privileged process is foreign to the SARA

modeling methodology. This is explained in section 5.3.1.

It is necessary to search for alternative modeling techniques that
allow modeling of dynamically changing structures. We believe that
a reasonable approach is to define mechanisms that will alter

structures dynamically by application of proper refinement.

Although we have a procedure for partially integrating foreign tools,
The method is manually intensive because it is necessary to program

the data gateways that enable the foreign tools to share OREL with

238

other tools and it is also necessary to build the callback gateways that
enable a foreign tool to share the common user interface. We still
seek ways for automatic generation of gateways to support

integration of foreign tools.

There are many similarities between tools and contacts at certain
levels of abstraction. It is still an open problem to determine good
abstractions to design and build the kind of user interface that we
have developed. We believe now that contacts should be assimilated
tools. This would provide a smoother interface to the user interface

and tool designer.

SARA modeling methods and tools provide powerful formalisms for
specifying tool behavior and tool user interface. However, there is an
intensive programming phase in creating the layout of individual
contacts and of the user interface. A graphic tool to aid the user

interface builder to specify these layouts would be a great asset.

239

CHAPTER 6

Conclusions

This Chapter reviews the contributions of this research, discusses

future work and ends with a summary statement.

The central contribution of our research is the creation of coSARA, a
computer-based environment for collaborative design. The creation

of coSARA is a proof of concept for collaborative design environments.

coSARA is an integrated software environment that supports
interactive sharing of design objects, and can be incrementally
extended. The foundation that makes the existence of coSARA
possible is constituted by two elements: OREL, an object oriented
system for distributed, interactive sharing of data objects which is
discussed in Chapter 4; and a tool modeling and integration
methodology which is discussed in Chapter 5. We summarize the

contributions of research done in these two topics below.
The main contributions of our work on OREL are:

* A distributed system in support of interactive sharing of data

objects with persistent storage (section 4.3 and section 4.4).

* An object-oriented graphic language for modeling data, that
includes: classes and multiple inheritance, recursive
composition of objects, relations as first class objects and

integrity constraints on relations (section 4.2).

241

* A programming interface that allows manipulation of
distributed, interactively shared data objects (section 4.2 and

Appendix II).

Our data modeling language makes use of relations as a way to
increase expressiveness and to enable management of constraints.
Unlike previous work, OREL relations are first class objects.
Recursive composition also provides an effective way to manage

complexity of design data.

The capability to interactively share data objects is the key notion that
enables collaborative work by a group of designers. Distributed
operation is essential if the system is to support a group of
collaborating designers, that will each be operating the system from
his/her own workstation. Persistent storage of data objects is
necessary because the amount of data involved in a design task is
such that it is not possible to build the data from scratch when
starting a session and it is necessary to keep track of work progress

across session boundaries.

We have used OREL to model SARA objects (Figure 4.12). The model
that we produced is quite compact (fits in one page) and enables us to
deal with the complexity of SARA objects. In particular we would
like to highlight the modeling of modules as recursive composites
and the use of directed pair relations in modeling GMB objects,
where the hyperarc structure of the control graph is of great

complexity. We have translated this model following the procedures

described in Chapter 4 and produced code that is currently used in

our implementation of coSARA (the code is shown in Appendix ITI).

The main contributions of this research in the area of tool modeling

and integration methodology are:

* The coSARA tool model for environment extensibility and
interactive tool sharing: allows partial and full integration of
tools; enables tools to operate on interactively shared objects;
and supports incremental extension of the environment

(section 5.5).

* The coSARA user interface model and user interface
development system: allows sharing of interaction
mechanisms; provides support for expressing behavioral
response to multi-user actions and enables early testing and

analysis of user interfaces (section 5.3).

Our research has produced a methodology for modeling and
integration of tools that is not found in other systems. The approach
is to allow varying degrees of tightness in the integration of a foreign
pre-existing tool in order to deal with conflicting forces that arise
from the integration vs. extensibility issue. Such varying degree of
tightness is enabled by the existence of the gateway modules shown
in Figure 5.2. The methodology requires the construction of modules
to bridge user interface interaction between the coSARA multi-user

interface and the foreign tools as well as the construction of modules

to bridge interaction between the foreign tools and the object world.
Given the formalism of OREL we envision providing computer
support in the construction of such bridge modules. However, in this
current work we have not gone so far as to provide algorithms that

would allow such automatic support.

Our research in user interface methodology has resulted in a unique
approach: to formal modeling of user interfaces that are aware of
multi-user actions, to allowing true semantic sharing of user
interface objects and to allowing modeling of group processes into the
user interface (section 5.3). Our user interface formalism is based on
SARA and OREL. SARA allows us to model concurrent systems and
provides tools and methods for early simulation and analysis. By
modeling a group of designers as a concurrent system we can
incorporate group process models in the user interface (section 5.3.3).
Use of OREL for modeling and construction of user interface objects
results in true semantic sharing of user interface objects such as

windows buttons, and menus (Chapter 4 and Section 5.3.2).

6.2, Future work

This section reviews problems that our research has identified as

worth to solve. We outline directions for attacking these problems.

6.2.1. Problems related to object-oriented systems

Currently, OREL operates correctly on a single local area network.

This is because we take advantage of built-in facilities for

broadcasting messages, that guarantee that every site will see the
same sequence of messages. If this feature is removed, then sites on
different local area networks might see different sequences of
messages. We know that there is a need for computer supported
cooperative work to span more than a single local area network. In
particular, support for collaboration is even more important when
two or more geographically separate design groups work on related
parts of a design. In anticipation of new high speed network
technologies, we are developing new protocols to expand OREL to
support such multiple geographically remote local area networks,
and understand what inherent artifacts will change the quality of
collaboration as compared with collocation. We believe that
extensions to TCP/IP for multicasting and broadcasting would
provide the necessary functionality to build support for
geographically remote operation. Such extensions would be used as a

foundation for the implementation of broadcast methods.

Concurrency control needs of computer supported cooperative work
are very different from conventional requirements. The traditional
database model of transactions is inadequate. In conventional
systems the intent is to give each individual user the illusion of being
the only person operating the system. In collaborative systems the
aim is the opposite. We intend to make each user of the system as

aware as possible of other users actions.

In the operation of coSARA there is a natural amount of parallelism
due to the activities of the collaborating designers. An object model
similar to actors (Hewit & Lieberman [1981]) could have an impact
on the ability to model and program a system such as coSARA.

Further research is necessary to evaluate this conjecture.

In section 4.2 we demonstrated the use of OREL for creation of a data
model of design data used by SARA tools in support of the SARA
design methodology. In the process of creating this model and using
it as the base for programming coSARA, several issues about the use
of OREL emerged. The essential problem is how to set the
programmer's mind to think of relations. It is necessary to research
which are adequate abstractions for using a system such as OREL.
For example, before we started to seriously focus on the modeling of
SARA objects there were no pair objects in OREL, only general
relations. During the process of modeling the SARA objects it
became clear that many relations defined in the model were simply
relating pairs of objects. This resulted in the inclusion of directed
and undirected pairs as useful abstractions. We made use of this
abstractions to introduce some optimization in their implementation,

relative to the implementation of general relations.

OREL influences the performance of a system built with it in two
ways: broadcast methods impose a significant overhead, and the
generality of OREL protocols also carries an overhead. There are not

many ways to improve the overhead of broadcast methods other than

careful programming of their implementation and judicious use of
them. The overhead of the OREL protacol is more amenable to
improvement. Since the protocol is composed of messages, it is easy
to redefine methods for specific OREL classes. For example, the
messages relate, unrelate, and find-objects could be redefined for

certain pair classes to use hash tables to store the relation pairs.

6.2.2. Problems related to tool integration and user

interfaces

There is a mismatch between SARA modeling power and the need to
model dynamically changing structures. The case when the
structure of the system changes dynamically arises frequently in
user interfaces. For example take the case of linking a new canvas to
an existing zoom tool. Since the environment of the zoom must
contain a model of all the contacts and other tools thaf are used by the
zoom, it becomes necessary to alter the structure of the structure of

the environment module of the zoom.

We have adopted a pragmatic solution that is not quite satisfactory.
There is a privileged process that knows how to alter the structure of
a running system. This privileged process is foreign to the SARA
modeling methodology. This is explained in section 5.3.1. It is
necessary to search for alternative modeling techniques that allow
modeling of dynamically changing structures. We believe that a
reasonable approach is to define mechanisms that will alter

structures dynamically by application of proper refinement.

247

Although we have a procedure for partially integrating foreign tools,
The method is manually intensive because it is necessary to program
the data gateways that enable the foreign tools to share OREL with
other tools and it is also necessary to build the callback gateways that
enable a foreign tool to share the common user interface. We still
seek ways for automatic generation of "gateways" to support

integration of foreign tools.

There are many similarities between tools and contacts at certain
levels of abstraction. It is still an open problem to determine good
abstractions to design and build the kind of user interface that we
have developed. We believe now that contacts should be assimilated
tools. This would provide a smoother interface to the user interface

and tool designer.

SARA modeling methods and tools provide powerful formalisms for
specifying tool behavior and tool user interface. However, there is an
intensive programming phase in creating the layout of individual
contacts and of the user interface. A tool to aid the user interface to

specify these layouts would be a great asset.
6.2.3. Modeling of multi-user design protocols

A problem in collaborative design is how to model the process by
which a group of collaborators interact with each other during a
design procedure. Winograd and Flores [1986] have done pioneering

work in this area, proposing a state transition model of

conversations. They assume that a conversation represents
interaction between persons with enough accuracy. A particular
type of conversation that they have modeled represents conversations
for actions and a commercial software system, The Coordinator, has

been built based on this concept.

We feel a lack of a data model in the state transitions diagrams of
Winograd and Flores. In section 5.3.3 we have shown how we can
use SARA to model the behavior of tools in response to actions
performed by multiple users simultaneously. A simple extrapolation
of this example let us foresee how we could use SARA to model the
behavior of a group of designers as multi-user design protocols. A
collection of such models could then be stored in libraries and used
for structuring tools to provide assistance in achieving progress in
the group process of collaborative design. For example a tool could
indicate which are the recommended steps to follow at a given point

during the design of a system.

Knowledge extracted from the models of collaborative design
protocols could also be used in more ways than providing assistance
towards progress in the design process. Such knowledge could be

used for structuring and tracing design history.
6.2.4. Management of design history

We consider management of design history to be a problem of great

relevance in design methodology. We can point two main

subproblems of management of design history: how to record history
using mechanisms that are not intrusive and how to trace history

information.

Mechanisms for recording history in a non-intrusive way must be
conceived if we are to be successful in collecting history information.
The overhead of manual history collection can be so big that it may
discourage users from collecting significant history information.
This is a fact that our experience in software development using
version control systems such as RCS (Tichy [1982]) reveals

painfully.

Much can be automated by incorporating the role of history collection
in the models of collaboration protocols. In such models we can
introduce a historian process which would record design operations
and request specific input from the user at prescribed points during
the design process, in which it is known that design decisions will be
made. For example, when partitioning a module into submodules it
seems appropriate to record this operation and to request the team of

designers to document the reasons that lead to a specific partition.

It is obvious that a great amount of information can be collected?.
The problem then is how to use it to effectively assist a team of

designers in achieving progress successfully. It is necessary to

1 Conklin and ... [1990] report having manually collected 8,000 items of
information in a single design project.

conceive ways to structure the information in useful ways, so that it
can be quickly perused at different levels of abstraction. A
straightforward representation for design history is a hypertext

system, in which the nodes contain history items.

The problem of browsing the design history is solved by finding ways
in which to structure the information. Furthermore we foresee
automatization of this process based on information extracted from
the different components of a design, including requirements,
models of the system being designed, evaluations of the design, and
models of design protocols used to structure the interaction among
designers. One possible way to automatize this process 1s to take an
approach similar that used by Waters in the Programmer’s
Apprentice project (Rich & Waters [1988]), which is described in
Section 2.3.4. We could use cliches of designers actions and decisions
to derive structural relations between history items automatically.
For example, partitioning a module and making a design decision

are design history cliches.

63. Summary

Our research has produced a proof of concept for feasibility of
computer-based environments in support of collaborative design. The
main focus of this work has been on the creation of enabling
technologies that will allow to build such system, while having a
concern for the group processes that exist in the domain of design.

A central design goal that we have achieved is to build a system

251

general enough to allow modeling and implementation of different
group processes for design, thus providing a platform for

experimentation.

Contributions have been made to that area of object-oriented systems,
by the creation of OREL, a system for interactive sharing of data, that
includes objects and relations as modeling primitives. OREL
provides a graphic language for modeling data, a programming
interface to data, interactive sharing of data in a distributed set of
workstations and persistent storage. The features of the graphical
language for modeling data allow management of the high
complexity found in design data. Interactive sharing of data is used
as the basis for supporting communication and coordination in a

collaborative environment.

Contributions have been made to the area of integrated systems and
user interfaces by the creation of a methodology for modeling and
integration of tools that includes a tool modeling method, a
procedure for tool integration and a multi-user interface development
system. The tool modeling method and the user interface systems
are based on OREL and SARA for modeling of data and behavior
respectively. The use of SARA for modeling tool behavior allows the
specification of concurrent actions in the tools and response to
concurrent actions by multiple users, enabling thus the modeling

group processes for design of computer systems.

A ndix I: SARA primitiv
Structural Model

The primitives to create hierarchical structural models in SARA are:
modules, sockets and interconnections. These primitives are
summarized in Figure I.1. Named parent modules contain fully
nested children modules. Sockets are associated with a module and
are known both inside and outside the module. A sockets is a named
place for delivery of either a service provided by the module that
contains the socket or a service required from some other module.
Interconnections provide binding between sockets. Interconnections
are not directed, representing only a communication line between two
sockets. Nothing is said about neither the direction in which
communication flows through the interconnection (i.e., which module
provides a service and which module uses the provided service) nor

the type of information that is carried by the interconnection.

Every SARA structural model has a top level module called
UNIVERSE which has no sockets. This module is always partitioned
in two submodules: ENVIRONMENT and SYSTEM. Module
ENVIRONMENT is a model of the environment in which SYSTEM is
supposed to exhibit its intended behavior. Moduel SYSTEM is a model

of the system under design.

MODULE: [rectangle] It may
contain a set of submodules or it
may contain a GMB.

A module is also composed of
sockets and interconnections.

e

SOCKET: [small rectangle on the
boundary of a module]: Represents
a named place for delivery of
services by modules.

socket-1

socket-2

1

NAME-1

NAME-2

INTERCONNECTION: [line]
connects pairs of sockets

Figure I.1: Summary of structure modeling primitives

Sockets provide an information hiding mechanism allowing control of
the access to services provided by the module. It has been shown that
for software design it is necessary to augment the concept of sockets
with a Module Interface Description (MID) model (Berry, Estrin &
Penedo [1981); Penedo [1981]) which establishes the accessibility of
resource names (procedures, data types, etc) and helps bind resource
names to providers and users of those resources. Berry [1984] showed

how Ada satisfies the requirements for the MID model tool.
Behavioral Model

The behavioral model is composed of models in three related domains:
control, data and interpretation. It is therefore possible to approach
these three aspects of a system independently, building related models
for each domain. Figure I.2 and 1.3 summarize the primitives used for

modeling the behavior of a system.

The control domain modeling primitives are control nodes, which
represent processing activity, and control arcs, which define
sequencing of node initiations. Control arcs are directed arcs that
connect many nodes to many nodes. All nodes which are the source of
a directed control arc comprise the control arc's tail set and the control
arc is said to be an output arc of the control node; all nodes which are
destinations for a directed control arc comprise the head set of the

control arc and the control arc is said to be an input arc of the control

node. A set of tokens on named arcs of the control graph represents

the state of the graph.

N = {{a},ServerType)
ServerType: {n}=—={1.23....}Ju{m}

Eack contrel nede represests aa evest ia the computation be-
ing modeied, The eveat i characterized by Anits or infnite
capacify to respoad to simuitaaecas sew izputa

A, = ({a}, SourceSet, DestinationSet, QuenaDiscipline)
SourceSet, DestinationSet: (a3} = 2ANUM
QueneDiscipline: {a}—{FCFS, LCFS},

Contrel srev repressat static precedesce relations between
sots of events. A comtrol are curriss control from as evess at
its sourcs o » nondeterministically selected evest ai its desti-
aation. The QueneDiscipline faction speciles the order ia
witich control isputs are procemsed by fnite-capacity destins-

tioh events

Eveni Pre- and Posi-Conditions

L == {l-L+}
L-: n€N ~ >{2{™)-gjm=:{a2|a€DS(a) }={0.2.2. JU(*} |,
L+: (Lo X8€EN) = [2(=*}-gimes:(2}2€55(s)}={0,1.2..} |)

The input legic for an evems [L-(n}], specifias 3 partially or
dered st of pre-coaditions, or inpat-are murkings, which can
initinte the svent. The suipui logie for an initinting condi-
tion, [L+(L~{n}.n)], seciles altarnative ontpat ae markings
which will oceur whes the evess tarminstas. "> " is 3 partiai
orderiag on the iaput markings which definm static and
dyasmic prioritiss among possible evest initistion conditions.

me {s1(1},D1(1)} m 5{9.2(1),::1(1)}
L-{Server)s {):rn,‘ .m,‘)

L+(m)= {ct(1).02(1)}

L+ (ﬂ&) = {§(1),0201}}

Initial Contrel Siate
a A. - '(001-2——}
The inilial coniroi stats vector specias the distribation of fe-

kens on costrol ares at the start of the period over which sye-
tem behavior will be studied.

Figure 1.2: Behavioral model primitives

(adapted from Mary K. Vernon’s Ph.D. dissertation [1984])

257

Praceseers, Mapping of Preceseory ta Contrei Noder

P = {p}
M & (M-P=2%{s}, M+:N=PY_{s})

Aaumnmrnpt-luadmtn-lmwhiehil

mapped 10 oBe of marw svests i the control dommin. The

pm-rhuﬁ:nnd-hmvcmmdihnupdmuﬂ
s imitinsed

Detasste

Q = {{a}.QuenaType)
QueseType: {q}—={simpie, FCFS, LCFS)

A dsieset retains data, of 2 type specifled in the interpretas
tios domajs. which is communicated amoag provemon. D
tats may be simple, which boid ome data vaise of the
specified type al a time, or quewes which hold muitiple data
values.

Ace

CPUqueue

PC

Dats arcs
A = ({d},ioType,ProcemorSet.DataSet.ioControl)

{d}={Resd, CoatrolledRead, PriorityRead.
FCFSresd, LCFStead) U {(Write, Coatrok
ledWrite, WDaaAsdCostrol, WCoatrol
UVaineChangm)

ProcemorSet: (d}=2".{4}

DazaSet: (d}= >>{204 {¢}|

ioControl: (DataSetX (d})= >>(7*1

o Type:

Data ares specily dasa accem paths lor processors. Procemors|
can have read or write accams (0 datasets, and data access cam
be reisted (o coatrol fow in the coatrol graph.

y || Out? '

out2

ioTypelin) = ControiledRead

Figure 1.3: Behavioral model primitives

(adapted from Mary K. Vernon’s Ph.D. dissertation [1984])

Control nodes have an input logic expression and an output logic
expression. The terms of these logic expressions are the input control
arcs and the output control arcs respectively. When a control arc has a
token, it represents a value true in the logic expression and it
represents a value false if it has no tokens. The input control logic of a
node defines the conditions under which the control node is initiated
and defines how tokens are absorbed from the input control arcs. The
output control logic of a node defines how control is distributed upon
termination of a control node activation, subject to branch selection in

the interpretation domain.,

Tokens are placed on the control arcs of a model to provide the
initialized control state of the model. Any control node is initiated
when there are sufficient tokens on its input arcs to satisfy its input
logic. The dynamic behavior of the graph is determined by the the flow
of tokens. The control flow domain incorporates non-determinism,
permits mutual exclusion constructs and allows management of finite

resources.

The data domain modeling primitives are: data processors, data arcs,
datasets and dataset queues. Data processors are mapped one-to-many
to control nodes in an associated control graph. Datasets represent
data values and data ares represent read/write access paths from data

processors. Data processors may embody control flow decisions,

processing delays to model timing and data transformations as

specified in the interpretation domain.

The interpretation domain corresponds to a programming language
used to specify data transformations, with suitable extensions to
specify access to datasets, branching control flow decisions, and

processing delays.
The Buffer Example

We have chosen a simple system to illustrate how SARA is used to
model a system. The example is an bounded input/cutput buffer with a
capacity to hold up to N messages which are all of the same size. The
buffer is initialized to be empty. When the system is in operation the
buffer can be read and written concurrently. When the buffer is full
and a write operation is attempted, the writer will be suspended until
there is space in the buffer to hold the message. When the buffer is
empty and a read operation is attempted the readre will be suspended
until there is a message in the buffer. All messages are delivered by
the buffer in the same order in which they are received by the buffer.

No message is destroyed and no message is read twice.

The environment contains two processes: sender and receiver. The

sender process behaves as follows:
1. It writes messages into the buffer.

2. It sends one message at a time.

3. It writes a finite number number of messages to the buffer.
4 It terminates after writing the last message.
The receiver process behaves as follows:
1 It reads messages from the buffer.
2. It reads one message at a time.
3. After the last message is read it terminates

Figure 1.4 shows a structural model of the BUFFER design. We
partition the BUFFER design into two submodules: ENVIRONMENT
and SYSTEM. These submodules communicate through the
interconnections READ and WRITE. Both modules ENVIRONMENT
and SYSTEM could be partitioned further if needed. However, they are
simple enough to synthesize behavioral models for fhem and no

further partitions are needed.

261

[r—

1 write [

f- read 4

ENVIRONMENT SYSTEM

BUFFER

Figure 1.4: Structural model of BUFFER

Figure 1.5 contains the control domain part of a behavioral model of

the BUFFER design. The functions of the various components in the

control graph are:

INIT initiation process, initiates sender and receiver.

SEND sender process, sends messages to the BUFFER and
waits for acknowledgment from the BUFFER.

+

ENVIRONME @

BUFFER

write

@ .

R

SYSTEM

Figure 1.5: Control flow model of BUFFER3

REC1 part of the receiver process that issues a read request.

REC2 part of the receiver process that sccepts a2 message from

the BUFFER and enables REC1 to issue more read requests.

TERM termination process.

3In this Figure we have assumed that the BUFFER can hold up to 3 messages,

what is modeled by initializing the control arc AOKW with 3 tokens.

RECM receives a message from ENVIRONMENT,

acknowledges and stores the message.

REQ receives a read request, retrieves a stored message and

sends it to ENVIRONMENT.

AOKW the number of tokens in this control arc represents the

number of empty messages slots in the buffer.

AOKR the number of tokens in this control arc represents the

number of messages stored in the buffer.

Figure 1.6 contains the data domain part of the behavioral model of the
BUFFER design. The functions of the various components of the data

graph are:

CHK mapped to control node TERM; it checks the message
received against the initial messages to determine that they

are the same and in the same order before termination.

RDI mapped to control node SEND; it reads messages
from INPUT and writes them into MESIN.

RDO mapped to control node REC2; it reads messages from
MESOUT and writes them into QUTPUT.

=)
T

read

T

Gor)

ENVIRONMENT SYSTEM

BUFFER

Figure 1.6: Data flow model of BUFFER

REC mapped to control node RECM; it receives messages
from ENVIRONMENT and stores them in STORE.

SEN mapped to control node REQ; it reads messages from
STORE and and passes them to ENVIRONMENT.

INPUT initial sequence of messages.

OUTPUT messages read from BUFFER, to be checked against
INPUT upon termination.

MESIN and MESOUT
data interface with BUFFER,

STORE storage for messages.

A set of basic protocols is supported by all OREL objects including
functionality to make and initialize objects, find the class of an object,

navigate composite objects, relate objects and query relations.

We have designed protocols for simple classes, composite classes and
relation classes. These protocols include functionality for class objects

as well as for their instances.

In this section we describe each one of the OREL protocols. To specify a

message we use the following format:

message name
ARGUMENT] [type;]

ARGUMENT,, [type,]

Description of the functionality associated with the
message. References to the i-th argument is

ARGUMENT;.

IL1. SIMPLE-OBJECT Protocol

initialize-instance

OBJECT simple-object

&rest INITARGS
Initializes OBJECT according to initialization
arguments INITARGS. INITARGS is a list of
pairs of the form keyword value, where keyword is
the name of some slot defined either for the class of
OBJECT or one of its superclasses. The
programmer is not supposed to write a primary
initialize instance method, but to write combined
methods to be called either before, after or around

the primary method of this message.

print-object
OBJECT simple-object
STREAM stream
Writes a printed representation of OBJECT to the
stream STREAM (streams are defined in (Steele
[1990]).

class-of
OBJECT simple-object
Returns the class of OBJECT.

class-name
CLASS
Takes a class object CLASS and returns a symbol
that names the class CLASS.

make-<name>
&key STORABLE-ID STORABLE-NAME
&rest INITARGS
This function creates and returns a new instance of
a simple class named NAME. If STORABLE-NAME
1s specified, the new object is given that name
otherwise it is initialized as an unnamed object. If
STORABLE-ID is specified, the object is assigned
that id, otherwise a new unique system-wide id is
generated and assigned to the newly created object.
The object is otherwise initialized according to
INITARGS. INITARGS has the same meaning

that it has for the initialize-instance message.

I1.2. RELATION-OBJECT protocol

relate
RELATION relation-object
LIST-OF-OBJECTS
Adds a tuple composed by the objects in the list
LIST-OF-OBJECTS to the relation RELATION.
Each of the objects is qualified either by its class or
by its role. For example, suppose that relation
RELATION relates classes A and B. Then we
would call (relate R :A obj :B ohj).

unrelate
RELATION relation-object
FUNCTION

Removes all the tuples of the relation RELATION
that satisfy the conditon: (apply FUNCTION tuple)

returns non-nil.

unrelate
RELATION pair-object
OBJECTS

Removes the tuple that contains the objects
OBJECTS. The argument OBJECTS must be a list
of length 2.

270

find-objects
RELATION relation-object
FUNCTION
&rest ARGS
Returns a set of tuples T € R such that for each T
in the list, the evaluation of:, (apply FUNCTION T

args) is not mil.

find-objects
PAIR pair-object
OBJECT

Returns the objects or objects related to the
argument OBJECT through

map-relation

RELATION relation-object
FUNCTION
&rest ARGS

For each tuple T stored in the relation RELATION,
the form (apply FUNCTION T ARGS) is evaluated.
The result of these evaluations are stored and
returned as a list. This behavior is similar to the

function mapcar of CommonlLisp.

271

IL.3. COMPOSITE-OBJECT protocol

components-of
OBJECT composite-object
Returns a list of all components of object OBJECT

comp-<CLASS>
OBJECT composite-object
Returns the components of class CLASS of the
composite object OBJECT. If there is no class
named CLASS defined as a component of OBJECT

this method signals an error.

comp-parent-of
OBJECT simple-object
Returns the parent composite of OBJECT.

comp-ancestors-of
OBJECT simple-object
Returns the path from the root of the composite, that
contains OBJECT as one of its parts, to the object
OBJECT. The path is returned as a list of objects

whose first element is the root composite object.

compositep
OBJECT simple-object
Returns true if OBJECT is a composite.

component-of-p
COMPOSITE composite-object
OBJECT object

Returns true if OBJECTis a component of
COMPOSITE.

descendant-p
COMPOSITE composite-object
OBJECT object
Returns true if OBJECT is either a direct or indirect
component of COMPOSITE.

add-component

COMPOSITE composite-object
OBJECT simple-object
Add OBJECT to COMPQSITE..

del-component
COMPOSITE composite-object
OBJECT simple-object
Delete OBJECT from COMPOSITE.

comp-assoc
COMPOSITE composite-object
FUNCTION
&rest ARGS

273

Returns a list of components of COMPOSITE such
that evaluation of the form: (apply FUNCTION

component args) returns a not nil value.

274

i7i —*- Mode: Lisp; Package: SARA -*-

{in-package 'OREL :use '{pcl object-world lisp))

The SARA-OBJECT class encapsulates properties that are common to all
SARA such as annotations, graphic representation etec. The slot parent-
composite of an instance of this class points to the composite that contains
the instance.
{pcl:defclass SARA-OBJECT (SIMPLE-OBJECT STORABLE}
({(annotation :initform nil :accessor SARA-OBJECT-annoctation)

{open rinitform t :accessor SARA-OBJECT-open)

{graphic :initform nil :accessor SARA—OBJECT—gréphic)

(name :initarg :init-name :initform nil raccessor SARA-OBJECT~
name)

(parent-composite :initform nil :accessor comp-parent}))

make-SARA-OBJECT creates an instance of the class SARA-OBJECT
(defun make-SARA-OBJECT (&optional (name ") init-name)
(make-instance 'SARA-OBJECT :storable-name name :storable-id

{object-world: :unique~sym) :init-name init-name))

{pcl:defclass MODULE (COMPOSITE-OBJECT SARA-OBJECT)

275

({type :initform nil :accessor MODULE-type}
{(GMB :initform nil :accessor comp-GMB)
(INTER :initform nil :accessor comp-INTER)
{(SOCKET :initfeorm nil :accessor comp-SOCKET)
{MODULE :initform nil :accessor comp-MCDULE)

(parent-composite :initform nil raccessor comp-parent)))

{(defun make-MODULE (§optional (name ""))
(make-instance 'MODULE :storable-name name :storable-id

(object-world: :unique-sym)))

(pcl:defclass DESIGN (MODULE)

({parent-composite :initform nil :accessor comp-parent))}

(defun make-DESIGN (&optional (name "*) &key)
(make-instance 'DESIGN :storable-name name :storable-id (object~

world: :unique-sym)})

{pcl:defclass INTER (UNDIRECTED-PAIR-OBJECT SARA-OBJECT)

({orel::pair-list :initform nil :accessor pair-list)}}

(defun make-INTER (&optional (name "") &key)

{make-instance 'INTER :storable-name name :storable-id (object-

world: :unique-sym)))

276

{pcl:defclass SOCKET (SARA-OBJECT)
{ (INTER :initform nil :accessor SOCKET-INTER)
(INTER :initform nil :accessor SOCKET-INTER)

(parent-composite :initform nil :accessor comp-parent})))

{defun make~SOCKET {(Soptional (name ""))
(make-instance 'SOCKET :storable-~name name :storable-id (object-

world: :unique~sym)))

{pcl:defclass QUTPUT~-ARCS (DIRECTED-PAIR-OBJECT SARA-OBJECT)

({pair-list :initform nil :accessor pair-list}))

(defun make-OUTPUT-ARCS (&optional (name "") &key)
{(make-instance ‘OQUTPUT-ARCS :storable-name name :storable-id

(object-world::unique—sym)))

{pcl:defclass INPUT-ARCS (DIRECTED-PAIR-OBJECT SARA-OBJECT)

{(pair~list :initform nil :accessor pair-list)))

(defun make-INPUT-ARCS (&optional (name ™) &key)
(make-instance 'INPUT-ARCS :storable-name name :storable-id

{object-world: :unique-sym)))

(pcl:defclass TAIL-SET (DIRECTED-PAIR-OBJECT SARA-OBJECT)

({pair-list :initform nil :accessor pair-list)))

(defun make-TAIL-~SET (&optional (name ") &key)
(make-instance 'TAIL-SET :storable-name name :storable-id

(object-world::unique—sym)))

(pcl:defclass HEAD-SET {(DIRECTED-PAIR-OBJECT SARA-OBJECT)

{((pair-list :initform nil :accessor pair~-list)}))

(defun make-HEAD-SET (¢optional (name "™} gkey)
(make~instance 'HEAD-SET :storable-name name :storable-id

(object-world: :unique-sym)))

{pcl:defclass GMB-MAPPING (DIRECTED-PAIR-CBJECT SARA-OBJECT)

({(pair-list :initform nil :accessor pair-list)))

{defun make-GMB-MAPPING (soptional (name "") gkey)
(make-instance 'GMB-MAPPING :storable-name name :storable-id

(object-world: :unique-sym)))

{pcl:defclass DATA-ARC {SARA-OBJECT)

((dyn-dataset :initform nil :accessor DATA-ARC-~dyn-dataset)

(type :initform nil :accessor DATA-ARC-type)

{parent-composite :initform nil raccessor comp-parent)))

{defun make-DATA-ARC (écptional (name "™))

278

{make-instance 'DATA-ARC :storable-name name :storable~id

(object-world: :unique-sym)))

{pcl:defclass GENERIC-DATASET (SARA-OBJECT)

{ (parent-composite :initform nil :accessor comp-parent)))

(defun make-GENERIC-DATASET (&optional (name "™) &key)
(make-instance 'GENERIC-DATASET :storable-name name :storable-id

(object-world: :unique-sym) })

{pcl:defclass DATA-SET-QUEUE {(GENERIC-DATASET)
{{value :initform nil :accessor DATA-SET-QUEUE-value)
(g~type :initform nil :accessor DATA-SET-QUEUE-g-type)
{init-value :initferm nil :accessor DATA-SET-QUEUE-init-value)

(parent-composite :initform nil :accessor comp-parent)})

(defun make-~DATA-SET-QUEUE (&optional (name ""“))
(make-instance 'DATA-SET-QUEUE :storable-name name :storable-id

{object-world: :unique-sym)))

(pcl:defclass DATA-SET (GENERIC-DATASET)

({(init-value :initform nil :accessor DATA-SET-init-value)

(parent-composite :initferm nil :accessor comp-parent)})

{defun make-DATA-SET (soptional (name ""))

{make-instance 'DATA-SET istorable-name name :storable-id

(object-world: :unique-sym)))

(pcl:defclass DATA~-PROCESSOR (SARA-OBJECT)
({process :initform nil :accessor DATA-PROCESSOR-process)
(pid :initform nil :accessor DATA~-PROCESSOR-pid)

(parent-composite :initform nil laccessor comp-parent)))

{defun make-DATA-PROCESSOR {éoptional (name ""))
{make~instance 'DATA-PROCESSOR :storable-name name :sterable-id

(object—world::unique—sym)))

(pcl:defclass CONTROL-ARC (SARA-CBJECT)
({gqueue :initform nil raccessor CONTROL-ARC-queue)
(break-points :initform nil :accessor CONTROL-ARC-break-points)
(local-tokens :initform nil :accessor CONTROL-ARC-local-tckens)
(tokens :initform nil :accessor CONTROL-ARC-tokens)
(aliases :initform nil :accessor CONTROL-ARC-aliases)
(init-tokens :initform nil :accessor CONTROL-ARC-init-tokens)
(FAIL-SET :initform nil :accessor CONTROL-ARC-TAIL-SET)
(HEAD-SET :initform nil :accessor CONTROL~ARC-HEAD-SET)

(parent-composite :initform nil :accessor comp-parent)))

(defun make~-CONTROL-ARC {&opticnal (name ""))

(make-instance 'CONTROL-ARC :storable-name name :storable-id

(object-world: :unique-sym)))

(pcl:defclass CONTROL-NODE (SARA~QOBJECT)
({break-points :initform nil :accessor CONTROL-NODE-break-pcints)
{queue :initform nil :accessor CONTROL-NODE-queue)
{actp :initform nil :accessor CONTROL-NODE-actp)
(visits :initform nil :accessor CONTROL-NQDE-visits)
(customers :initform nil :accessor CONTROL-NCDE-customers)
(capacity :initform nil :accessor CONTROL-NODE-capacity)
{out-legic :initform nil :accessor CONTROL-NODE-out-logic}
(in-logic :initform nil :accessor CONTROL-NCDE-in-logic)
(OUTPUT-ARCS :initform nil raccessor CONTRCOL-NODE-QUTPUT-ARCS)
(INPUT-ARCS :initform nil :accessor CONTRCL-NODE-INPUT-ARCS)

(GMB-MAPPING :initform nil :accessor CONTROL-NODE-GMB-MAPFING)

{parent~composite :initform nil :accessor comp-parent)})

(defun make-CONTROL-NODE (&optional (name vy
{make-instance 'CONTROL-NODE :storable-name name :storable-id

(object—world::unique—sym)))

DATA-REL is a general relation class. the slot tuple-list points to a list of
all the tuples that are stored in the relation object. The other slots store
pbroperties of the relation.

(pcl:defclass DATA~REL (RELATION-QBJECT)

((DATA-ARC-many-p :reader DATA-ARC-many-p :initform t)

281

(DATA-ARC-ordered-p :reader DATA-ARC-ordered-p :initform t)

(DATA-ARC-directed-p :reader DATA-ARC-directed-p :initform t)

{DATA-ARC-map-type :reader DATA-ARC-map-type :initform t)

(DATA-PROCESSOR~many-p :reader DATA-PROCESSOR-many-p :initform
t)

(DATA-PROCESSOR-ordered-p :reader DATA-PROCESSOR-ordered-p
rinitform t)

{DATA-PROCESSOR-directed-p :reader DATA-PROCESSOR-directed-p
:initform t)

{DATA-PROCESSOR-map-type :reader DATA-PROCESSOR-map-type
rinitform t)

{(GENERIC-DATASET-many-p :reader GENERIC-DATASET-many-p :initform
t)

(GENERIC-DATASET-ordered-p :reader GENERIC-DATASET-ordered-p
tinitform t)

{GENERIC-DATASET-di rected-p :reader GENERIC-DATASET-direct ed-p
tinitform t)

{GENERIC-DATASET-map-type :reader GENERIC-DATASET-map-type
:initform t)

{parent-composite :initform nil :accessor comp-parent)

(orel::tuple-list :initform nil :accessor orel::tuple-list))}

{defun make-DATA-REL (&optional (name "™) &key)
(make-instance 'DATA-REL :storable-name name :storable-id

{object-world: runique-sym}))

The class DATA-REL-tuple represents one tuple of the relation DATA-REL
Each instance of the tuple class has one slot for each one of the classes that
bparticipates in the relation.
(pcl:defclass DATA-REL-tuple (storable)
{
(DATA-ARC :accessor DATA-ARC rinitarg :DATA-ARC)
(DATA-PROCESSOR :accessor DATA-PROCESSOR tinitarg :DATA-
PROCESSCR)
(GENERIC-DATASET :accessor GENERIC-DATASET :initarg :GENERIC-

DATASET)))

{pcl:defclass GMB-SOCKET (RELATION=-0OBJECT)

((SOCKET-many-p :reader SOCKET-many-p :initform t)
(SOCKET-ordered-p :reader SOCKET-ordered-p :initform t)
(SOCKET-directed-p :reader SOCKET-directed-p :initform t)
{SOCKET-map-type :reader SOCKET-map-type :initform t)
(CONTROL-ARC~many-p :reader CONTROL~ARC-many-p :initform t)
{CONTRQL-ARC-ordered-p :reader CONTROL-ARC-ordered-p :initform

t)
{CONTROL~-ARC~directed-p :reader CONTROL-ARC-directed-p :initform
t)
{CONTROL-ARC-map-type :reader CONTROL-ARC-map-type :initform t)
(DATA~ARC~many-p :reader DATA-ARC-many-p :initform t)

(DATA-ARC-ordered-p :reader DATA-ARC-ordered-p :initform t)

(DATA-ARC-directed-p :reader DATA-ARC-directed-p :initform t)
(DATA-ARC-map-type :reader DATA-ARC~map-type :initform t)
(parent-composite :initform nil :accessor comp-parent)

(orel::tuple~list :initform nil :accessor orel::tuple-list)))

(defun make-GMB-SOCKET (&optional (name "*) &key)
(make-instance 'GMB-SOCKET :storable-name name :storable-id

(object-world: :unique-sym)))

(pcl:defclass GMB-SOCKET-tuple (storable)
{
(SOCKET :accessor SOCKET :initarg :SOCKET)
(CONTROL-ARC :accessor CONTROL-ARC :initarg :CONTROL-ARC)

(DATA-ARC :accessor DATA-ARC tinitarg :DATA-ARC)))

(pcl:defclass DATA-GRAPH (COMPOSITE-OBJECT SARA-QOBJECT)
((DATA-REL :initform nil :accessor comp-DATA-REL}
(DATA-ARC :initform nil :accessor comp-DATA-ARC)
(DATA-SET~QUEUE :initform nil :accessor comp-DATA~SET-QUEUE)
(DATA-SET :initform nil :accessor comp-DATA-SET)
(DATA~PROCESSOR :initform nil :accessor comp-DATA-PROCESSOR)

(parent-composite :initform nil :accessor comp-parent))}

(defun make-DATA-GRAPH (&optional (name "") ékey }

{make-instance 'DATA-GRAPH !storable-name name :storable-id

(object-world: :unique-sym)))

(pcl:defclass CONTROL-GRAPH {COMPOSITE-OBJECT SARA-OBJECT)
{ (OUTPUT-ARCS :initform nil :accessor comp-0UTPUT~ARCS)
(INPUT-ARCS :initform nil :accessor comp-INPUT-ARCS)

(TAIL-SET :initferm nil :accessor comp-TAIL-SET)
(HEAD-SET :initform nil :accessor comp-HEAD-SET)
(CONTROL-ARC :initform nil :accessor comp-CONTROL=-ARC)
(CONTROL-NODE :initform nil :accessor comp-CONTRCL-NODE)

(parent-composite :initform nil raccessor comp-parent)))

(defun make-CONTROL-GRAPH (¢optional (name "") &key)
{(make-instance 'CONTROL-GRAPH :sterable-name name :storable-id

(object—world::unique-sym)))

{pcl:defclass GMBE {(COMPOSITE-OBJECT SARA-OBJECT)

((GMB-SOCKET :initform nil :accessor comp-GMB-SOCKET)
(GMB-MAPPING :initform nil :accessor comp-GMB-MAPPING)
(DATA-GRAPH :initform nil :accessor comp-DATA-GRAPH)
(CONTROL~GRAPH :initform nil :accessor comp-CONTROL-GRAPH)

(parent-composite :initform nil laccessor comp-parent)))

(defun make-GMB (&optional (name "") &key)

{make-instance 'GMB :storable-name name :storable-id (object-

world: :unique-sym)))

The methods of the form add-<class>, such as add-GMB add a component
of the class <class> to the copmposite given as argument
(defmethod add-GMB ((c MODULE) {o GMB))

{setf (comp-GMB c) (cons o {(comp~GMB c¢)))

(setf (comp-parent o) ¢))

{(defmethod del-GMB ((c MODULE) (o GMB})
(setf (comp-GMB ¢) {orel::class-remove-list (comp-GMB c)} o0}))
(defmethod del-module ((c MODULE) (o module) }

{(setf (comp-module c) {delete o (comp-module c¢))))

(defmethod add-INTER ((c MODULE) (o INTER))
{setf (comp-INTER ¢) (cons o {(comp-INTER c}))

(setf (comp-parent o) c¢))

del-<class> methods delete a component of the argument composite.
(defmethod del-INTER {{c MODULE) {o INTER))

(setf (comp-INTER c) (orel::class-remove-list {comp-INTER c} o)))

(defmethod add-SOCKET {{c MODULE) (o SOCKET))
{setf (comp-SOCKET ¢} ({(cons o (comp-SOCKET c¢)))

(setf (comp-parent o) c)}

{defmethod del-SOCKET (({(c MODULE) (o SOCKET) }

{setf (comp-SOCKET c¢) (delete o {comp-SOCKET ¢))))

(defmethod orel:components-of ({0 MODULE))
{append (comp-module o)
(comp-GMB o)
{(comp-INTER o)

{comp-SOCKET o))}

(defmethod add-MODULE {{c MCDULE) (o MODULE))

{setf (comp-MODULE ¢} (cons o (comp-MODULE c)})

{(setf (comp-parent o) <))

(defmethod add-DATA-REL (({c DATA-GRAPH) (o DATA-REL))
(setf (comp-DATA-REL c¢) ({(cons o {comp-DATA~-REL c)})

(setf (comp-parent o) c¢))

(defmethod del-DATA-REL (({c DATA-GRAPH) {0 DATA-REL))

(setf (comp-DATA-REL c¢) (orel::class-remove-list (comp-DATA-REL

c) o))

{defmethod add-DATA-ARC {(c DATA-GRAPH) (o DATA-ARC))
(setf (comp-DATA-ARC ¢) (cons o {comp-DATA-ARC ¢)})

{setf (comp-parent o) ¢))

(defmethod del-DATA-ARC ((c DATA-GRAPH) (o DATA-ARC))

{setf (comp-DATAR-ARC c) (orel::class-remove-list {comp-DATA-ARC

c) o))

{defmethod add-DATA-SET-QUEUE ((c DATA-GRAPH} (0 DATA-SET-QUEUE))

{setf (comp-DATA-SET-QUEUE ¢) ({(cons o {comp-DATA-SET-QUEUE c}))

(setf (comp-parent o) c))

(defmetheod del-DATA-SET-QUEUE {(c DATA-GRAPH) (o DATA-SET-QUEUE))
{setf (comp-DATA-SET-QUEUE ¢) {orel::class-remove-list (comp-

DATA~SET-QUEUE c¢) o}))

{defmethod add-DATA-SET ((c DATA-GRAPH} (o DATA-SET))

{setf (comp-DATA-SET c¢) (cons o {comp-DATA-SET c)))

(setf (comp-parent o} c))

{defmethod del-DATA-SET ((c DATA~GRAPH) (o DATA-SET))

(setf (comp-DATA-SET c¢) (orel::class-remove-list (comp-DATA-SET

cr o))}
{defmethod add-DATA-PROCESSOR { {c DATA-GRAPH) (o DATA-PROCESSQR))
{setf (comp-DATA~PROCESSOR c) (cons o (comp-DATA-PROCESSCOR c)))

(setf (comp-parent o) c})

(defmethod del-DATA-PROCESSOR {(c DATA-GRAPH) (o DATA-PROCESSOR)}

(setf (comp-DATA-PROCESSOR c) (orel::class-remove-list (comp-

DATA-PRCCESSCR c¢) o))

(defmethod orel:components-of ((o DATA-GRAPH})
{append
{comp~DATA-REL o)
{comp-DATA-ARC o)
{comp-DATA-SET-QUEUE o)
{comp-DATA~SET o)

{comp-DATA-PROCESSOR a)))

(defmethod add-QUTPUT-ARCS ((c CONTROL~GRAPH) {o OUTPUT-ARCS))
{(setf (comp-OUTPUT-ARCS ¢) (cons o {(comp-OQUTPUT-ARCS c)))

{setf (comp-parent o) c))

{(defmethod del-OUTPUT-ARCS { (¢ CONTROL-GRAPH) (o OUTPUT-ARCS))
(setf (comp-OUTPUT-ARCS c) (orel::class-remove-list {comp~OQUTPUT -

ARCS c) o))

{defmethod add-INPUT-ARCS {(c CONTROL-GRAPH) {0 INPUT-ARCS})
{setf (comp-INPUT~ARCS ¢) {cons o {comp-INPUT-ARCS c}))

{setf (comp-parent o) c))

{defmethod del-INPUT-ARCS ((c CONTROL-GRAPH) (o INPUT-ARCS))

{setf (comp-INPUT-ARCS ¢) (orel::class-remove-list {comp-INPUT~-

ARCS c) 0)))

(defmethod add-TAIL-SET ({c CONTROL-GRAPH) (o TAIL-SET))
{setf (comp~TAIL-SET c) (cons o (comp-TAIL-SET c)))

(setf (comp-parent o} c))

(defmethed del-TAIL-SET ((c CONTRQOL-GRAPH} (0 TAIL-SET))

(setf (comp-TAIL-SET c) (orel::class-remove-list {comp-TAIL-SET

c) o))

(defmethod add-HEAD-SET ({c CONTROL-GRAPH) (o HEAD-SET) }
{setf (comp~HEAD-SET c) (cons o {(comp-HEAD-SET ¢)}))

{setf (comp-parent o} c¢))

(defmethod del-HEAD-SET { (c CONTROL-GRAPH) {0 HEAD-SET))

(setf (comp-HEAD-SET c) {orel::class-remove-list (comp-HEAD-SET

c) o))

(defmethod add-CONTROL-ARC { (¢ CONTROL-GRAPH) (o CONTROL-ARC))
{setf {(comp-CONTROL-ARC ¢) (cons o {comp~CONTROL-ARC c)))

{setf (comp-parent o) c))

{defmethod del-CONTROL-ARC ({¢ CONTROL-GRAPH) (o CONTROL-ARC))
{setf (comp-CONTROL-ARC c) (orel::class-remove-list (comp-—

CONTROL-ARC ¢) 0)))

{defmethod add-CONTROL-NODE {(c CONTROL-GRAFH} (o CONTROL~-NQDE))
{setf (comp-CONTROL-NODE ¢) {cons o (comp-CONTROL-NODE c)))

(setf (comp-parent o) ¢))

(defmethod del-CONTROL-NODE ({c CONTROL-GRAPH) (o CONTRQL-NODE) }
{setf (comp-CONTROL-NCDE c) (orel::class-remove-list {(comp-

CONTROL-NODE ¢} o)))

componenis-of returns a list with all the components of the
composite given as argument
{defmethod orel:components-of {(o CONTROL-GRAPH))
(append

(comp-OUTPUT-ARCS o)

{comp-INPUT-ARCS o)

{comp-TAIL-SET o)

{comp~HEAD-SET o)

{comp~CONTROL-ARC o©)

(comp-CONTROL-NODE o))}
(defmethod add-GMB-SOCKET ((c GMB) (o GMB-S0OCKET))
(setf (comp-GMB-SOCKET c) {(cons o {(comp-GMB~SOCKET c)))

(setf (comp-parent o) ¢))

(defmethod del-GMB-SOCKET ((c GMB) (o GMB-SQCKET))

291

{setf {comp-GMB-SOCKET c) {orel::class-remove-list (comp-GMB-

SOCKET ¢} o)})

(defmethod add-GMB-MAPPING ({c GMB) (c GMB-MAPPING))

(setf (comp-GMB-MAPPING c¢) (cons o {comp-GMB-MAPPING c)))

(setf (comp-parent o} c))

{defmethod del-GMB-MAPPING ({c GMB) (o GMB-MAPPING))

(setf (comp-GMB-MAPPING c) (orel::class~remove-list (comp-GME-

MAPPING c} o0)))

(defmethod add-DATA-GRAPH ((c GMB) (o DATA-GRAPH)}

{setf (comp-DATA-GRAPH c)} (cons o (comp-DATA-GRAPH <))}

{setf (comp-parent o) c))

{defmethod del-DATA-GRAPH {(c GMB) (o DATA-GRAPH))

{setf (comp-DATA-GRAPH c¢) (orel::class-remove-list (comp-DATA-

GRAPH c¢) o))

(defmethod add-CONTROL-GRAPH {{c GMB) (o CONTRCL-GRAPH))

(setf (comp-CONTROL-GRAPH c¢) ({(cons o {comp~-CONTROL-GRAPH c)))

{setf (comp-parent o) c¢))

{(defmethod del-CONTROL~GRAPH ({c GMB) (o CONTROL-GRAPH))

(setf (comp~CONTROL-GRAPH c) {orel::class-remove-list (comp-

CONTROL-GRAPH c) o))}

{defmethod orel:components-of ((o GMB))
(append
{(comp-GMB-SOCKET o)
{comp-GMB-MAPPING ¢)
{comp-DATA-GRAPH o)

(comp-CONTROL~GRAPH o)))

References

294

Robert Scheifler et al. [1988], “CLX,” Oa-Line Documentation, X Window
System Version 11 Release 3.

Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrell Woelk,
Nat Ballou & Hyoung-Joo Kim [January 1987), “Data Model Issues
for Object-Oriented Applications,” ACM Transactions on Office
Information Systems 5, 3-26.

Philip A. Bernstein, Vassos Hadzilacos & Nathan Goodman [1987],
Concurrency Control and Recovery in Database Systems,
Addisson-Wesley Publishing Company, Reading Massachusetts.

Daniel M. Berry [January 1984], “On the Use of ADA as a Module
Interface Description,” Proceedings, Hawaii International
Conference on Systems Science.

Daniel M. Berry, Gerald Estrin & Maria H. Penedo [March, 1981], “An
Algorithm to select Code Skeleton Generation for Concurrent
Systems,” IEEE, Proceedings of the IEEE 5th International
Software Engineering Conference , San Diego, California.

D.G. Bobrow, S. Mittal & M.J. Stefik [September 1986], “Expert Systems:
Perils and Promise,” Communications of the ACM.

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.
Keene, Gregor Kiczales & David A. Moon [February 1988],
“Common Lisp Object System Specification,” Limited Distribution
Draft.

Daniel G. Bobrow & Mark Stefik [January 1986, “Object-Oriented
Programming: Themes and Variations,” The AI Magazine.

O. P. Buneman & E. K. Clemons [October 1979}, “Efficiently Monitoring
Relational Databases,” ACM Trans. Database Systems 3, 353-387.

Peter Pin-Shan Chen [March 1976], “The Entity-Relationship Model:
Toward a Unified View of Data,” ACM Transactions on Database
Systems 1, 9-36.

J. Conklin [September 1987], “Hypertext: An Introduction and Survey,”
Computer 20, 17-41.

0.J. Dahl & K. Nygaard [1966], “SIMULA— an Algol Based Simulation
Language,” Comm. ACM 9, 671-678.

D. Decouchant [1989], “A Distributed Object Manager for the Smalltalk-80
System,” in Object-Oriented Concepts, Databases, and
Applications, Won Kim & Frederick H. Lochovsky, eds., ACM Press,
487-520.

U.S. Department of Defense [February 1983], Ada Programming Language
Reference Manual (ANSI/MIL-STD-1815A), U.S. Government
Printing Office.

N. Derret, W. Kent & P. Lyngbaek [1985], “Some Aspects of Operation in
an Object-Oriented Database,” Database Eng. 8, 66-74.

D. Engelbart [February 28 - March 1, 1984], “Authorship Provisions in
AUGMENT,” IEEE COMPCON Digest, San Francisco, California.

D. Engelbart & W. English [1968], “A Research Center for Augmenting
Human Intellect,” AFIPS Conference Proceedings 33 Part 1,
395~410.

G. Estrin [1978], “A Methodology for Design of Digital Systems -
Supported by SARA at the Age of One,” AFIPS Conference
Proceedings 47, 313-324. '

G. Estrin, R. Fenchel, R. Razouk & M. Vernon [February 1986], “SARA
(System ARchitects Apprentice): Modeling, Analysis, and
Simulation Support for Design of Concurrent Systems,” IEEE
Transactions on Software Engineering SE-12, 293-311.

D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis,
N. Derrett, C.G.Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M.A.
Neimat, T.A. Ryan & M.C. Shan [January 1987], “Iris: An
Object-Oriented Database Management System,” ACM Trans. on
Office Information Systems5, 48-69.

J. D. Foley & A. vanDam [1982], Fundamentals of Interactive Computer
Graphics, Addisson-Wesley, Reading, Massachusetts.

James Foley, Won Chul Kim, Srdyan Kovacevic & Kevin Murray [January,
1989], “Defining Interfaces at a HIgh Level of Abstraction,”
Computer 6, 25-36.

Gregg Foster [December 1986], “Collaborative Systems and Multi-user
Interfaces: Computer-Based Tools for Cooperative work,”
Computer Science Division, University of California at Berkeley,
Doctoral Dissertation.

Adele Goldberg [1984), Smalltalk-80: The Interactive Programming
Environment, Addisson-Wesley, Reading, Massachusetts.

Adele Goldberg & David Robson [1984], Smalltalk-80: the Language and its
Implementation, Addisson-Wesley, Reading, Massachusetts.

L. Greif & S. Sarin [April 1987], “Data Sharing in Group Work,” ACM
Transactions on Office Information Systems 5, 187-211.

Irene Greif [1988], Computer-Supported Cooperative Work: A Book of
Readings, Morgan Kaufman Publishers, San Mateo, CA.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman & A.
Shtul-Trauring [April 1988), “STATEMATE: A Working
Environment for the Development of Complex Reactive Systems.,”
Proceedings of the 10th International Conference on Software
Engineering, Singapore.

Dennis Heimbigner & Dennis McLeod [July, 1985), “A Federated
Architecture for Information Management,” ACM Transactions on
Office Information Systems 3, 253-278.

P.B. Henderson & D. Notkin [November 1987), “Integrated Design and
Programming Environments,” Computer.

C.E. Hewitt [1977], “Viewing Control Structures as Patterns of Passing
Messages,” Jopurnal of Artificial Intelligence 8, 323-364.

Ralph D. Hill [May 1987), “Supporting Concurrency, Communication and
Synchronization in Human-Computer Interaction,” Computer
Systems Research Institute, University of Toronto, CSRI-197,
Toronto, Canada.

Anatol W. Holt [April 1988], “Diplans: A New Language for the Study and
Implementation of Coordination,” ACM Transactions on Office
Information Systems 6, 109-125.

Scott E. Hudson & Roger King [April 1986, “A Generator for Direct
Manipulation Office Systems,” ACM Transactions on Office
Information Systems 4, 132-163.

IDE, “Troll User’s Manual,” in In StP User’s Manual, Interactive
Development Environments, San Francisco, California.

IFIP 8.4 Group [August 24 and 25, 1989], “Groupware Technology
Workshop,” Palo Alto, California.

Lucid Inc, [August, 1988|, Lucid CommonLisp Documentation, Lucid, Inc..

R. J. K. Jacob [August, 1985], “A State-Transition Diagram Language for
Visual Programming,” Computer 2, 51-59.

R. J. K. Jacob [October, 1986], “A Specification Language for
Direct-Manipulation Interfaces,” ACM Transactions on Graphics.

KCL [Not datedd], “KCL (Kyoto CommonLisp),” in Public Domain
Implementation of CommonLisp.

Sonya Keene [1989), Object-Oriented Programming in Common Lisp,
Addisson-Wesley, Reading, Ma..

Kerry Kimbrough & LaMott Oren (1988], “Common Lisp User Interface
Environment,” Manual.

Henry F. Korth, Won Kim & Francois Bancilhon, “On Long Duration
CAD Transactions,” Private Communication, 1987,

D. Landis [February 1988], CADIS: A Kernel Approach Toward the
Development of Intelligent Data Management Support of Computer
Aided Design Systems, University of California, Los Angeles.

Poman R. Leung [March 1989], “Database Kernel of SARA/CDE,”
Computer Science Department, University Of California,
Undistributed draft, Los Angeles.

H. Lieberman {1981}, “A Preview of Act 1,” Massachusetts Institute of
Technology, Artificial Intelligence Memo No. 625, Cambridge,
Massachusetts.

F.H. Lochovsky [January 1987], “Editorial: Introduction to the Special
Issue,” ACM Transactions on Office Systems 5, 1-2.

T.Eliot B. Moss [June 1989], “Addressing Large Distributed Collections of
Objects: The Mneme Project’s Approach,” Object Oriented System
Laboratory, Department of Computer and Information Sience,
University of Massachusets, COINS Technical Report 89-68,
Ambherst, MA 01003.

Brad A. Myers [1988], Creating User Interfaces by Demonstration,
Academic Press, Inc., Boston, MA.

Brad A. Myers[January 1989), “User-Interface Tools: Introduction and
Survey,” Software6, 15-25.

D.R. Olsen {July 1984], “Pushdown Automata for User Interface
Maragement,” ACM Trans. on Graphics 3, 177-203.

Maria H. Penedo[1981}, “The use of a Module Interface Description in the
Synthesis of Reliable Software Systems,” Computer Science
Department, University Of California, Los Angeles, Ph.D.
Dissertation, Los Angeles, California.

A. Purdy, B. Schuchardt & D. Maier [January 1987), “Integrating an
Object-Server with other Worlds,” ACM Transactions on Office
Systems 5, 27-47.

T. Reps, T. Teitelbaum & A. Demers [July, 1983], “Incremental
Context-Dependent Analysis for Language-Based Editors,” ACM
Transactions on Programming Languages and Systems 5, 449-477.

Carles Rich & Richard C. Waters[November 1988], “The Programmer’s
Apprentice: A Research Overview,” Computer 21, 10-25.

S. Sarin & I. Greif [October 1985], “Computer-Based Real Time
Conferencing Systems,” Computer 18, 33—45.

Rober Scheiffler & James Gettys[1986], “The X Window System,” ACM
Transaction in Computer Graphics 5, 110-1141,

Ben Schneidermann [August 1983), “Direct Manipulation: A Step Beyond
Programming Languages,” Computer 16, 57-69.

R. Seliger [September 1985], “The Design and Implementation of a
Distributed Program for Collaborative Editing,” Laboratory of
Computer Science, MIT, Technical Report TR-350, Cambridge,
Massachusetts.

Stephen Slade [1987], The T Programming Language, Prentice-Hall,
Englewood Cliffs, N.J..

Richard Stallman [March 1981], “EMACS, the Extensible, Customizable
Self-Documenting Display Editor,” MIT, Al Memo 519a,
Cambridge, Massachusetts,

Guy Steele Jr.[1984], Common Lisp, Digital Press, Bedford, Ma..

M. Stefik, D. Bobrow, G. Foster, S. Lanning & D. Tatar [April 1987],
“WYSIWIS Revised: Early Experiences with Multiuser Interfaces,”
ACM Transactions on Office Information Systems 5, 147-167.

M. Stefik, G. Foster, D. Bobrow, K. Kahn, S. Lanning & L. Suchman
[January 1987}, “Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings,” Communications
of the ACM 30, 3247,

Mark J. Stefik & Daniel G. Bobrow [1983], “The Loops Manual,” Xerox
PARC , Technical Note CSL-83-7, Palo Alto, California.

W.P. Stevens & G.J. Myers [1974], “Structured Design,” IBM System
Journal 13, 115-139.

Pedro Szekely [January 1988], “Separating the User Interface from the
Functionality of Application Programs,” Carnegie Mellon
University, Technical Report CMU-CS-88-101, Pittsburgh,
Pennsylvania.

R. Taylor, L. Clarke, L. Osterweil, J. Wileden & M. Young [April 1986],
“Arcadia: A Software Development Environment Research
Project,” IEEE 1986 ADA Applications and Environments
Conference, Miami Beach, Florida.

R.H. Thomas, H.C. Fordsick, T.R. Crowley, R.W. Schaaf, R.S. Tomlinson,
V.M. Travers & G.G. Robertson [1988], “Diamond: A Multimedia
Message System Built on a Distributed Architecture,” in
Computer-Supported Cooperative Work: A Book of Readings, I.
Greif, ed., Morgan Kaufmann Publishers, Inc., San Mateo,
California, 509-532.

Walter F. Tichy [September 1982], “Design, Implementation and
Evaluation of a Revision Control System,” Proceedings of the Sixth
International Conferencing on Software Engineering, Tokyo, Japan.

Jeffrey D. Ullman [1988], Database and Knowledge-Base Systems (Volume
I), Computer Science Press, Rockville, Maryland.

A. . Wasserman & D. T. Shewmake [December, 1982], “Rapid Prototyping
of Interactive Information Systems,” SIGSoft Software Engineering
Notes.

A.l. Wasserman & P.A. Pircher [January, 1987], “A Graphical, Extensible
Integrated Environment for Software Development,” Proceedings,

2nd Symposium on Practical Software Development Environments,
ACM SIGPLAN Notices 22, 131-142.

Anthony I. Wasserman, Peter A Pircher & Robert J Muller {1989], “An
Object-Oriented Structured Design Method for Code Generation,”
Interactive Development Environments, Inc., Unpublished draft.

T. Winograd [December 1986], “A Language/Action Perspective on the
Design of Cooperative Work,” Proceedings of the Conference on
Computer-Supported Cooperative Work, Texas.

T. Winograd & F. Flores [1986], Understanding Computers and Cognition,
Addison-Wesley Publishing Company, Inc..

Duane R. Worley [June 1986], “A Methodology, Specification Language and
Automated Support for Computer Aided Design Systems,”
Computer Science Department, University Of California, Technical
Report CSD-860038, Los Angeles.

301

