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ABSTRACT OF THE DISSERTATION

Performance Analysis of Finite-Buffered Multistage Interconnection Networks

with Various Switching Architectures

by

Tzung-I Lin
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1990

Professor Leonard Kleinrock, Chair

We present analytical models for evaluating the performance of finite-buffered
packet switching multistage interconnection networks using blocking switches
and turn back switches under any general traffic pattern. Most of the previous
research work has assumed the case of no buffers, single buffer or infinite buffers.
and all of them assumed that processing elements have the same traffic pattern,
either a uniform traffic pattern or a specific hot spot pattern. However, those
models cannot be applied very generally. There is a need for an analytical model
to evaluate the system performance under general conditions. OQur approach is to
create a model which approximates these networks, derive the system equations
for this model, and then solve these equations iteratively.

We first propose a decomposition and iteration model for a specific hot spot

pattern. This model is then generalized to handle general traffic patterns using a

xi



transformation method. A superposition method and a weighting factor are then
proposed to be used with the iteration model and the transformation method to
analyze the interconnection networks with a general traffic condition where each
processing element has its own traffic pattern and input rate.

In order to account for the " memory” characteristic of a blocking switch which
causes persistent blocking of packets contending for the same output ports, we
propose an approximate method. Moreover, An analytical model is proposed to
analyze a re-submission interconnection network where each processing element
has a finite buffer space to accept the rejected packets from the network. A rate
adjusted model is then proposed to reduce the time delay while maintaining the
throughput at the same level.

Finally, we develop an analytical model for interconnection networks using
the turn back switches. The delay performance of packets passing through a
particular path is analyzed using recurrence equations. The performance of the
turn back switches and blocking switches are compared. This leads us to propose
the "rotating switch” which combines the advantages of the turn back switch and
the blocking switch; we then evaluate its performance relative to the blocking

switch and the turn back switch.
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CHAPTER 1

Introduction

With the increasing demands for large computing power. paralle] processing
has attracted a significant amount of research interest in recent years. One of the
problems we encounter with large parallel processing system is how to intercon-
nect thousands of Processing Elements (PE) and Memory Modules (MM). Many
interconnection networks are reviewed in (Sieg 79], [Feng 81] and [Ahma 89].
The Multistage Interconnection Network (MIN) was proposed as a cost effective
alternative to the more powerful, but more expensive crossbar (a fully connected
interconnection network). However, in the case of a non-uniform traffic pattern,
the interconnection network performance degrades significantly due to contention
for a favorite memory module (also known as the "hot spot™). Degradation due
to a hot spot occurs even for the fully connected networks (e.g., crossbar). In
the case of the multistage interconnection networks, the presence of a "hot spot”
causes a saturated tree to be formed along all possible paths that lead to the
hot spot. This phenomenon is called tree saturation [Pfis 85). Tree saturation
not only blocks packets destined for the favorite memory module, but also blocks
packets destined for the other memory modules. Modeling and analysis is thus
needed in order to understand the relationship between the traffic pattern and
the system performance. In addition, these (synchronous) multistage intercon-
nection networks have been proposed for applications to fast packet switching

networks {Turn 86] and for applications to ATM (Asynchronous Transfer Mode)

switches. The performance analysis of multistage interconnection networks thus



becomes an important issue.

A considerable amount of performance analysis has been done on clocked.
packet-switched multistage interconnection networks, Most of the previous re-
search was limited to unbuffered or infinite buffered cases with a uniform traffic
pattern or a particular hot spot traffic pattern. An unbuffered MIN is an inter-
connection network where the switching elements do not have any buffer space
for storing packets. A buffered MIN is an interconnection network with either
finite buffers or infinite buffers in each switching element. According to the buffer
size and the traffic pattern, they can be categorized as follows :

Unbuffered MIN with a uniform traffic pattern : Patel proposed an
analytical model based on a recurrence equation [Pate 81)]. For an interconnection
network with & x k switches (a k x k switch is a k x k crossbar switch), the
probability that stage i is not empty, P,, is given in terms of P,_; and the switching
element size k as follows :

lk
P=1-(1-Py )

P, was used to calculate the probability of acceptance (PA) and the throughput,
Kruskal and Snir [Krus 83| solved for the asymptotic behavior of P, (for i » 1)

in terms of the offered load q and the switching element size k :

2k
(k-1)-1+2%

y -

Although they also proposed an approximate formula for estimating the mean
delay for an interconnection network with an infinite queue in each switching
element, the simulation indicated a large discrepancy for a moderate traffic load.

Buffered MIN with a uniform traffic pattern : Dias and Jump [Dias 81]
analyzed both the unbuffered and finite-buffered network. They employed a prob-

abilistic approach to model the unbuffered case. A complicated iterative approach



was proposed for the finite-buffered case. They showed that the performance of
a buffered MIN is comparable to the performance of a crossbar. In addition.
they showed that the performance of a buffered MIN degrades slowly as the net-
work size grows. Furthermore. little performance improvement is achieved when
they added more than two buffers: i.e. two buffers are “enough”. Jenq proposed

an iterative model for a single buffered Interconnection network [Jeng 83

K

The

single buffer was placed at the input port of the switching element. Yoon. Lee
and Liu {Yoon 90] extended Jenq’s model to analyze an interconnection network
with multiple buffers. Szymanski and Shaikh {Szym 89] proposed an approximate
Markov chain model for an interconnection network with finice buffered switching
elements. These models all assume that different queues in the same switching
element are independent. This independence assumption causes the analytical
models to predict optimistic behavior. Kruskal, Snir and Weiss, [Krus 86] and
[Krus 88, analyzed an interconnection network with an infinite buffer size in
each switching element. They solved for the distribution of delay for the queue .
in the first stage as an M/G/1 queue. Then they estimated the distribution of
delays for later stages. The queues In later stages were assumed to be identical.

Unbuffered MIN with a non-uniform traffic pattern : Bhuyan stud-
ted the performance of an interconnection network [Bhuy 85] with several non-
uniform traffic patterns using a probabilistic approach.

Buffered MIN with a non-uniform traffic pattern : Kim and Garcia
(Kim 90] proposed an analytical model for a single buffered MIN. Several non-
uniform traffic patterns were analyzed. They claimed that the single buffered
MIN could easily be extended to multiple buffers: however, they did not carry
out this extension.

Buffered MIN with a general traffic pattern : Kurisaki and Lang



(Kuri 88] proposed a Not Uniform Traffic Spots (NUTS) traffic pattern. The
processing elements were allowed to have different traffic patterns. The resulting
overall traffic pattern may seem uniform. but causes congested spots inside the
network. The performance was shown to be severely degraded. However. their
approach was a simulator which is not suitable for a large sized network. Willick
and Eager {Will 90] proposed an analvtical model for an Interconnection network
with infinite buffer size and general traffic conditions. Their model is good for
the uniform traffic pattern: it appears that it is not good for non-uniform traffic
patterns. Their model is based on a Mean Value Analysis; it has the potential

to analyze the case where each processing element has its own traffic pattern.

In general, we see that exact analytical models have been found for unbuffered
interconnection networks. However, for finite buffered networks with a non-
uniform traffic pattern. either a simulator or an iterative, approximate model was
used to analyze the system performance. The interdependence of finite buffered
queues with blocking makes an exact analysis very difficult. Our models also
employ an iterative approach to analyze the finite-buffered interconnection net-
works. However, this iterative approach provides a general framework which can
be easily extended to analyze various switching architectures with modifications
incorporated in the approach.

We focus on either a Banyan interconnection network (Goke 73] or an Omega
interconnection network [Lawr 75]. These networks and some other popular net-
works have been shown to be equivalent [Feng 81]. The basic building block of
an interconnection network can be either a blocking switch or a turn back switch.

The difference between a blocking switch and a turn back switch is the way they



handle the conflicting packets which contend for limited buffer space.

® The blocking switch at a given stage of the MIN will block an incoming
packet to that stage when there js no buffer space for that packet. This
packet then remains at the preceding stage and waits to try again in the
next cycle. Feedback information s needed to notify the preceding stage
that such a situation oceurs, On receiving the blocking signal. the server

in the preceding stage stops sending a packet until the next cycle.

¢ The turn back switch rejects the packet if this situation occurs, and re-
submits it to the source (PE). Feedback information is not needed, and

every switch outputs one packet per cycle if it is not empty.

We concentrate on the analysis of the blocking switch in Chapters 2 to 5. The
modelling of the turn back switch is discussed in Chapter 6. The performance of
these two switches is also compared in Chapter 6.

We begin by proposing an analytical model which approximates the traffic
behavior in an interconnection network using blocking switches with a specific
hot spot traffic pattern. All processing elements are assumed to have the same
traffic pattern and input rate. An iterative approach is proposed in section 2.1
to solve for the throughput and delay performance of a finite-buffered MIN. A
general traffic pattern model is proposed in section 2.2 in which a transformation
method is incorporated in the basic analytical model. The method transforms a
given traffic pattern into a set of routing probabilities which reflects the steady
state behavior of packets Howing through the network.

In the real world, however. each processing element can have its own traffic
pattern and input rate. This creates an even more general traffic pattern than

the traffic pattern that we discussed in section 2.2. A superposition method is



proposed in section 3.1 to be incorporated in the basic analytical model to ana-
lyze an interconnection network whose processing elements have different traffic
patterns. {(The Not Uniform Traffic Spot (NUTS) traffic patterns [Lang 88| are
analyzed in section 3.2 as examples.) A weighting factor is incorporated in the
superposition method to handle the case where each processing element has its
own input rate. However, the model result is shown to be optimistic compared to
the simulation. The inherited "memory” behavior in the blocking switch causes
persistent blocking which is not accounted for in the analytical model.

To account for the "memory” behavior of a blocking switch, we modify the
renewal routing choice assumption in the modelling approach. An approximation
method is proposed in Chapter 4 to account for the persistent blocking. The
simulation comparison indicates that the approximation method is very good
In capturing the persistent blocking effect for various traffic patterns. However,
the approximation method still does not capture the whole effect of persistent
blocking when the hot spot congestion is very severe.

In Chapter 5, we study a re-submission model which accounts for rejected
traffic in the blocking switch. A finite number of buffers are placed at the pro-
cessing elements to accommodate rejected packets (due to full buffers in the
network). It is shown in section 5.3 that a rate adjusted model can reduce the
mean delay without sacrificing the throughput. The maximal input rate which
satisfies a given loss probability is calculated in section 5.3.2.

In Chapter 6, we study a new model, namely the turn back switch model.
We first propose this turn back switch model for an interconnection network
with a uniform traffic pattern in section 6.1. Different assumptions and different
modelling approaches are discussed and compared. When the traffic pattern is

not uniform, the traffic pattern of the re-submitted traffic may be different from



the given traffic pattern. Hence the simple modelling approach in section 6.1
is not sufficient. A different model s proposed for an interconnection network
with a non-uniform traffic pattern in section 6.2. The model employs an algo-
rithm which traces the re-submitted traffic in detail. We then change the traffe
pattern to properly reflect the presence of the re-submitted traffic. In order
to compare the blocking switch with the trun back switch, an infinite queue is
added to the blocking switch model in section 6.3. The throughput-delay curves
of both switches indicates that both switches have their advantages in a cer-
tain range of system load. This fact leads us to suggest a new configuration,
namely the rotating switch, which combines the advantages of both switches.
The throughput-delay curve of the rotating switch is obtained and is compared
to those of the blocking switch and the turn back switch. The result shows that
the rotating switch outperforms the other switches at all system loads.

A summary is given in Chapter 7 with some concluding remarks, as well as

directions for future research.



CHAPTER 2

Modelling of Processing Elements with Identical Traffic Patterns

2.1 Basic Models with a Hot Spot Traffic Pattern

In this section, we propose three models to evaluate the performance of the
unbuffered MIN and the finite-buffered MIN with a hot spot traffic pattern. By
changing a parameter of the system, the models are reduced to the uniform traffc
case.

‘The architecture descriptions and the model assumptions are described in
section 2.1.1. In section 2.1.2, the routing model is described. The unbuffered
MIN is analyzed in section 2.1.3 with different hot spot traffic patterns. The
asymptotic behavior for the unbuffered MIN with a hot spot traffic is also stud-
1ed. The buffered MIN is analyzed using an approximate model in section 2.1.4.
The probability of acceptance, the average number of busy buffers and the av-
erage time delay are evaluated. Our model of the buffered MIN is verified using

simulation in section 2.1.5. Finally, concluding remarks are given in section 2.1.6.

2.1.1 Architecture Description and Assumptions

In this paper, the interconnection network we consider is a clocked. packet-
switched finite-buffered Banyan network where each 2x2 switch has buffers of
finite size K at its output ports (see Figure 2.1). There are N processing ele-
ments and N memory modules interconnected by the n-stage (i.e.N = 2") inter-

connection network. All the operations of input and output take place at the
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Figure 2.1: 3 stage Banyan network with buffers at output ports of each swite!;

end of each cycle. The interconnection network accepts requests from the .
put nodes (processing elements), then routes them to the output nodes (memory
modules). These requests will be returned from the output nodes through the
interconnection network in the reverse direction to the original requesting nodes.
The "forward” network and "backward” network are distinct, but are idenr:cal
in topology. It is sufficient to discuss the delay and throughput performarcs i
the forward network only.

Each packet generated at the processing elements carries an address tag with
a number of bits equal to the number of stages of the interconnection network.
The address tag is a binary representation of the destination address. The ad-
dress tag is generated according to a destination distribution (traffic pattern:
(Each processing element may have a different destination traffic pattern. [f ail
the processing elements have an identical traffic pattern, then the overall traffic
pattern for the memory modules is the same as this one. If each processing ele-
ment has its own traffic pattern, then the overall destination traffic pattern for

the memory modules is the superposition of the traffic patterns of the individual



processing elements.) The packet is then fed into the first stage of the network.
The first stage switch examines the first bit of the address tag: if it is a 0. the
packet is routed to the queue at the upper output port. If the first bit is a 1.
the packet is routed to the queue at the lower output port {see Figure 2.1}. The
packet then waits in the queue until its tum to be transmitted to the next stage.
The routing process is repeated in each stage, thus sending the packet to its
destination.

A blocking switch is assumed in which if a head-of-queue packet cannot go to
the next stage due either to a full buffer or to ts inability to capture the single
available buffer in this next stage. then it stays at the current queue and wajrs
for the next cycle to try again; in either case, we refer to this as a contention
failure. The blocking phenomenon has an implied memory characteristic in that
a blocked packet will attempt to reach the same output port again. This memory
characteristic makes analvtical modelling difficult. We discuss an approximation
method to be incorporated into the analytical model to model this memory char-
acteristic in later sections. When two packets from different queues in the same
stage contend for the same output queue in the next stage, a potential problem
occurs. If there are more than two spaces available at this output queue. the
switch is assumed to be fast enough to accept both packets in one cycle. If there
1s only one space available, a packet is randomly chosen to fill up this space: the
other packet is then "blocked” (a contention failure) and stays at the original
queue. However, if no space is available in the next stage, then both packets are
blocked (again, a contention failure).

Packets are assumed to be of the same length (i.e. fixed size packets). A
packet is generated by each processing element independently with probability ¢

in each cycle. All processing elements are assumed to have this identical bernoulli

10



input-process. This assumption is later relaxed by using weighting factors :o
allow each processing element have its own nput rate ¢,, 1 < ; < \. We
assurne that there is no buffer space at the processing elements. After being
generated, a packet is discarded if it cannot be delivered to the first stage of
the interconnection network either due to a full buffer or a contention failure.
Discarded packets at the entry to the network are not re-submitted. A packet.
once accepted by the network, is never discarded inside the network. The input
process is independent of the discarding process. {An extension of the model to
allow blocked packets to be stored in a finite-sized queue or an infinite queue
1s discussed in later chapters.) From this assumption, the time delay of our
performance measure is the total time a packet spends in the network. Time delay
is meaningful only for those packets accepted into the network. The probability of
acceptance {PA), another performance measure, is the probability that a packet
1s accepted into the network after it is generated. The normalized throughput is
simply the probability of acceptance multiplied by the input rate. Current work
also includes an extension to the case of multiple packet generation.

Each processing element has a memory module referencing pattern. A ref-
erencing pattern is the set of probabilities that a packet accesses the various
memory modules. All previous work assumes that processing elements have the
same referencing pattern. We shall allow P.E.s to have their own traffic pattern
in Chapter 3. The memory module is assumed to be fast enough to accept |
packet per cycle from switches at the last stage. This fast memory module as-
sumption implies that there is no blocking at the last stage since a dedicated link
connects one memory module to the output queue (see Figure 2.1). A slower
memory module (e.g. 2 cycles to accept a packet) will have a severe effect on the

performance of the network. Extension to slower memory models is underway.

11



2.1.2° The Routing Model

In the real world. packets are routed according to their destination address.
However. in order to analyze the network analytically, we establish an abstract
How model that can be used in an approximate analytical model that faithfully
reflects the steady state flow situation in the network. We propose a routing
matrix r,, . 1 << n,1 € <N where r;, is the routing probability of the
jth input port in stage i. A packet entering a switch will be routed either to
the upper output queue with probability r,; or to the lower output queue with
probability 1 — ;. To simulate a uniform traffic pattern. we simply let all r, |
be 0.5. With equal probability of choosing output queues, no memory module
is preferred. A special hot spot pattern can be created by letting all r,; be an
identical value different than 0.5. For instance, by letting all ,, be 0.8 in a 10
stage network, 10.7% (= (0.8)'°) of the total traffic will go to memory module 0
in a 1024-node network with 2.7% (= 0.2(0.8)°) of the traffic going to each of the
second highest referenced memory modules (all memory modules with a single
L-digit in rheir address tag) and other fractions of traffic to the other memory
mochules. The advantage of this routing model is that by changing the value of
r., with proper mappings from real traffic patterns, we can evaluate any general
traffic pattern. We leave the case of general r, ; to be discussed in section 2.2 and
in Chapter 3. Throughout this section, all r,; are assumed to have an identical

value of r.

2.1.3 Analysis of the Unbuffered MIN

In this section, we study the unbuffered MIN and we have two objectives.

The first is to solve for the probability of acceptance of a packet generated by



a processing element; the second is to show the effect any hot spot has on the
throughput of the unbuffered MIN. The modelling approach employs a recurrence
equation similar to the one Patel proposed [Pate 81]. It is an exact solution to
the (approximate) model. The model assumptions and notation are presented in
section 2.1.3.1. The results are shown in section 2.1.3.2. In section 2.1.3.3. the

asymptotic behavior of the probability of acceptance is discussed.

2.1.3.1 Assumptions and Analysis

We assume that the network under study is a clocked, packet-switching MIN.
There are N PE’s and N MM's interconnected by an n-stage (ie. N = 27 |
interconnection network. All the operations of input and output take place at
the end of each cycle which is the instance when we observe the system. With
probability q, each PE generates a packet. The packet is submitted to the switch
in the first stage at the end of the cycle. With probability 1 —g¢ , the PE remains
idle. A packet is routed to an output port according to an address tag. Fach
switch sends a packet to the next stage at the end of the cycle if it is not empty.
If two packets are contending for the same output port, one packet is randomly
accepted while the other is discarded (since there are no extra buffers). The
contention resolution is unbiased. The mput generation process of the PE's is
independent of packet discarding. The discarded packets are not re-submitted.
As long as the output port is not empty, the speed of the MM is assumed to be
fast enough to remove one packet from the output port of the last stage. We also
assume that the operation of the MIN is simultaneous, which means that if all
the stages are non-empty, then in the next cycle, all packets move to the next
stage simultaneously.

In order to calculate the probability of acceptance, we must calculate P, .

13



the probability that jth output port of stage i is not empty. Then P,, is the
probability that jth queue in the last stage i1s not empty. Hence the summation
of P, , for all j's is the total output rate of the network. Dividing the total output
rate by the total input rate, .V - ¢, we get the average probability of acceptance.

Let us designate the jth queue (in a column) in stage i as @, ; and let P be
the probability that Q,; is not empty. We first determine the equations for P, ,
and Py ;. then we generalize this equation to a general P;. In the first switching
element of the first stage. there are two queues (namely Q;, and @, ,) that take
incoming packets from two processing elements. The probability that a PE is
not empty is q. Therefore the probabilities that Q,, and Q, ; are not empty are

as follows :

1':’1.1=1—-[1--q-r']2

Pp=1-[1-¢-(1-r)]

A processing element sends a packet to Q;, with probability g-r. Hence, (1-¢-r?
is the probability that @y, does not receive a packet from either INComing source
(processing element). Thus P, (=1 —(1—-¢-r)?)is the probability that there
1s a packet at @,,. Similarly, a processing element sends a packet to @, ; with
probability ¢-(1 —r). Hence Py (= 1—(1=¢-(1=r))*) is the probability that
there is a packet at @, ;. Since all processing elements are identical with packet
generation rate q, the queues of other switching elements in the first stage have
the same probability P, and P, that they are not empty. Hence for switching
elements in the first stage, the probability that the upper output port is not
empty is P, and the probability that the lower output port is not empty is P, ;.

With Banyan interconnection, all upper output ports are interconnected to the

14



first half of the switching elements in the next stage, and all lower outpur ports
are interconnected to the second half of the switching elements. Therefore the
equivalent source that feeds each of the output queues of switching elements in
the first half of the second stage has a rate equal to P, ;. Therefore the probability
that any of the upper output queues of the first half of the switching elements in
the second stage is not empty is Phi=1-(1-P, -r]?. Similarly, the probability
that each of the lower output queues of the first half of the switching elemencs
in the second stage is not empty is Pp=1-1-P, - (1-r)2 In general. P,
acts as a source in stage i that feeds a set of switching elements in stage 1+1.
Hence the probability that the upper ports and the lower ports of these switching

elements are not empty can be found as follows
Poigo1=1- 1-~P, "']2

R+1.2;=1_[1-Pi.)'(1_r)]2 (2.1

Solving P, stage by stage, we get P, .forj=1to N. Then the average probabilicy
of acceptance (PA) is found as :
i Pn.j

Pq==21 10
N .g¢

where Zf’;i F,; is the total output rate from the MIN, and V- ¢ is the total

(2.2)

input rate to the interconnection network. This is our recurrent solution for the

probability that a generated packet is eventually accepted.

2.1.3.2 Results

By substituting different values of r into the model, we get PA values of the

unbuffered MIN under different hot spot traffic patterns. The light traffic load

(q=0.1) case is shown in Figure 2.2.

15



Probability of Acceptance

PA degradation percentage

0 80+ 1= 0.8
r=0.8
Q604 12 0.7
C 40+ r=0.8
0 204 1209
0.00 T 3 T T T T T T =
! 2 3 4 b= ) 7 8 3 10
Number of Stages (n)
Figure 2.2: Probability of Acceptance for q=0.1 case
100
80+
109
80
r= Q.8
40
201 r2 0.7

r=0.8
e Afrscelff e
' b v $r= 0.8
2 3 3 6 7 8 9 10

4
Number of Stages (n)
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From the figure, we see that the larger the network size. the worse the PA
degradation is when we increase the non-uniformity of the traffic. In Figure 2.3,
we show the PA degradation percentage when we increase hot spot traffic from
r=0.5 gradually to r=0.9 for each stage. The reduction in PA for the r=0.9,
10-stage case, compared to the r=0.5 case, is 71%. Since the traffic load is small.
when we have a small number of stages the contention probability is small. as
well. Thus, there is no significant difference in the values of PA's for varions
values of r. As we increase the network size, the difference between the PA s
begins to show because the contention probability is high in a large network.

Increasing the offered traffic to q=1.0, the probability of collision for small
networks becornes high. Hence, even with a uniform traffic pattern, the PA of a
10 stage network drops to 0.27 in the heavy load case (q=1.0), compared to 0.8
in the light load case (q=0.1). Furthermore, PA is severely degraded by hot spots
under heavy traffic, as shown in Figure 2.4. If we compare the PA degradation
percentage of the light traffic case to the heavy traffic case, the degradation in
the heavy traffic case is more serious than in the light traffic case. An 307
degradation in PA for the r=0.9, n=10 case indicates that a hot spot has a

dramatic influence on PA for an unbuffered MIN.

2.1.3.3 Asymptotic Behavior

In this section, we discuss the asymptotic behavior of the probability of ac-
ceptance of the output port queues that are in the paths which lead to the hot
spot. We notice that along these paths, all the ports in the same stage behave the
same. Therefore, we can represent the queues in the same stage by a probabil-
ity, P;. Then the recurrence equation which relates probabilities in neighboring

stages is :
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Poi=1-(1-P r)
P=1-{1-P.-r)
Subtracting the second equation from the first one, we get the following :
Prov =B =2=r (P +P_)) r (P =P_)

The first term on the right hand side in square brackets is always positive. Hence
P, is either an increasing function or a decreasing function. If P, is an Increasing

function, then
1-(1-P -r) > P

After some simple algebra, we find the asymptotic behavior of P, { j » 1) as

follows :
2r—1
P < ~ 2.3
A similar expression can be derived for the decreasing case :
2r—1 ‘
P> = (2.4

From equations (2.3),(2.4), we know that when r > 0.3, P, converges to =i
when } approaches infinity which means that the output port that connects to
the favorite memory module converges to Z for j > 1.

For the r < 0.5 case, we can show that P, approaches zero when j approaches

infinity as follows :
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[t turns out that P, converges to zero faster than g-(2ry for r < 0.5 case. This

is the probability for other memory modules when j » 1.

We derive the asymptotic expression of P, for a MIN composed of & x k

switches by using the method in [Krus 83] . The result is as follows

P = L ) 5
PT T 1 P r — 1 : (2.9)
e A+ DEE) T
When k equals 2,we get
2r -1
li =
k—ZI.IJIlm ‘PJ re

which is the convergence given in the previous discussion. If we let r = = (the

uniform traffic case), we get the following :

p 2k
k-l xj+ B

which is Kruskal's result {Krus 83).

2.1.4 Analysis of the Buffered MIN

The finite-buffered MIN is now analyzed using an approximate iterative method.
The approximation comes from the decomposition of a network of queues into
independent queues. The iteration is repeated until PA converges within 107"

In section 2.1.4.1, the model assumption and model approach are both de-
scribed. The probability of acceptance (PA), the mean queue size of the tree and

the average time delay of a packet are determined in section 2.1.4.2.

2.1.4.1 Modeling Analysis

The proposed approximate analytical approach employs a decomposttion and
iteration method. The real interconnection network is in fact a network of finite-

buffered queues with blocking. The dependency among queues, caused by the
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blocking from stage to stage, makes the exact analysis intractable. We shall

use a similar approximation technique as that applied in tandem queues ‘with

blocking [Bran 88], [Case 79! and [Perr 86] where approximate analyses are used.

The approximation method decomposes a queue in the tandem configuration

with equivalent input rates and blocking conditions. The Markov chain of the

decomposed queue is then solved: the steady state probabilities are then used as

equivalent input and blocking conditions for other queues. The iterative method

decomposes and analyzes the tandem queues one by one, then the whole process
is repeated until it converges. if it has a steady state. The concept of using
this decomposition and iteration approximation method in analyzing the finite-
buffered Banyan network is very similar to that of tandem queues. The only
difference is that instead of a single input source and a single output queue for
each queue in the tandem configuration, the interconnection network has 2 input
sources and 2 output queues for each queue in the network (except for the last
stage queue where only 1 output sink is presented, namely, the memory module ;.
Therefore, when we solve for the equivalent input rates and blocking conditions
for a decomposed queue, we consider the combined input from 2 input sources and
the combined probability of blocking from the 2 output queues. The approach is
described below.

Let P ,(k) be the steady state probability that there are k packets in the
queue Q;;. Let Q;_y;, and Q;., ;3 be two input sources from stage i-1 that feed
Qi;- Let X[i] be the probability that there are i packets destined for Q,, from
its two input sources (since each source at most sends one packet every cvcle.
hence 0 <1 < 2). We solve for the equivalent input rates for a queue @, , which

is located at output port 0 as follows:



X[ = r[Poi n(0)(1 = Py 5(0)) + Pio1,2(0)(1 = Py j1(0))]
+2r(1 = r)(1 = Py ;1 (0))(1 = Py 2(0))
X[2) = [r(1 = Py (0] [r(1 = Py j2(0))]
X0 =1-X[(1) - X[7 2.6
The first term in X{1] equation is the case that one queue in the previous srage
1s empty, and the other is not. The non-empty one chooses the output port 1)
with probability r. The second term is the case that both queues in the ii-1'th
stage are not empty. and one chooses output port 0 with probability r and the
other chooses another output port with probability 1 — r. The summation of
probabilities in both cases represents the probability that only one input packet
feeds the queue. The X[2] equation represents the case when both queues in the
previous stage are not empty and they both choose output port 0 with probabiiity
r (This calculation assumes that the output port queue is the upper of the two
if it is the lower output port queue, then the routing probability r is replaced by
1 —-r).
Regarding the equivalent blocking condition, let B,, be the probabilitv thar
a packet in the jth queue in stage i is blocked at the end of a cycle. Let (. be
the probability that the jth queue in stage i is blocking a packet in stage 1 — 1.
Let Qis+151 and Qi41,;2 be the two output queues of @, and let @, be the other
queue that also feeds both Q.41 and Q,4,,; (i.e. a possible contending queue

for @i; ). Then the equivalent blocking condition for queue Q. is as follows

Bil-J' =Tr- Cl+l.)1 + (1 ~ T‘) ' C:-H.)?

where C;-H.Ji = P:+1.;1(K) +g (1= RI(O)) : Pi+1._;1(K - 1) (2.7)

-
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Figure 2.6: Markov chain of a queue @, ; extracted from the network where the

state variable represents the number of packets in that queue: [{=4.

The first term in the B,, equation represents the case when the packet at the
head of queue Q,, chooses @i+1,,1 with probability r and is blocked by Qi
The second term represents the other case when the packet chooses (iv1 2 and
is blocked. There are two situations in which a queue blocks a packet in the
preceding stage : firstly. when the queue is full. and secondly. when the queue
has only one more space and a contention from (i wins the arbitration.

Given a set of initial values for the variables of the network, we “extract”
queue @, , from the network (with the equivalent input rates and blocking con-
ditions as exist in the network) as an independent queue. The Markov chain for
this queue is then solved to get new values for the state probabilities. A sample
Markov chain for the queue Q,, is shown in Figure 2.6 where B represents the
blocking probability B,,. We repeat this process for other queues in the Arst
stage, 1n the order @2, Q1 1....Q 1 ~. Using these new state probabilities as the
new input rates, we repeat the same process for all queues in the second stage in
the order Q2,,Q22,..Q:~. This process is then repeated for all stages. Now we
have a new set of values for network variables which can be used to compute the

new blocking probabilities. This new set of values is used in the next iteration to

compute another set of new values. etc.. The iteration process is repeated until



the difference of the probability of acceptance between two consecutive iterations
is below 1078,

The performance ineasures that are of interest are the probability of accep-
tance, the normalized thronghpur and the average time delay. There are two
ways to calculate probahility of acceptance. If we sum the output rate over all
output ports and divide it by the total input rate, we get the probability of

acceptance :
Zini(l - Pai(0)]

P-'laut:
¢ N

(2.8)

The total output rate over the input rate is the probability of acceptance at the
output port. From the input port, we solve for the probability that a packet
generated at the PE’s is discarded due to a full buffer or a contention failure at
the first stage. This discarding probability is By, , which can be solved for using
equation (2.7). Hence,

PAi, =1- Dy, (2.9)

Both values, although solved in different wayvs, should be equal when the MIN
reaches steacly state. (This can be used to test for the correctness of the model.)
The normalized throughput is found by multiplying the probability of acceptance
by the input rate. We apply Little's result (the average number of customers
equals the arrival rate times the mcan delay) to calculate the average time delay
of a packet. When the network reaches steady state, we take the sum of the mean
queue sizes sumimned over the whole network using the steady state probabilities
of the qucue size for each qucue. Given the throughput and the average numbers
of customers in the system, the average time delay can be solved for by applying

Little’s result.



2.1.4.2 Results

In this section, we focus on four performance measures. The first measure is
the probability of acceptance for both a hot spot traffic pattern and a uniform
traffic pattern for both the unbuffered case and the buffered case. The effect of
buffering on PA is given. The second measure is the mean queue size of those
queues in the saturated tree. The motivation for this study is to see how the tree
1s formed under the influence of hot spot traffic and offered load. Nexr. we study
{an upper bound on) the tree build-up time. The last perofrmance measure thar
we are interested in is the average time delay of a packet in the MIN.

PA Improvement

In this section, we compare PA values of the finite-buffered MIN o the PA
values of the unbuffered MIN which are taken from the first model solved in
section 2.1.3. We increase the number of buffers gradually. for different network
sizes (1 to 9 stages) under different traffic conditions. .

The uniform light traffic case is shown in Figures 2.7 and 2.8. The perfor-
mance improvement is insignificant because the contention probability 15 sma!l
due to a uniform, light traffic pattern. Adding one buffer provides the grearest
improvement because this buffer saves most of the collided packets which would
be discarded in the unbuffered case. For the unbuffered case. as the number

of stages grows, we see that the PA decreases (in fact, it decreases to zero as
stage number approaches infinity, P, < 221 as discussed in section 2.1.3.3). By
adding one buffer, we improve the probability of acceptance to 0.98, We see
an insignificant improvement after adding two buffers when PA approaches 1,

This agrees with what [Dias 81] had claimed. We notice that for the single stage

MIN, the PA for the unbuffered and the single buffer case are equal. Although

2
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the unbuffered MIN has no buffer to store the blocked packet. it has a room for
temporarily keeping a packet. Thus it is essentially a one buffer system. The
difference between this and the single buffer case is attributed to the fact that a
collided packet is dropped in the unbuffered case. but is stored in the buffered
case. For the single stage MIN. the collision for the unbuffered MIN happens
only at the input of PE's, and this is the same situation as in buffered \[IN.
Therefore, the probabilities are equal. But for a larger MIN, i.e. with more rhan
one stage. packet discarding occurs through all stages for the unbuffered MIN.
The buffered MIN still maintains the property that packet discarding occurs only
at the PE’s. Hence, storing blocked packets in the buffered case improves the
system performance. Figure 2.8 shows the improvement percentage of PA by
adding buffers compared to the unbuffered case.

In an uniform, heavy traffic case {Figures 2.9 and 2.10), if a MIN does not
have buffers to hold those collided packets, PA decreases significantly as the num-
ber of stages grows due to the high contention probability under heavy rrarfe
condition. After adding buffers, PA improves significantly. Thus buffering he-
comes important to improve the performance when the contention probability s
high. PA jumps up sharply by adding two buffers, but slows down when buffer
size grows beyond that. After adding roughly 4 buffers. the difference of PA's
between different network sizes is very small because 4 buffers are enough o save
most of the collided packets.

In Figures 2.11 and 2.12, we show how a hot spot pattern affects PA for
the unbuffered and the buffered MIN. Under the same light trafic condition.
PA decreases significantly for the unbuffered MIN under the influence of a hot
spot, as compared to the uniform traffic case shown in Figure 2.7. For a 0-stage

unbuffered MIN, PA is 0.27 with a hot spot traffic pattern, compared to 0.32
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with a uniform traffic pattern. As expected. adding the first buffer maies o Dl
difference for a large MIN. The difference of PA’s for different size networks wers
smaller when the buffer size grows. as in the uniform traffic case. However rie
PA improvement percentage is so high that for a 9-staged MIN.| the percentage i<
over 230% for $ buffers. Butfering improves the normalized throughput of a MIN
under hot spot traffic significantly even when the offered traffic is very Lghit

For the heavy traffic case under a hot spot influence, the PA value is shown in
Figures 2.13 and 2.14. In heavv traffic cases. even adding buffers cannot diminis)
the difference of PA for different network sizes. However. the improvement fur -
9 stage MIN is still nearly 250% for the 8 buffers case. Buffering does not bLeip
much for the heavy load case with a hot spot traffic pattern because the tree is
quickly saturated. The PA for a large network is not high even with 3 bufers
added. For a 9-staged, 8-buffered MIN. the PA is less than 0.2. This low packet
acceptance 1s due to tree saturation: hence most packets are discarded a: rhe
input to the MIN. Unlike the uniform traffic case where PA can be improved -,
nearly 1 by adding 3 buffers. tree saturation dominates the performance of rie
MIN in the non-uniform, heavy traffic case.

We conclude that a hot spot pattern degrades the performance signifeanris
Buffering helps to improve the probability of acceptance in many cases. However.
buffering does not help much when the hot spot pattern is very severe.

The Average Number of Busy Buffers

In this section, the average number of busy buffers for those queues in the
saturated tree is found. Because tree saturation dominates the performance of
the MIN, understanding the evolution of the number of busy buffers helps o

study the behavior of tree saturation.

When the iterative model reaches steady state, we have the state probabiiities
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information for each queue in each stage. [f we calculate the mean busv hifor
size for those queues in the tree. then we know how the tree evolves. Note thar
queues in the same stage are statistically identical. In figure 2.13 - 2,18, we show
rhe mean queue size for a 9-staged. S-buffered MIN for different values of r. by
changing the offered load in each chart.

When q=0.1. the offered traffic is so light that even adding a fraction of now
uniformity by increasing r from 0.5 to 0.6. the average number of busy HiFers
for an 8-buffered MIN is still below 1 for all stages. We notice that when r equals
0.7, a saturated tree begins to form starting from the hot memory moditle. anc
propagates back to stage 6. When r equals 0.9. all the queues in later stages are
full, but the first stage contains only 2 packets on the average. Therefore. PA is
still nearly 1 despite the fact that a small tree is formed.

When we increase the offered traffic to 0.5, the tree saturation begins to
demonstrate its influence over the performance of the MIN. The average busv
buffer size still remains below 1 for uniform trafic. A little increase in oo
uniformity (r=0.6) causes a tree to be formed for the last T stages. For r=11).
even the queues in the first stage are full. Tree saturation reduces the valie o
PA whenr >08.

When the offered traffic is increased to 0.7, the average busy buffer size for
the uniform case is only 1. When r equals 0.6, the tree is saturated to the st
stage with a mean queue size equal to 3 at the first stage. PA for this case is st:i]
high due to the small non-uniform traffic, where 40% of the traffic still fows into
queues outside the tree which helps keep traffic from being congested. The same
reasoning applies for the r=0.7 case where almost all the queues in all stages are
full. and the PA still remains high at 0.71.

Under heavy traffic conditions, a small increase in the hot spot traffic quickly
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saturates the tree, reducing the probability of acceptance significantly excepr for
the r=0.5 case. When r=0.3. all packets have an equal probability of choosing
any output port. The heavy traffic causes the MIN :o fill up to a moderate
degree. Note that the average busy buffer size decreases when the stage number
increases. An analogy to this situation is a highway traffic jam. The effect of
blocking is propagated back from the last stage to the first stage: therefore. the
queues in the later stages contain fewer packets than do the ones in the earlier

stages.

Depending on the values of q and r. tree saturation affects PA in various
degrees. In some cases. even when the tree is formed. the MIN still maintrains
a decent value of PA. Adding more buffers might be able to compensate for the
effect of tree saturation. but it becomes impractical when the network size is
large.

Tree Build-up Time

Orne interesting problem concerning the saturated tree is the tree build-up
time for different loads and different degrees of non-uniformity. Let us define T,
to be the average time when the network first starts to drop packets at the inpnt
due to blocking, and T; to be the average time for the system to stabilize. T,
is the time when the saturated tree reaches the processing elements. This is the
performance measure in which we are interested. Applying Little's result. we

have the following equation (see figure 2.19(a)) :

q- N- T = -V.W[.V + -vdrop + -Tou!

where after T, cycles, on the average, ¢ ¥ - T} is the total number of packets

generated (remember that .V is the number of processing elements). N /v is

the average number of packets still in the network . Nirop is the average total
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number of discarded packets due to blocking at the first stage and N, is the
average number of packets reaching their destinations. Starting from n-th cvcle,
packets begin to reach their destination. The output rate is increased until at
cycle T; when the output rate equals the input rate ¢- V- P4 This is the time
when the system stabilizes.

Instead of calculating an exact value for T\, we only come up with an upper
bound on T; as follows. In Figure 2.19(b), NV, is the average number of packers

that have reached the destination at time T,. From the dlagram. we come 111

with the following equation :

-V T < ‘\_'u.r.\.' + To

g-.v-P4

g- NI < ?V.w.v + 5

(T, = n)

Hence, the upper bound for T} is :

2.—\,}”.\,’ —q- N Pd - n
q-N-(2=- P4

2010

T <

The shaded area in Figure 2.19(c) represents the difference between g N T,

and Ny + 3’—\'2-5-’1 “(T1 = n). Notice that when PA is small. the svstem is

] quickly saturated (hence a smaller shaded area) and thus we have a tight upper
bound. When PA is large, we tend to have a loose bound. For a uniform light
traffic load, the bound is not very accurate. However since our objective is 1o
study the saturated tree with a moderate-to-heavy congestion (in this case. PA
15 small), equation (2.10) provides a good bound for T;. Using this upper bound.
we obtain the diagram of tree build-up time for different system parameters in
Figure 2.20. For a uniform traffic case (r=0.5), the only place where tree build-
up occurs is when the offered load is 1 packet /cycle. Again, since PA is close to

1. we have a very loose upper bound. Taking (q.r) as a pair, there are 4 pairs.
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{0.2.0‘.9),(0.3.0.8),(0.5.0.7) and (0.7.0.6) each representing the boundaries where
the network is reaching a saturated tree (compare to Figure 2.15-2.1%1. Another
comparison is presented with the result of average time delay in the following.

Average Time Delay

One other interesting performance measure is the average time delav for a
packet. In the buffered MIN. once a packet enters the network. it is guaranteed to
reach its destination. But in addition to the necessary service time at each stage,
one cycle per stage, buffering introduces waiting delays to the total svstem time.
By using Little’s formula, we get the average time delay. After reaching stead:
state, we calculate the average total number of packets in the MIN. Therefore.

by applyving Little's result, we get the average time delay for a packer:

Y MIN

T:_\'-q~P.-1

(2.1

The product .V . ¢ is the total input rate generated. This value multiplied by PA
is the actual input rate to the MIN in steady state. The Vi v represents i
average total number of packets in the MIN. The result is shown in Figure 2.21.

For the uniform traffic case, the average time delay for small offered traffic is
close to the necessary service time of 9 cycles. When the offered traffic increases
to 1.0. due to buffering, the time delay increases to 40 cycles. Refer to Figure
2.18. when q=1.0, the average number of busy buffers is roughly 4.5, We notice
that there is a trend to the curves. At first, the time delay rises as the offered
traffic increases. At a certain value of offered traffic, the curve begins to level
off. For example, this critical value of q for the r=0.9 case is 0.2. After q=0.2.
the time delay seems to reach a steady state. Even though the offered traffic is
increased, the time delay does not increase much. The reason for this behavior is

that the tree has been formed when q=0.2 for the r=0.9 case. Which means that.
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startiﬁg from q=0.2. most of the packets are blocked at the first stage. and then
discarded. Therefore the time delay does not change much by the increase of
offered load. Similar critical points for the cases of r=0.8. 0.7 and 0.6 are q=0.3.
0.5 and 0.7. respectively (compare to the points in Figure 2.20). There is a small
amount of increase in time delay after the critical points for these values of ¢ due
to the further decrease in PA. These critical values are those points when PA is
getting steady from a dramatic decrease due to tree saturation. We can predics
for a large value of r. i.e. if the hot spot is very serious. that the tree is quickiv
saturated and reaches a steady state. Hence. the delay is not further increased
due to the increase in offered traffic. With a small z., the tree is saturated slowly,
PA can be further decreased by increasing q after the critical point is reached.
The time delay is increased with a small amount after the critical point. The
slope for this increase is larger for r=0.6 than for r=0.7, and so on. This behavior

is typical of queueing systems with finite buffers.

2.1.5 Model Verification

Qur approach to analyzing the unbuffered MIN was to calculate the probabil-
ity of a non-empty output port using a recurrence equation. No approximation
method was used to solve for PA. Therefore, it is an exact solution to the model.
Since the model is not used to approximate any real world application. no simu-
lation was implemented to verify the error range of the model. If we were to write
a simulation based on the same assumption. both results should be identical due
to the exact solution.

However, the model of the buffered .\«IIN is an approximate model. The
approximation comes from the decomposition of coupled queues. Therefore. it is

necessary to verify how good the model is to the real case. In our simulation, we
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keep track of the state change of each queue at every stage. We begin with the
output to MM's_ then change the state of those queues in the last stage according
to input process and output process at this stage. The procedure continues to
the succeeding stages until stage 1. This procedure can be viewed as a time.
sliced caleulation of all queues in one cycle. We repeat this procedure for the
first 2000 cycles in order to let the MIN reach steady state. Then we count
the input packets and output packets starting with the 2001th cycle for another
3000 cyveles. and calculare PA by dividing the number of output packets by the
number of input packers. The results of simulation. as compared to the model
results, are shown in Figure 2.22 for O-staged, 8-buffered MIN. The error range
for the model results are within 2.6%. Most points are within 1% for a broad
range of values of r and q. A similar comparison for 2-staged. 8-buffered MIN is
shown in Figure 2.23. with error range less than 2.5%. The simulation results
show that the approximation is very good. For the small buffer case, the error
range s within 2% for both large and small MIN. From the simulation. we are
confident that the proposed model is a very good approximation to the coupled

system,

2.1.6 Conclusion

We proposed models to solve for the unbuffered MIN and the buffered MIN.
A routing model was suggested which makes systematic analysis possible for the
performance of a MIN under hot spot traffic. The routing model covers uniform
and non-uniform traffic cases, and provides a broad range of hot spot traffic
patterns. The hot spot traffic pattern created from the routing mode] is different
patterns studied by other researchers. Asymptotic behavior of the probability

of acceptance for the unbuffered MIN was studied. An explicit expression was



given which governs the asymptotic behavior. The performance of the unhuFered
MIN and the buffered MIN were compared for various offered traffic. stages and
patterns. We also studied the evolution of tree saturation in terms of the average
number of busy buffers in the queues of the tree. The average time delay of a
packet was then found. The model of the buffered MIN was verified through
simulation. The model result shows a very good agreement with the simulation

data.

2.2 General Traffic Pattern Model

2.2.1 Introduction

One limitation of the previous model is that only specific output traffic par-
terns can be evaluated. This limitation is due to the choice of using a single
routing probability r for all switching elements. Although the model can give us
some insight as to how hot spots affect the system performance. it is nor ENSTTH
enough. In reality, we are usually given a traffic pattern which does not confori,
to our special traffic patterns. Indeed, the traffic pattern can have two or three
hot spots. In this section. we investigate the particular characteristics of the
previous model in order to extend it to handle general traffic patterns.

The way that we evaluated the finite-buffered MIN in section 2.1 was to de-
compose the network of blocking queues into independent queues with equivalent
input rates and blocking probabilities. The final solution was found by repeating
this decomposition process for all switches until the value of PA converged. Since
each queue is evaluated independently, the restriction of using a single routing
probability r for all switches in all stages seems unnecessary. Hence let us now

relax this requirement by allowing the value of r to vary in every stage. In section
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2.2.2, 'we present the method to transform a given traffic pattern into a ser of
values of r,, such that after traffic is fed into the MIN. the routing probabilities
in different switches and stages creates the exact given traffic pattern. However.
we will not show the resulting model at this point since there are some other
limitations that need to be relaxed. We will incorporate this transformation
method with a superposition method (to be discussed in section 3.1) to mode]
the situation where processing elements have different trafic patterns. Then
analysis of the NUTS traffic pattern (to be discussed in section 3.2) is presenred

as an exarmple.

2.2.2 Transformation Method

The model assumptions are the same as in section 2.1 except that each queue
can have a different routing probability. Since we want to transform a given
traffic pattern into routing probabilities, the components of the pattern must be
given in a numerical form such that they can be computed and transformed ino)
routing probabilities in the switches. Hence. we specify the given traffic pattern
to be the set of MM accessing probabilities of a processing element. The sum of
these accessing probabilities, from MM(0) to MM(N-1), is equal to one. With
the assumption that all PEs have the same traffic pattern. we only need one
transformation to solve for the routing probabilities. If PEs have different traffic
pattern, then the transformation is performed as many times as the number of

different patterns(see 3.1.2).

2.2.2.1 The First Attempt

One way to approach the generalization is to let the switching elements in each

stage ¢ have a routing probability r, of choosing the 0-output port. A packet.

44



with n 0's in its destination address, will choose n consecutive O-output porrs
to go to MM(0). In terms of routing probabilities. the probability of accessing

AMM(0), namely A4q, is :

Similarly, the probability of accessing \IM(l)

.'11 1— J"n I:I

Therefore given 4y and 4,. we are able to solve for r. by dividing the rwe

accessing probabilities :

."‘.0 _ T'n

'{1 B 1- Ty
e
A+ 4

Given the accessing probabilities 45 to Ax_;, we choose the n largest ones
among these .V values (.V = 2"), and transform them using the same technique
as shown to solve for routing probabilities in every stage. The limitation ..
this method is that we have to choose the n largest among the N values. This
implies that this method is only an approximation. When the N values are vers
close. there will be a significant discrepancy. Hence the question remains as how
good is the approximation. There will be certain conditions under which the
approximation works well. We must adjust the values of r, to further reduce the
discrepancy. From this argument we simply state that this method extends ti.
specific traffic pattern somewhat further, but not to a very general extent.

Although this attempt did not solve the problem properly, it did inspice us

to the next approach which uses a similar transformation method but with more

generality.
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probabilities A,
2.2.2.2 The General Traffic Pattern (GTP) Transformation

One problem of the first attempt is that we neglected the other .V —n accessing
probabilities, i.e. not all of the given constraints are satisfed. One characteri<ti
of the routing is that before the first stage, all packets look the same. After i,
first stage routing, they break into two different groups of packets. One has the
first address bit 0 and the other has the first address bit 1. The group with the
first address bit 0 is routed to the upper output ports of switching elements in
the first stage. According to Banyan interconnection. they are fed to the first half
of the switching elements in the second stage. The group with the first address
bit 1 is fed to the second half of the switching elements in the second srage.
After being routed in the second stage, packets are divided into four Sroups.
and so on. Hence, we put two routing probabilities in second stage, four routing
probabilities in the third stage, and so on. In such a way, we identify N accessing

1

probabilities (actually N-1 values since the sum of N accessing probabilities is 1}

to solve for N-1 unknowns.
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Let us take a 3 stage Banyan network as an example, as shown in Figure
2.24. Observe the path taken by a packet, generated by processing element 0. [f
there exists a steady state output referencing pattern, given in terms of accessing

probabilities 4. then a packet chooses memory module 0 with probability 4, =

riycorar s e Sunilarly, a packet chooses memory module 1 with probability
Ay =y - rn -0l = ray) Using these two equations, we can find ry 10 terms of
Ag and A4,.
Py = —
Ao + A

The other ronting probabilities can be found in a similar way :

A,

32 DrE———
A + A5

A,
A+ 4
s
As + A4-
4+ 4,
il Ao+ A+ A + A4,
Ag+ A5
Ay + As + As + A-
_ A+ 4+ 4+ A4,
DA A A Ay A+ A+ A+ As

'y

Fa4

a2

11

Thus we solve the simultaneous equations for r,,, we implement the GTP

transformation method in the following recursive PASCAL program :

procedure traffic-trace(s, posi, count : integer; var psum : real);

var
fl. portt : integer:

denom. nom : real:

47



begin_
count:=count+1;
si=s div 2:
if posi > {penum div 2) then f1:=1 else f1:=0:
posi:=port(posi);
if f1=1 then portt:=posi-1 else portt:=posi:
if count < stagen then
begin
traffic-trace(s. portt, count, psum);
denom := psum:
traffic-trace(s. portt+1, count, psum):
nom:=denom-+psum:
end
else
begin
denom:=pac[portt|;
nom :=denom+pac[portt+1];
end;
if denom <> 0 then rfcount,posi]:=denom/nom:
psum:=nom;

end;

Thus we fully utilize all the given information to solve for the routing prob-
abilities. By applying this transformation method on top of the framework of

section 2.1, we can evaluate any given output pattern for the probability of ac-
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ceptance and the average system time. However, we are still restricted to the

case where all PE's use the same MM referencing pattern. This we relax in the

next chapter.
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CHAPTER 3

Modeling of Processing Elements with Different Traffc Patterns

The analytical model in Chapter 2 assumes that all processing elements have
the same traffic pattern. However. it might not always be true in real world appli-
cations. It is more likely that each processing element has its own traffic pattern
and offered load. In section 2.2, we presented a transformation method to model
a general output traffic pattern where all processing elements have the same gel-
eral output traffic pattern. In this Chapter, we generalize the traffic conditions
such that each processing element has its own output traffic pattern and offered
load. The basic model is presented in section 3.1 where a superposition method
1s proposed to model different traffic patterns for processing elements with the
same offered load. Section 3.2 applies both methods (transformation from section
2.2 and superposition from section 3.1) to evaluate system performance of the
~ot Uniform Traffic Spot traffic pattern {Lang 88]. In section 3.3, we propose a
method, which incorporates a weighting factor into the transformation and the
superposition methods, to model the case where each processing element has its

own offered load. This represents the most general case in traffic condition.

3.1 Basic Model

3.1.1 Problem Characteristics

Using the transformation method in section 2.2 to transform each traffic pat-

tern individually for all N PE’s, we get N sets of routing probabilities. Depending



on where it comes from, a packet chooses the output port according to the specific
routing probability. Therefore, the modelling approach for the Different Traffic
Pattern Model is to determine the appropriate overall routing probability for
each switching point. Since there are many traffic flows. each with its pattern,
we keep track of all possible paths taken by each traffic flow. Take a 2-stage.
4x4 interconnection network for example, as shown in Figure 3.1(a). Let r, 7.
be the routing probability of the jth switching point at stage i for packets ger:-
erated from the processing element . Using the processing element 1's traffc
pattern. the transformation method that we proposed in section 2.3 generates
ri[t.J]'s. These ri[z.j] are assigned to the switching points along the paths that
packets from the processing element 1 take (as shown in Figure 3.1(b}}. The traf-
fic pattern of the processing element 2 is then transformed into a set of routing
probabilities. r;[i, j]'s. They are assigned to the proper switching points accord-
ingly (as shown in Figure 3.1(c)). The routing probability sets of the processing
elements 3 and 4 are solved for and are assigned to the routing matrix in Figure

3.1 {d) and (e). Next we calculate the routing probabilities of each switching

point, ri. 7], as follows :

r(1.1] = r ({1, 1] r[2,1] = r1[2‘1]-;r3[2.1}
r[1.2] = r;3[L, 2] r2.2] = r;[z,z];v.[z.zl
r[1,3] = ry[1, 3] r2.3] =r112,3l42-r3[2.3

r[1,4] = (1. 4] r2.4] = Bliltely

The routing probability matrix in Figure 3.1(f) is the overall routing probability

matrix for the switching elements.
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Unlike the result in section 2.2 where there is only one routing probability for
each switching element. we now have two routing probabilities for each switching
element, each for one switching point. The reason is that when all PEs have the
same pattern. the routing probabilities for both switching points in the switching
element are the same. Therefore there is no need to distinguish between them.
However. when the processing elements have different traffic patterns. the situa-
tion above is no longer true. and we have to distinguish between them in order

to keep track of the correct traffic flows.

3.1.2 Superposition Method

According to the discussion in the previous section, we take a traffic pattern
of a PE and route a packet through all possible paths. Then the routing probabil-
ities are determined using the transformation method. The routing probabilities
are accumulated at switching points along the paths that packets take. By re-
peating this transformation and accurnulation process for all PEs (for their traffic
patterns, respectively), we then take the mean of the routing probabilities to find
the proper routing probabilities set to approximate the given traffic patterns. e

present the superposition method in the following program :

procedure traffic-trace(s, posi, count : integer; var psum : real);
var

fl, portt : integer;

denom, nom : real;
begin

count:=count+1;

s:=s div 2:



if_posi > (penum div 2) then fl:=1 else f1:=0:
posi:=port(posi);
if {1=1 then portt:=posi-1 else portt:=posi;
if count < stagen then
begin
traffic-trace(s, portt, count, psum);
denom := psum;
traffic-trace(s, pértt+1, count, psum);
nom:=denom+psum;
end
else
begin
denom:=pac{portt|;
nom :=denom-+pac[portt+1];
end;
if denom <> 0 then
begin
c[count,posi/: =c[count,post] + 1
rfcount,posi): =r{count, posi/+denom /nom;
end ;
if (denom=0) and (nom <> 0) then ¢/count,posi/: = c/count.posi/+1.
psum:=nom,;

end;
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This procedure is basically the same as the one we presented in section 2.5
except that we put in some extra lines (shown in italic font) to account for the
accumulation of the routing probabilities. Each switching pint has two variahies |
c{iJ] is the counter for the jth switching points in stage 1 and rilJ] is the accumu-
lated routing probability whose mean wiil be the probability for a packet choosing
the 0-ouput queue in steady state. c[iJ] is increased by one if there is traffe from
a processing element passing through this switching point. However. rig] 15 acen-
mulated only when the 0-output queue is on the path taken by the packets fremn
a processing element whose traffic pattern is currently being transformed. T!.»
variable denom is the amount of traffic from the previous stage passing through
a O-output queue, and the variable nom is the traffic coming from the previons
stage {not necessarily passing through this queue). If denom is not 0. then there
is traffic from the previous stage passing through this 0-output queue. e in-
crement the counter by 1 and accumulate the routing probabiiity. If denom is
0 and nom is not 0. then all traffic coming from the previous stage goes ro the
l-output queue in the switching element, we only increment the counter withour
accumulating any routing probability. If both variables are 0. then there s no
traffic coming from the previous stage, and hence there is no need to incremert
the counter or to accumulate the routing probability.

For every PE we call the procedure traffic-trace to trace all possible paths
and accumulate the routing probability along the path. After each PE's trafhic
pattern is transformed, we divide the accumulated routing probability by the

counter for each switching point individually. The control flow is represented in

the following program :

for i:=1 to penum do

i
(1]



begin
pattern-bitr (i-1);
si=i-1;
psum:=0;
posi:=i:
traffic-trace (s.posi.0.psum);
end;
for j:=1 to penum do
begin
for i:=1 to stagen do
begin
if tcfij]=0 then r[ij]:=0 else rlig)i=trfij}/tei);
end:

end;

The procedure pattern-bitr contains the MM accessing probabilities of each
processing element. This given traffic pattern of a processing element is trans-
formed (by using procedure traffic-trace) into a routing probabilities set. Tle
routing probabilities are accumulated at switching points which the traffic from
the PE passes. When all the processing elements’ traffic patterns are transformed
into routing probabilities and these values are accumulated at switching points.
we take the mean of these routing probabilities to determine the routing proba-
bilities matrix which approximates the steady state behavior of the given traffic
patterns. Then this routing probability matrix is used in the decomposition and

iteration model that we proposed in Chapter 2 to evaluate any general traffic



condision. We shall use this method in the next section to solve for the NUTS

traffic patterns.

3.2 Not Uniform Traffic Spots model

3.2.1 Introduction

The model in section 2.1 deals mainly with a hot spot traffic pattern in which
a favorite MM creates a saturated tree. However, if we let each PE have
different traffic pattern. it is possible to have a system whose pattern shown ot
the MM side is uniform, but with some congested spots inside the interconnection
network. This behavior was first discussed in [Lang 88]. and was named the No
Uniform Traffic Spots {(NUTS). The problem is completely different from :the
traditional hot spot problem in that there is no hot MM which attracts tratSc.

It is the pattern of each PE that creates conflicting paths inside the network.

[y

Among the possible patterns, a few were discussed as examples in Lang 3
: bit reversal, Even-First, Odd-Second (EFOS). In a bit reversal pattern. ench
processing element send all its traffic to a memory module whose address iz 150
bit-reversed address of the PE. In an EFOS pattern. all even-addressed PE s senc
packets uniformly to the first half of the MM'’s and all odd-addressed PE's serd
their packets uniformly to the second half of the MM’s. The simulator result of
these patterns are shown in the paper for 6 stage Omega-MIN with buffer size
4. However, due to the limited speed and capacity, the simulator is not suitable
for analyzing a large network.

In section 3.2.2, we present an analytical model using the transformation
method and superposition method to evaluate the NUTS patterns. The ana-

lytical results of EFOS, bit-reversal and uniform traffic are compared to Lang’s

-1
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simulator data. Model verification is discussed in sectton 3.2.3. The simulation
indicates that the analytical model is too optimistic. The cause of the discrepancy
is discussed and verified through simulation. In Chapter 4. an approximation

method is used to resolve the discrepancy.

3.2.2 Modelling Approach

The NUTS traffic pattern is basically a general traffic pattern such that each
PE has a different traffic pattern. The control fow of the model is shown as

follows :

PROGRAM General Traffic Pattern:
begin
input stage number. buffer size;
for all PEs do
call procedure pattern-bitr: /*assign traffic patterns*/
call procedure traffic-trace; /*transformation method*/
endfor;
for all ij do /*superposition method*/
rligh=rfij] div c[ij];
endfor;
call procedure buffer-min /*solve for PA, time delay* /

end;

The procedure pattern-bitr and traffic-trace are explained in previous sec-
tions. The procedure buffer-min is the model in section 2.1.4 with routing

probability r substituted by r(z, ;] to handle the general traffic conditions. The
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Figure 3.2: Markov chain of the queueing process where the state variabie rep-

resents the number of packets in the queue

program begins with initializing system parameters. Then we apply the given
traffic patterns of all PEs to create the routing probabilities for the mode] U«
ing the parameters and the routing probabilities, we decompose the network of
blocking queues and solve for their steady state probabilities. This process is
iterated until PA converges.

In order to compare the result of the analytical model with the simulator data
in [Lang 88|, we have to make sure the assumptions in both cases are the same.
There are two different assumptions :

(1) input process In section 2.1.4, a concurrent handling of input/ourput
was assumed, in which two input packets and an output packet can move in
and out of the queue at the same time. However, the simulator assumes that if
two incoming packets find only one available buffer space. only one is acrepted
regardless of what the output process might be (blocked or not). If the huffer
is full, no packets will be accepted at any time. These rules, together with the
blocking probability and the input probabilities (see section 2.1.4.1), determine
the Markov chain of a2 queue decomposed from the network. The Markov chain is
shown in Figure 3.2 where B is the blocking probability and X[i] is the probability

that i packets are entering the queue.



(2) output choice The model in section 2.1.4 assumes that in every cicle,
the packet at the head of the queue chooses output ports according to the routiny
probability r, , independent of the choice in the previous cycle. A new decision |s
made in every cycle. However, it is not the case in a real system. The simulator
model assumes that, if a packet is blocked in the previous cycle, it will choose
the same output in the following cycles until it gets through. This implies that »
blocked packet has a “memory” in choosing the output. In the following moidel.
we temporarily make the renewal assumption. This renewal assumption makes
the model result optimistic. and thus causes a discrepancy when compared o
the simulation. Further analysis and modeling of this problem is to be discussed

in Chapter 4.

3.2.2.1 Bit-Reversal Model

When every source sends its packets to the destination whose address is its
own address bit-reversed, it creates a traffic pattern that is uniform at the memn-
ory modules, but congested inside the network. A source with address 0011010.
for instance, sends all its packets to the destination with address 0101100. From
the MM sides, it looks like a uniform pattern since no hot MM exists. Every
MM receives the same amount of traffic. But the routing paths resulting from
this particular pattern are overlapped. Several hot traffic spots are formed inside
the switches. The throughput is thus significantly reduced. Given the source
address s, the following procedure pattern-bitr creates the bit reversal pattern
. It first transforms a PE’s address into binary form bit by bit. The destination
address is calculated using these bits, and the value is assigned to the variable
temp. Then the accessing probability pacltemp + 1] is set to one, with all other

accessing probabilities set to zero. This procedure is used in the control flow
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showrn in section 3.1.2 to set the accessing probabilities for the specific pattern

that we want to model.

procedure pattern-bitr(s : integer); /* Bit-Reversal Pattern */
var

i, bit, temp : integer;

begin
for i:= 1 to penum do
pac(i]:=0;
temp:=0;

for i:=1 to stagen do
begin
bit:=s-(s div 2} *2:
s:=s div 2:
temp:=temp+expni{2,stagen-i)*bit:
end;
pac[temp+1]:=1;

end:

3.2.2.2 EFOS Model

The EFOS traffic pattern is created by routing packets from the even-addresse:|
source to the first half of the destinations uniformly and packets from the odd-
addressed source to the second half of the destinations uniformly. For example.
in a 64x64 MIN, the processing elements with the addresses 2, 4. ... 64 send
!

packets to the memory modules 1, 2, ... 32 with an accessing probability .

The processing elements with the addresses 1, 3, .... 63 send packets to the the
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memory modules 33, 34 ..., 64 with an accessing probability 7. The following
procedure creates the EFOS traffic pattern. By placing this procedure in the
General Traffic Pattern program, we are able to evaluate system performance of

the EFOS traffic pattern.

procedure pattern-bitr(s : integer);
var
1. temp : integer:
begin
fori:= 1 to penum do
pac[i]:=0;
temp:=penum div 2;
if (s mod 2)=0 then
begin
fori:=1 to temp do
pacfil:=1/temp:;
end
else
begin
for i:=temp+1 to penum do
pacii]:=1/temp;
end;

end;



3.2.3 Model Results and Verifications

Since the proposed analvtical model employs several approximate met hods.
it is important to study how these approximations affect the mode) accuracy.

There are two approximations in the modelling approach :

¢ decomposing a queue from a network of queues with blocking to be an

independent queue.

® using a general routing matrix to model the steady state flows.

* renewal routing probabilities.

The first approximation is obvious since dependent queues are decomposed into
equivalent independent queues and solved individually. Some accuracy is lost
because our model neglects the dependency and coupling among the queues.
The second approximation method simulates the steady state behavior of a traffic
pattern with a routing probability set. Hence packets are routed according to
this routing probability set in the model, instead of their address tags in the
real world. The third approximation allows packets to choose their output ports
independently at every cycle according to the routing probabilities This renewal
routing choice allows a blocked packet to choose a different output port in the
next cycle. This renewal assumption renders the analytical model optimistic
since it "allows” blocked packets to be routed around a congested queue. In the
real world, blocked packets repeatedly access the same destination. and most
likely, these blocked packets will be blocked again (especially when the traffic is
not uniform).

The results of the analytical model for a 64 x 64 Omega MIN with buffer

size 4 are plotted in Figure 3.3 along with the simulator data from (Lang 33].
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All curves are shown with the input rate starting from 0.1 to 1.0 except for the
bit-reversal case where extra 9 points between 0.1 and 0.2 are plotted. Both the
analytical result and the simulator result for the bit-reversal pattern are nearly
the same. The bit-reversal pattern severely reduces system throughput to 0.123.
As predicted . the analytical model is very optimistic due to the independent
routing choices it allows. When severe blocking is presented due to contention,
the blocked packets will choose the same output queues repeatedly in the rea!l
world while the renewal choice in the analytical model allows the blocked packers
to choose other queues. This inherited "memory” structure in blocking switches
severely degrades the performance since it is likely to have persistent contention
for a queue once a contention occurs. The discrepancy between the analytical
result and the simulation data is caused mainly by this memory charactenstic
of the blocking switch. In the simulator data, however, a packet blocked in a
previous cycle will be sent to the same output port. And thus the time delav
will be higher, and the throughput will be lower than the analytical mode] wisl:
the renewal assumption.

To verify the conjecture in explaining the discrepancy, we first verify the
correctness of the analytical model. We then change the assumption regarding
the output choice in the simulation (i.e. to account for the ” memory’ behavior of
a packet). If the revised simulation agrees with the simulator data. then we can
be sure that the discrepancy indeed comes from the different assumption about
the output choices. To verify the general traffic pattern model. the simulation
program in section 2.1.5 is not sufficient since only one value of the routing
probability was used. With the simulation program revised according to the
assumptions in section 3.2.2, we will be able to verify the analvtical model bv

adding a 2-dimensional array of the routing probabilities rit,7]. For detailed
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algorithm of how the simulation works, refer to section 2.1.5,

Figure 3.4 shows the throughput comparison of the analytical model and the
simulation program based on the same assumption. The simulation resulrs are
shown to be in good agreement with the analytical model. The correctness of
the model has been confirmed. Next. we change the output choice assumption
in the newly revised simulation to account for the fact that packets do memorize
their previous destination addresses. Again. good agreement was obtained in
comparing the simulation and the simulator result. This proves the conjecture
that we made. As a result, we claim that the analytical result in section 3.2.2 i
optimistic in heavy load. We would try to use another approach in Chapter 4 +o

model the switch with "memory™.

3.3 Different Input Rate Model

This is the most general model of traffic patterns in that every PE has irs
own input rate. In real world, some PEs may be very active while some are nor
active at all. Hence. different input rates and different traffic patterns of the PE'«
may give a completely random form of generalization. The modeiling approach
considers the weighting factor when we compute the routing probabilities. The
following procedure traffic-trace is taken directly from section 3.1.2 with the
addition of the weighting factor rate(:), the new variable introduced representing

the input rate of PE(i) :

procedure traffic-trace(s, posi, count : integer; var psum : real);
var
fl, portt : integer;

denom, nom : real;
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begin
count:=count+1;
s:=s div 2;
if posi > {penum div 2) then fl:=1 else f1:=0-
posii=port(posi);
if f1=1 then portt:=posi-1 else portt:=posi:
if count < stagen then
begin
traffic-trace(s. portt. count. psum};
denom = psum:
traffic-trace(s. portt+1. count. psum);
nom:=denom+psum;
end
else
begin
denom:=pac|portt];
nom :=denom+pac{portt+1];
end;
if denom <> 0 then
begin
c[count,posij:=c[count.posi/ +rate(i);
r[count,posi/:=r[count,post]+(denom /nom *rate(i);
end ;
if (denom=0) and (nom <> 0) then cfcount,posi/:= c/count,posi/+rate(i).

psum:=nom;
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end;

The weighting factor rate(:) is shown in bold face. The reason we choose rater ;.
as the weighting factor is that the amount of the traffc affects the routing prolb-
ability. A traffic from a heavy loaded PE is an influential factor in the routine
probability. A traffic from a lightly loaded PE is less influential than the former,
Hence. it becomes an appropriate choice for the weighting factor. Whenever e
compute a routing probability from a particular source. before accumuiating tlie
value. we multiply the value by the weighting factor to reflect the appropriate
share of the load it brings to this switch. After we repeat this procedure for ail
PEs. we get the appropriate routing probabilities by dividing the accumulated
values by the counter. Hence, by placing this procedure in the general traffic
pattern model in 3.1. we can solve for the different input rate model.

The method for modeling different input rates wil simply be listed here wizi,
out any example. The reason is that this method is straight forward and there

is no need to model any real system to prove its correctness.
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CHAPTER 4

Persistent Blocking Model

4.1 Modelling Approach

Since the basic model is a renewal process, we continue to model the memory
behavior as a renewal process. However, the behavior of a blocked packet. after
its first blocking, is such that the routing choice no longer obevs the renewal
probability r,,. Biasing the routing probabilities to account for this does nor
help since it changes the memory referencing pattern. The routing probabilities
were created to reflect the steady state memory referencing pattern: therefore. it
1s necessary to keep the values unchanged.

Although an exact model of this persistent blocking behavior would require
that we keep track of how many times a packet has been blocked at a given
node. we choose an approximation which captures the "first order” effect of this
persistent blocking using the following two state model : when the queue is not
empty, we mode] the server as being either in the "new™ state or the "blocked”
state. When a packet first comes into the server, the server is in the new state.
The server enters the blocked state when the packet is blocked, and it remains
in the blocked state until the blocked packet finally goes through to the next
stage. This cycle repeats until the server empties the queue and becomes idle.
Observe that the server is inactive when it is in blocked state. During the new
state, the server obeys the renewal behavior choosing an output port according

to the routing probability r,. Hence. we can approximate a blocking switch
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'

Figure 4.1: The states of a server during its busy period.

with "memory™ characteristics by a finite buffer queue with a reduced service
rate. The reduced portion is the probability that the server is in the blocked
state,

The diagram in Figure 4.1 shows how the server alternates between the new
state and the blocked state during its busy period. Let b be the probability
that a new packet is blocked when it tries to go to the next stage. Let ¢ be the
probability that a blocked packet is blocked again when it tries to g0 to the same
destination. Then for our approximation. the steady state probability that the

server is in the blocked state, P44, can be solved in terms of b and ¢ :

b
l—c+b

Piocked =
where b is the blocking probability (for which we used the notation B;, in section
2.1.3). Once blocked, it is more likely that a blocked packet gets blocked again;
therefore, the value of ¢ is selected to be larger than the value of 5. In fact.
when a packet is in the blocked state, the length of the destination queue in the
next cycle will be either K (full buffer) or K-1 (only one space available). If we
disregard how many times it has been blocked previously, there will be only two
cases : either the blocked packet faces a full queue or a queue with one space left.

In the first case, with probability mﬁ%ﬂ(—_l{, the packet will be blocked again.
In the second case, with probability F[{ﬁ_’(—‘p'[%_—l,, the packet will face possible

contention from the other queue in the same stage which feeds this destination
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queue. Incorporating these two probabilities in equation (2.7), ¢ can be found in

a similar way :

c=r- 1+1.J1+(1-r)'c=+1,12

where €., is the conditional probability that the jl-th queue in stage 1+1 13
blocking a packet in stage i given that it blocked a packet in a previous cyvcie

P (R
P W)+ Py (R -1)

Rﬁ-l.}l(ff - 1]
Pl+1,jl(1\') + PH—L)“ [\. - l\

C:-v‘-l.)l = + '(1—}):.1(0))'

(35 B

Bisexes 15 the probability that the server is in the blocked state. During
this period. the server is inactive. Therefore. we may use this probability to
approximate the blocking switch with "memory™ characteristic. At the beginning
of each cycle, the server tosses a coin which comes up heads with probability
Pijocked. in which case the server will be blocked (inactive). If there is a packet at
the server. it stays idle until the next cycle when the coin will be tossed again,
With probability 1 — Pyjoeked. the server will be active. The queue length rhen
determines whether the server will send a packet or not. If there are packets in
the queue. the server takes the first packet and routes it according to the rouing
probability.

Incorporating the probability Pyockeq into our basic iteration model. the ap-
proach is then similar to the one that was described in section 2.1.4 except that
the equivalent input rates and blocking probability are different from equations
(2.6) and (2.7). Note that the effective input rate to a queue will be changed
when Pyjockeq is included in the model. In the original model. when a queue is not
empty (probability 1 — P, ;(0)), it tries to transmit a packet to the destination
in stage i+1. When Pi,ckeq is used to approximate the persistent blocking. the

probability that a queue will try to transmit a packet to the next stage is now



(1— Pb;oc;,ed) (1= P, ,(0)). When the server is "active” {probability 1 — P, ...,

and is not empty (probability 1 — F.,(0)}, it will transmit a packet to the nex:

stage.

Let us define P:J”(O) to be the effective probability that @.., will not send a
packet (either the server is empty or the server is blocked). Let P sicekes to be

the probability that @., is in the blocked state. Then the effective input rates for

214.1:

Re—{]j“,ri(o) =1- (1 - R-l._}l.bfockcd) (l - R-!.)l(o))

P:e—!ff.ﬂ(o) =1 (1 =P 2800cked) (1 — Fi_1,2{0))

X{ = r{P,001 = P 500)) + P 01 = PEE 0y,

+2r(1 = r)(1 = P 001 - P L 00))

X2 =[r(1 = P (o)) - [r(1 = P y00))

X0l=1- X[1] - X[2] 4.1
And the equivalent blocking probability B, , can be found as follows -
B.;J =r-Chapa+{l-r)- Cu+1._:2
where CH—l.jl = R+1.11(A—) + g ) (1 - Reiff(o)) ) R+1.jl(f\- - 1) (4.2

Using these equivalent input rates and blocking probability in the model in
section 2.1.4, we can evaluate a persistent blocking MIN with a special hot spot
traffic pattern. Incorporating the transformation method and the superposition
method (i.e. replace r with r;,’s), we can evaluate any general traffic pattern

with a persistent blocking behavior.
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4.2 Model Results

We ran our model incorporating this new technique to handle the memory
behavior for the same 6-stage Omega network with buffer size 4 under both the
uniform tratfic and the EFOS traffic pattern. The result is shown in comparison
with the fornier model in Figure 4.2, The improved model greatly reduces the
discrepancy between the simulation and analytical model results.

For a detailed study. we compare the improved analytical results with simu.
lation in Figures 1.3-4.10. The confidence range of these simulations is 95%. The
first case slown in Figures 4.3 and 4.4, is for a 4-buffered. 6 stage Omega net-
work with a wniform traffic pattern. In Figure 4.3, the throughput is compared
with varions offered loads and in Figure 4.4, the average time delay is compared.
The offered load 1s varied from 0.1 pkt/cyele to 1.0 pkt/cycle for each processing
elenment. For otffered loads within the range of small loss probability (q < 0.7
pkt/cycle). the simulations verify the accuracy of the analytical results. Bevond
this load {when packets begin to be discarded). the analytical results are slightlv
optimistic,

Figures 4.5 and 4.6 show the case of a 4-buffered, 6 stage Omega network
with an EFOS traffic pattern. Throughput and average time delay are plotted
against offered load, respectively. The non-uniformity of this pattern severelv
degrades the performance. The throughput graph shows very good correspon-
dence between analytical results and simulations. For offered load within the
low-loss range (¢ < 0.4 pkt/cvcle). delay performance of the analytical result is
very accurate. However, delay performance of analytical results are still slightly

optimistic in heavy load cases.

The third case is included to determine whether the analytical model per-



20 y—@— analyucal-criform, no memory
—&— nalyucal-uniform, memory

{1 + simulation-uniform

—&— inalyucal-EFQS, no memery

16 4 —g— analvtical-EFOS, memory
> { = stmulaten-EFQS I
b
ERREP
s
-’
=
8 4
Jd -
0 r T
Li 1 1
0.0 0.2 04 0.6 08 1.0

Throughput

Froure 4.2 Comparison of results for a 6-stage. 4-buffered Banyan network with

and withouwr rhe "memory”™ behavior inprovement

forms well with a loreer butfer. The result for an 8-buffered. 6 stage Omega
wetwork wirh a nniform reaffie pattern is shown in Figures 4.7 and 4.8, Except
n heavy load (=09 and 1.0, analvtical results measure well when compared
to sunulations. The throughput and delay performance are optimistic when the
total input enters the range of heavy load. This simulation indicates that the
analyrical model perforins well for networks with other buffer sizes.

We show the analvtical results of a large sized network in Figures 4.9 and
+.10, namely a 4-buffered. 10 stage 11024x1024) Omega network with a uniform
traffic pattern. Again. the analytical model is slightly optimistic when offered
load exceeds the maximal attainable output. This indicates that the model is

suttable for large sized networks as well.
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4.3 Model Limitation

Even though the approximation methods that we proposed for a General
Traffic Pattern model provides a very good analysis of systems performance witlh
the uniform and EFOS general traffic patterns. the methods do not perforim
well when the traffic pattern is a severe hot spot traffic pattern. This indicates
that the model works well only for a traffic pattern with a moderate persisten:
blocking. It still does not capture the true effect of persistent blocking. We leaxve

this as a future research topic.



CHAPTER 5

Re-submission Model

In the previous model. we made the assumption that discarded packets are
not re-submitted. Although this assumption did simplify our attempt to evaluare
a complicated system. but it is not always realistic. In the ISDN appiication. for
example, the voice packets. if discarded due to contention. are not re-submitte:.
But in many multiprocessor applications, a discarded packet will re-enter the
MIN trying to reach its destination. In the real world, packets discarded before
they enter the network will be queued. This queueing period introduces an extra
delay over that experienced in the analytical model without re-submission. In
addition to the extra delay, a model without re-submission avoids the stabilitv
problem. Therefore it is important to understand the delay performance and tiie
stability problem. An analytical model which re-submits the discarded packers
is needed. The modelling approach is described in section 5.1, The analvtical
model is verified in section 3.2. Several extensions based on the analyvtical model
are discussed in section 5.3. A model which adjusts its input rate according to
the system status is discussed in section 5.3.1. We show that proper adjustment
of the input rate can reduce delay while maintaining the throughput at the same
level. An extended model which determines the operating point under a given

loss probability is discussed in section 5.3.2.
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5.1 Modelling Approach

A finite number of buffers are placed at each processing element for the pur-
posed re-submission. Following Kurisaki & Lang's terminology [Lang 38!, ler
us define this queue as a ¢-link {communication ink). When a new packer is
generated. it is placed at the end of the c-link. The c-link server tries 10 send
the head-of-line packet to the first stage. If the queue in the frst stage 1s full.
then the packet is blocked. It will try to send it to the same queue in the nex:
cycle. If the queue in the first stage has one buffer space available, and there is
another processing element trying for the same queue, a contention occurs. [f
the packet loses the contention. it is blocked. The processing element generates
a new packet in a cycle with probability ¢. If the processing element generates
a new packet and takes up the last buffer space of the c-link, then the c-link has
reached its full capacity. The c-link will send a signal to the processing element
to notify 1t that the buffer is full. On receiving the full-buffer signal, the pro-
cessing element stops generating new packets, and waits for further signals from
the c-link to resume the new packet generation. When the c¢-link finallv outputs
a packet. a buffer space becomes available. The c-link sends a resume signal 1o
the processing element. The processing element then resumes the new packet
generation in the next cycle with probability 4.

We extend the General Traffic Pattern Model that we proposed in Chapter
4 such that a c-link queue is accounted for. Instead of n queues. there are n+1
queues in the tandem structure. The processing element generates a packet
with probability ¢. Notice that there is no need to model the stopping-resuming

process of the processing element. When the c-link is full, it will not take any

more packets. Those packets generated by the processing element during the
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time when the c-link is full are simply ignored and thrown away. When the -
link becomes available again. it will accept new packets that are generated by the
processing element at a rate q- Therefore. the situation is the same whether we
allow the processing element to stop or not. The modelling approach is similar to
the General Traffic Pattern Model, The process of evaluating the Markov chain
of the c-link is incorporated in each iteration. If we let the c-link size to be the
same as the fluite hufer size in each switching element, then the Markov chain
of the c-link Is identical to the one that we show in Figure 3.2.

The model begins with the evaluation of the c-link's Markov chain. The
offered load 7 is taken as input process. The blocking probability is taken from
the first srage i the first iteration. this blocking probability is 0 since the
quenes in rhe nerwork are vet to be evaluated).. The Markov chain of the c-link
1s evaluated. The steady state probability of the c-link is taken as the input
process to the queue in the first stage. The Markov chain of the queue in the
first stage ix evaluated. We evaluate the Markov chamn of all queues in each srage.

hen we iterate rhe evaluation process until the throughput converges.

5.2 Mlodel Results

We let the c-link size be equal to the finite buffer size 4 in the network. A 3-
stage Omega network with EFOS traffic pattern is modelled. The result is shown
in Figure 5.1 and Figure 5.2 in comparison with the simulation. Figure 5.1 is
the mean delay comparison to a simulation with a 95 % confidence range. The
analytical model is slightly optimistic with a heavy system load. The throughput

comparison indicates that the model is very good at predicting the performance.

We ran the model for a 6-stage Omega under a uniform traffic pattern. the
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results are compared to the simulation in Figures 5.3 and 5.4. Both the through-
put and the mean delay are slightly optimistic with a heavy system load. The
simulation indicates that the analytical model is very accurate in the stable range
of operations.

Both the mean delay curves in Figures 5.1 and 5.3 rise rapidly and level off
gradgauy. The quick rise is the point when the offered load is approaching the
maximal capacity. Therefore the queues in the network and the c-link are quickly
filled up. When the new packets begin to be discarded due to lack of room i
the c-link, the delay curve starts to level off. If the c-link is an infinite queue. the
curve explodes to infinity. We will show the c-link length and the c-link delav o

a heavy traffic case in the next section.

5.3 Extended Model

We would like to focus on several questions regarding the operating poin:s.

the loss probability and the stability problem.

5.3.1 Rate Adjusted Model

In general, when the mean delay rises rapidly, the c-link is most likely satu-
rated. At this point. it is meaningless to have a large offered load. Even though
the processing element is signaled to stop generating new packets when the c-
link 1s full, as soon as the c-link is able to accept packets, the processing element
resumes the generation of the packets again at a rate greater than the svstem
capacity . The c-link quickly saturates again, and thus creating a long delay.

In reality, when the offered load exceeds the system capacity, a rate adjust-

ment mechanism must be employved to reduce the offered load. In this section.
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we would change the offered load when it exceeds the system capacity. The fol-
lowing is an iteration mechanism that reduces the offered load repeatedly unti.

the loss probability is below a certain value.

PA =1
REPEAT
q:=q - PA
procedure General Traffic Pattern:
begin
input stage number, buffer size:
for all PEs do
call procedure pattern-bitr: /*assign traffic patterns*
call procedure traffic-trace; /*transformation metho!*
endfor;
for all ij do /*superposition method*/
elijJ:=tfi ] div cfi];
endfor;
call procedure buffer-min /*solve for PA, time delay*/
end;

UNTIL1-P4 <001

The assignment, q:=q - PA, adjusts the offered load gradually. For example.
if the model begins with an offered load 0.9 in an EFOS traffic pattern. then the
model first solves for the PA (Probability of Acceptance) as 0.4. Obviously, the
loss probability (1-PA) is too high. Therefore, we adjust the offered load to be
0.4 x 0.9 = 0.36, which is the throughput value. We iterate the General Traffc
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Pattern Model again, and keep adjusting the value of the offered load unti] the
loss probability is below a certain value.

A S-stage Omega network with a c-link size of 4 and a finite buffer size of
4. with an EFOS traffic pattern is analyzed and the result is shown in Figure
5.5. The mode! terminates when the loss probability is below 0.01. The meas
c-link lengths of the initial offered load and the adjusted load are compared. For
the light-load cases (0.1 - 0.3), the loss probability is less than 0.01 when :he
first iteration of the General Traffic Pattern Model terminates. hence the rate 13
not adjusted. When the system load exceeds the system capacity (g>04) the
offered load is adjusted. Since the EFOS traffic pattern is a severely congeste:i
traffic pattern, the model quickly converges. All cases (1 2 ¢ >04) terminare in
the second iteration when the loss probability is less than 0.01. The mean c-link
length is shown in Figure 5.6. which compares the values of the first iteration
(original values) and the second iteration (terminal values). If the rate is nor
adjusted, the mean c-link length is almost full in every case. The length increases
sharply for q=0.4 and 0.5. Then. it slowly levels off. The mean delay is thus high.
If we adjust the offered load. the mean c-link length becomes very small. For an
offered load greater than 0.3, the mean c-link length is less than 1. Therefore
by adjusting the offered load, we are able to reduce the mean delay significant]v
while maintaining a high throughput.

The mean delay and the c-link delay of the original model and the rate ad-
Justment mode! are compared in Figure 5.6. Note that the difference between
the mean delay and the c-link delay is the delay experienced in the network. The
delay experienced in the network for the original model and for the rate adjusted
model are nearly the same. This indicates that the delay we manage to reduce is

the c-link delay. The mean delay is cut from 20 to 12 for an offered load of 1.0.
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5.3.2 Maximal Input Rate for a Given Loss Probability

There is a maximal system capacity for a given traffic pattern. a c-link size
and a finite buffer size. Depending on the requirement of loss probability and the
mean delay, an operating point can be determined such that a desirable system
performance is achieved. We ran the rate adjusted model with the convergence
condition 1 — PA < 0.0001. We begin with an offered load of 0.9: the Loss
probability, the throughput and the mean delay are recorded in every iteration.
We choose three sets of data which represent the cases where the loss probability

is less than 0.01, 0.001 and 0.0001, respectively. They are listed as follows.
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'[ loss probability | 0.589 | < 0.01 | <0.001 | < 0.0001 ‘
l offered load 0.9 0.37 0.361 0.357 [

throughput 0.37 0.367 0.361 0.357 ;
| delay 20.367 | 11.862 | 10277 | 9.802 |
Uiteration numbers 1 2 10 L 30 f

On the second iteration. the loss probability converges within 0.01. However,
it takes 10 iterations to converge to 0.001 with the throughput 0.361 and the mean
delay 10.277. It takes 30 iterations to converge within 0.0001. These points are
plotted in Figure 5.7. We show the original model as a solid line. The resujts of
the first 10 iterations are plotted in small circles. Those four points where loss
probability converges within 0.01. 0.001 and 0.0001 are plotted ir small boxes.
If an application requires a minimum loss probability, then the maximal input
rate can be determined by using the rate adjusted model. If the performance
objective is to find the operating point where the Power (Klei 79], ”‘_'%’E’M is

maximized, the convergence condition can be changed such that it converges

Aput :
when the Power, ﬂ'ﬁ%”l. cannot be improved.
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CHAPTER 6

Delay Model Analysis

The blocking switch models were discussed in Chapter 2 to Chapter 3.
Both the throughput and the overall mean delay were found. In this Chaprer.
we concentrate on the analysis of the turn back switch. A turn back swirch
differs from a blocking switch in that when a contention occurs where there is
not enough buffer space for contending packets. instead of being blocked, packets
are turned back to be re-submitted at the processing elements. This removes
the persistent blocking behavior of the blocking switch. thus we predict that the
system performance of a turn back switch should be better than a blocking switch
in heavy loads. When a rejected packet is not turned back to the original source
(processing element ), instead. it is rotated to join the end of the local queue, we
call this new configuration a rotating switch. The motivation for the rotating
switch {to be discussed in section 6.4) comes from the performance comparison
of the blocking switch and the turn back switch .

In section 6.1, we first propose an analytical model for the turn back swirch
with a uniform traffic pattern. The analytical model is based on a recurrence
equation. The mean delay of a particular path is determined by using the recur-
rence equation. Different Markov chains, resulting from different assumptions of
the queue, are discussed. Two different approaches are proposed : a Combined
Rate Model with an explicit analytic solution and a Feedback Model with an
iterative approach. Both models are analyzed and compared. The advantages

of both models are discussed. In section 6.2, we extend the Feedback Model to
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analyze a turn back switch with 5 non-uniform traffic pattern. The exact feed-
back traffic is calculated. Since the feedback of a non-uniform traffic patrern may
change the original traffic pattern. we update the traffic pattern in each iterarion
with the exact feedback trafic. Two example traffic patterns : a hot spot and a
EFOS traffic pattern are analyzed. We compare the system performance of rhe
turn back switch to the blocking switch in section 6.3. The result shows that
each switch is better than the other switch in a certain range of systemn load.
This fact leads us to the new configuration, the rotating switch. The rotating
switch model is proposed and the result js compared to the turn back switch and

the blocking switch in section 6.4,

6.1 The Turn Back Switch Model with a Uniform Traffic Pattern

A turn back switch differs from a blocking switch in that when a contention
occurs where there is not enough buffer space for conflicting packets. instead of
being blocked, packets are rejected and are re-submitted at the processing ele-
ments (see belows). This assumption allows the queue at each switching element
to output one packet per cycle when it is not empty, regardless of the status of
queues in the next stage. Therefore a queue 1s independent of conditions at the
next stage. This independence simplifies the modelling of a turn back switch
since there is no interdependence among queues in different stages. The onlyv
information we need to solve for each queue is the input rates from the previous
stage.

For multistage interconnection networks using the turn back switch as the ha-
sic building block, if the original traffic pattern is not uniform, re-submitting the
rejected packets into the network changes the traffic pattern. The re-submitted

packets are more likely to go to the favorite memory modules. The modelling
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approach must then keep track of each rejected traffic flow from different queies
at different stages to assure that they are re-submitted at the correct process-
ing elements. We shall discuss the model approach {with a non-ur.%orm traffic
pattern) in section 6.2.

In this section. we propose an analytical model for a multistage intercon-
nection network using turn back switches with a uniform traffic pattern. The
model takes advantages of a recurrence equation of the mean system time. Tlis
approach is extended to model the general traffic patterns in a later section.

We first describe a turn back switch. The Markov chain of the queue in a
single switching element is found in terms of the input parameters. We then
develop an analytical solution based on a recurrence equation to solve for the
mean system time and the throughput for uniform traffic. An iterative solution
for the non uniform traffic is then given. We also discuss two different Markov
models regarding the assumptions of the queue. The analytical results are verified

through simulation for different network sizes.

6.1.1 Turn Back Model

In this section. we discuss a class of n stage interconnection networks (e.g.
Banvan. Omega) with K finite buffers at each of its switching element’s output
ports (see section 2.1.2). The difference from the previous chapters is that these
switching elements are 2x2 turn back switches. Each processing element has an
infinite queue in order to accept rejected packets such that any possible loss of
rejected traffic is prevented.

Each processing element generates a new packet according to a Bernoulli
arrival process. Each packet is assigned a destination address according to a

destination distribution (traffic pattern). This new packets is then submitred
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Figure 6.1: 4x4 interconnection network with turn back switch as building block

to the infinite queue at the processing element. The packet in the server of the
infinite queue is submitted into the network at the end of a cycle. The maximum
number of packets that can arrive at a finite-buffered queue in stage 1 is two
because there are only two input links (see Figure 6.1). A packet entering the
first stage selects an output port according to its address tag, and joins the end
of the destination queue. However, if there are two packets heading for the sanie
queue, a possible contention occurs. If there is enough space. the queue accepts
both packets. If there is only one space left, then one packet is randomly chosen.
and the other is rejected. The rejected packet returns to the originating source
(processing element ) immediately and joins the tail of this infinite queue. Since a
turn back switch always outputs a packet as long as it is not empty, it can always
accept at least one packet per cycle. Hence the situation when both packets find
no space and are both rejected is not possible in a turn back switch. The infinite
queue is assumed to be able to accept as many rejected packets as necessary in

one cycle, in addition to accepting newly generated packets.
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6.1.2° Modeling Approach

We discuss the analytical model by focussing on the following 3 different com-
ponents of the system : the finite buffered queue inside the network. the infinire

queue at the PE’s and the path that packets take to reach their destinarion.

6.1.2.1 The Markov Model for Finite-Buffered Queue

Depending on the assumption of the operations on sending and receiving
packets. there are two Markov chains for the finite-buffered queue inside the
network. When the queue is in state 0, it either moves to state 1 if there is only
one incoming packet at the end of the cycle, or moves to state 2 if there are
two incoming packets. While in state 1, the queue moves back to state 0 when
there is no input packet. The queue remains at state 1 when there is only one
incoming packet. This is due to the fact that a queue outputs a packet as long
as 1t is not empty. [t only moves to state 2 when there are two incoming packets
All other states have the same transitions except state K-1 and state K. At the
end of a cycle in state K-1, two incoming packets find only one buffer space
left. At the same time, the server is sending the first packet to the nex: stage.
We develop two models with different assumptions regarding the way a queue
handles packets. The different assumption is whether the queue can perform
simultaneous operations to remove one packet at the head of the queue and to

accept two incomung packets at the same time while in state K-1.

Simultaneous Model When the queue is in state K-1, if there are two packets
coming in at the end of a cycle, the packet in the server is transmitted to the
next stage, thus creating one more space in the buffer. Then both incoming

packets are accepted and the queue reaches state K. When the queue is in state
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operation.

K and there are two incoming packets, simultaneous operation guarantees that
one packet can be accepted while the other one must be rejected. While in state
K. the queue moves back to state K-1 if there is no input at the end of the
cycle. It remains in state K when there is more than one incoming packet. \We
define x(i] to be the probability of i incoming packets. The Markov chain for this
simultaneous model is shown in Figure 6.2 (a). The steady state probability Pl

can be found as follows :

Pl0] = z[0] ::[2]
1= (Gt)%
1 — z{0)
- z[2)' 1 .
Pli] = (m)mP[O] 2<:< K
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Non-simultaneous Model [f the queue cannot perform the simultaneous on-
eration as described, then when the queue is in state K-1. it can only accept one
packet. Therefore if there are two incoming packets at the end of the cvele. ope
packet must be rejected. In this case, the state K can never be reached because
the queue always outputs one packet in a cycle. While in state K-1. a queue ei-
ther remains at state K-1 (when there is at least one incoming packet) or moves
back to state K-2 (when there is no incoming packet) in the next cvcle. The
non-simultaneous assumption is more realistic, and is the same assumption we
made in the blocking switch model we discussed in Chapters 3 through 3. The
Markov chain is shown in Figure 6.2 (b). The steady state probabilities can be

solved as follows :

z(0] ~ z[2}

P{O] l___(i{%})l(—l
1 — z{0]
Pl _I[[T’.P{O]
R 1 1 . .
PJi] _(m).m.}?[o] 2<i1 <K -1
PIK] =0

In order to compare the result of the turn back switch to that of the blocking
switch, we choose the same assumption (i.e. no simultaneous operations) for the
turn back switch model. Throughout this chapter. unless otherwise mentioned.
the finite-buffered queue in the turn back switch will assume the basic operation
that we described in the non-simultaneous model. We shall compare the per-
formance of a MIN employing these two queuing disciplines in their switching

elements.
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6.1.2.2 The Input Model for the Infinjte Queue at PE

The arrival process to the infinite queue at PE is assumed to be a bernoui];
process with parameter q. The server is a deterministic server with service time
one. This makes the infinite queue a discrete time, Geo/D/1 queue with feedback
from the network. It is complicated to calculate the exact transition probability
{rom one state to another, therefore the resulting Markov chain is diffcult to solve
for. Hence, we use a continuous time M/D/1 queue with feedback to approximate
this Geo/D/1 queue with feedback. The Poisson arrival rate to this infinite queve
is q pkt/cycle and the deterministic service time 1s 1. The stable condition for
this infinite queue is that the combined rate of new packets, q, plus the feedback
rate of rejected packets is less than 1.

We propose two modelling approaches to caleulate the combined input rate ;

the Combined Rate Model and the Feedback Model.

Combined Rate Model For a uniform traffic pattern, the re-submitted pack-
ets still have the same traffic pattern as do the newly generated packets. There-
fore, it is reasonable to combine them into a total mmput rate of q. This assumption
simplifies the modelling approach such that there is no need to calculate the ex-
act feedback rate. When a contention occurs, the rejected packet is thrown away
since we assume that it will join the new packet generating process at a rate g,
For the stable range of operation ( 0 £ ¢ < 1), we have the mean delay, Ty, for

passing through this infinite queue as follows :

P = g
2—p
L = 2-2:p
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However, if the given pattern is not uniform, then the feedback packets mayv
not see the same traffic pattern as do the new packets. For instance, in the
case of a hot spot, most of the resubmitted packets are packets that are heading
for the hot spot. Therefore. the traffic pattern of these resubmitted packets is
completely different from the given pattern. The disadvantage of this combined
rate approach is that it can not properly reflect the changes of the traffic pattern
when the given pattern is not uniform. Hence for the non-uniform traffic patter:n.

we need a modelling approach that accounts for the feedback traffic,

Feedback Model The second approach calculates the exact feedback traffic.
This is especially useful when the traffic pattern is not uniform. Let the rate
of the feedback traffic be d and let the new packet generation rate be q For the

stable range of operation (0 < ¢ + d < 1), the mean delay, T, can be found as

follows :
p = q+d
P{)[O] - l—p
2-p
T, =
° 2-2.p

For uniform traffic patterns, the throughput-delay curve of the Feedback Model

should be the same as the one of the Combined Rate Model.

In this section, both approaches will be analyzed and compared. It shows

that the Combined Rate Model is simple. However, the Feedback Model is more
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general and can be extended to analyze the case with a non-uniform traffic pat-

tern.

6.1.2.3 Recurrent Path

Unlike the blocking switch where interdependence among queues in different
stages males the model solvable only through iterations, the turn back switch
does not Liave a similar interdependence hecause it returns the rejected packers
to the processing element. Therefore the steady state probability of a queue in
the network can be solved directly. Observing the relationship among queues
tn different stages. we see that a queue depends only on its previous queue (for
mput). and is independent of the queues in the next stage since there is no
blocking. Therefore. the probability that there is no incoming packets to the

infinite quene ar stage 0 (ie. PE), x[0]. is :

rf0l =1 - q

L

Let BI;] be the probability that a queue in stage 1 contains j packets. Since
we approximate the discrete time Geo/D/1 queue as a continuous time M/D/1
queue. the probability that this queue is empty, By[0], is thus 1 — q. This proba-

bility is used to calculate the input process to a queue in the first stage

2 = (r-(1=B0))?

[l = 2-1"(1-P0[0])-(1—r-(l—Po[O]))

,.,
=
I

1 —z[1) — 2{2]

(1—r (1= B0

H
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Using these probabilities, we can solve for the steady-state probabilities, Py(i] of

the first stage queue (the Markov chain is shown in Figure 6.2(b)) as discussed

in section 6.1.2.1.

Similarly, we use 1 — P, (0] as the input parameter of the queue in the second

stage, and so on. In general, the input process to a queue in stage i is :

2] = (r (1= Py[0]))?
z{l] = 2:r (1=Pof0])- (1 =7 (1~ P,y [0]))
0} = 1-2(1] - z[2

= (1-r-(1-P_[0]))?

The steady state probabilities for queues in all stages can be solved accordingly.

For a uniform traffic pattern, all queues in the same stage are identical. There-
fore. we concentrate the calculation on one path, as shown in Figure 6.3. Let T,
be the mean of the random variable representing the time needed to pass through
a queue in stage i. Let d; be the conditional rejecting probability for a packet
given that it attempts to enter stage i+1 and is rejected due to a contention. Let
Si be the mean of the random variable representing the accumulated system time
after a packet enters stage i+1. A packet first spends T, cycles in the infinite
queue at a PE, then it is transmitted to the queue in the first stage. However,
there might be a contention such that the packet is rejected due to no buffers.
If the packet is rejected, it returns to join the end of the queue in stage 0, and
spends another T, before the queue tries to transmit it again. A packet may
repeat this process many times until it finally meets no contention or wins a

contention, and enters the first stage (the packet now accumulates a system time
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Figure 6.3: The recurrent relationship among variables in a particular path

Su). A packet repeats this process stage by stage until it reaches stage n. Since
there is no contention for the outputs in stage n. packets reach the destiration
after spending T, cycles in stage n. This repeating process of rejecting and ro-
submitting can be represented in the following recurrent equations in terms of
the accumulated system time S, the conditional rejecting probability d, and the

queueing time 7, :

Ty
S = 1= 4.
S+ T, .
= <
S; T—d 1<i<n

The explicit expression for S, in terms of T, and d, is as follows :

: T,
S = '“
2 j=o0 (1 —dis1-,)

m=1 i1;=0

Therefore, the average system time for passing through the network, S. is -

Sn = Sn—l + Tﬂ
n—1 T
= — i +'Tn
mz=1 H?:O l(l - dﬂ-J)

Once the values of d,'s and T)'s are determined, the average system time for a

turn back switch can be solved. T is the mean time a packet spends in stage i
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Since we have the state probabilities for each queue, we use the Little's resuit 1o

solve for T, :
&, k. Pk
T =5 ~ Gk
él-f’-[ol

The rejecting probability d, can be found as follows

d=s PR =1]-r-(1~P0])

o) —

which is the case when there is a contention and there is not enough space to

take both, the packet is rejected with probability 0.5.

6.1.3 Performance Measure

The performance measures that we are interested in are the throughput and
the mean delay. The mean delay of a turn back switch, S, is shown in the

previous section. The throughput can be calculated as follows :

throughput =1 — P,[0]

6.1.4 Solution Algorithm

For different modelling approaches (i.e. the Combined Rate Model and the

Feedback Model) the solution algorithm is different.

6.1.4.1 Combined Rate Model

We take the combined offered load ¢ and solve for P[0] and Tp of the inf-
nite queue {(approximated as a continuous time M/D/1 as discussed in section
6.1.2.2}. Then 1 — F[0] is used as an input parameter to calculate the steady-
state probability of the queue in the first stage, P [j]. We then calculate T;.d,

and Sq using the equations in section 6.1.2.3. 1 — P[0} is then used as an input
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paramieter to calculate another set of variables. and so on. The algorithm iy

shown as follows :

solve F[0]. Ty

FOR i:=1ton DO
solve P[;],0<; < K
solve T,, d,_,
solve S;_,

ENDFOR
solve S, and 1 — F.[0]

We vary the value of ¢ to plot the throughput-delay curve.

6.1.4.2 Feedback Model

We concentrate the feedbacks on processing element 1 in the following. L
@i, be the jth queue in stage 1. Note that for packets in the first stage quene
can come from two different sources (see Figure 6.1). If a packe: is rejected
before it enters Q, ;, it either came from Qo1 (PE 1) or Qo3 (PE 3). Hence with
probability 0.5, the rejected packet returns to Qo.1- The same argument applies
to a packet rejected at Q,,. Therefore the total returning rate from stage 1 back
to Qo is just the rejecting probability at stage 1. Let dli.j] be the probability
that a packet is rejected at the jth queue in stage i. Then the rejecting probability

for the uniform traffic case is as follows
o . 1
dfi.j] = PIK]- (5 (1= P_y{0]))

For a packet rejected at Q,,, it either came form Qi1 or Q5. A packet from

.1 came from either Qo1 or @y3. Hence with probability 0.25, the rejected
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packet returns to Qo.i- The path originates from Qo1 have 4 possible rejecting
points at stage 2. Therefore the total rejected traffic from stage 2 back 1o Qo is
the rejecting probability at stage 2. Similarly, the path has 3 possible rejecting
points in stage 3, and so on. To incorporate this feedback traffic to the inpu:
process. we add an iterative process to compute the rejecting probability in eacl
stage. A new offered load is calculated at the end of each iteration. The iterarive
process terminates when the rejected traffic converges. This iterative algorithin

15 as follows :

pi=q
REPEAT
for stage 0. solve P[0}, T
FOR i:=1ton DO
solveP,[;],0<j < K
solve T,, d,_,
solve S,_,
ENDFOR
solve S, and 1 — P,[0]
p=p+ L di]
UNTIL p converges

For a non-uniform traffic pattern, queues in the same stage are not necessarily
identical. Hence a more complicated tracing algorithm is needed to trace each

branching flow. This will be discussed in Section 6.2.
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6.1.5 Results

In this section, we would like to compare our analytical model to simulation
results. A medium sized network (6 stage) and a large sized network (10 stage,
will be compared to simulations. The Feedback Model and the Combined Rave
Model is compared against each other. A brief summary of their advantages
and disadvantages is given. The simultaneous mode! and the non-simultaneons

model are also compared.

6.1.5.1 Analytical Mode! vs. Simulation

We ran the Feedback Model for a 6-stage Omega network with buffer size
1 with a uniform traffic pattern. The results are plotted against simulations
in Figure 6.4. The throughput-delay curve climbs slowly until it reaches the
saturation point, at which point the delay increases rapidly. The maximum
throughput we can get for the 6 stage Omega is 0.769 when the combined rare
reaches 0.99. In Figures 6.6 and 6.7, we show throughput vs. offered load and
mean delay vs. offered load. respectively with a 95 % confidence range simulation
result. The simulation shows that the analytical model is very close to the
simulation.

For a larger sized network, we ran the Combined Rate Model for a 10-stage
Omega network with finite-buffer size ¢ with a uniform traffic pattern. The
result is shown in Figure 6.5. The maximum throughput the 10-stage Omega
can achieve is 0.721 which is lower than the 6-stage Omega. The reason is that
packets suffer more contention since there are 4 more stages. The simulation

verifies the analytical model in a large sized network.

106



Mean Delay

Mean Delay

8 x
< 4 turn back swiich
x simulation
R k
’ | o X == L]
:’ v L T r Ll L 1
S 22 < ) -z

Throughput

Figure 6.4: Analytical model vs. simulation for a 6-stage Omega

. — urn back switch

- x simulation

KR
4

10 -

0

o
-

0 T T L T T T LJ ¥

e t2 28 N

o
Throughput

Figure 6.53: Analytical model vs. simulation fot a 10-stage Omega

107



G-
— analytical mode]
1 e simulation

G a -
-t
=
a
= ]
=0
g
e C &=
=
ot

CZ=

o r ' ' —

o o 04 08 -:

Offered Load

Figure 6.6: Analytical model vs. simulation for a 6§ stage, 4 buffer Omega with

infinite buffer at PE under uniform traffic pattern

IC A
4 analvtical model
- simylation
>. -
3 0+
)
=,
—
=
S -
s
G -
-— -
4
0 T T T +
co 02 4 C6 DE

0
Offered Load

Figure 6.7: Analytical model vs. simulation for a 6 stage, 4 buffer Omega with

infinite buffer at PE under uniform traffic pattern
108



model -- combined load
40 9 model -- with feed back

Mean Delay

T v T Y T Y -
-3 -2 24 35 D3

Throughput ’

Figure 6.8: Feedback Model vs. Combined Rate Model

6.1.5.2 Feedback Model vs. Combined Rate Model

Next. we compare the performance of models using different assumptions.
The Feedback Model is compared to the Combined Rate Model in Figure €.3.
There is not much difference until late in the saturation area. The curve 's
basically the same for the uniform traffic pattern as predicted. The reason that
those 2 curves do not match near the saturation area is that the combined rate
model jumps from 0.9 to 0.99. If we were to run more detailed rates (0.91 ro
0.99), then these 2 curves would likely match. The advantage of the Combined
Rate Model is its simplicity and its straightforward solution algorithm. However,
the exact amount of feed back traffic can not be determined. The advantage of
the Feedback Model is that it gives more information about the resubmitted
traffic. The corresponding amount of rejecting traffic from a given offered load
can be solved for. In addition, the Feedback Model can be used to determine

the maximal allowable input rate to operate within the stable range. This model
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can also be extended to evaluate non-uniform traffic patterns.

6.1.5.3 Simultaneous Model vs, Non-simultaneous Mode]

In this section. the simultaneous model is compared to the non-simultaneous
model for different assumptions on sending and receiving packets. Two differern:
sized networks. 6 stage and 10 stage, are evaluated. The modelling approach
we use is the Combined Rate Model. The results are shown in Figures 6.9 an
6.10. For light load, the throughput-delay curve for both models are almo-:
the same. For medium to heavy load, the simultaneous mode] vields higher
throughput. This behavior is more obvious when the network size gets larger.
The reason behind this behavior is that when the queue reaches stase -1, the
non-simultaneous model rejects one packet and accepts another if there are two
incoming packets. The Simultaneous Model. however. accepts both. and :here-

fore increases its maximum queue length to K.

6.2 The Turn Back Switch Model with a Non-uniform Traffc Pattern

In section 6.1, we proposed a simple modelling approach for performance
modelling of a turn back switch with a uniform traffic pattern. The simpliciry
is due to the fact that the rejected packets have the same traffic patterns as tlhe
new packets do. Hence we can combine them into a single input source withour
distinguishing them. However, for non-uniform traffic pattern, this technique
cannot be employed. The feedback traffic (rejected packets) does not have the
same non-uniform traffic pattern as the new packets do. The contention and
rejecting place more emphasis on the heavily referred memory models. Hence

the rejected packets tend to have a more severe non-uniform pattern than the
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new packets do. We must combine these two different sources to create a cew

traffic pattern.

The Feedback Model. as discussed in section 6.1.4.9. distinguishes the feed-
back packets from the new packets. However, each path originating from stage
(0 to stage n of a general traffic pattern can be different. thus the modelling ajp-
proach using the Feedback Model needs to be extended to a more general one.
An extension of the basic Feedback Model to handle the general traffic model :.
discussed in section 6.2.1. For a particular path, general equations of the meax
system time §,’s are given. The rejected packets from this particular path is cal.
culated such that a total feed back traffic can be found. We propose a recursive
algorithm to find all possible paths. Results are verified through the simulation

for 2 general traffic patterns : an EFOS pattern and a hot spot pattern,

6.2.1 Modelling Approach
6.2.1.1 Mean Delay Equations for a Particular Path

For the non-uniform traffic pattern, each path originated from a processing
element to memory modules can be different. Depending on the address tag.
packets may experience different delay by taking different paths. In the following,
we concentrate on a particular path that a packet takes, j(0).;(1)...j(n). where
J(1) is a variable representing the position of the queue in stage ¢ along the patl.

Let T; ,;) be the random variable representing the time spent in j(z)'s queue
in stage i. Let d, ;) be the conditional rejecting probability for the packet after

it leaves stage i and before it enters stage 1+1. Let S, be the random variable

representing the accumulated system time after a packet enters stage i+1. For a
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Figure 6.11: The recurrent relationship among variables in a particular path

packet taking this particular path. its mean delay can be calculated as

T
Sq = 0.;(0)
1 = do 0
Scov + T .
S, = Dt ol <i<n
1 - dﬂ;(t)
Sn = Sn«-l + 4o in)

The explicit expression for §; in terms of T, ;; and d, ,(;, can be shown as follows:

Tm. m
51 — Z ‘—m(l J(m)

m=l Lle=g(l — dl+l—k.;(:+!—k)}

Therefore. the average system time for passing through this particular pa:h i<

Sn. = Sn—l +Tn.;(n]

n-1 T
m,;(m)
= 2 + T
—m—1 n.(n)
m=1 :::['JY1 (1 - dﬂ—k‘j(ﬂ-k]) ’

The algorithm to calculate S, is given as follows :

procedurePATH-DELAY
begin
for stage 0, solve P, ;0)(0], T, (0
FOR i:=1ton DO
solveP, ,(,(k].0 <k < K

solve T, i), dioy,i-1)
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solve S,_,
ENDFOR
solve 5, and 1 — Py (0]

end

6.2.1.2 Path Finding Algorithm

Once the address of a path is given, the mean delay of this particular pathi rcax,
be calculated using PATH-DELAY. To calculate the mean delay for the overa!!
traffic. the mean delays for all possible paths are calculated and averaged over
their proportions. A recursive algorithm that traces all possible paths starting

from one processing element is outlined as follows -

procedure PATH-TRACE (1J.portion)
begin
J)=k;
IF : < n THEN
use )(i} to find its destination, des, in stage 1+1 (l.e. j(i—1;
use des to find its routing probability routing
PATH-TRACE (i+1, des. portion - routing}
PATH-TRACE (i+1, des+1. portion - (1-routing))
ELSE
use the path information j(i)’s as inputs, call PATH-DELAY
accumulate total delay by S, ,.)- portion

end

114



To find all possible paths that onginate from a processing element k, we call the
above algorithm, PATH-TRACE(0k.1) Itisa depth-first algorithm such that
the path from processing element k to memory module 1 is reached first. [+ then
reaches memory module 2. and so on. After the trace reaches memory module 2%,
the algorithm terminates. The mean delays along different paths are properly
accumulated and calculated according to their contribution to the to:al delay.
The variable portion is the product of the routing probabilities from stage 1
to stage n along the path. So. when the path reaches stage n. the mean delav
is calculated and multiplied by portion. The weighted delay is then added 0
the total delay. This algorithm calculates the mean delay for packets originating

from processing element k.

6.2.1.3 Updating Traffic Pattern

The main difference between the modelling of a non-uniform traffic parrern
and the modelling of a uniform traffic pattern is the changes of the pattern. The
network begins with a given traffic pattern. After packets being rejected and re-
submitted, the overall pattern for all packets (new and resubmitted) is changed.
This process repeats until it reaches a steady state. The non-uniform trafic pat-
tern evolves from the original traffic pattern to some intermediate patterns and
finally settles down to a new steady-state pattern. Unlike the Feedback Model in
uniform traffic pattern modelling, each feedback traffic in the non uniform traffic
case may be different. Therefore, the modelling approach for non-uniform traffic
pattern 1s more complicated than the Feedback Model we discussed in section
6.1.4.2.

To understand the total feedbacks on PE 1, let us examine a 3-stage. Sx3

MIN. Let d[ij] be the rejecting probability of jth queue at stage i, as we defined
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Figure 6.12: The effect of feed back from different queues and different stages 1o

PE 1

in section 6.1.4.2. Let pacfi] be the probability of accessing memory module
L. A traffic pattern is defined through the values of pac[i]. The impact the
rejected traffic has on the traffic pattern of PE 1 of a 3-stage MIN is shown in
Figure 6.12. At stage 0, PE 1 submits the new packets to the network with a
traffic pattern that sends a portion a of the new traffic to memory module 1
and sends a portion b of the new traffic to each of the other memory modules

{ a+7-b=1). A rejecting may occur at Q,, with probability d[1.1]. Memorv

modules 1 to 4 are the possible destinations for a rejected packet at Q,,. The

rejected packet may head for memory module 1 with probability —2=. WVith
probability ;_9—33, the rejected packet is destined for memory modules 2. 3 or
1. Therefore, the feedback traffic resulting from contention at queue 1.1 {with
probability d[1,1]} only contributes to the traffic pattern of memory module 1 to
4. A packet rejected at Q, ; (with probability d[1,2]) has memory modules 3 to

8 as its possible destinations. The rejected packet is destined to one of these four
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memory modules with an equal probability %. Therefore, a rejecting that orerirs

at (13 contributes uniformly to memory module 5 to 8. The effect of rejecriny

()

packets from different queues at different stages on the traffic pattern for a
stage network is outlined in Figure 6.12. However. a rejected packet at stage 1
does not necessarily come from PE 1. Since the contention involves 2 different
sources. the rejected packet returns to PE 1 with probability % Similarly, a
rejected packet at @, may be destined for memory module 1 with probabiliry

1

= or destined for memory module 2 with :1_3:3 Since packets from + PE's mav

possibly be mvolved with a rejecting that occurs at stage 2, the rejected packer

returns to PE 1 with probability {. Therefore, with the given traffic pattern, the

resulting new patterns for PE 1 are :

pac[l]:=a-q+af3b-d[1,1]~%+aib-d[?,l]-é%—l-a’B.l}--lS-
pac(?] :=b-q+a+sb-d[l.l]-%+aib-d[z.néu-d[s.z]-%
PaCi3]:=b-q+aj%-d{l.l]-%Jr%-d[?,?,].%+1-d[3,31-é
pacl4] 3=b'q+aj%-d[l.l]-%+%.d[g‘g].iﬁ.l.d{&ﬂ_é
pacis) :=b-q+§-d[1.2}-%+é-d[2.3]-%+1-d[3,5]-§
pac|6] :=b'q+é-d[l.2]-é+%-d{2.3]-%+1-d[3.6]-%
pac(T} :=b-q+§vd[l.?]-%+%-d[2,4lé+1.d[3‘7},é
1 11 1 1
pac(8] :=b-q+z-d[1,2]-§+§-d[2,4]-z+1-d{3.8]-§

The new traflic patterns for other PE's can be calculated in a similar way.
The new traffic pattern is then used to generate another new traffic pattern.
This process repeats until it converges. The complete algorithm that determines

the temporary, new traffic pattern is as follows :
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procedure ROUTE-TRACE (1J)
begin
use j to find its destination, des. in stage 1+1
calculate d[i+1, des] and dfi+1, des+1]
IFi<n-1THEN
ROUTE-TRACE (i+1. des)
ROUTE-TRACE (i+1. des+1)
calculate new accessing probabilities

end

We call this procedure ROUTE-PATH(0.1) to begin the calculation for the
new pattern of PE 1. If the processing elements are not identical. ROUTE-
PATH(0,) are called for all processing elements j's. If processing elements are
identical, then ROUTE-PATH(0.1) is called only once to find the new rra#.

pattern.

6.2.2 Solution Algorithm

The turn back switch model uses a routing probability set to represent rhe
steady state traffic flow. The transformation and the superposition methods that
we proposed in Chapter 2 and 3 are used to transform a given non-uniform tratic
pattern to a set of routing probabilities. Then, the modelling approaches that
we propose in this section are incorporated into the following complete soiution

algorithm to solve for a turn back switch model:

INITIALIZATION

pi=q
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repeaf
for all j's 1 < € 2" solve P, ,[0] and T,
for i:=1 to n do
for ;=1 to 2" do
solve P, [kl 0 < k< K
solve T, ,
endfor
endfor
for j;=1to 2" do
call PATH-TRACE (0.1)
accumulate mean delay and throughput
endfor
for ;=1to 2" do
call ROUTE-TRACE (0,)
accumulate new accessing probabilities and new input load p
endfor

use new traffic pattern. solve new routing probabilities

until throughput converges or p > 1

The algorithm begins with an initialization program that sets the initial val-
ues of variables, and uses the transformation and the superposition methods to
calculate the routing probability set. Then the iterative process begins with the
initial load and initial traffic pattern to calculate the mean delay and the through-
put for the network. A new traffic pattern and a new offered load {combine both

the new packets and the rejected packets) are calculated. This iterative process
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stops when the throughput value converges or when the offered load exceeds |
The first condition is the case when the system reaches steady state. The second
condition is the case when the system reaches the unstable region.

This analytical model for the non-uniform traffic pattern incorporates the
transformation and the superposition methods that we proposed for the generaj
traffic pattern modelling in Chapter 2 and 3; therefore it not only is suitable
for non-uniform traffic patterns. but also can be used to evaluate any general
traffic conditions, for exampies. different traffie patterns for processing elements.
different input rates for processing elements, etc. We shall show the flexibilitv of
this analytical model by evaluating two traffic patterns. a hot spot traffic pattern

and an EFOS traffic pattern, and verify them with simulations.

6.2.3 Results

The analytical model for the non-uniform traffic pattern is used to evaluate a
hot spot traffic pattern which sends 2 % of the traffic to memory module | and =
of the traffic uniformly to other memory modules in a 6 stage Omega network.
The result is shown in Figure 6.13 with simulation data. The comparison shows
good correspondence between analytical results and simulation data.

For a general traffic pattern, we choose the EFOS traffic pattern. Analvtical
results for turn back switch with an EFOS pattern are verified through simulation
in Figure 6.14. The comparison indicates that the analytical model is quite
accurate.

From these 2 examples, we see that the analytical model for a MIN using
turn back switch as basic building block is a very good model under any general

traffic patterns. For a uniform traffic pattern, a simpler model can be found in

section §.1.
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6.3 The Blocking Switch

The blocking switch model has been discussed in Chapters 2 and 3. Howouver,
the model did not include an infinite queue at the PE. The model only deals wiris
packets that enter the network., Packets which are unable to enter the nerwonrk
are rejected. In order to compare the performance of the blocking swirch wirh
the turn back switch, the blocking switch model should be modified sucly rhar
it includes an infinite queue at PE to accommodate those rejected packets. Ti.
modeiling approach for this modification is described in section 6.3.1. A mert. .
to calculate the mean delays of a particular path is also discussed. The pertor
mance comparison of the blocking switch and the turn back switch is discussed

in section 6.3.2.

6.3.1 Modelling Approach
6.3.1.1 Infinite Queue Model

We modify the general traffic pattern model that we proposed in section 3.2 7
to incorporate an infinite queue at the processing element. The PE generates o
new packet and places it at the end of the infinite queue. The server of the infini-o
queue tries to submit the head-of-line packet into the network in every cyvele [f
there is buffer space in stage 1, the packet is accepted by the queue in stage
1. If there is no space available. the packet stays in the infinite queue and tries
again in the next cycle. When the network reaches a steady state, the infinite
queue server will have a steady state blocking probability that a given packert s
blocked in a cycle. Let ¢ be the probability that a new packet is generated in one
cycle. Let b be the blocking probability that a packet in the server is blocked.

The infinite queue begins at state 0. It moves to state 1 when there is a new
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Figure 6.15: Markov chain for a discrete time queue at PE

packet being generated (with probability q). The queue moves from state | 1o
state 2 i there is one incoming packet and the packet in the server is blocked,
The transition probability for this case is ¢ - b The queue returns to state ) :f
there is no new packet coming and the packet in the server is not blocked. The
transition probability is (1 — ) - {1 — b). Since this discrete time, discrete state
queue can only make unit step transitions, it remains at state 1 with probability
1-g-b—(1-g) (1=b). The other states have the same transitions as the state
1 does. The Markov chain for this discrete time, discrete state queue is shown

in Figure 6.15. The steady state probabilities can be solved as follows -

q
P ] — ——
0 T
1 qb .
P = - Py k21
C Ty aTgaee) R k2

The mean queue length is :

- -9
V= k.pk=_q(____
g:l l-b-gq

Using Little's result, we get the mean delays :

T_—_Z-__ﬂ_
g l-b-g

Including this delay in the blocking switch model that we proposed in Chapter 2
and 3, we get the mean delay for a packet passing through the queue at PE and

the interconnection networks.
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6.3.1:2  Delay Calculation along a Particular Path

In section 6.2.1.1, we proposed a method to calculate the mean delay along
a particular path in an interconnection network using turn back switches. It
provides more information in addition to overall system delays. The method is
especiaily useful if the traffic pattern is not uniform. The delay of a particular
path of interest can be determined.

The mean delay of a particular path in an interconnection network using rhe
blocking switch can also be determined. Given a path, j(0).j(1), ~.jln) where
J(¢) represents the index of a queue in stage i, the mean delay can be determireci
by summing the delays in each stage. When the system reaches steady state. the
state probabilities of each queue are known. We first calculate the mean queue
length using the steady state probabilities. The throughput of each queue can he
calculated using P, and the queue’s blocking probability. We then apply Lirtle’s
result to each queue to solve for the mean delay. Summing the delays along the

particular path. we get the mean delay for a particular path.

6.3.2 Results

We compare the blocking switch model to the turn back switch model in
Figure 6.16. For light load, the blocking switch has lower delay than the turn back
switch does. When the system load is small. the contention probability is very
small; therefore persistent blocking does not cause severe system degradartion. If
a contention occurs, the turn back switch rejects the packet and resubmits it at
PE while the blocking switch simply blocks it. Since the contention probability is
small, the blocked packet is most likely to get through in next cycle while in the

turn back switch, it has to begin from stage 0. Hence, a packet suffers more delay
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uniform traffic pattern

in a turn back switch when the system load is small. However. the throughpt-
delay curve of blocking switch jumps up rapidly when the svstem load reach.
1ts maximal capacity. When the system load reaches 0.68. the throughput-delax
curve of the blocking switch crosses the curve of the turn back switch and quick!s
reaches saturation. The turn back switch performs better under heavy svsiem
load. The maximal throughput the turn back switch can achieve is 0.760. Tl
reason that the turn back switch performs better in heavy load is due to relecting
the collided packets. Rejecting packets removes the persistent blocking behavior.
the main reason behind the saturated tree. A blocked packet keeps blockine
other packets as long as it occupies the server. A rejected packet returns to PE.
thus the packet that was behind it will not be persistently blocked as the blockin

switch does. Therefore a higher throughput can be achieved.



6.4 "The Rotating Switch Model

Observing the different advantages the blocking switch and the turn back
switch have in different load FANgEs. we propose a new switching element thar
shares the advantages of the hoth blocking switch and the turn back switch. The
advantage of the blocking switch lies in the light system load range. During this
range. a packet losing a contention is blocked locally, instead of being rejected
and returned to the processing element. Thus a lower delay can be achieved
The advanrage of the rurn back switch is the removal of persistent blocking. The
new switching <cheme we propose combines both advantage. We would like to
rerain the locality principle of the blocking switch and the rejecting scheme of
the turn back switch,

A rotating switcl is hasically a kind of turn back switch. When a contending
packet finds no buffer space or loses a contention. it is rejected. The difference
heoween a rorating switch and a turn back switch is where to re-submit :he
rejected packet. The turn bhack switch resubmits it to processing element queue.
The rotating switch rotates the rejected packet from the server to the end of the
Gueve. This rejecting scheme not only removes the persistent blocking, burt also
re-submirs a rejecred packet in a local queue. The two different advantages that a
blocking switch and a turn back switch each has are now combined in the rotating
swirch. Therefore the performance of the rotating switch should be better than
the performance of both the blocking switch and the turn back switch, A rotating
switch retains the rejecting operation (removing the persistent blocking) and
rotates the rejected packet to the end of the queue {locality principle). The

configuration of a rotating switch is shown in Figure 6.17.

The Markov chain of a rotating switch is exactly the same one as discussed in
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Figure 3.2. Instead of being blocked, a packet is rotated to the end of the queue.
For a uniform traffic pattern, the rotating scheme means that in each cycle a
packet in the server has a renewal choice of destination. The rotated packet is
treated as a new packet being submitted to the end of the queue. Therefore
the modelling of the rotating switch is simple : we use the analytical model
e-vposed in Chapter 3. with the addition of an infinite queue at the pruvessiy
elements. The infinite queue is modelled as a discrete time queue as we discussed
in section 6.3.1.1. The model in Chapter 3 assumes that a packet has a renewal
output choice in every switch. The analytical result is shown in Figure 6.18.
The network that we modelled is a 6 stage, finite buffer size 4 in each switching
element and an infinite queues at PE's.

As predicted, the throughput-delay curve is better than the curves of the
blocking switch and the turn back switch. For light load cases (¢ < 0.3). the
rotating switch is almost the same as the blocking switch. A packet losing a
contention is either blocked locally or rotate to the end of local queue. Since the

blocking probability for these two models are the same, re-inserting the packet at

the server or at the end of the queue has the same delay performance. However,

127



—=o— urmn back switch
—t— blocking switch
rotating switch

15 =

Mean Delay

A

A

r T —

- T ¥
3 23

b’f‘hroughput )

[
(&)
<
+
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pattern

since the blocking switch still has a small probability of persistent blocking. the
blocking switch has a slightly higher delay when the offered load lies in the range
between 0.4 and 0.5 (the difference is too small to be shown on the figure .
Increasing the system load, the rotating switch is much better than the bloeking
switch. The reason is the removal of persistent blocking. In heavy system !oadl
cases. persistent blocking severely degrades system performance.

The rotating switch is better than the turn back switch in every aspect.
When the system load is heavy, the rotating switch outperforms the re-submission
switch. The maximal throughput the rotating switch can achieve is 0.832. The
turn back switch can only achieve 0.76. The difference between these two models
is where to re-submit. We expect the turn back switch to have a higher delav
due to re-submission at processing elements. A rejected packet has to go througi

contention and rejecting again in each stage. Surprisingly, the rotating switcl
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has a higher throughput than the turn back switch. This better throughpitr
performance results from the different Markov chain assumption. When a quene
reaches state K-1. the rotating switch can reach state K (full buffer) in nexr
cyvcle. For the turn back switch. the queue can only remain at state K-1 or move
down to state K-2 {see the discussion in section 6.1.2.1). The rotating switch can
accept only one packet when it is in state K-1. But the packet in the server mighs
be blocked. and resubmirted to the end of the queue. The queue thus moves ro
state K. In the same situation, the turn back switch rejects the packet and re-
submits it to the processing element. hence state K is never reached. Therefore
the rotating switch has a higher throughput than the turn back switch,

The rotating switch combines the advantages of the locality principle ( bloek-
ing switch) and the removal of persistent blocking (reject switch). As a resuit.

the throughput-delay curve is better than the other two switches.



CHAPTER 7

Summary and Future Research

7.1 Summary

In this dissertation, severa] analytical models were proposed to approximare a
finite-buffered interconnection network with general traffic patterns and different
switching architectures. These models were analyzed using an iterative approach.
The blocking switch models were presented ip Chapter 2. 3. 4 and 3. The turn
back switch model and the rotating switch model were presented in Chapter 6.

A decomposition and iteration model was proposed in Chapter 2 to analvze
an interconnection network with both a specific hot spot traffic pattern and
a uniform traffic pattern. It was shown that contention for the same output
queue degrades the system performance in the unbuffered case. With a finite
number of buffers added at the output ports of each switching element. rhe
system performance was improved significantly with a uniform traffic pattern.
However. buffering does not improve the system performance to a satisfactory
degree when a severe hot spot traffic pattern was presented. This indicates rthat
buffering cannot resolve the hot spot problem. Additional means for controlling
the hot spot is needed.

In all these models. we used ag iterative approach to solve for the probability
of acceptance from which we found the mean delay. The saturated tree was ana-
lyzed through the calculation of the mean busy buffer size in the tree. A method

for calculating an upper bound for the tree build up time was proposed and com-
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pared to other analytical results. With the renewal routing choice assumprion.
the simulation indicated that the decomposition and iteration mode] is very ac-
curate for networks of any size. The analytical model was extended to analyze
an interconnection network with any general traffic pattern. A transformarion
method was proposed to transform a given traffic pattern (in terms of accessing
probabilities) into a set of routing probabilities. The routing probabilities reflect
rhe steady state behavior of the traffic pattern. Incorporating the transforma-
tion method in the decomposition and iteration model. the performance of an
Interconnection network whose processing elements have the same general ourpite
traffic pattern can be analvzed.

A superposition method was proposed in Chapter 3 to analyze an interconnec-
tion network whose processing elements have their own output traffic patterns.
A wetghting factor was proposed to be incorporated in the superposition method
to analyze an interconnection network whose processing elements have their own
input rates. The Not Uniform Traffic Spot (NUTS) traffic patterns were ana-
lyzed as examples. The NUTS traffic pattern is a special pattern which seems
uniform outside the network, but forms congested spots along the overlapping
paths inside the network. Without the renewal routing choice assumption. rhe
simulation indicated a significant discrepancy between the analytical model and
the simulation result. The discrepancy was attributed to the model’s failure ro
capture the persistent blocking effect.

An approximation was proposed to capture the persistent blocking effecr in
Chapter 4. The steady state probability during which a server is blocked was
calculated. We then assumed that a server is inactive with this probability. The
simulation showed that this approximation greatly diminished the discrepancy

between the simulation and the analytical model. The approximation is very
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accurate for both a uniform traffc pattern and a EFOS traffic pattern. However.
the approximation does not totally capture the effect of persistent blocking with
a severe hot spot traffic pattern. This remains as a future research topic.

An extension of the general traffic pattern model was proposed in Chapter
3 where cach processing element has a finite number of buffers to &CCOMMmo-
date the rejected packets. Simulation indicated the model was Very accurate.
Furthermore, a rate adjusted model was proposed to reduce the mean delavs
while maintaining the throughput. The mean queue length and the mean delavs
of models with and without the rate adjusted method were compared. [t indi-
cated a significant reduction in mean delay and mean queue length were achieved
without sacrificing throughput performance. The maximal allowable inpur rate
to satisfy a given loss probability was also determined.

An analytical model for a turn back switch was proposed in Chapter 6. A
recurrence equation for the mean delay was proposed for an interconnection net-
work with a uniform traffic pattern. A solution algorithm which combines hath
the Markov chain analysis and the mean delay calculation was discussed. The
simulation showed that the re-submission model was very accurate for networks
of different sizes. A detaijled evaluation of the feedback traffic was proposed for an
Interconnection network with a non-uniform traffic pattern. The feedback traffic
changes the overall traffic pattern if the original traffic pattern is not uniform.
An iterative model which changes the traffic pattern in each iteration accord-
ing to the feedback information was proposed. A hot spot traffic pattern and a
EFOS traffic pattern were analyzed. The simulation showed good agreement for
both traffic patterns. The turn back switch model was compared to the blocking
switch model. The throughput-delay curve showed that each switching archirec-

ture is good in a certain range of offered load. This led us to propose a new



switching architecture, the rotating switch. which combines the advantages of
both the turn back switch and the blocking switch. An analytical model for rhic
new switching architecture was proposed. and its performance was compared o
borh the turn back switch and the blocking switch. The throughput-delay curve
indicated that the rotating switch outperforms both the turn back switch and
the blocking switch in every range of system load. The rotating swirch model
was analyzed only for an interconnection network with a uniform traffic patrern.
An extended model which iteratively changes the traffic pattern to account for

the feedback traffic is to be done in the future.

7.2 Future Research

There are some interesting problems for future research.

The first is to compare the three analytical models with different switching
architectures for the rate adjusted case. This will show the performance of each
model under the range of stable operation.

It is necessary to have a model for slow memory modules. The memory
modules in the real world are not necessarily fast enough to take out a packet
every cycle. Thus a relaxation on the speed of the memory modules is needed
such that each memory module has its own speed.

In real world applications. a processing element might generate a message
which contains several packets destined for the same memory module. This can
be modelled as bulk arrivals to the processing element.

There may be different priority classes of packets as inputs in the real world.
The controlling mechanisms for different switching architectures in order to
achieve performance goals is an important issue which should be investigated.

Finally. the modelling and the methodology to control or to prevent hot spots
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from degrading the System performance is needed.
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