Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ANTFARM: TOWARDS SIMULATED EVOLUTION

Roben J. Collins December 1990
David R. Jefferson CSD-900048

AntFarm: Towards Simulated Evolution

Robert J. Collins
David R. Jefferson

November 1990

Technical Report UCLA-AI-90-10

AntFarm: Towards Simulated
Evolution*

Robert J. Collins!
David R. Jeffersont
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90024

Abstract

The most easily observed ant behavior is workers foraging for food.
Foraging workers do not eat the food, but carry it back to the nest,
where it is processed and consumed by all members of the colony. In
many species, a high degree of coordination and cooperation between
foragers is observed (usually mediated by pheromone communication).

We would like to understand more about the evolution of coop-
erative foraging. In this paper, we describe a computer program
called AntFarm, that simulates the evolution of foraging strategies
in colonies of artificial organisms that resemble ants. AntFarm is
work in progress, and is being used to investigate issues surrounding
simulated evolution of complex behaviors in complex environments,
the evolution of cooperation among closely related individuals, and
the evolution of chemical communication. We describe our genetic
algorithm for simulating evolution. We also discuss the issue of the
representation of artificial organisms, and empirically compare several
ANN encodings based on their ability to evolve foraging behavior in
AntFarm ants,

*To appear in J. D. Farmer, C. Langton, S, Rasmussen, and C. Taylor (Eds.),
Artificial Life II, Addison-Wesley, in press.

Electronic mail address: rjc@cs.ucla.edu.

tElectronic mail address: jefferso@cs.ucla.edu.

1 Introduction

We are attempting to simulate the evolution of complex behavior (rather
than physical morphology) in artificial organisms. In this paper, we consider
the simulation of organisms that live and reproduce in relatively complex
environments. with many sensors (external and internal). and many possible
actions at each moment. In addition. the organisms possess internal mem-
oryv, allowing their behavior to be history sensitive. In the course of its life
each organism is born. makes thousands of decisions (eat, move. etc.). and
eventually dies. The reproductive success of each organism is affected by irs
behavior throughout its lifetime.

We are particularly interested in the evolution of cooperative central place
foraging in ants. AntFarm is a computer program that simulates an evolving
population of ant colonies whose reproductive success is a function of the
amount of food carried to their nest, producing a selection pressure favoring
better foraging strategies. Each colony is made up of a small number of
genetically identical ants, whose behavior is specified by an artificial neural
network (ANN). In addition to the ability to sense and carry food, the ants
can sense and drop pheromones {chemicals used by ants for communication).

AntFarm is work in progress. Eventually we will attempt to determine
the conditions that are necessary for the evolution of cooperation {mediated
by chemical communication) in central place foraging. Johnson, Hubbell.
and Feener have developed a model of optimal central place foraging in ant
colonies that predicts that the degree of cooperation should be a function
primarily of the distribution of food in the environment [14]. While this
model predicts when cooperation pays off, under what conditions an optimal
strategy will actually evolve is an open question.

So far, we have completed the implementation of AntFarm, and are able
to consistently evolve (solitary) foraging behavior. To get to this point. we
have had to design both a genetic algorithm that closely resembles natural
evolution, and a new ANN representation that is more suitable for evolution-
ary experiments than those used in previous studies. Our genetic algorithm
uses local competition and mating, rather than the usual panmictic (random
mating) scheme. In addition, we feel that a clear separation between the ge-
netic algorithm and the simulated world/organisms is necessary to conduct
unbiased evolutionary experiments. Hence our genetic operators are applied
to structureless bit string chromosomes.

The need for an appropriate artificial organism representation has been
a major obstacle, which we have recently overcome. A new ANN representa-
tion is necessary, because other behavior function representations either are
not appropriate for biologically motivated simulated evolution, do not scale
well to number of inputs/outputs required for AntFarm, or empirically are
not capable of evolving foraging behavior in AntFarm. From this struggle,
we have abstracted a number of properties that are necessary for organism
representations that are to be used in simulated evolutionary experiments.

2 Microanalytic Simulation of Evolution

The computer simulation of evolving populations is important in the study of
ecological, adaptive, and evolutionary systems [22]. Only the simplest genetic
systems can be completely solved analytically, and evolutionary experiments
in the laboratory or field are usually limited to at most a few dozen gen-
erations and are difficult to control and repeat. Simulated evolution makes
it possible to study evolutionary systems over hundreds or even thousands
of generations. By their very nature, computer simulations are easily re-
peated and varied, with all relevant parameters under the full control of the
experimenter.

Most computer simulations in biology (including evolutionary simula-
tions) are based on solving differential equations from mathematical mod-
els [20, 21]. Due to mathematical limitations, models of evolving systems
are usually simple and unrealistic. Complex models that incorporate a large
number of both intrinsic factors (e.g. the life history of the organisms) and ex-
trinsic factors (e.g. weather, competitors, etc.) are more accurate and useful.
Unfortunately, such complex evolutionary models are difficult or impossible
to describe analytically.

Although most bioclogical simulations are equation-based, simulations
based on the observation that the execution of a computer program is very
similar to the life of an organism have emerged in recent years (22, 23,7, 4, 24,
13]. In such simulations, each organism is represented by a program, as are
the various environmental processes: the population of executing programs
simulates a population of living organisms and the environment. Rather
than attempting to capture the complex global dynamics of the population
and environment in a set of equations, only the local interactions between

the individual organisms and environmental factors are modeled. Based on
these relatively simple local interactions, the complex global behavior of the
population emerges.

This sort of “life-as-process” simulation is referred to as microanalytic,
meaning that each individual organism and environmental effect is separately
represented, and the biologically significant events in an organism’s life are
all separately simulated in detail [3]. Each organism in the population is
represented as a program, and its life as a process: a detailed sequence
of events, including its birth, its interactions with a dynamic environment
(potentially including many of the other organisms in the population), its
mating and reproduction (if any), and its death.

2.1 Biological Issues

While we cannot use simulated evolution to reconstruct an actual situation in
the history of natural life, we can explore particular hypotheses, eliminating
some and giving credence to others. Such simulations provide the researcher
with an artificial world in which to perform evolutionary experiments that can
be fully controlled and repeated, and can span a large number of generations.
Simulated evolutionary experiments might someday be used to shed light on
a number of open evolutionary problems, including

e modes of speciation (which of the many hypotheses are most likely, and
in which sexual systems and ecological situations),

¢ the evolution of mutation and recombination rates,

o the evolution of information processing behavior (e.g. sensory-motor
integration, communication, etc.),

o the evolution of sexual reproduction (i.e. why is it maintained in com-
petition with asexual reproduction?),

e punctuated equilibria (i.e. is it true that most evolution occurs at spe-
ciation events, and not within species?),

e the dynamics of the evolution of predator—prey “arms races,”

e the influence host-parasite interaction on evolution rates,

e the stability of ecosystems,

o the evolution of evolutionarily stable strategies,

e sexual selection and the evolution of maladaptive characteristics, and
» the evolution of cooperation (especially among kin).

We have focused our attention on a smaller question: the evolution of central
place foraging strategies in ants. We are exploring the evolution of the use
of chemical communication and cooperative foraging within ant colonies.

The dominant insects throughout the world are the ants. All ant species
have eusocial societies, characterized by overlapping generations, care of
young by adults, and adults divided into reproductive (kings and queens)
and nonreproductive (workers) castes. Ants live in colonies ranging in size
from a few individuals to more than 20 million, all with a high degree of
organization. Nearly all communication between ants is either tactile, vi-
sual, or chemical. Large-scale coordination is achieved through the use of
pheromones.

Each individual ant is relatively small and simple, typically performing
only 20 to 42 distinct behaviors [12]; yet the emergent behavior of the colony
as a whole is amazingly complex. In many contexts, myrmecologists treat
the whole colony as a single superorganism. The unparalleled success of
these superorganisms in all parts of the world (perhaps as many as 20,000
species [12]) speaks well for the strength and versatility of the eusocial colony.

Although we are strongly motivated by the example of real ants, we do
not feel bound to model them exactly. Our goal is to use AntFarm to verify
that approximately optimal cooperative foraging behavior consistent with a
model proposed by Johnson et al. {14] can evolve by natural selection, and
to explore the conditions favorable to its evolution.

Optimal Central Place Foraging

Central place foraging consists of two phases: the search for food and its
recovery to a central location [19]. Much of the cost of foraging is associated
with search [6, 17|, but all of the payoff is from recovery, which consists
primarily of transportation of the food to the nest. Foraging strategies that
mininmze search time will clearly be advantageous.

The Johnson, Hubbell, and Feener model of central place foraging in
eusocial insects is fairly complex and the details are beyond the scope of this
paper, but it predicts the effect of the size of food patches on the number of
foraging workers and the style of foraging that is used. In species that feed
on small patches of food, a small number of workers, each foraging alone is
optimal. Recruitment of nestmates to help recover the food does not pay off
because the food patches are small. In this model, the search for food (in
the absence of recruitment) is assumed to be a random walk beginning at
the nest so that the area around the nest is searched many times by different
foragers. As the number of foragers increases, the amount of additional area
searched decreases. The diminishing returns for additional foragers results
in a small foraging force being optimal.

Species that feed on large patches of food should have a large foraging
force, with heavy reliance on recruitment. When a patch is too large for
the discovering ant to harvest alone, it pays to recruit (rather than rely on
rediscovery by other foragers). Recruitment of nestmates to help harvest a
known food source can nearly eliminate search costs. With reduced search
costs, the diminishing returns for additional workers is not such an important
factor, resulting in a large foraging force being optimal.

In real ants, recruitment to harvest food resources takes many different
forms [12]. In the simplest case, a second ant is physically led to the food in
a process called tandem running. More common is group recruitment, which
uses a short-lived pheromone trail to bring up to a few dozen workers to the
food source. The most impressive form is called masgs recruitment. In mass
recruitment, a relatively fixed, long-lived pheromone trail leads hundreds or
thousands of workers to the food source. The trail is reinforced by each
successful worker. Mass recruitment is used only in species that forage for
food that is found in very large clumps.

The Genetic Algorithm

The biological focus of the AntFarm experiments requires us to closely model
the process of natural evolution. Genetic algorithms are loosely based on nat-
ural evolution, and have been used by computer scientists and engineers as an
optimization method for more than 25 years [11]. Unfortunately, traditional
genetic algorithms are not well suited for simulated evolution.

Genetic algorithms are typically used to search for good solutions for

complex optimization problems {9], i.e. a string of function parameters that
{more or less) optimizes a particular function. A genetic algorithm evolves a
population of these strings {chromosomes) by assigning each a score (fitness
value), based on the quality of the solution. The likelihood that a particular
string will be chosen for mating is a function of its score and the rest of
the population. The key to the genetic search is that those chosen to mate
reproduce with variation.

The mechanics of genetic algorithms are relatively simple, consisting of
four basic parts:

1. assigning fitness scores,
2. selection and mating,
3. recombination, and

4. mutation.

The assignment of fitness scores is wholly dependent on the particular appli-
cation. New populations are created by the repetition of these steps. Because
selection is biased towards strings with higher scores, the populations typi-
cally achieve higher and higher scores as generations pass. In this section, we
briefly describe our genetic algorithm and informally compare and contrast
it with traditional genetic algorithms and natural evolution systems.

In most genetic algorithms, there is only one gender, so that any indi-
vidual can mate (sexually) with any other individual (although simple ex-
tensions allow for two or more genders). The parents of the next generation
are selected probabilistically based on their score (defined by the objective or
fitness function) and the scores of all the other members of the population.
Let f; be the fitness score of string ¢, and N be the number of strings in the
population. The probability that string : is chosen to be a parent is usually
defined to be something like

N1 (1)

and the strings are randomly paired according to this distribution for sexual
mating.

Although this panmictic (random global mating) scheme is simple and
widely used in genetic algorithms, it is a poor model of real evolution. One
of the basic assumptions of Wright’s shifting balance theory of evolution is
that spatial structure exists in large populations [25, 27, 28, 29, 30, 5]. The
structure 1s in the form of demes (8], or semi-isolated subpopulations, with
thorough gene mixing within a deme, but restricted gene flow between demes.
One way that demes can form in a continuous population and environment
is isolation by distance: the probability that a given parent will produce
an offspring at a given location is a function of the geographical distance
between the parent and offspring locations.

To simulate isolation by distance in the selection and mating process,
we place the artificial organisms on a toroidal, 2-dimensional grid, with one
organism per grid location. Selection and mating take place locally on this
grid, with each individual competing and mating with its nearby neighbors.
In his quantitative analysis of isolation by distance, Wright assumnes a normal
distribution for parent-offspring distances [28, p. 303]

Normal distributions of parents relative to offspring are to be
expected if dispersion occurs by a long succession of random
movements. . .

In our genetic algorithm, the parents are chosen during short random walks
that begin at the offspring location, one parent per walk. The highest scor-
ing individual encountered during the random walk is chosen as the parent
(breaking ties in favor of those encountered later in the walk). The parents
are chosen with replacement, so it possible for the same high-scoring indi-
vidual to be encountered during both random walks, in which case it would
act as both parents for the offspring.

In genetic algorithms used for optimization, it is common to exploit prob-
lem specific or representation specific information in the implementation of
the genetic operators in an effort to speed the search. However, to cre-
ate unbiased and realistic evolutionary experiments, it is necessary to avoid
building the experimenter’s preconceptions into the simulation. Therefore,
we require a clear separation between the genetic algorithm and the simulated
organisms/environment [3].

The selection phase of the genetic algorithm produces a pair of strings
(chromosomes) for each offspring that is to be produced for the next gen-
eration. Recombination mixes the genetic information of the parents when

8

Parent 0

Parent 1

Parent 0 "X X

Parent 1

Offspring

Discarded

(c)

Figure 1: A two-point reciprocal recombination. (a) The parent chromo-
somes are aligned. (b) At a random point, the chromosomes cross. {c¢) The
chromosomes are cut and rejoined at the crossover point, resulting in new
gene combinations. One of the chromosomes specifies the offspring, and the
other is discarded.

producing offspring, so an offspring chromosome contains some of the genetic
information from each parent. We only consider reciprocal recombination,
where equivalent length strings are exchanged {Figure 1). The model of re-
combination that we use in our genetic algorithm begins with an alignment of
the pair of chromosomes (Figure 1a). At some random point (or points), the
chromosomes cross (Figure 1b), then the chromosomes are cut and rejoined
at the crossover point(s) {Figure 1c).

Our model of crossover is not typical of most genetic algorithms because
it operates on the chromosome as a bit string, rather than, for example, a
list of parameters. It is defined completely independently of what or how
the genetic information is encoded in the chromosome, which is biologically
realistic.

Qur recombination operation produces two haploid chromosomes. One
of these (chosen randomly) is discarded, and the other is retained for use as
the offspring chromosome. In practice, we only explicitly generate one of the
two chromosomes.

After the process of recombination, the genetic algorithm mutates the
new chromosome, producing the final version that describes the offspring.
Many classes of mutation appear in natural genetic systems, including base

substitution, deletion, frame—shift, insertion, inversion, translocation, dupli-
cation, etc. Although most of these types of mutation can make sense in
the context of a genetic algorithm, we only consider base substitutions, i.e.
the substitution of one nucleotide for another. We simulate a mutation by
flipping a bit (change 0 to 1, or 1 to 0) in the bit string chromosome. Like
the recombination operation, this formulation of mutation differs from most
genetic algorithm implementations in that the mutations make small changes
in a structureless bit string, rather than making small changes to a problem-
specific parameter.

2.2 Computational Issues

Microanalytic evolutionary experiments are computationally large in many
dimensions (including population size, number of generations, size of the
genome, size of the behavior function, size of the sensory/effector/memory
apparatus, size of the environment, etc.). Until recently, these experiments
were not computationally feasible, and even today parallel computation is
required for AntFarm experiments.

The panmictic selection and mating scheme of typical genetic algorithms
is not very well suited for a massively parallel implementation, because the
survival and mating success of each individual involves global knowledge of
the population (Equation 1). The local competition/mating scheme that
our genetic algorithm is fully distributed, requiring only local information,
is both biologically more realistic and well-suited for a massively parallel
implementation.

3 AntFarm

AntFarm is a microanalytic simulation that evolves group foraging behavior
in colonies of ant-like organisms. The AntFarm evolution is driven by the
genetic algorithm described above, operating at the level of colonies (superor-
ganisms), not individual ants. The actions (determined by the ant’s behavior
function) of all of the ants in a colony contribute to its fitness. Each colony
has a single chromosome that codes for the behavior functions of all of its
ants {all members of a colony are identical, although each ant receives differ-
ent sensory input, so they behave differently). Fitness is based primarily on

10

% % 7
il 7 Nest
s 7 | 7 _

e 7z
SRR S| [Food
7
A 124 [Z Pheromone
O 7/2

Figure 2: The AntFarm environment contains a nest, food, pheromone, and
ants. At the beginning of each generation, all the ants are in the nest, food is
distributed in the environment, and not pheromones are present. The actual
environment i1s 16 x 16.

the number of pieces of food carried into the nest, so better foraging means
a higher score and greater reproductive success, causing selection pressure
for better central place foraging strategies. The initial population consists of
randomly generated chromosomes.

AntFarm evolves a population of 16,384 colonies, with 128 ants per colony,
for a total of more than two million ants. Each colony lives in its own separate
16 x 16 grid environment, where each location contains some number of ants
along with information about the presence or absence of a nest, the amount of
food, and the amount of the pheromone (“odor”) at that location (Figure 2).
Any pheromones that are dropped by the ants slowly diffuse and eventually
disappear. The nest of each colony is located at the center of its environment,
and the colony’s genetic information is represented by a 25,590 bit haploid
chromosome.

Each generation begins with each ant in its nest and its memory ini-
tialized to zero. All ants live throughout the entire generation. A score is
calculated for each colony based primarily on the amount of food deposited
in the colony’s nest in 100 time steps, although the “metabolic” costs of ant
movement, pheromone production, etc. are also taken into account. Each

11

unit of food is worth 1000 points, each unit of pheromone dropped by an
ant costs 0.1, and each other action (move or pickup/drop food) costs 0.1.
The inclusion of metabolism in the score results in selection pressure towards
more streamlined foraging strategies. During reproduction, both crossovers
and mutations occur at a rate of about 0.0001 per bit (about 2.6 mutations
and crossovers per colony each generation), which has been shown empirically
to be satisfactory.

At the beginning of each generation, the environment is reinitialized so
that no pheromone is present and food is placed in a new configuration from
a fixed probability distribution. The food pattern seen by each colony in a
single generation is identical so that no colony has a chance advantage.

In each of the 100 time steps, the ant’s sensory inputs {and 21 bits of
internal memory) are processed by its behavior function (represented as an
ANN), producing a set of actions to perform (Figure 3). An ant has a 3 x 3
sensory array centered on its current location that can sense

¢ the presence of food,
¢ the presence of a nest, and
¢ the amount of pheromone.
In addition, each ant can sense
e whether or not it is carrying food,
e the correct direction to its nest (a compass sensor), and
¢ 4 bits of random input.
In any time step, an ant can decided to do any or all of the following
e move to any of the eight neighboring locations,

e pick up a unit of food (although it can carry a maximum of one unit
of food),

¢ drop a unit of food, and

¢ drop from 0 to 64 units of the pheromone.

12

{ Sensory [nputs ‘
: (memory) ;
. Motor Qutputs :

Figure 3: The internals of an AntFarm ant. The box represents the behav-
tor function which is computed by an ANN. The behavior function receives
sensory inputs and its internal state (memory), and produces motor outputs.
Among other things, the motor outputs control locomotion and the produc-
tion of the pheromone (from the tip of the abdomen, although in AntFarm
we do not simulate the morphology of the ant).

13

We chose not to try to evolve both foraging search strategies and strategies for
navigating back to the nest. Real ants typically use elaborate techniques for
navigation [12], often involving memorizing landmarks, calculating average
angle of the sun during foraging, etc. We provide the ants with a special
sense organ (the “compass”) that performs the task of navigation, although
the ants still must evolve behavior to interpret and use the compass correctly.

The AntFarm simulation is implemented on a Connection Machine [10], a
massively parallel supercomputer, consisting of up to 65,536 1-bit processing
elements. AntFarm is written in C++ [18] and uses the CM++ [1] interface
to the Connection Machine.

3.1 Comparison of AntFarm to Genesys/Tracker

AntFarm 1s a direct descendent of the Tracker task studied on the Genesys
system [13]. Genesys/Tracker is also a massively parallel microanalytic evolu-
tionary sitnulation, evolving simple organisms that can follow a noisy, broken
trail. The behavior of the Genesys organisms is produced by either an FSA
or a 3-layer fully connected recurrent ANN,

The main differences between Genesys/Tracker and AntFarm are a result
of the biologically motivated task (central place foraging) of AntFarm. Since
AntFarm is trying to model natural evolution, it is implemented with a more
realistic genetic algorithm (local competition and mating, rather than global
competition and random mating). In addition, the simulated organisms are
more complex in many dimensions (summarized in Table 4).

3.2 Representation of the Behavior Function

The ANN organism representation that was used in Genesys [13] encodes
the network as the concatenation of the binary integer weight (connection
strength) values. The strength of each connection is under genetic control,
but not the connectivity pattern itself. The connectivity of the network is
statically defined, and the weight values are placed in the bit string chromo-
some 1n a canonical order.

For reasons described in Section 4, we have departed from the ANN en-
coding used in Genesys, and we have designed a new way to encode an ANN
that places the connectivity pattern of the network under genetic control [2].
Our new encoding consists of X connection descriptors; each consists of three

14

| Dimension | AntFarm I Genesys/Tracker]

Population 16,384 colonies 65,536 ants
2,097,152 ants

Info/Environment Location 32 bits 1 bit
Level of Selection Colony Individual
Sensory Input/Time Step ~ 200 bits 1 bit
Effector Outputs/Time Step 13 bits 2 bits
Internal Memory (max) 21 bits 5 bits
Genome Size 25,590 bits 450 bits

Figure 4: A comparison of AntFarm to Genesys/Tracker. The AntFarm
simulation is larger and more complex in many dimensions.

parts: the indices of the units that are to be connected (From unit, To unit)
and the weight (strength) of the connection (Figure 5). Certain units are
designated as inputs and outputs, and the rest are hidden units, which can
serve as memory for the organism. The genotype is the concatenation of
the bit representation of the K connection descriptors (as two’s complement
binary integers).

To convert a set of inputs to a set of outputs (behavior), we transmit
one signal across each connection in the network. This consists of adding
the product of the From unit activation and the weight to the To unit ac-
cumulator. After all K signals have been transmitted, each accumulator is
converted to a Boolean value (positive sums to 1; negative or zero sums to
0) and assigned to the corresponding activation. The output unit activations
specify the chosen behavior, and the hidden unit activations describe the
memory state of the organism.

All possible connection descriptors are legal, including recurrent connec-
tions and multiple connections between pairs of units. Connections leading
From an output unit or To an input unit have no effect on the output of the
ANN.

The use of connection descriptors gives this encoding some interesting
properties. A mutation might change the value of a particular connection
weight, or it can move a connection within the network. A crossover can
result in the appearance of a connection that neither parent possesses.

The most important property introduced by this new ANN encoding is

15

| From | To [Weight |

3 1 1
3 4 1
0 6 2
7 4 -1
0 4 2 1
4 3 2
3 6 -1
0 4 1

Genotype
101001001011100011000110010111100111600100010100011010011110111000100001

Figure 5: The connection descriptors (left), the network (right) and the
genotype (bottom) of an ANN encoded with connection descriptors. Each
descriptor specifies the pair of units that it connects (From and To columns),
and the strength (Weight) of the connection (each of these three fields is
3 bits wide in this example). Note that some units have no connections
associated with them, some have no out-going connections, some pairs of
units are connected by multiple connections, and recurrent connections are
allowed.

16

the unconstrained and heritable connectivity pattern in the ANN. This free-
dom is achieved by placing the location and strength of connections under
the control of evolution. Another potentially important property of this rep-
resentation 1s the position independence of the connection descriptors, which
means that a connection descriptor has the same effect no matter where it
lies on the chromosome. This allows linkage patterns between functionally
related units to evolve. Organisms built with this type of network are com-
petitive with human-designed neural architectures that possess many more
connections (see Section 4). Our current encoding is limited in that the
number of neurons and connections are not under genetic control.

Here are the details of the AntFarm ANN behavior function. These are
features that are available, but particular organisms may “use” (have con-
nected) many fewer:

e Input Units

— 9 units for pheromone density

— 9 binary units for presence of food

— 9 binary units for presence of a nest

— 4 binary units for compass (an optimal path to the nest)
— 4 binary units for random noise

— 1 binary unit for whether or not it is carrying food
e Hidden Units

— 21 binary units for memory
e QOutput Units

— 4 binary units for direction to move
— 1 binary unit to pick up food
~ 1 binary unit to drop food

1 unit to indicate number of units of pheromone to drop

The whole neural network consists of 64 neural units and 1709 connections.
The connection weights are encoded in 3 bits and the From and To each in
6 bits, so the network is specified by 25,590 bits of genome.

17

4 Representational Issues

One of the most difficult problems we have encountered thus far has been
the search for an appropriate artificial organism representation. Although
many organism-based evolutionary simulations have been run, most of the
problems and models have been very simple. We encountered serious prob-
lems when we attempted to scale the representations to the complexity of
the AntFarm organisms.

The representation of an artificial organism in a microanalytic simulation
consists of the following parts:

e genotype: a bit string that encodes the behavior function;

¢ development function: the mapping that decodes the genotype to pro-
duce the behavior function;

¢ behavior function: the program that maps sensory inputs and the mem-
ory state into a new memory state and effector outputs;

o interpreter: used to execute organism behavior functions.

In AntFarm, the development function and interpreter are fixed for all or-
ganisms and for all time; they are not subject to evolution. The genotype,
of course, differs from animal to animal, but is static throughout the life of
the organism. The behavior function also does not change during the life
of an ant; there is no “learning” protocol: the weights and connectivity are
static. Complex, history-sensitive behavior can be realized through the use
of the 21 bits of internal memory (over 2 million possible memory states),
especially in conjunction with feed-back connections in the ANN.

We have surveyed a variety of animal representations that have been used
in simple evolutionary simulations (e.g. parameterized functions [22], Lisp
S-expressions {16], finite state automata [13], rule systems (e.g. classifier
systems) [9], etc.). Unfortunately, none of these representations is appro-
priate for simulated evolution with the environment/organism complexity of
AntFarm [3]. Each of them either scales exponentially in size with the num-
ber sensors/effectors (and thus require too much computer memory for use
with AntFarm), or inherently requires too much knowledge specific to the ar-
tificial world/task to be built in. The inclusion of task-specific information

18

in the organism representation opens the door for systematic biases in our
evolutionary experiments, so these representation schemes must be avoided.

The most promising representation that we have examined is based on the
ANN programming paradigm: ANNs grow slowly as the number of inputs
and outputs increase, their internal computations are simple and fast, they
are easily encoded in a bit string, and mutations and crossovers in this bit
string representation usually cause little or no change in the function that is
computed.

4.1 Artificial Neural Networks

We began our work with AntFarm using an ANN organism representa-
tion with fully connected layers and recurrent connections, like we used in
Genesys {13]. With this representation, we were unable to get even simple
non-cooperative foraging to evolve. We then tried multi-layer feed forward
ANN networks, and again we failed to evolve foraging behavior.

Our next step was to construct an ANN encoding with as much knowl-
edge of the foraging problem as necessary to get the evolution of foraging
behavior. Our aim was to understand why the ANN representations we had
used successfully in simpler problems failed in AntFarm.

The foraging task is made up of two separate sub—tasks: searching for
food, and returning the food to the nest. The ant can determine which sub—
task to perform based on the “carrying food” binary input. Each of these
two sub-tasks are separately rather simple. While searching for food, an ant
should pay attention to the food sensors, maybe the pheromone sensors (if
cooperative foraging is used), maybe the compass and nest sensors (it might
want to move away from the nest area), and maybe the random sensors (so
a pseudo-random search can be used). While transporting food to the nest,
the most important sensor is the compass input; all others can be ignored.

To apply this knowledge of the dual nature of the foraging task, we con-
structed an ANN behavior function that consists of two fully connected,
recurrent networks. One of these networks is invoked when the ant is not
carrying food (search), and the other is invoked when the ant is carrying
food (transport). We found that ants with behavior functions based on this
dual~-ANN encoding quickly and consistently evolve (non—cooperative) for-
aging behavior. This suggests that the problem with the other ANN encod-
ings was that they have difficulty evolving discrete behavior {where a small

19

change in the inputs leads to a large change in behavior). These representa-
tions “generalize,” so small changes in the inputs are smoothed away, making
the evolution of discrete behavior unlikely.

Although we were able to evolve foraging behavior, we still had a serious
problem: the dual-ANN representation requires a huge amount of task—
specific information. This could bias the evolutionary outcomes of our ex-
periments in subtle (or obvious) ways, which is unacceptable.

To avoid this problem, we have designed an encoding scheme based on
connection descriptors (described in Section 3.2}, which we have adopted
for use in AntFarm. This decision is based on the fact that the connection
descriptor encoding does not allow or require knowledge of the task, and an
empirical study (presented below) that shows it is able to evolve foraging
behaviors that are as successful as that produced by the human-designed
dual-network behavior function.

We have empirically compared four ANN-based behavior functions in
AntFarm: a network specified by connection descriptors (ANN1), a three
layer recurrent network (ANN2), a feed-forward network (ANN3), and a
behavior function made up of two recurrent networks (ANN4). ANN4 invokes
one of the networks when the ant is carrying food and the other when it is not.
Comparison with ANN4 allows us to see how well the other representations
are able to evolve behavior for two different tasks in one network. In all four
behavior functions, all weights are encoded as 3-bit signed integers and all
initial activations of the hidden units are initialized to 0 at the beginning of
the generation. The connectivity of the ANN2, ANN3, and ANN4 networks
is shown 1n Figure 6. Table 1 summarizes the main parameters of the ANNs.

In an attempt to make the comparison fair, we made the different networks
approximately the same size {although ANN1 requires more bits to encode
it, but it also has far few connections).

To perform this study, we set the AntFarm parameters as follows. The
population consists of 16,384 colonies, each of which contains four identical
ants. Each colony forages in its own 16 x 16 environment. The initial food
distribution for each colony in each generation is always the same: one unit
of food in each location, except for locations on a straight (horizontal, ver-
tical, or diagonal) line with the nest (for a total of 196 units of food). We
chose this food distribution because foraging that only requires walking in a
cardinal direction from the nest would involve only a few neurons. Each run
is 500 generations long, each lasting 50 time steps. Both the mutation and

20

QOutput layer Output Layer

Hidden layer

Input layer Input Layer

Figure 6: The architecture of the networks in ANN2, ANN3, and ANN4.
Each arc indicates that the layers are fully connected. ANN2and ANN4 (left)
have a fully recurrent hidden layer. In ANN3, each layer is fully connected
to all “forward” layers. ANNS3 has five hidden layers (although only 2 are
shown here).

ANN Number of | Hidden Layers | Bits of | Chromosome
Connections | x units/layer | Memory | length (bits)
ANN1 682 varies 21 10240
ANN2 2652 1x32 32 7956
ANN3 2612 5x8 0 7836
ANN4 | 2x1325=2650 2x18 18 7950

Table 1: A summary of the ANN behavior functions, including the number
of connections, arrangement of hidden units into layers (layers x units/layer),
the number of bits of memory, and the number of bits in the chromosome.

21

| BM | Search/Transport | Mean | Max |
1 random/random 1.07 6

2 random/compass 15.07 | 21
3 | random+food/compass | 20.82 | 25

Table 2: The foraging task is treated as two separate tasks: search for food
and transport of the food back to the nest. Random indicates that only the
random inputs are used, compass indicates that the inputs pointing the way
to the nest are used, and food indicates that the food sensors are used. Mean
and Max refer to the amount of food recovered in the population of 16,384
colonies.

recomnbination rates are set at 0.0001 per bit.

How can we tell how well a population is foraging? It is clearly impossible
for four ants to carry all 196 units of food in the environment to the nest in
only 50 time steps, so how much food can we expect them to recover? We
have hand-coded three simple behavior functions (in C++) to serve as forag-
ing benchmarks (Table 2). BM1 forages (both the search phase and recovery
phase) using only a random walk. BM2 searches for food with a random
walk (ignoring the food sensors) and carries food to the nest by following the
compass (the input that always points to the nest). BM3 improves on BM2
by using the the food sensors while searching. These benchmarks provide an
absolute measure of foraging efficiency.

The results are sumnmarized in Figure 7. The dual-network representa-
tion (ANN4) out-performs all of the other representations, foraging nearly as
effectively as an algorithm that uses the food and compass sensors perfectly.
It is not surprising that ANN4 performs the best, since it has a great deal
of information about the task built into the representation. The ANN rep-
resentation based on connection descriptors (ANN1, a scaled down version
of the encoding used in AntFarm) is nearly as successful, even though it has
been provided with no task-specific information. The other two representa-
tions with no built-in knowledge perform rather badly—they are not good
at changing their behavior based on whether or not they are carrying food,
although the recurrent network (ANN2) does better than the feed forward
network (ANN3).

22

25p—

20—

15}—

Units of Food

OI—‘I) I | I i I—

100 200 300 400 500
Generation

Figure 7: The maximum units of food brought back to the nest in a popu-
lation of 16,384 colonies across 500 generations. Each curve i1s the average
of three rums, differing only in the initial random seed. These simulations
required 8 days of Connection Machine computation (on 8K processors).

23

4.2 Properties of Representations

From our exploration of potential artificial organism representations, we have
abstracted a number of properties that we believe are necessary for simulated
evolution experiments:

1. {approximate) closure of the set of legal genotypes under the action
genetic operators;

2. smoothness of the phenotype under the action genetic operators, 1.e.
the behavior function should tend to change smoothly as the genotype
is changed by mutation and recombination;

3. the ability to scale to large behavior functions, i.e. those that can handle
large amounts of input and output data without undue increase in
genome size;

4. the ability to evolve phenotypes that exhibit both continuous and dis-
crete behaviors as a function of their inputs; and

5. a uniform computational model, i.e. the programming paradigm in
which the behavior functions are expressed should not contain features
that include any kind of explicit or implicit knowledge of the environ-
ment, nor bias toward a particular evolutionary trajectory.

Closure (1) and smoothness (2) are properties of the development function
and the genetic operators. Scaling (3), the ability to evolve continuous and
discrete behavior (4), and uniformity (5) are all properties of the computa-
tional model of the behavior function.

The property of syntactic closure constrains the development function
(the encoding of the behavior function into the genotype). To be syntactically
closed (approximately), the genetic operators must always (or almost always)
produce genomes that translate into syntactically legal behavior functions.
An evolutionary system will not work if a single mutation or recombination
is likely to transform a genotype that encodes a perfectly good behavior
function program into a program that is syntactically illegal.

The smoothness property requires that most changes to the genotype
due to the application of genetic operators result in small changes in the
behavior function. For example, a mutation in an ant should usually have

24

a small affect on its foraging algorithm. Of course, it need not always cause
a small change; some small changes will be fatal, and a few small changes
may cause profound but beneficial effects. Still, evolution cannot work if
the phenotype space 1s not relatively smooth as a function of genotype. The
encoding and mapping functions should be smooth not only under mutation,
but also under recombination, implying that functionally related genes should
usually be inherited as a unit (strongly linked). The smoothness property
has the effect of requiring the “adaptive landscape” [26, 15] to be correlated
with respect to the genetic operators. Evolution can successfully searches
the space of possible organisms only in correlated adaptive landscapes.

Smoothness is an extension of the closure property. Not only 1s it required
that a legal program be (usually) transformed into another legal program by
the genetic operators, but also that it is (usually) transformed into one that
is semantically similar to the original.

The scaling properties of a representation are of extreme practical im-
portance because we must be able to store large populations in a reasonable
amount of computer memory. Scaling refers to the rate at which the size of
the representation grows as a function of the number of inputs, outputs, and
bits of internal memory. The size of the representation includes the number
of bits in the genotype, the number of bits required to store the decoded
behavior function, the amount of time to translate from the genotype to the
behavior function, and the amount of time to run a set of inputs through the
behavior function to produce the outputs. We are interested in organisms
with dozens or hundreds of inputs, outputs, and bits of internal memory.

In AntFarm, foraging requires a combination of both continuous and dis-
crete behaviors (which is probably necessary in any simulation that hopes to
evolve complex behavior). Roughly speaking, a behavior function is produc-
ing continuous behavior when a small change in the inputs to the function
results in a small change in the outputs, and discrete behavior when a small
change in the inputs results in a large change in the outputs. In AntFarm,
the foraging behaviors that we have evolved consist of two modes: search and
transport. Within each mode, the behavior appears to be continuous, but the
transition from one mode to the other is determined by the “carrying food”
input bit (a very discrete change in behavior). Most or perhaps all complex
behaviors will involve the combination of different modes of behavior, and
thus require the evolution of discrete behavior.

25

The final property is that the computational model of the representation
should be uniform. In particular, it must be able to describe all desired
behavior functions without designing features of the problem or possible solu-
tions into the representation. If we are trying to shed light on a bioclogically
motivated hypothesis, the results will be invalid if we bias the organisms
toward (or away from) some evolutionary path. The computational model
must not have knowledge of the problem or possible solutions embedded in
it.

5 Future Work

The AntFarm project is work in progress. We have designed a genetic algo-
rithm that closely models real evolution, designed an appropriate behavior
function, found empirically good values for various parameters (crossover and
mutation rates, etc.), and evolved colonies that successfully forage for food.

So far, we have not observed the evolution of cooperative foraging. In
the AntFarm model, the use of pheromone trails to lead other workers to
a large pile of food is quite complex. Because pheromone trails are nondi-
rectional, following a pheromone trail involves the combined information of
the pheromone and compass inputs. Simply walking uphill in the pheromone
density does not work, because the pheromone trail will be faintest near-
est to the food, due to diffusion. A reasonable trail-following strategy is to
move to the location that is furthest from the nest and contains some of the
pheromone. This will keep the ant on the trail and moving toward the food
source.

Although the model of Johnson et al. indicates under what circumstances
cooperation 1s the optimal strategy, we do not know under what circum-
stances cooperative strategies will evolve. It may be that cooperative forag-
ing is unlikely to evolve in any static environment. We may have to vary the
environment, slowly making foraging more difficult.

We plan to perform a systematic study of the effect of food distribution on
the evolution of foraging strategies, testing the model of Johnson et al. [14].
It will be interesting to see how our artificial evolution differs from biological
theory. We are interested in exactly how and when the pheromones are used
to communicate information about the food distribution.

We are also interested in the evolution of foraging strategies that are

26

strongly affected by competition. We might find strategies that utilize ex-
ploitation or direct interference. A possible strategy for better exploitation
of resources under stiff competition would be to forage further from the nest
first, beating the neighboring colonies to that food, resulting in a larger
foraging area for the colony. Interference strategies might involve disrupt-
ing communication of neighboring colonies, either by overwriting existing
pheromone trails, or by laying misleading trails. In order to investigate this
area, we will run AntFarm in a mode where a single large environment is
shared by all colonies during foraging.

Acknowledgments

We owe thanks to many people who have contributed to ideas and com-
ments to AntFarm, especially Doyne Farmer and Chris Langton. We also
acknowledge the contributions of Michael Dyer, Don Feener, Danny Hillis,
Andrew Kahng, Adam King, John Lighton, Joe Pemberton, Chuck Taylor,
and Greg Werner. This work is supported in part by W. M. Keck Founda-
tion grant number W880615, University of California Los Alamos National
Laboratory award number CNLS/89-427, and University of California Los
Alamos National Laboratory award number UC-90-4-A-88.

References

(1] Robert J. Collins. CM++: A C++ interface to the Connection Machine.
In Proceedings of the Symposium on QObject Oriented Programming Em-
phasizing Practical Applications, September 1990.

{2] Robert J. Collins and David R. Jefferson. An artificial neural repre-
sentation for artificial organisms. In Reinhard Manner and David E.
Goldberg, editors, Proceedings of Parallel Problem Solving from Nature.
Springer—Verlag, (in press).

(3] Robert J. Collins and David R. Jefferson. Representations for artificial
organisms. In Jean-Arcady Meyer and Stewart Wilson, editors, Pro-

ceedings of Simulation of Adaptive Behavior. The MIT Press/Bradford
Books, (in press).

27

4]

(3]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

(14]

Robert N. Coulson, Joseph Folse, and Douglas K. Loh. Artificial Intel-
ligence and natural resource management. Science, 237:262-267, July
1987.

James F. Crow. Basic Concepts in Population, Quantitative, and Evo-
lutionary Genetics. W. H. Freeman and Company, New York, 1986.

Jennifer H. Fewell. Energetic and time costs of foraging in harvester
ants, pogonomyrmez occidentalis. Behav. Ecol. Sociobiol., 22:401-408,
1988.

John Fry, Charles E. Taylor, and U. Devgan. An expert system for
mosquito control in Orange County California. Bulletin of the Society
of Vector Ecology, 14(2):237-246, 1989.

J. §. L. Gilmour and J. W. Gregor. Demes: A suggested new terminol-
ogy. Nature, 144:333, 1939.

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989,

W. Daniel Hillis. The Connection Machine. The MIT Press, Cambridge,
Massachusetts, 1985.

John H. Holland. Adaeptation in Natural and Artificial Systems. The
University of Michigan Press, 1975.

Bert Holldobler and Edward O. Wilson. The Ants. Harvard University
Press, 1990.

David Jefferson, Robert Collins, Claus Cooper, Michael Dyer, Margot
Flowers, Richard Korf, Charles Taylor, and Alan Wang. The Genesys
System: Evolution as a theme in artificial life. In Christopher Lang-
ton, J. Doyne Farmer, Steen Rasmussen, and Charles Tavlor, editors,
Artificial Life II. Addison-Wesley Publishing Company, (in press).

Leslie K. Johnson, Stephen P. Hubbell, and Donald H. Feener, Jr. De-
fense of food supply by eusocial colonies. Amer. Zool., 27:347-358, 1987.

28

[15]

[16]

[17]

[22]

[23]

[24]

Stuart Kauffman and Simon Levin. Towards a general theory of adaptive
walks on rugged landscapes. Journal of Theoretical Biology, 128:11-45,
1987.

John R. Koza. Genetic programming: A paradigm for genetically breed-
ing populations of computer programs to solve problems. Technical re-
port, Department of Computer Science, Stanford University, 1990.

John R. B. Lighton. Energetics of foraging and recruitment in the giant
tropical ant paraponera clavate (hymenoptera: Formicidae). (unpub-
lished manuscript).

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, 1986.

John H. Sudd and Nigel R Franks. The Behavioural Ecology of Ants.
Chapman & Hall, New York, 1987.

Gordon L. Swartzman and Stephen P. Kaluzny. FEcological Simulation
Primer. Macmillan Publishing Company, 1987.

Charles E. Taylor. Evolution of resistance to insecticides: The role of
mathematical models and computer simulations. In George P. Georghiou
and Tetsuo Saito, editors, Pest Resistance to Pesticides. Plenum Press,
1983.

Charles E. Taylor, David R. Jefferson, Scott R. Turner, and Seth R.
Goldman. RAM: Artificial life for the exploration of complex biolog-
ical systems. In Christopher G. Langton, editor, Artificial Life, pages
275-295. Santa Fe Institute, Addison-Wesley Publishing Company, Inc.,
1689,

Charles E. Taylor, L. Muscatine, and David R. Jefferson. Maintenance
and breakdown of the hydra—chlorella symbiosis: A computer model.
Proceedings of the Royal Society of London, 238:277-289, 1989.

Gregory M. Werner and Michael G. Dyer. Evolution of communication
in artificial organisms. In Christopher Langton, J. Doyne Farmer, Steen
Rasmussen, and Charles Taylor, editors, Artificial Life IT. Addison-
Wesley Publishing Company, {in press).

29

(23]

[26]

[28]

[29]

[30]

Sewall Wright. Evolution in Mendelian populations. Genetics, 16:97—
159, 1931,

Sewall Wright. The roles of mutation, inbreeding, crossbreeding and
selection in evolution. In Proceedings of the Sizth International Congress
of Genetics, volume 1, pages 356-366, 1932.

Sewall Wright. Fwvolution and the Genetics of Populations. Volume 1:
Genetic and Biometric Foundations. University of Chicago Press, 1968.

Sewall Wright. FEvolution and the Genetics of Populations. Volume 2:
The Theory of Gene Frequencies. University of Chicago Press, 1969.

Sewall Wright. FEwvolution and the Genetics of Populations. Volume
3: Ezperimental Results and Evolutionary Deductions. University of
Chicago Press, 1977.

Sewall Wright. FEwvolution and the Genetics of Populations. Volume
4: Variability Within and Among Natural Populations. University of
Chicago Press, 1978.

30

