Computer Science Department Technical Report
University of California
Los Angeles, CA 90023-1596

HIGH-PERFORMANCE CLOCK ROUTING BASED
ON RECURSIVE GEOMETRIC MATCHING

Andrew Kahng December 1990
Jason Cong CSD-900046

Gabriel Robins

High-Performance Clock Routing
Based on Recursive Geometric Matching

Andrew Kahng, Jason Cong, and Gabriel Robins

UCLA Department of Computer Science
Los Angeles, California 90024

Abstract

Minimizing clock skew is a very important problem in the design of high performance VLSI
systems. We present a general clock routing scheme that achieves extremely small clock skews,
while still using a reasonable amount of wire length. This routing solution is based on the con-
struction of a binary tree using recursive geometric matching. We show that in the average case
the total wire length of the perfect path- balanced tree is within a constant factor of the wire
length in an optimal Steiner tree, and that in the worst case, is bounded by O{\/a) when the n
leaves are arbitrarily distributed in the unit square. We tested our algorithm on numerous random
examples and also on industrial benchmark circuits and obtained very promising results: our clock
routing yields near-zero average clock skew while using similar or even shorter total wire length in
comparison with the methods of {12].

1 Introduction

Circuit speed is a major consideration in the design of high-performance VLSI systems. In a syn-
chronous VLSI design, limitations on circuit speed are determined by two factors: the delay on the
longest path through combinational logic and the maximum clock skew among the synchronizing com-
ponents. With advances in VLSI fabrication technology, the switching speed of combinational logic
mcreases dramatically. Thus, the clock skew induced by non-symmetric clock distribution becomes a

more significant limitation on circuit performance.

Minimization of clock skew has been studied by a number of researchers in recent years. H-tree
constructions have been used extensively for clock routing in regular systolic arrays [2] [8] [9] [26].
Although the H-tree structure can significantly reduce clock skew (8] [26], it is applicable only when all of
the synchronizing components are identical in size and are placed in a symmetric array. Ramananathan
and Shin [18] proposed a clock distribution scheme for building block design where all blocks are

organized in a hierarchical structure. They assume that a clock entry point is given at each level of the

hierarchy and, moreover, that the number of blocks at each leve] is small since an exhaustive search

algorithm is used to enumerate all possible routes.

Jackson, Srinivasan and Kuh {12) presented a clock routing scheme for circuits with many small
cells. Their algorithm recursively partitions a circuit into two equal parts, and then connects the center
of mass of the whole circuit to the centers of mass of the two sub-circuits. Although it was shown that
the maximum difference in path length from the root to different synchronizing components is bounded
by O(715) in the average case, one may easily construct examples for which the wirelengths between
clock source and clock pins in their solution may vary by as much as the entire chip diameter. In
fact, even for a small clock signal net with three or four pins, the pathlength difference in the routing

solution of [12] may be half the chip diameter (see Appendix One).

In this paper, we study the problem of high-performance clock routing for the design of circuits with
many small cells, as in standard-cell or sea-of-gates design styles. Here, the H-tree approach cannot be
used since synchronizing components may be of different sizes and may be in arbitrary locations in the
layout. The method of [18] cannot be applied either, since there is no natural hierarchical structure
associated with the design and the number of components is usually too large to allow exhaustive

examination of all possible routes.

This paper presents a basic algorithm and several variants, which minimize skew by constructing
a clock tree that is balanced with respect to root-leaf pathlengths in the tree (these notions will be
formalized below). The approach is based on recursive geometric matching. Intuitively, we start with
a set of trees, each containing a single terminal of the clock signal net. At each level, we recursively
combine the trees into bigger trees using the edges of an optimal geometric matching. The end result
is a binary tree whose leaves are the terminals in the clock signal net and whose root is the clock entry

point.

Our algorithm always yields perfect pathlength balanced trees for inputs of two, three or four pins
(Appendix 2). Extensive experimental results indicate that as the size of the clock signal net becomes
large, the maximum difference of pathlengths in the clock tree constructed by our algorithm remains
essentially zero. This performance is obtained without undue sacrifice of wirelength: we prove that
on average the total wire length in our clock tree construction is within a constant factor of the wire
length in the optimal Steiner tree. Furthermore, the worst-case heuristic clock tree length is bounded

by O(+4/n) for n points in the unit square, which is the same bound as for the worst-case length of the

minimal Steiner tree.

Since both our work and the work in [12] are intended to solve the same problem (i. e. clock routing
for circuits with a large number of small cells), we implemented the method of (12] and compared the
results of the two algorithms. For uniformly distributed sets of up to 1024 pins in the unit square, our
method produced clock routings with near-zero clock skew both in the average case and worst case,
with total wirelength of the clock tree significantly lower than that produced by the method of (12). In
addition, routing results for layouts of the MCNC Primaryl and Primary2 benchmarks are significantly
better than those reported in [12]; we obtain perfectly balanced root-leaf pathlengths in the clock tree

using several percent less total wire.

The remainder of this paper is organized as follows. Section 2 defines a number of basic concepts
and gives a precise formulation of our skew minimization problem. In Section 3, we present the clock
routing algorithm in detail. Experimental results of our algorithm and comparisons with the method
of [12] are presented in Section 4. Sections 5 and 6 give extensions and conclusions. Appendix 1
gives pathological examples for the clock routing method of [12], and Appendix 2 shows that our clock

routing algorithm always yields perfect pathlength balanced trees for three- and four-pin nets.

2 Preliminaries

A synchronous VLSI circuit consists of two types of elements, synchronizing elements (such as registers)
and combinational logic gates (such as NAND gates and NOR gates). The synchronizing elements are
connected to one or several system-wide clock signals. Every closed path in a synchronous circuit
contains at least one synchronizing element. The speed of a synchronizing circuit is mainly determined
by the clock periods. It is well known [3] [12] that the clock period Cp of each clock signal net satisfies

the inequality

CP 2 ta+ Lskew + toy + L4,

where t5 is the delay on the longest path through combinational logic, t,k.w is the clock skew, ¢,
is the set up time of the synchronizing elements (assuming that the synchronizing elements are edge
triggered), and t4, is the propagation delay within the synchronizing elements. As VLSI feature sizes
become smaller, the terms ta, t,u, and tq4, all decrease significantly. Therefore, as noted above, clock

skew becomes a more dominant factor in determining circuit performance.

Given a routing solution for a clock signal net, the clock skew is defined to be the maximum
difference among the delays from the clock enlry point (CEP) to synchronizing elements in the net.
The delay from the CEP to any synchronizing element depends on the wire length from the CEP to the
synchronizing element, RC constants of wire segments in the routing, and the topology of the solution.
Usually, the clock routing may be described as a RC tree [19], and we commonly use the first-order
moment of the impulse response (also called Elmore’s delay) to approximate delay in an RC tree. The
formulas derived in [19] give both upper and lower bounds on delay in an RC tree, thus yielding a more

accurate approximation.

However, although both the formula for Elmore’s delay and those in [19] are very useful for sim-
ulation or timing verification, they involve sums of quadratic terms and are difficult to compute and
optimize during the layout design process. Thus, a linear RC model and the wire length between CEP
and the synchronizing element are often used to derive a simpler approximation for circuit delay (eg.,
(18] [15]). In this paper, we also use wire length as a simple approximation of the delay in a routing
solution. The clock skew is hence defined to be the maximum difference in wire length from the CEP
to synchronizing elements in the clock signal net. We now give several important definitions, along

with a formal statement of the skew minimization problem.

Recall that a clock routing solution is represented by a rooted (Steiner) tree in the layout whose
root is the CEP and whose leaves are synchronizing elements in the clock signal net. A rooted tree is
a binary tree if each non-leaf node has exactly two children. The length, or cost, of an edge in the tree
is the Manhattan or L, distance between the two endpoints of the edge, and the tree cost is the sum

of all edge costs in the tree.

Definition: The pathlength skew of a tree is defined to be the maximum difference of the pathlengths

in the tree from the root to any two leaves.

A tree is called a perfect pathlength balanced tree if its pathlength skew is zero. The objective of
our algorithm is to construct a binary tree whose pathlength skew is as small as possible. In the VLSI

regime, we may formulate this as follows.

The Path Balanced Tree (PBT) Problem: Given a set of points P in the L; unit square and a
real number S, find a minimum-cost tree T connecting P such that for some distinguished node r of

T, the costs of paths in T from r to any two leaf nodes differ by at most S.

The following is immediately evident:
Theorem: the PBT problem is NP-hard.

Proof: Set S = oo so that the PBT problem “simplifies” to the minimum Steiner tree problem, which

is known to be NP-complete even for the Manhattan metric in the plane [11]. 0

The objective of this paper is to present a heuristic algorithm for the PBT problem. In particular,

we wish to construct a clock tree using O(,/n) wirelength with pathlength skew as small as possible.!
Before developing the algorithm, we introduce the notion of a geometric matching:

Definition: Given a point set S of 2n points on the plane, a geometric matching on S is a set of n

line segments whose endpoints are in .S, with no two line segments sharing an endpoint.

Each line segment in the matching defines an edge. The cost of a geometric matching is the sum
of the lengths of its edges. A geometric matching on S is optimal if its cost is minimum among all

possible geometric matchings on S.

3 A Clock Routing Algorithm Based on Recursive Geometric
Matching

To construct a tree by recursive matching, we begin with a forest of n isolated nodes {for convenience,
assume n = 2¥), each of which is a tree with clock entry point equal to the location of the node itself.
The minimum-cost matching on these n points yields 3 segments, each of which defines a subtree with
two nodes. The optimal CEP into each subtree of two nodes is the midpoint of the corresponding
segment, i.e., so that the clock signal will have zero skew between the segment endpoints. In general,
the matching operation will pair up the clock entry points {i.e., roots) of all trees in the current forest.
At each level, we choose the root of the new merged tree to be the balence point which minimizes the

pathlength skew to the leaves of the two subtrees (Figure 1).

The balance point is computed by finding the point p along the straight line connecting the roots of
the two subtrees, such that the difference in pathlengths from p to any two leaves in the combined tree is

minimum. Computing the balance point requires constant time if we know the minimum and maximum

!Note that a zero skew tree can be trivially achieved by routing n = |P| separate wires of constant length from the
clack source to all of the target points, but this will entail a total clock tree cost of O(n). We would like to obtain
a solution which uses O(,/n) total wirelength because the optimal Steiner tree will also use O(y/n} wirelength in the
average case [22].

root-leaf pathlengths in each of the two subtrees, and these values can be maintained incrementally

using constant time per node added to the clock tree.

Notice that at each level of the recursion, we only have to match half as many nodes as before.
Thus, in k = |logn| matching iterations, we obtain the complete clock tree topology. (In practice, we
actually compute a min-cost mazimum cardinality matching, i.e., if there are 2m + 1 nodes, we find
the optimal m segment matching and match m + 1 points at the next level.) Figure 2 gives a formal

description of the algorithm.

The following two results show that our recursive matching approach indeed uses a reasonable

amount of wirelength.

Theorem: For n points arbitrarily distributed in the unit square, the total edge length of any clock

tree derived in this manner will be O(/n).

Proof: For p points in the unit square, the worst-case cost of an optimal matching is O(\/n) [24].
Since the clock tree is formed by a matching on n points, then a matching on % points, etc., the total

edgelength in the tree is

O(/n) + O(v/n]2) + O(v/nf4) + ... = O(/n).
a

This is of the same order as the maximum possible edgelength for the optimal Steiner tree on n points

[22].

Theorem: For pointsets taken from a uniform distribution in the unit square, the total edgelength
of our heuristic clock tree will be on average within a constant factor of the total edgelength in the

minimum Steiner tree.

Proof: The minimum matching cost and the minimum Steiner tree cost are subadditive functionals.
Such functionals, on n points from a uniform distribution in the L, (p = 1 is the Manhattan norm) unit
square, grow as #/n where the constant 8 depends on the problem type [22]. The theorem then follows

from the O(/n) worst-case bound on the minimum-cost matching at any level of the construction f24].
O

The balancing operation to determine the CEP of a merged tree is necessary because the root-leaf

pathlength might vary between subtrees at a given stage of the construction. In general, when we merge

N
.« . 3
\/\\i

~,

R

Figure 1: Example of the algorithm running on a randomly chosen 8-point set. Solid dots
denote the original points, and hollow dots represent the balance points of the corresponding
edges. At each level a geometric matching is performed on the balance points of the previous
level,

subtrees Ty and T} into a higher-level subtree T, the optimal entry point of T will not be equidistant
from the entry points of T} and T; (this can be seen by examining the solution of the example in Figure
1). Intuitively, balancing entails “sliding” the CEP along the “bar of the H”. However, it might not
always be possible to obtain perfectly balanced pathlengths in this manner (see Figure 3). We therefore
use a further optimization, which we call H-flipping: for each edge e added to the layout which matches

CEP’s on edges ¢, and e, replace the “H” formed by the three edges e, ¢, and e; by the “H” over the

T=10

while |P| > 1
M = the edges of the optimal geometric matching over P
P=9

for (p1,p2) € M do
11 = the subtree of T rooted at mn
T3 = the subtree of T rooted at P2
P = a point lying defween p; and p, on the line
containing p, and ps, 3 p minimizes the skew
of the tree Ty UT; U {(p, p1), (p, p2)} rooted at p
P'= P'U{p}
T=Tu{(p.m) (p.p2)}
P = P’ plus a possible unmatched node if IP| is odd
CEP = Root of T = the single remaining point in P

Figure 2: The recursive matching-based clock tree algorithm.

._

Figure 3: Example of flipping an H as to minimize clock skew: the clock tree on the left has
no zero-skew balance point along the middle segment of the H, while the clock tree on the
right does,

same four points which (i) minimizes pathlength skew, and (ii) to break ties, minimizes tree cost. Two
formal results are given in Appendix Two: Lemma 1 proves that for four points it is always possible
find an “H” orientation which achieves zero clock skew, and Lemma 2 shows a limit on the increase in
wirelength caused by H-flipping for nets of size four. Extensive empirical tests confirm that even for
very large inputs, the H-flipping refinement almost always yields perfectly path-balanced trees with

essentially no added wirelength expense.

We now briefly discuss complexity issues and the requirement of an efficient implementation. Notice
that since our algorithm is based on geometric matching, its time complexity depends on that of
the matching subroutine. The fastest known algorithms for general matching are O(N3) [14] [10}.
By taking advantage of the metricity as well as the planar geometry, the algorithmic complexity
can be reduced to O(N?%logn) [25]. However, even this lower-complexity method will require long
runtimes for large problem instances. In order to solve problems of practical interest, we chose to

speed up the implementation by using efficient geometric matching heuristics [1] [23] [24]. Although

most of these methods were designed for the Euclidean plane, they also perform well in the Manhattan
metric, especially if their output is further improved by uncrossing pairs of intersecting edges in the

matching; to this end, note that k intersections of n line segments may be found efficiently in time

O(k + N(logn)?/loglog n) (7] [17).

In the following section, we discuss empirical results based on three matching methods which are
O(n), O(nlogn) and O(n3?) respectively; all three yield very good clock routing solutions. When
performance is critical, an optimal geometric matching algorithm might give an improvement over our

current implementations, but will require correspondingly greater computational resources.

4 Experimental Results

Three main variants of the algorithm were implemented in ANSI C for the Sun-4, Macintosh and I[BM
environments; code is available from the authors. These variants correspond to the different matching

subroutines.

The first heuristic variant (H1) uses the linear-time space partitioning heuristic of {23) to compute
an approximate matching; the second variant (H2) uses an O(n*/2) greedy matching (1]; and the third
variant (H3) uses an O(n log n) spacefilling curve-based method [4]. We have further tested these three
variants by running each with and without two refinements: {1) removing all edge crossings in the
heuristic matching, and (2) performing the “H-flipping” described above. Either of these optimizations
can be independently added to any of the three variants, giving rise to a total of twelve distinct versions

of the basic algorithm. . The variants of the algorithm are summarized as follows;

® H1 - Use the space-partitioning matching heuristic of (23], which induces the matching by recur-

sive bisection of the region (not the pointset).

¢ H2 - Use a greedy matching heuristic (i.e., always add the smallest edge between unmatched

points} [1].

¢ H3 - Use a space-filling curve to induce a Hamiltonian cycle through the points, and then choose

the better embedded matching (i.e., either all odd edges or all even edges in the cycle) [4].

H4 through H6- Same as H1 through H3, respectively, except the matching is improved by

removing all edge crossings.

¢ H7 through H12 - Same as H1 through H6, respectively, except that pathlength skew (or tree
cost) is reduced by “H-flipping”.

For comparison, we also implemented
® HO - The method of Jackson, Kuh and Srinivasan f12].

The algorithms were tested on a large number of random pointsets of up to 1024 points, generated
from a uniform distribution in the 1000 x 1000 grid. Results for a sample run with 50 random pointsets
at each cardinality are summarized in Tables 1 through 4. Table 1 compares the average tree costs

and Table 2 compares the average clock skews for all heuristics.

The computational resuits indicate that both optimizations (edge-uncrossing and H-flipping) will
significantly improve both skew and total wirelength. When the refinements are combined, average
clock skew essentially vanishes completely, and the wirelength of several variants is noticeably superior
to the output of HO (the method of [12]). The best variant appears to be H11, which is based on the
greedy matching heuristic together with edge-uncrossing and H-flipping. This is noteworthy because

the greedy method is asymptotically as good as the optimal matching [20].

Tables 3 and 4 highlight the contrast between H11 and the method of [12], showing minimum,

maximum and average values for both total wirelength and skew.

As noted in [13], any set of approximation heuristics induces a meta-heuristic which returns the
best solution found by any heuristic in the set; we also implemented this as H13, which returns the
minimum-skew result from H1 through H12. Interestingly, in our experience H13 always returns a
perfect pathlength balanced tree, i.e., for each problem instance, at least one of the heuristics H1
through H12 will yield a zero clock skew solution (while HO never does). This is very useful, especially
when the heuristics are of similar complexity. For example, we can solve the Primary! benchmark

using all twelve methods in under two minutes on a Sun-4 /60 workstation.

Finally, we tested our algorithm’s performance on the Primaryl and Primary2 benchmarks, using
the same layouts as in [12]. Figures 4 and 5 illustrate the output of variant H1l. Table 5 compares
the results of H11 and the results of [12] which were provided by the authors {21]. H11 completely

eliminates clock skew while using 5

Pts HO H1 H2 H3 H3a Hs5 Hé
4 1197 1156 1136 1140 1129 1128 1130
3 2136 2075 2032 2031 19230 1990 1992
16 3506 3582 3409 3527 3343 3326 3343
32 3598 5922 5481 5788 5342 5277 5326
64 8377 9184 8526 5048 8100 8032 3068
128 12276 | 13793 | 12632 | 13656 | 11912 | 11728 11876
256 17874 | 20765 | 18625 | 20354 | 17573 17024 | 17763
512 25053 | 30443 | 27055 | 29618 | 25341 24548 | 25720
1024 | 36765 | 44304 | 33638 | 42750 | 36444 35086 | 37056

Pta H7 H3 H9 H10 H11 HiZ H13
4 1125 1125 1125 1125 1125 1125 1125
8 2027 2028 1994 1571 1979 19800 1960

16 3502 3416 3428 33333 3322 3329 3268
32 5860 5628 8577 5329 5273 5304 5151
64 9226 8794 8748 8076 7982 8047 7844
123 13987 3315 13159 | 11871 11687 | 11914 | 11566
256 21307 | 19611 19713 | 17457 | 16955 | 17629 [16918
512 31646 | 29175 § 28688 | 25188 | 24465 | 25483 24480
1024 | 46417 | 42110 | 41540 | 36276 | 34965 36814 | 34992

Table 1: Average tree costs for the various heuristics.

5 Extensions

We can realize additional wirelength savings in fixing the geometrical orientations of individual wires
in the layout. In the Manhattan metric, the “balance point” of a wire connecting two points is not
unique but is rather a locus of many possible points (Figure 6), with the extremes corresponding to the
two orientations of L-shaped wiring. Our current implementation sets the balance point of a segment
to be its “Euclidean” midpoint, but sometimes this is not necessarily an optimal choice in the clock
tree construction. One can use a graph-theoretic formulation to find a polynomial-time method, based

on general graph matching, for finding the optimal set of balance points within these loci.

Finally, we mention that the PBT problem is very interesting from a theoretical standpoint: the

Pts HO H1 H2 H3 H4 HS Hé H7 H3 HS HI10 T HIT T Hiz H13
4 112.31 3.98 15.52 0.00 0.00 0.00 0.00 0.00 0.00 ¢.00 0.00 | 0.0¢ | 0.00 [D.00
3 186.10 45.79 76.71 4.26 0.66 0.66 0.66 3.38 0.12 0.00 0.00 } 0.00 | 0.00 | Q.00
16 234.72 70.93 141.22 19.47 4.01 3.54 3.66 1.80 3.80 0.12 0.00 [0.00 | 0.00 | 0.00
32 262.61 143.85 { 200.33 | 23.29 8.14 7.85 6.14 3.53 B8.64 4.00 0.00 | 0.00 | 0.00 | 0.00
64 229.15 179.83 | 273.04 | 51.36 6.93 8.65 5.29 13.17 | 27.69 1.26 0.00 | 0.00 [0.00 | 0.00
128 201.55 226.61 314.05 | 64.86 [11.52 14.18 | 11.26 | 20.79 | 40.34 3.18 0.00 { 1.02 | 0.24 | 000
256 183.28 | 286.90 | 324.57 | 85.10 | 17.25 13.85 15.04 | 41.79 | 51.87 7.49 000 | 052 | 0.00 | DGO
512 153.90 [321.23 | 399.20 | 85.46 | 14.79 | 1526 | 15.73 76.35 | 9066 | 1351 | 039 | 062 | 0.39 | 000
1024 [12534 | 339.34 [402.59 | 89.75 17.14 | 16.71 1535 | 75.92 | 9499 | 1662 | 044 | 008 | 038 | o000

Table 2: Average skew values for the various heuristics.

11

Table 3: Minimum, averag

of [12).

Pta Ho Ha HO H11 Hi11 H11
min ave max min ave MAX

4 656 1197 1823 555 1125 1668
3 1089 2135 2943 1123 1979 2810
16 2341 3506 4221 2793 2322 3993
az2 4813 5598 6216 4695 5273 5866
64 7624 8377 9266 7372 7982 8556
128 11439 | 12276 | 13136 11052 | 11697 | 12243
256 17220 17874 18549 16379 16955 17543
512 25093 25666 26291 23866 24465 25325
1024 36126 36765 37561 34231 34965 36179

e, and maximum total wirelength values for

Pis HO HoO Ho H11 H11 HI1

min ave max min ave max
4 2 112.31 379 0 0.00]
8 46 186.10 407 0 0.00 0
16 86 234.72 416 0 0.00 0
32 118 262.61 540 0 0.00 0
64 141 229.15 337 0 Q.00 4]

128 120 201.55 282 0 1.02 30
256 127 183.28 250 Q 0.92 46
512 103 153.90 203 o 0.62 31
1024 94 125.34 167 0 0.08 4

H11 and the method

Table 4: Minimum, average, and maximum skew values for H11 and the method of [12].

tradeoff between pathlength balance and total edgelength appears important not only for clock skew

minimization, but also for a number of applications in areas ranging from computational geometry to

network design.

6 Conclusion

We presented a heuristic method, based on recursive matching,

which constructs clock tree routings

with extremely small skew. The method uses total wirelength that is on average within a constant

factor of the wire]ength in a minimum Steiner tree, and that is in the worst case bounded by O(\/n) for

skew (5TD) cost skew (310)) cost reduction reduction

Ho Ho “ H11 H1i skew (STD) | cost (%)
Primary] 0.29 161.7 009 339 0.29 4.8
Primary2 0.74 406.3 " 0 00 376.7 0.74 7.3

Table 5: Comparisons pf H11 and the method of {12] on Primary 1 and 2. “skew
denotes the standard deviation of the path length, and “cost”

12

(STD)”

denotes the total wirelength.

.-g, k
3] F“n 4
b v
1 b ‘ -‘ ((
\

Figure 5: Qutput of variant H11 on Primary2 benchmark layout.

n terminals in the unit square. We verified our algorithm on numerous random examples, on industry

benchmark circuits, as well as by timing simulations; the results show near-zero average clock skew

13

Figure 6: Further optimizations are possible by matching over the loci of balance point
candidates. :

while using total wirelength that compares very favorably with previous results.

References
{1] D. Avis, “Worst Case Bounds for the Euclidean Matching Problem”, International J. Comput.
Math. Appl 7 (1981), pp. 251-257.

(2] H. Bakoglu, J. T. Walker and J. D. Meindl, “A Symmetric Clock-Distribution Tree and Optimized
High- Speed Interconnections for Reduced Clock Skew in ULSI and WSI Circuits”, Proc. [EEE
Intl. Conf. on Computer Design Port Chester, NY, October 1986, pp- 118-122.

(3] H. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, 1990.

(4] 1. 3. Bartholdi and L. K. Platzman, “A Fast Heuristic Based on Spacefilling Curves for Minimum-
Weight Matching in the Plane”, Inf. Proc. Letters 17 (1983}, pp. 177-180.

[5] J. Beardwood, H. J. Halton and J. M. Hammersley, “The Shortest Path Through Many Points”,
Proc. Cambridge Philos. Soc. 55 (1959), pp. 299-327.

[6] P. K. Chan and M. D. F, Schiag, “Bounds on Signal Delay in RC Mesh Networks”, JEEE Trans.
on CAD 8(6) (1989), pp. 581-589.

(7] B. Chazelle, L. J. Guibas, and D. T. Lee, “The Power of Geometric Duality”, Proc 24th [EEE
Annual Symp. on Foundations of Comput. Sci. (Nov. 1983), pp. 217-225.

14

(8] S. Dhar, M. A. Franklin and D. F. Wann, “Reduction of Clock Delays in VLSI Structures”, Proc.
IEEE Intl. Conf. on Computer Design Port Chester, NY October 1984, pp. T78-783.

[9] A. L. Fisher and H. T. Kung, “Synchronizing Large Systolic Arrays”, Proceedings of SPIE 341,
May 1982, pp. 44-52.

[10) H. Gabow, “An Efficient Implementation of Edmond’s Algorithm for Maximum Matching on
Graphs”, J. Assoc. Comput. Mach. 23 (1976), pp. 221-234.

(11] M. Garey and D. §. Johnson, “The Rectilinear Steiner Problem is NP-Complete”, SIAM J. of
Applied Math. 32(4) (1977), pp. 826-834.

(12] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock Routing for High-Performance ICs”, Proc.
ACM/IEEE Design Automation Conference, June 1990, pp. 573-579.

[13] A. Kahng and G. Robins, “A New Family of Steiner Tree Heuristics With Good Performance:
The Iterated 1-Steiner Approach”, Proc, ICCAD, Santa Clara, November 1990.

(14] E. Lawler, “Combinatorial Optimization: Networks and Matroids”, Holt Rinehart and Winston,
New York, 19786.

(15] I. Lin and H. C. Du, “Performance-Driven Constructive Placement”, Proc. ACM/IEEE Design
Automation Conf. (1990), pp. 103-105.

(16] T. M. Lin and C. A. Mead, “Signal Delay in General RC Networks”, [EEE Trans. on CAD
CAD-3(4) (1984), pp. 331-349.

(17) F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, New York,
Springer-Verlag, 1985.

(18] P. Ramanathan and K. G. Shin, “A Clock Distribution Scheme for Non-Symmetric VLSI Circuits”,
Proc. IEEE ICCAD, November 1989, pp. 398-401.

{19] J. Rubinstein, P. Penfield and M. A. Horowitz, “Signal Delay in RC Tree Networks”, IEEE Trans.
on CAD CAD-2(3) (1983), pp. 202-211.

[20] T. L. Snyder and J. M. Steele, “Worst-Case Greedy Matchings in the Unit d-Cube”, Netwerks 20
(1990), pp. 779-800.

[21] A. Srinivasan, private communication , October 1990.

(22] J. M. Steele, “Growth Rates of Euclidean Minimal Spanning Trees With Power Weighted Edges”,
The Annals of Probability 16(4) (1988}, pp. 1767-1787.

[23] K. J. Supowit and E. M. Reingold, “Divide and Conquer Heuristics for Minimum Weighted Eu-
clidean Matching”, SIAM J. Computing 12(1) (1983), pp. 118-143.

[24] K. J. Supowit, E. M. Reingold, and D. A. Plaisted, “The Travelling Salesman Problem and
Minimum Matching in the Unit Square”, SIAM J. Computing 12(1) (1983), pp. 144-156.

[25] P. Vaidya, “Geometry Helps in Matching”, ACM Symposium on the Theory of Computing, pp.
422-425.

[26] D. F. Wann and M. A. Franklin; “Asynchronous and Clocked Control Structure for VLSI Based
Interconnection Networks”, IEEE Trans. on Computers 21(3) (1983), pp. 284-293.

7 Appendix 1

A pathological example for the method of [12] consists of a 2% points grouped together very tightly near
one corner of the unit square, plus another single point near the opposite corner. The clock entry point,
which is determined in the first iteration to be the center of mass of the pointset, will be close to the
many points grouped closely together, and very far away from the lone point near the opposite corner
of the unit square. The resulting clock skew will therefore be proportional to the physical diameter of
the circuit/chip, as is illustrated in Figure 7 for four points. On the other hand, our algorithm will
perform quite well on this example, inducing a clock entry point near the middle of the unit square,

and yielding essentially zero clock skew overall,

Figure 7: A four-point example where our algorithm yields zero skew (left), while the method
of [12] yields skew as large as half the diameter of the chip (right).

8 Appendix 2

In this appendix, we show that our algorithm always yields perfect pathlength balanced trees for nets
of size two, three or four. If a net is of size 2, clearly, our algorithm selects the root of the tree to

be the midpoint the segment connecting the two terminals in the net and yields a perfect pathlength

16

balanced tree. Now we show that for nets of size four, our algorithm also yields perfect pathlength

balanced trees (a net of size three can be treated as a net of size four in which two terminals coincide).

Let a, b, ¢, and d be the terminals in a net of size four. Without loss of generality, assume that
ab and cd are the edges in an optimal matching and ab > cd. (For convenience, we use zy to denote
both the segment connecting points z and y and the length of the segment zy.) Let m; and m, be the
midpoints of ab and ed, respectively. According to our algorithm, m, is chosen to be the root of the
subtree for a and &, and mz is chosen to be the root of the subtree for ¢ and d. Then, the algorithm

tries to choose the balance point r on segment m,my such that

b d
%+rm1=%+rm2 (1)

It is easy to see that if m;m, > -“b;—cd, we can always choose r satisfying (1). In this case, the

pathlengths from r to the all four terminals are the same, so that we have a perfect pathlength balanced

ab—ed

tree. If mymg < 3

» we carry out H-flipping as described in Section 3. We replace ab and cd by ad
and be. We choose the midpoint iy on be to be the root of the subtree for & and ¢, and the midpoint

nz on ad to be the root of the subtree for a and d. Then, we choose r' on n, n9 such that
b
-—+rn1=56-+r'n2 (2)

According to the following lemma, we are guaranteed to find r’ on nn, satisfying (2).

Lemma 1: If mymy < 2524 then n;n, > beced

Proof: If we have both m;m, < ‘"5;“' and nyny < “—;"-‘i then

ab—cd+bc—ad
2 2

mims+nny <

17

therefore

d d
ab;bc>m1m2+n1nz+c —;—a (3)

Let x be the midpoint of bd. Then we have

ab ¢
S = <mnytzn=ning+ —
2 2
and
¢ ad
5 = Em2 Smymp+rm; =mymy + -
thus
ab + be ed + ad
S mymg +nyng + 5
which is a contradiction to (3). Therefore if m;m, < "";‘d we must have nyny > "L?'—". 0

Lemma 1 implies that we can always choose the balance point r on nyn. after H-flipping. Therefore,
our algorithm always constructs a perfect pathlength balanced tree of a net of size four. The following
lemma show that the wirelength increase when replacing ab and cd by ad and bc for H-flipping is

bounded by a constant factor.

Lemma 2: If myms < L‘;d- then bc + ad < 3(ab + cd).

18

Proof: Let z be the midpoint of bd. Then

%czzmggzd+dm2=zd+%

and

%szml <zb+bmy =.«:b+%b

thus

bc+ad$bd+ ab+ ed

(4)
Let y be the intersection of bd and m;ms,, so that

ab
by <miy+mib=my+ 7

cd
dy < moy + mad = may + >

ab+cd<ab—cd ab+Cd—ab
3 7t T

be < mymq +
Thus, from (4) and (5) we have

bc+adsab+ab-;-cd < 3(ab;—cd)

or be + ad < 3(ab + cd).

19

()

