Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

AN EXTENSIBLE, STACKABLE INTERFACE FOR FILE

SYSTEM DEVELOPMENT

John S. Heidemann December 1990

Gerald J. Popek CSD-900044

An Extensible, Stackable Interface
for File System Development*

John S. Heidemann

Gerald J. Popek!

Department of Computer Science
University of California, Los Angeles

December 19, 1990

Abstract

Desire to support several file system imple-
mentations in the same kernel sparked Sun
Microsystems’ creation of the vnode interface.
Although this interface provides good support
several simultaneous file systems. Further-
more, the interface often requires change to
support new file systems; change to the in-
terface requires updating all existing file sys-
tems. To support further file system devel-
opment, we propose the stackable layers de-
sign methodology, supported by an ertensible
vnode interface.

The stackable layers approach to file system
design separates a file systern implementation
into reusable layers in a way analogous to the
System V STREAMS I/O subsystem. Our ap-
proach permits any file system layer to add
new operations; other layers adjust accord-

*This work is sponsored by the Defense Advanced
Research Projects Agency under contract number
F29601-87-C-0072. John Heidemann is alsc sponsored
by a USENIX scholarship for the 1990-91 academic
year. The authors can be reached at 3804 Boelter
Hall, UCLA, Los Angeles, CA 90024, or by e-mail to
johnh@cs .ucla. edu.

' This author is also affiliated with Locus Comput-
ing Corporation.

ingly. This report discusses an extensible file
system interface, and the special demands re-
quired to support stacking. It also describes an
implementation of these ideas, including sev-
eral aspects of performance.

1 Introduction

One thing common to all versions of the Unix!
operating system is change. Each version is a
little different; each product adds a few new
features to make it stand out. Perhaps no area
of UNIX has seen more change than the file
system, which has evolved from the original
version, to the Berkeley Fast File System, and
to several remote file systems. Each version
has brought new features to the user and new
changes to the kernel.

Sun’s vnode interface [4] was a response to
this relentless change. This interface specifies
how a file system interacts with the rest of
the kernel, allowing several different file sys-
tems to coexist on the same machine. This
interface has encouraged the development of
several new file systems.

The vnode interface allows the substitution

1UNIX is a trademark of AT&T Bell Laboratories.

of one file system for another, but only when
they provide very similar services. Adding
truly new services almost always requires
changing the interface to support new oper-
ations that could not have been anticipated
by the original designers. Rosenthal [8] de-
scribes changes of the Sun0OS vnode interface
with each new operating system release.

Change to the vnode interface requires
changes to each existing file system. This
malkes the cost of interface changes very high,
and it makes it impossible to change the in-
terface if source code for all file systems is not
available.

If third parties are to play a major role in file
system development, a less costly method of
extending the vnode interface is essential. An
interface which is easily erfensible is needed.
This method must be equally accessible to
third party developers as to workstation man-
ufacturers, and it must function without full
source code availability.

The Ficus file system [6] is a distributed file
system supporting replication with optimistic
concurrency control. In its development, we
have found the ability to add new operations
critical to the success of our efforts.

Another approach we have found vital is the
stackable layers method of file system design.
Instead of each file system standing alone, file
system layers are composed into stacks. Each
layer implements one file system abstraction
well. Layers may then be combined to form
more sophisticated systems. Because each
layer has the same syntactic interface above
and blow, layers which do not alter semantics
can be “slipped in” anywhere in a stack. This
feature is reminiscent of System V STREAMS
modules [7), or commands in a UNIX shell
pipeline,

By speeding the development of new func-
tionality, stackable file systems also acceler-
ate the rate of interface change. In addition,
stackable techniques such as cooperating lay-

ers [1] require the addition of new operations
to an interface to accommodate close commu-
nication between pairs of layers.

An interface which is both stackable and ex-
tensible presents special problems to the de-
veloper. Consider Figure 1, showing middle-fs
stacked on top of lower-fs. If middle-fs was de-
signed after lower-fs, it could be built to pass
all operations supported by lower-fs through.
For example, middle-fs might be a layer that
selectively compresses files to save disk space,
and lower-fs might be a the System V or Berke-
ley file system. But consider replacing lower-fs
with a new file system, say an extents-based
file system. This new file system adds new
operations to control its unique features. If
middle-fs must be explicitly modified to pass
these new operations, this will present a pow-
erful inertia against development of new file
systems and new stackable layers.

These are some of the problems that must
be faced by an interface that claims to be
both stackable and extensible. This paper
discusses these problems in more detail, and
then presents modifications to the vnode in-
terface to make it both stackable and exten-
sible. Finally, implementation of these ideas
is discussed, and initial performance data are
presented.

2 Requirements

The design of our interface has two primary
goals:

¢ An interface must be able to adapt to
change; it must be extensible.

e Stacking vnodes is a valuable technique in
file system development which should be
supported by the interface.

These goals are very similar to those of
Rosenthal [8]. Stacking is a goal we have in

: system calls

/\/—t/\/

oS

-

middle-fs

[

lower-fs

disk /O

-

EEERS 3

Figure 1: A two-level stack of file systems.

common, but Rosenthal’s concern for version-
ing is a special case of extensibility.

When examined more closely, these goals
suggest several more specific requirements:

e A layer must be able to specify a de-
fault action for operations it doesn’t im-
plement. This default action might be to
return an error, or to pass the operation
down to the next layer.

e Transport layers can be expected to ex-
tend the interface between different ad-
dress spaces. A transport layer must be
able to forward operations to other pro-
cesses, even operations added after the
implementation of the transport layer.

¢ Sophisticated transport layers are likely
to provide crash recovery, stateless behav-
ior, or cache coherency. These layers must
be extensible to provide these character-
istics for new operations.

¢ It should be possible to add new file sys-
tems to an binary-only UNix distribution.
Source code for the new file system and
UNIX should not be required.

e The object-oriented character of the
vnode interface must be preserved.

e Performance of the new interface must be
comparable to the existing vnode inter-
face. The cost of stacking must not be
too great, or it will not be practical to
use.

3 A New Vnode Interface

The above goals are not met by the standard
vnode interface, as it does not allow operations
to be added easily, and it does little to facil-
itate stacking. A revised interface can meet
these challenges while preserving the object-
oriented flavor of the vriode interface.

3.1 The existing interface

Operations in the standard vnode interface are
identified by a constant offset into the vnode
operations (vnodeops) vector. For example,
open is the first operation, rdwr the third, and
so on. These offsets are defined by convention
for each version of an operating system.

Because these offsets are defined only by
convention, no method exists to add new op-
erations to this interface. When a new opera-
tion is added, a new version of the operating
system is created and all existing file systems
must be modified to accommodate the new in-
terface. Modifications, or even availability of
all file systems is an expensive requirement un-
available to many developers and users.

One approach to future expansion is that
taken by Systemn V Release 4, which adds
“filler” space to the end of the vnodeops vec-
tor. This reserves space for future operations,
legitimatizing the need for expansion. But as a
long-term solution, this approach is little bet-
ter than the current policy, since there is no
mechanism to assign these unused entries to
developers.

Like the operations themselves, the argu-
ments of each operation are specified only by
convention. Each subroutine implementing an
operation is expected to conform to this con-
vention. Because this is only specified by
convention, inter-operation with other com-
puters must be accomplished by better speci-
fied protocols. NFS (8], for example, converts
vnode operations to a stanc -d network proto-
col when comm:-iicating with other machines.

3.2 An extensible interface

One fundamental problem w' h the existing
vnode interface is that too mu-h of the inter-
face is left to convention. When the interface
changes as operations are added, these conven-
tions break down and all existing code must be

updated. To solve this problem, we propose
more formal methods for interface definition.

The existing vnode interface implements all
operations as indirect procedure calls through
the vnodeops vector. Automatic configuration
of this data structure makes extensible opera-
tions possible.

To configure the new interface, each new file
system provides a list of operations it sup-
ports. This list is all that the designer of a
new file system need supply. An example of
this list appears in Figure 2, identifying each
vnode type, the names of the operations it sup-
ports, and pointers to the procedures which
implement these operations.

This list is examined at boot time, and the
union of all operations is taken. This iden-
tifies all operations that the vnode interface
must support. The list in Figure 2 includes
six unique operations: open, close, rdwr,
new_a ¢op, new b _op_i, new b op_2.

Next, one entry in the vnodeops vector is
assigned to each operation. This dynamic al-
location of slots is unique to the new inter-
face; in the standard interface these slots are
assigned statically by the operating system de-
signer. As each offset is assigned, it is recorded
in a global variable for reference when the op-
eration is later invoked. Figure 3 shows one
possible assignment of slots for our example.

Finally, a vnodeops vector is built for each
type of vnode. Each slot of each vnodeops
vector defines a particular operation for that
vnode type. A pointer to the subroutine im-
plementing this operation is placed in the slot
for supported operations. Each vnode type de-
fines a default routine which is assigned to all
operations not otherwise implemented by that
vnode type. Simple file systems may simply
return the error “operation not supported”;
more sophisticated file systems may do more.

This configuration can be thought of as com-
piling the list of operations from Figure 2
into a table that can be accessed efficiently.

List of provided operations
vnode type | operation name | implementation
anode cpen a_open
anods ¢lose a.close
anode rdwr a_rdwr
anode newv_a_op a_aop
anode defaunlt a_default
bnode open b_open
bnode close b.close
bnode rdwr b_rdwr
bnode new.b_op._1 bbb op-1
bnode new b_op 2 b_bop2
bnode default b.default
nifs_node open nfs_open
nfs node close nfs_close
nfs_node rdwr nfs.rdwr
nfs node new b op.1 nfs bop_1
nfs node new b op 2 nfs bop 2
nfs node defaunlt nis.default
null.node default null default

Figure 2: A list of operations provided by several different file systems.

The first column is

the type of vnode, the second is the name of the operation. The final column specifies the
subroutine that implements this operation for this kind of vnode.

operation name

vnodeops offset

open
close
rdwr
new_a_op
new b.op.1
new b op 2

0

(AN WL L

Figure 3: Offsets assigned to the operations listed in Figure 2.

Resulting vnodeops vectors

vnode type vnodeops vector
anode a_open aclose axder aaopl a_default a_default
bnode b.open b.close b.rdwr bdefault b.b.op_1 b_b_op_2
nfs_node nfs_open nfs.close nfs_rder nfs default nfs.b_op_1 nfs.b_op. 2
null.node null default]{null default;| null default|| null default|| null default| | null default

Figure 4: Computed vnodeops vectors. Unimplemented operations are filled in with the default
routine, provided operations with a pointer to the subroutine.

The vnodeops vector is a particularly fast
method for finding the correct routine for invo-
cation. Alternatives, such as each layer using a
switch statement to select the correct routine
leave the problem of efficiency to the compiler,
which often fails to do the best job possible.

Figure 5 shows how operations are invoked
in the traditional and the extensible vnode in-
terfaces.

To invoke an operation in the old interface,
first the vnode’s vnodeops vector was found.
Each operation was taken from a well known,
constant offset into this vector. The operation
was then invoked by an indirect procedure call.

QOperations in an extensible interface are in-
voked the same way, but instead of a well
known constant offset into the vnodeops vec-
tor, the offset dynamically assigned at boot
time is used. In this way operations can be
placed anywhere in the vector, allowing any
number of new operations are supported.

3.3 File system stacking

In addition to extensibility, file system stack-
ing is an important tool in file system develop-
ment. This section examines how file system
stacks are created with the new interface.

A file system stack is a composition of stack-
able layers identified by name in the file system
name space. Stacks are often linear, consisting
of one layer placed directly on top of another.

Stacks can also form a tree, where one layer
has several others above or below it. Each
stack is associated with a name in the file sys-
tem name space; users access data stored by
the stack through using files prefixed by this
name.

User actions to a file system stack are con-
verted to vnode operations sent to the top
layer of the stack. This layer interprets these
operations as required, possibly calling upon
lower layers for service. In particular, actions
which return a new vnode to the user typically
call upon the next layer down the stack to cre-
ate an appropriate lower level vnode. Each
layer’s vnode then holds a reference count and
the status of this lower level vnode as part of
its private data.

There are two aspects to the UNIX file nam-
ing service. The first occurs within a partic-
ular file systern where the name hierarchy is
connected by entries in directories. The sec-
ond connect the entire tree of an individua:
file system into the global hierarchy by over-
laying it on top of a leaf in the name space.
We generalize this second mechanism to build
file system stacks, mounting each layer of the
stack to a unique name in the name space.

Mounting is done by the kernel with the
mount system call. It requires the file sys-
tem type {NFS or UFS, or the name of some
stackable layer) and the location of the new

Old vnode interface

xfs_node
V_0p —— xfs_vnodeops
structure
open
constant close
offset

rawr

/\ xfs_foo

Extensible vnode Interface

xfs_node
V_Op ~———l xfs_vnodeops
structure
| open
dynamic ! close
offset % | rdwr
- ..

{+vn_foo_offset)

/\ xfs_foo

#define QLD_VOP_FOO(VP} ((*(VP)->v_op->vn_foo)(VP))

#define NEW_VOP_FCO(VP) ((*(VP)->v_oplvn_foo_otffset])(VP))

Figure 5: Invoking operations with traditional and extensible interfaces.

file system in the name space. What makes
this mechanism suitable for stacking is that
mount also takes a pointer to a set of parame-
ters specific to the file system type. Stackable
layers use this private information to identify
the next lower layer of the stack.

For example, consider creating a two level
file system. The upper layer could be a com-
pressicn layer, and the lower may be the stan-
dard UNIx file system. One would first mount
the Unix file system, giving it a name in
the name space (such as /layers/raw-data)
and telling it the name of the disk device
(/dev/sd1d). To place the compression layer
over the file system, mount is then called
for the second layer. One would mount
the compression layer on to some directory
(/usr/data), providing it the name of the
standard file system (/layers/raw-data) as
its lower layer. Users would then access the
top layer of the stack (/usr/data).

This approach has many of the same draw-
backs and advantages of the standard Un:
mount mechanism. All file system levels ap-
pear in the name space, so it is possible for
users to interfere with them, just as it is possi-
ble for a user to write to a raw disk partition.
T “blem is typically solved by denying
us .58 to lower-level file systems. On the
ot: .aand, the name space an. methods for
dealing with it are well known.

R~<enthal [8] uses a different method for
bu' .g vnode stacks. He describes a method
allc .iuglayers to be inserted between the - r
and vnode stacks currently in use. Qur .-
proach to stacking instead requires that the
user explicitly use the path name of the new
top-of-stack to begin using the new layer. Be-
cause most file systems alter the semantics of
the file system stack, it does not usually make
sense to insert layers between the user and file
currently being used. We have not found this
to be a sericus limitation in our development
of file systems using stacking.

3.4 Stacking and Extensibility

One of the most powerful features of a stack-
able interface is that file systems can be lay-
ered together, each adding functionality to the
whole. Often layers in the middle of a stack
will pass most operations to a lower layer un-
changed. For example, the only purpose of an
early version of the Ficus logical layer was to
select the replica for use; all other operations
were then forwarded directly to this replica for
handling. This section discusses methods to
forward operations in an extensible environ-
ment.

One way to pass operations down to a lower
level is to implement, for each operation, a
routine which explicitly invokes the same op-
eration in the next lower layer. This approach
does not work when the interface is extensible,
since new operations can be added at any time.
With this approach, addition of a new opera-
tion would require addition of this forwarding
routine to all existing stackable layers.

To aveid constant changes to existing lay-
ers, an interface that is both stackable and ex-
tensible must allow a default routine to han-
dle “all other cases”. This bypass routine can
forward operations not understrad to a lower
layer, or it may simply return an error. Fig-
ure 6 shows how a bypass routine might for-
ward operations to a lower level.

A bypass routine must handle forward g
an unknown set of operations to a lower level,
where each operation has some unknown num-
ber of arguments. Information to make this
possible does not exist in the standard vnode
interface. The new vnode interface makes a
bypass routine possible by formalizing infor-
mation about operation arguments, just as for-
mal management of the vnodeops vector al-
lowed extensibility.

The revised vnode interface describes argu-
ments in two ways. First, rat.-» tha: passing
operation arguments as parameters directly to

Ficus
logical
layer

standard-ops

replica-ops

I Y 3

transport
layer

standard-ops

bypass

Y

Ficus
physical
layer

standard-ops

replica-ops

Figure 6: A bypass routine forwards operations to a lower level.

the subroutine implementing the operation,
they are grouped into a structure and a pointer
to this structure is passed. This allows argu-
ments to be collectively identified by a generic
pointer, and it avoids repeatedly copying ar-
guments when passing through several layers
of a file system stack.

Second, a new argument is added to each
operation. This argument contains meta-
" information about the operation: what oper-
ation it is, the number and kinds of its ar-
guments, and so on. This description infor-
mation and the structure extend the object-
oriented style provided to the user to the im-
plementation of the interface itself. The orig-
inal interface gave the user the ability to per-
form operations on a vnode without respect
to its type; this modification allows a bypass
layer to forward an operation to a lower level
without respect to the operation involved.

These modifications allow a single bypass
routine to pass all operations to a lower layer.
Figure 7 shows a simplified implementation of
a bypass routine. It extracts the lower-level
vnode pointer from its level’s private data, and
invokes the same operation on the lower level.

A null layer which would simply pass op-
erations down to the next level would consist
of a bypass routine alone. This simple layer is

very easy to implement with the new interface,
and can serve as a basis for more complicated
layers.

3.5 Network transparency

A transport layer is a stackable layer which
transfers operations from one address space
to another. NFS is an example of such a
layer, providing access to remote file systems
by mapping vnode operations into a network
protocol and back?.

The object-oriented flavor of the vnode in-
terface allows remote access to be nefwork
transparent to the programmer. A vnode
which refers to a file on another machine ac-
cepts the same operations with the same inter-
face as a local vnode, the programmer never
needs to know the difference.

For this transparency to be preserved with
an extensible interface, it must be possible for
transport layers to forward new operations to
other address spaces, just as bypass routines
forward operations to lower layers in the same
address space.

INFS modifies the semantics of the interface to
make it stateless, An ideal transport layer would be
semantics-free,

struct vnode_arg_description {
int operation_offset;

b

struct generic_vnode_args {
struct vnode_arg_description #*desc;
struct vnode *vp;

};

struct null_node {
struct vnode »lowervp;
struct vnode vnode;

s

#define VTONULL(VP) \
({struct null_node#*)({(VP)->v_data))

#define VCALL(VP,OFFSET,AP) \
((#(VP)->v_op[OFFSET]) (AP))

int
null_bypass (ap)
struct generic_vnode_args *ap;

{
ap->vp = VTONULL (ap->vp)~>lowervp;
return VCALL(ap->vp,
ap->desc->operation_offset, ap);
}

Figure 7: An implementation of a bypass rou-
tine.

10

To forward an operation to another address
space, the types of each operation argument
must be known, allowing a network RPC pro-
tocol to marshal that operation and its argu-
ments. This information is part of the meta-
data carried along with each operation. Thus
a transport layer may be thought of as a
semantics-free RPC protocol with a stylized
way of marshaling and delivering arguments.

4 Implementation and
Performance

The interface described in this paper has been
implemented as a modification of Sun0S 4.0.3.
Two implementations have been made, one
converting the entire kernel to use the new
interface, another using the new interface for
only new file systems and supporting the old
interface throughout the rest of the kernel.

To examine the performance of the new in-
terface, we consider several classes of bench-
marks. First, we carefully examine the :osts
of particular parts of the new interface with
“micro-benchmarks”. We then consider how
the interface modifications effect overall sys-
tem performance by comparing a modified ker-
nel with an unmodified kernel. To determine
the cost of multiple layers with the new in-
terface, we evaluate the performance of a file
system stack composed of different numbers of
layers. Finally, we compare the implementa-
tion effort of similar file systems under both
the new and the old interfaces.

All timing data was collected on a Sun-3/60
with 8 Mb of RAM and a two 70 Mb Max-
tor XT-1085 hard disks, except for Section 4.3
which used a single 300 Mb Maxtor XT-8380S
hard disk.

4.1 Micro-benchmarks

Parts of the new vnode interface we knew
would be called at least once per operation.
To minimize the total cost of an operation,
these must be carefully optimized. Here we
discuss two such portions of the interface: the
method for calling an operation, and the by-
pass routine.

To evaluate the performance of these por-
tions of the interface, we consider the number
of assembly language instructions generated
in the umplementation. While this statistic is
only a very rough indication of true cost, we
consider it appropriate for order-of-magnitude
comparisons?,

We began by considering the cost of invok-
ing an operation in the old and the new inter-
faces. Figure 7 shows the C code for calling
an operation. On a Sun-3 platform, the origi-
nal vnode calling sequence translates into four
assembly language instructions, while the new
sequence requires six instructions?. We view
this overhead as not significant with respect to
most file system operations.

We were also interested in the cost of the
bypass routine. We imagine many “filter” file
system layers, each adding an important fea-
ture to the file system stack. File compression
or local disk caching are examples of services
such layers might offer. These layers would
pass most operations directly to the next layer
down, modifying the user’s actions only rarely
(to uncompress a compressed file, or to bring
a remote file into the local disk cache). For
such layers to be practical, the bypass rou-
tine must be very inexpensive. A complete
bypass routine amounts to about 54 assem-

¥QObviously, factors such as machine architecture
and the choice of compiler have a significant impact
on these figures. Many architectures have instructions
which are significantly slower than others. We claim
only a rough comparison from these statistics.

*We found a similar ratio on RISC-based architec-
tures.

11

bly language instructions®. About one-third

of this is used only for certain argument com-
binations, reducing the cost of forwarding sim-
ple vnode operations to only 34 instructions.
Although this cost is significantly more than
a simple subroutine call, we feel it is not sig-
nificant with respect to the cost of an average
file system operation. To further investigate
the effects of file system layering, Section 4.3
examines the overall performance impact of a
multi-layered file system.

4.2 Interface performance

Encouraged by results of the previous section,
we anticipated very low overhead for our stack-
able file system. OQOur first goal was to com-
pare a kernel supporting only the new inter-
face with a standard kernel.

To examine overall performance, we con-
sider two benchmarks: the modified Andrew
benchmark [5, 3] and recursive copy and re-
move of large subdirectory trees. In addition,
we examined the effect of adding multiple lay-
ers in the new interface.

The Andrew benchmark has several phases,
each of which examines different file system ac-
tivities. Unfortunately, we were frustrated by
two shortcomings of this benchmark. The first
four phases are very brief, making accurate
evaluation of these phases difficult. While the
final compile phase is relatively long, on many
machines compilation is compute-bound, ob-
scuring the impact of file system performance.

The results from the benchmark can be seen
in Table 1. Overhead for the first four phases
averages slightly more than one percent. The
very short run times for these benchmarks
limit their accuracy, since timing is done only
to a one second resolution. The compile phase
shows only a slight overhead. We attribute

3 These figures were produced by the Free Software
Foundation's gec compiler., Sun’s C compiler bundled
with Sun0S 4.0.3 produced 71 instructions.

this lower overhead to the fewer number of file
system operations done per unit time by this
phase of the benchmark.

To get a more accurate assessment of perfor-
mance of the new benchmark, we augmented
the Andrew benchmark with two additional
phases. Both phases operate on large amounts
of data (a 4.8 Mb /usr/include directory
tree) to extend the duration of the benchmark.
Qur first additional phase recursively copies
this data, the second recursively removes it.
As can be seen in Table 2, overhead averages
a little more than 1%.

4.3 Multiple layer performance

Since the stackable layers design philosophy
advocates using several layers to implement
what has traditionally been provided for by a
single layer, the cost of layer transitions must
be minimal. To examine the overall impact of
a muiti-layer file system, we analyzed the per-
formance of a file system stack as the number
of layers employed changes.

To perform this experiment, we began with
a kernel modified to supporting the new in-
terface within all file systems and the old in-
terface throughout the rest of the kernel. At
the base of the stack we aced a UFS modi-
fied to use the new interface. Above this layer
we mounted from zero to ten null layers, lay-
ers which merely forward all operations to the
next layer of the stack. Upon this file system
stack we ran the benchmarks used in the last
sectisn.

Fizure 8 shows the results of this study. As
can ise seen, performance varies nearly linearly
with the number of layers used. The modified
Andrew benchmark shows about 0.3% over-
head; the recursive copy benchmark, there is
slightly more than a 1.8% overhead per layer.
Recursive remove indicates 3% overhead per
layer. These overheads were computed by
least squares fits to the sample data, yield-

ing 0.98 correlations for the two later tests,
0.77 for the Andrew benchmark. Differences
in overhead per benchmark are the result of
differences in the ratio of vnode operations to
benchmark length. These results indicate that
under normal load usages, a layered file system
architecture will be virtually undetectable, but
under heavy file system use a small overhead
will be felt.

We are investigating ways to reduce layer
overhead. Currently it appears that most
overhead occurs creating new null layer
vnodes. A more sophisticated vnode pool in
that layer would likely improve performance.

4.4 Layer implementation effort

The goal of stackable file systems and this in-
terface is to ease the job of developing new
file systems. Clearly, importing a functionality
from existing layers saves a significant amount
of time. Ficus, for example, borrows network
transport and low-level disk storage facilities
from pre-existing file systems. In addition to
this, we would hope that stackable file system
layers are as easy to implement as currently ex-
isting file systems. To address this question,
we compare two very similar file systems as
developed under each interface.

The loopback file system duplicates a por-
tion of the file system name space. Modifica-
tions to either copy of the name space appear
in the other. The loopback file system was
implemented in SunOS 4.0 under the original
vnode interface.

The null layer implemented under the new
interface provides very similar characteristics.
The null layer forwards all operations to the
next layer down the stack. Since each layer has
a name visible in the file system name space,
both the null layer and the underlying file sys-
tem are visible to the user.

Table 3 shows the number of lines of C code
needed to implement the loopback file system

12

Old interface

New interface

Phase time %RSD | time %RSD | % Overhead
MakeDir 3.3 16.0 3.2 14.8 -2.76
Copy 18.8 4.6 | 19.1 5.0 1.92
ScanDir 17.2 5.2 17.8 7.9 3.13
ReadAll 28.3 2.0 28.8 2.0 1.70
Make 327.6 0.4 | 328.1 0.7 0.15
Overall 395.2 0.4] 396.9 0.9 0.45

Table 1: Modified Andrew benchmark results running on kernels using the old and new vnode
interfaces. Time values (in seconds) are the means of thirty sample runs; %RSD indicates
the percent relative standard deviation {¢x /itx); overhead is the percent overhead of the new
interface. High relative standard deviations for MakeDir are a result of poor timer granularity

(times have only one second accuracy).

Old interface | New interface
Test time %RSD | time %RSD | overhead
Copy 51.57 1.28 | 52.54 1.38 1.88
Remove | 25.26 2.50 | 25.48 2.74 0.89
Overall | 76.83 0.87 | 78.02 1.33 1.55

Table 2: Recursive copy and remove benchmark resuits running on kernels using the old and
new vnode interfaces. Time values (in seconds) are the means of twenty sample runs; %RSD
indicates the percent relative standard deviation overhead is the percent overhead of the new

interface.

13

30 ,] | |

25 cp sys ©—
least squares fit - -
20 - Im sys A—
least squares fit - -
Overhea.:i5 B MAB Overall 88— &
per least squares fit - -
layer
(percent)lo
° 1]
0 v
-5 ! 1 1 t
0 2 4 6 8 10

Number of layers

Figure 8: Performance of file svstem stacks with varying numbers of layers under the new
interface. Recursive copy and recursive remove system times and overall modified Andrew
benchmark times are shown. Dotted lines indicate linear least squares approximations of the
data. Each data point is the mean of four runs.

14

and the null layer. The amount of support
code needed for each implementation is very
similar, as are implementations of the mount
protocol. The null layer implementation for
vnode operations is much shorter, however,
since the loopback file system requires spe-
cial case code to pass each operation down.
The services the null layer provides are also
more general, since the same implementation
will handle all future added operations.

The loopback file system and the null layer
are not necessarily the best example of the
cost of file system implementation, since nei-
ther implements significant functionality. The
Ficus file system 1s a distributed file system
supporting replication. For an analysis of its
implementation with stackable layers, see [2].

5 Future Work

Current file systems suffer from their mono-
lithic origins. Using stackable layers, a more
modular approach is appropriate. Existing file
systems should be broken in to several layers,
each of which implements only one abstrac-
tion. The UFS itself could be divided into
several layers, one implementing the concept
of a disk partition, one files, and another di-
rectories.

New file systems built on top of others will
often need to extend the data structures of
lower levels. NFS, for example, needed to add
a generation number to the inode, and repli-
cation in Ficus requires additions to the su-
perblock, the inode, and the directory entry.
When a new file system abstraction is imple-
mented, its corresponding data structure must
be extensible to allow future layers to build on
it. We’re currently investigating methods to
make file systern data structures more exten-
sible.

The NFS Version 3 [10] and NeFS§ [11] pro-
posals expand upon the NFS protocol to ac-

commodate. They present one approach to ex-
tensible data structures and operations. The
relationship between this work and stackable
file systems needs careful consideration.

As another file system layer example, a mea-
surements layer has been designed and is being
built at UCLA. We hope to use it to collect
trace data and analyze performance. Such a
layer is particularly exciting since it can be slid
in anywhere in a stack to collect performance
information with no modification to the target
file system code.

The vnode interface is a kernel interface for
files. Its counterpart for whole file systems is
the VFS interface. Modifications to make the
VFS interface extensible need to be examined.
One approach we’re considering is to make the
file system vfs data structure a special type of
vnode, thereby taking advantage of the mech-
anisms for vnode extensibility.

6 Conclusions

This report discusses how change and demand
for new file system features requires the abil-
ity to add new operations to a file system in-
terface. The current vnode interface makes
change a very expensive proposition; modifi-
cations presented in this paper allow easy ad-
dition of new operations with little overhead.

The combination of an extensible interface
and stackable layers creates difficulties when
layers are called upon to perform new opera-
tions. To avoid requiring changes to old levels,
we present the supporting concept of a generic
bypass routine.

We have implemented a prototype of these
concepts at UCLA. We find performance good,
with only a slight overhead required for layer
traversal.

We have found this combination of a stack-
able and extensible file system interface to of-
fers a powerful base for the design of new file

15

file | lines of code

Inode.h 10
loinfo.h 25
lo_subr.c 200
lo_vfsops.c 135
lo.vnodeops.c 373
total loopback 743
nullnode.h 12
nullinfo.h 37
null_subr.c 199
null_vfsops.c 173
null_vnodeops.c 211
total nulf 632

node.h This file defines the vnode structure for that file system.

info.h This file provides declarations for mounting.

subr.c This implements utility routines for the file system, such as node management.
visops.c This implements the file system mount protocol.

vnodeops.c This provides all vnode operations.

Table 3: Number of lines of code needed to implement a complete pass-through layer or file
system.

16

systems.

Acknowledgments

The authors would like to thank Yuguang
Wu for implementation of the null layer, and
Richard Guy and Tom Page for their many
helpful comments on this paper. The would
also like to acknowledge the contributions of
Dieter Rothmeier and Wai Mak to the imple-
mentation of the Ficus file system.

References

[1]

[2]

[3]

4]

(5]

Richard G. Guy, John S. Heidemann, Wai
Mak, Thomas W. Page, Jr., Gerald J.
Popek, and Dieter Rothmeier. Imple-
mentation of the Ficus replicated file sys-
tem. In USENIX Conference Proceedings,
pages 63-71. USENIX, June 1990.

John S. Heidemann. Stackable layers: an
architecture for file system development.
Master’s thesis, University of California,
Los Angeles, 1991. In progress.

John Howard, Michael Kazar, Sherri Me-
nees, David Nichols, Mahadev Satya-
narayanan, Robert Sidebotham, and
Michael West. Scale and performance in
a distributed file system. ACM Transac-
tions on Computer Systems, 6(1):51-81,
February 1988.

S. R. Kleiman. Vnodes: An architec-
ture for multiple file system types in Sun
UNIX. In USENIX Ceonference Proceed-
ings, pages 238-247. USENIX, June 1986.

John K. Qusterhout. Why aren’t operat-
ing systems geting faster as fast as hard-
ware? In USENIX Conference Proceed-
ings, pages 247-256. USENIX, June 1990.

17

[6] Thomas W. Page, Jr., Gerald J. Popek,

[7]

[9]

(10]

[11]

Richard G. Guy, and John S. Heidemann.
The Ficus distributed file system: Repli-
cation via stackable layers. Technical Re-
port CSD-900009, University of Califor-
nia, Los Angeles, April 1990.

Dennis M. Ritchie. A stream input-
output system. ATET Bell Laboratories
Technical Journal, 63(8):1897-1910, Oc-
tober 1984.

David §. H. Rosenthal. Evolving the
vnode interface. In USENIX Conference
Proceedings, pages 107-118. USENIX,
June 1990.

Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon.
Design and implementation of the Sun
Network File System. In USENIX
Conference Proceedings, pages 119-130.
USENIX, June 1985,

Sun Microsysterns. Sun network file-
system protocol specification, version 3,
draft. Available for anonymous ftp on
uunet.uu.net as networking/NFS.spec.Z,
November 1988.

Sun Microsystems. Network extensi-
ble file system protocol specification,
draft. Available for anonymous ftp on ti-
tan.rice.edu as public/nefs.doc.ps, Febru-
ary 1990.

