Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A TRANSACTION-BASED APPROACH TO VERTICAL
PARTITIONING FOR RELATIONAL DATABASES

W. W. Chu December 1990
I. T. leong CSD-900043

A Transaction-Based Approach to Vertical

Partitioning for Relational Databases®

W. W. Chu and I. T. Ieong
Department of Computer Science

University of California, Los Angeles

December 10, 1990

Abstract — A new approach to vertical partitioning is proposed to partition the
attributes of a relation according to the set of transactions. The objective of vertical par-
titioning is to minimize the total number of disk accesses in the system. Since transactions
have more semantic meaning than attributes, it allows optimizing the partitioning based
on a selected set of important transactions. An optimal binary partitioning algorithm,
OBP, with complexity of O(2") is presented where n is the number of transactions in
the system. A heuristic algorithm BP: with complexity varying from O(n) to O(2") is
also developed to handle systems with a large number of transactions. Our experimental
results show that both the algorithms OBP and BP: yield results comparable with that of

the global optimum obtained from exhaustive search.

1 Introduction

In a relational database, system throughput is affected by the rate which the data can
be retrieved from the disks. To enhance the performance of a database system, those

attributes that are frequently requested by transactions may be grouped together to reduce

*This research is supported by Hughes Aircraft Company contract 58-544866-X21 and Hughes
Micro contract 89-005.

the number of pages transferring from disks to the main memory for processing. Vertical
partitioning assigns the attributes of a logical relation into fragments which minimizes
the total number of disk accesses requested by the transactions. However, the number
of sets of fragments that the attributes can be assigned to is too large. It is equal to
the mth Bell number for a relation with m attributes, which is roughly on the order of
O{m™)[3][6]. It is infeasible to solve the problem optimally by an exhaustive approach,

even for a relatively small m.

Hoffer[4] developed a nonlinear, zero-one integer programming technique for determin-
ing the vertical fragmentation that minimizes storage, retrieval, and update costs under
capacity constraints assigned to each subfile. Hoffer and Severance[5] developed an al-
gorithm by permuting the attributes and grouping the ones with "high affinity” together.
Affinity among attributes is a measure of the extent that they are being referenced to-
gether. Navathe et al.[6]extended this work and proposed a two phase vertical partitioning
algorithm. The first phase sets up an attribute pairwise affinity matrix. A clustering algo-
rithm is used to perform a pairwise permutation of rows and columns to put the matrix in
a semiblock diagonal form. The matrix is then divided into two sets of attributes which
minimizes the accessing of irrelevant attributes. An affinity graph can also be constructed
with the edge value representing the affinity between two attributes from the attribute
affinity matrix. A linearly connected spanning tree is then formed. By considering a cycle
as a fragment, the algorithm generates all meaningful fragments in one pass[7]. Cornell
and Yu[1][2] developed an approach to vertical partitioning based on the physical design
of relational databases. An integer linear programming technique was used to develop
an optimal binary partitioning algorithm which minimizes the number of disk accesses by

assigning attributes to physical segments.

All previous research used an attribute as the basic manipulation unit which lacks
semantic information. To remedy this shortcoming, we consider the attributes accessed
by a transaction as a unit. Using this approach, an optimal binary vertical partitioning
algorithm with the complexity of O(2") is developed as compared to the attribute-based
algorithm of O(2™) where n and m are the number of transactions and attributes respec-
tively in the system. Since usually n < m, the proposed algorithm yields a reduction of
computation complexity of O(2™~"). Because transactions have more semantic meanings
than attributes, this transaction-based approach allows the selection and the optimization

of only the important transactions (e.g., frequently used); thereby, reducing the effective

n. A heuristic algorithm BP: with significantly less complexity (varying from O(n) to

0O(2")) is also proposed for systems with a large number of transactions.

In this paper, we shall first present the concept of transaction-based vertical partition-
ing and then introduce the notion of reasonable and unreasonable cuts and their groupings.
Next, we present a theorem stating that an unreasonable cut can be improved by a reason-
able cut. Based on this property, two vertical partitioning algorithms are developed: the
optimal binary partitioning algorithm OBP and the heuristic partitioning algorithm BP:.
Finally, we compare the performance and behavior of the proposed algorithms with the

known algorithms as well as the global optimal solution obtained from exhaustive search.

2 Vertical Partitioning

Vertical partitioning depends on attribute access patterns and the number of scans through
the relation in each transaction invocation. Usually, there are two types of scans: index
and segment scans. For an index scan, the average number of pages retrieved by a
transaction depends on the average fraction of tuples satisfying the predicate for the
indexed attribute. If the indexed attribute is the clustering attribute, it is called a clustered
index scan, otherwise, it is an unclustered index scan. A segment scan retrieves all pages
of a relation. Since reading is sequential, several pages of the relation can be prefetched
in a single disk access. For a given transaction type, the query optimizer decides the type

of scans to be used.

2.1 Objective Function

The cost in terms of the number of disk accesses of a transaction depends on the number
of fragments it accesses, its access frequency, and the access method used. The cost can

be estimated as follows[2]:

o Unclustered index: Number of accesses = (cardinality)(selectivity)

5 — (cardinality)(selectivity) (length of tuple)

e Clustered index: Number of accesse i -
page size)

(cardinality)(length of tuple)
(page size){prefetch blocking factor)

e Segment scan: Number of accesses =

The total number of disk accesses by all the transactions is the sum of the number
of disk accesses incurred by each transaction. The objective function is to minimize the

total number of disk accesses.

2.2 Properties of Transaction-Based Partitioning

2.2.1 Reasonable and Unreasonable Cuts

| 4y G2 Gy a4 Gy Gg A7 0 Ay
/4 1 1 1 1 0 0 0 L] 0
T o 0 1 1 1 1 1] 0
T3 0 0 0 0 0 1 1 1 1

(a) The access pattern matrix for three transactions.

T2
@ JG, =
' a8
T1 T3

(b) An attribute intersection graph for three transactions.

Figure 1: Access pattern matrix and attribute intersection graph.

A sel f-contained fragment, T;, is the set of attributes transaction i accesses. The
union of such self-contained fragments is referred to as a contained fragment. A binary
cut that partitions the attributes into two sets in which at least one of them is a contained
fragment is called a reasonable cut. For the example in Figure 1, the self-contained
fragment T for transaction 1 is composed of attributes a,, az, a3, and ay. The union of
self-contained fragments T; and T, is a contained fragment. The reasonable cuts among
the binary cuts are shown in Figure 2. We shall define group ¢ reasonable cuts when their
contained fragments consist of exactly ¢ self-contained fragments. All binary cuts that are

not reasonable cuts are called unreasonable cuts.

@D T v
prX>

LD

(a) Group 1 reasonable cuts

T3

(o) Group 2 reasonable cuts

{c) Group 3 reasonable cut

Figure 2: Reasonable cuts for the three transactions in Figure 1

Lemma 1: For a system with n transactions, there are (
i

n '
~ | group i reasonable cuts.

Proof: Straightforward.

Lemma 2: There are 2* — 1 reasonable cuts to binary partition a relation.

?

. n .
Proof: Since there are (_) group 7 reasonable cuts, the number of reasonable cuts to

binary partition a relation is 37 (n) =2"-1. Q.E.D.

1

For the example with nine attributes and three transactions as shown in Figure 1,

Transaction type L

s A

F22

-l

Partition P2

(a) Cutl, an unreasonable cut

P1 Partition P2
(b) Cut2, areasonable cut

Transaction type

Transaction typeE 5 W \ l}

P1 Partition p2

(¢} Cut3, a reasonable cut
Figure 3: Reasonable and unreasonable cuts of a relation.

there are 2° — 1 possible binary cuts and 2® — 1 = 7 reasonable cuts (Figure 2). Three of
them are in group 1, three in group 2, and one in group 3. We shall now show that the

optimal binary cut is derived from the reasonable cuts.

Theorem 1: For a given unreasonable cut of a relation, there exists at [east one reasonable
cut that yields less or equal cost (in terms of the total number of disk

accesses) than the unreasonable cut.

Proof. After partitioning a relation by an unreasonable cut as shown in Figure 3a, the
attributes are divided into two sets, P, and P,. Let type L (Left) and R (Right) trans-

actions be the ones that access attributes in P, and P, respectively. Fy (F3) is the set

of attributes accessed by type L (R) transactions and Fy, (Fap = F — Fy;) is the set of
attributes that are not accessed by type L (R) transactions in P (P;). Type M (Middle)
transactions access attributes both in P; and P,. Let us move the partition to the bound-
ary of Fy. The number of type L transactions remains the same; however, the number
of type M transactions may decrease, since some of the attributes are moved from P; to
P,. After moving the partition to the boundary of Fj, those type M transactions that
only access F,; no longer need to access attributes in P;. We call these transactions type
R’ transactions, as shown in Figure 3b. Likewise, L' is defined as shown in Figure 3c.
Let C;, C,, and C3 be the cost functions for cuty, cuts, and cuts, respectively. Cut; is
obtained from cut; by moving the partition to the boundary of Fy. Cut; is obtained by
moving the partition to the boundary of F5. The cuts in Figures 3b and 3c are reasonable

cuts.

Let Le, Lu, and Ls be the set of type L transactions using clustered index, unclustered
index, and segment scans, respectively. In the same manner, we shall define Mc, Mu, Ms,
Re, Ru, Rs, Lc’, Lu’, Ls', Re’, Ru’, and Rs’ for type M, R, L', and R’ transactions.
For simplicity in analysis, we use the real number for the number of disk accesses. The

cost function for cut,, Cy is:

Cl = D1 Z fx3x+2D1 Z fz:sa:

r€LuURu xEMu

+D2(I(Fl)+l F21 Z fx5r+D2(I(Fl)+I FZ +I FS Z fa:'s.r

zeLe TEMc

FD,(1(F) + 1) S fose + 2((F) + {Fn) 3 fo

z€Re b r€Ls

+952(1(F1)+1(F2)+1(F3)) > fat ((Fzz JHUF) Y f (1)

zEMs TERa
where

D, = cardinality, number of tuples in the relation
D, = cardinality/pagesize
[{Fy) = tuple length of fragment F}
b = prefetch blocking factor
= selectivity for transaction 7
= relative execution frequency of transaction :
n; = number of scans of the relation in each invocation of transaction ¢

fi = rin;, the relative access frequency of transaction ¢

C is the sum of the costs incurred by the transactions using different access methods.
The first two terms in (1) are the costs due to types L, M, and R transactions using the
unclustered index scan. The next three terms are the costs for the clustered index scan
and the remaining terms are the costs due to the segment scan. In the same manner, the

cost functions for Cuty, C5, and Cuts, Cs, are:

Cy =Dy Z fxsx+2D1 Z fwsx

rE€LuURuURY! s€Mu—Rv’

+DR(F) Y fose + Do(I(F) + UF) +1(F3) Y. fose

z€le reMc—Re!
+D,(I(F2) +1(F3)) D faset I(F1 Do fe
z€RcURC! z€Ls

F B R TR H) T L+ 4UF) Y £ ()

reMs—Rs' r€ERsURS

CS = D1 z fmsz+2Dl Z f.rsa:

zeLuUlLu'URy reMu—Lu'

I, (U(F)+UF) Y fose+ Do(F) +1UF) +UFD) Y fuse

r€LcULc! rEMce=-Lc!

+D,I(Fy) S f,s,+%(l(F1)+1(Fz)) > fa

rERe xeLsuLs'

P DE) LB B Y et UER Y A 3)

z€Ms—Ls' rERs

Comparing the cost functions between C; and C,, and C; and Cj, we have

Ci—Cy=Cr + Dgal(le) (4)

Cl CLI DzaI(Fzz) (5)

where

CR‘= fosx+D2 Fl Zf.rsx"'}‘_lpl Zf:c

.I:ERu' x€Rc!
CL’ :Dl Z: fxsx+D2I(F3) Z fx5x+Tzl(F3)Zfr
zeLu’ relc! Ly’

Cost

C:
! ' > () ‘ | (F23)
Cut2 Cut1 Cut3 Cut2 Cutt cui3
(a)a>0 (b)a<o

Figure 4: The cost region of an unreasonable cut, cut;.

a = fosx+%2fz“ fosr_%fo

xelc rels z&Re T€Rs

Since type L’ and R’ transactions only need to access P, or P,, this reduces access
cost. Let Cy, and Cr be the corresponding cost reduction. Since Cgr and Cp» > 0, if
a > 0, then C; > C,. Likewise, C; > Cs, if a < 0. This implies that there exits a

reasonable cut with equal or less cost than that of the unreasonable cut. Q.E.D.

2.2.2 Cost Region of an Unreasonable Cut

Let us now discuss the change of cost function when we move the partition from an
unreasonable cut to the reasonable cuts. As we move the partition to the left, some
of the type M transactions may become type R’ transactions; likewise, as we move the
partition to the right, some of the type M transactions may become type L’ transactions.
The change of cost function as we move the partition to either direction depends on «
and the number of type R’ and L’ transactions. Figure 4 represents the cost region (in
terms of total number of disk accesses) when o > 0 and o < 0. For convenience in
presentation, the cost is presented as a continuous function. C} on the left upper corner
represents the case when all the type M transactions that access Py need to access both
Fy and F3;. Similarly, the point C} represents the case when all the type M transactions

that access P, are required to access Fy; and F3. Cj represents the case when all the

type M transactions that access P, need only access Fy, and CJ represents the case
when all the type M transactions that access P, need only access Fy,. As a result, the
difference between Cj and Cj (C; and CY) is Cr/(Cyr) which equals the amount of cost

reduction from type R’ (L’) transactions.

From (1) and (4), we know that C;Cj in Figure 4a is a linear increase function of
I(Fy;) with a slope of Dz which represents that there are no type L’ and R’ transactions.
As we move the partition to the left, this reduces F3; while increasing F5,. Since o > 0,
the cost function decreases as F,; reduces. For an unreasonable cut that both type
L’ and R’ transactions exist, as we move the partition to the left, the number of R’
transactions increases which reduces the cost function. Therefore, the cost function is a
monotonic increase function as Fy; increases inside the region of C;C,CYC]. Note that
CyC1 (C{CE) has the same slope as CLC; (C1C3). When we move the partition to the
right, the cost function is bounded by the region of C;CiC{Cy and the cost improvement
depends on the combined effect of cost decrease due to the change from type M to L’
transactions and the cost increase due to « > 0. The cost region in Figure 4b is similar

to that in Figure 4a except a < 0.

2.2.3 Fragments with Tuple Identifier

To identify an original tuple in different fragments of a relation, it is necessary to identify
each tuple in all of the fragments. This can be accomplished by replicating the primary key
or tuple identifier (i.e., system controlled identifier for each tuple of the original relation)

for all the fragments of the relation.

Corollary 1: Theorem 1 is true when adding a primary key or tuple identifier to each

tuple for all the fragments of a relation.

Proof: Let the length of the primary key or tuple identifier attached to each tuple be the
same and denoted by I(I). Let C;, C;, and C; be the costs with primary key or tuple

identifier for cut;, cut,, and cuts. Then,

Cr=Cr+ D) Y. fose+2D50(I) S fasa 4+ DA(I) Y. fuse

x€lc zeEMe r€ERc

10

E fx 2D2 Z fx+ “_l) Z f:r (6)

z€Ls :BEMa reRs

Cs=Co+ Dyl(I) Y fasz+2Dl(I) D fese+Dol(I) D fesa

r€lc z€EMc—Rc zE€RAURC!
2D D
.I'ELs :tEMs—Ra’ zeRsURS
C3 = C3 + Dol(I) Z fess + 2D21(I) E fe8: + DI{(I) Z .
zeLcULc! TEMc—Lc! x€Re
D 2D
P2 Y R+ 20D Y RPN Y F (8)
relsULs’! rEMs—Ls' TERs
Cr—Cr=C—Cy+ DI Zfrsmt > fo) (9)
T€ERC! xERs
1
Cl —C;=Cy— C3+ DI} D fosz+ 3 > f) (10)
reLe! zcLs

From (9) and (10), we know that if « > 0, then C; > C;; otherwise, C; > C3. Q.E.D.

Theorem 2: The optimal binary vertical partitioning of a relation has complexity O(2").

Proof: Based on Lemma 2 and Theorem 1, an unreasonable cut can be improved by
one of the reasonable cuts. Since there are 2" — 1 reasonable cuts for a system with

n transactions, the computation complexity of the optimal binary vertical partitioning is
o(2"). Q.E.D.

3 The Algorithms

By successive binary partitioning of a relation with reasonable cuts, based on Theorem 2,
an optimal binary partitioning algorithm, OBP, with complexity O(2") can be developed

as will be discussed below.

11

Start

'

current group := 1

Generate the next
reasonable cut
in the current group

)

Y

i cost is less, keep it.

Evauate all

reasonable cuts

n the current
group

No

Yes

Increment the current
group by 1.

{

Stant

i

current group := 1

!

Generate the next

| reasonable cut
in the current group

Y

if cost is less, keap it.

Increment the current
group by 1.

{

No Evauate alf No
n groups of - Currant group > i
easonable culg
Exit Exit
{a) Algorithm OBP (b) Algorithm BPi

Figure 5: Flowcharts for the partitioning algorithms.

3.1 Optimal Binary Partitioning (OBP) Algorithm

The algorithm first generates all the first group reasonable cuts, keeping the one
that yields the lowest cost, and then repeats the same process for the second group of
reasonable cuts. This process is repeated until all the n groups of reasonable cuts are
evaluated as shown in the flowchart in Figure 5a. Figure 6 shows the corresponding pseudo

code of the algorithm.

The procedure evaluate_cost () in line 2 evaluates the total number of disk accesses
requested by all transactions for fragment F. The procedure NEXKSB() [8] in line 7 gener-

ates the next j out of n self-contained fragments represented by their transaction number

12

Algorithm OBP(F, F1, F2)

(O)BEGIN
(1) better := ‘no better’; {Improvement indicator set to ‘no better’.}
(2) mincost := evaluate_cost(F)}; {Evaluate the cost for the fragment F.}
(3 FOR j := 1 to n DO { Evaluate all n groups of reasonable cuts.}
(4 BEGIN
(5) flag := false;
(6) REPEAT
(7 NEXKSB(n, j, T, flag);
{Generate the next j out of n combination and store
it in the first j elements of vector T. flag is set
to: false, for the first call; true, if the current
combination is not the last one; false, if the current
combination is the last. See [8] for more details.}
(8) tempFl := reasonable_cut(j, T);

{tempF1 stores all the attributes accessed by
the j transactions indicated in T.}
{9) tempF2 := F - tempF1;
{tempF2 stores the rest of the attributes.}
(10) currentcost := evaluate_cost(tempF1) + evaluate_cost(tempF2);

{Evaluate the cost of the current binary partition.}

(11) IF currentcost < mincost THEN
{If there is an improvement, keep it.}

(12) BEGIN

(13) F1 := tempF1l; F2 := tempF2;

(14) mincost := currentcost;

(15) better := ‘better’;

(18) END;

(17 UNTIL flag = false;

(18) END;

(19) RETURN(better);

(21)ERD;

Figure 6: Pseudo code for algorithm OBP.

13

Algorithm BPi(F, F1, F2)

{0)BEGIN

(3) FOR j := 1 to i DO { Evaluate up to ith group reascnable cuts.}

(21)END;

Figure 7: Pseudo code for algorithm BP:.

and stores them in the first ; elements of T. The function reasonable cut() in line 8
separates all the attributes in the contained fragments indicated by T from the relation
and assigns them to tempF1. Since the computation complexity of algorithm OBP grows
exponentially with n, using OBP can be quite time consuming for systems with a large
number of transactions. Therefore, we shall propose a heuristic algorithm that greatly

reduces the computation complexity for solving the vertical partitioning problem.

3.2 Heuristic Algorithm BP+

To reduce the computation complexity for systems with a large number of transactions,
we propose to evaluate up to the group i reasonable cuts (see flowchart in Figure 5b).

We shall call this heuristic algorithm BPz, 1 = 1,...,n. The number of reasonable cuts
evaluated is 33%_, (n) , for i = 1,...,n. The complexity of this algorithm depends on 2
J

and varies from O(n) to O(2"). The search space of BP: is the union of the search space
of BP(7 — 1) and all the group 7 reasonable cuts. The pseudo code for algorithm BP: is
almost identical to that of algorithm OBP (see Figure 7) with the exception of line 3 that

evaluates only up to the ith group of reasonable cuts, 1 < i < n.

To generate all the fragments, we shall apply our binary partitioning algorithms repet-

itively as shown in the pseudo code in Figure 8.

14

Algorithm Repetitive_Binary Partitioning(A_Binary_Partitioning Algorithm, F)
(OYBEGIN

(1 IF A_Binary_Partitioning Algorithm(F, Fi, F2) = ‘better’

(2) THEN BEGIN

3 Repetitive_Binary Partitioning(A_Binary_ Partitioning_Algorithm, Fi);
(4) Repetitive_Binary_ Partitioning(A_Binary Partitioning_Algorithm, F2);
(&) END

(6) ELSE print(F);

(7)END;

Figure 8: Binary partitioning algorithm with repetition.

4 Experimental Results

In this section, we shall compare the performance of the proposed algorithms with that
of the algorithms based on the attribute affinity matrix. The global optimal solution
from exhaustive search is also generated for comparison. To provide stable statistics, a
thousand cases are generated randomly. For each case, a relation is constructed with a
set of attributes with characteristics chosen uniformly in the range of values as specified
in Table 1. A transaction access pattern matrix is then created. In addition, in each case
the number of transactions is assumed to be equal or less than that of the attributes.
The three access methods are assumed to be equally likely to be used by the transactions.
According to the attribute access pattern of the generated transactions, the relation is
then partitioned by OBP and BP:.

Parameters (Uniform distribution) Values
Number of attributes 5<m< 10
Number of transactions 5<n<10
Length of attribute 7 1< ja;| €25
The selectivity of transaction s 0< s €10%
The relative access frequency of transaction i 1< f; <50
The probability of an attribute accessed by a transaction 0.25

Table 1: Parameters used in the experiment.

Let us compare the performance of the proposed algorithms with that of the algorithms
Nav1[6], Nav2[7], and the global optimal vertical fragmentation. The total number of

disk accesses is used as the performance measure. We also compare the reduction of the

15

Algorithm | Avg. Reduction {%) { Max. Reduction (%) | Min. Reduction (%) | Complexity
Global optimal 24,81 84.26 0.00 =~ O(m™)
BP1 23.85 84.26 0.00 O(n)

BP2 24.73 84.26 0.00 O(n?)

BP3 24.79 84.26 0.00 O{n*)

BP4 24.79 84.26 0.00 O(nt)

OBP 24.79 84.26 0.00 o2

Navl 13.67 63.74 -79.04 O(m2)

Nav2 8.59 68.10 -158.25 O(m?)

Table 2: The average, maximum, and minimum reduction in number of disk accesses.

total number of disk accesses due to the use of the vertical partitioning algorithms.

Table 2 presents the average, maximum, and minimum reduction in terms of the
total number of disk accesses by the vertical partitioning algorithms. For example, the
global optimal vertical fragmentation achieves an average reduction of 24.81% in the
total number of disk accesses as compared to the system without vertical fragmentation
that ranges from 0 to 84.26% for the 1000 cases; while the algorithm OBP yields an
average reduction of 24.79% that ranges from 0 to 84.26%. Notice that the minus sign
(-) represents the cases in which the partitioning algorithms (Algorithms Navl and Nav2)
yield more disk accesses as also reported in [2]. This is because the total number of disk

accesses was not used directly in the algorithms in determining the data fragments.

Table 3 compares the results of the proposed algorithms with that of the global optimal
vertical fragmentation algorithm. Deviation (%) from global optimal indicates the number
of cases that deviate from the global optimum; 0% means the partitioning algorithms reach
the global optimal solution. For example, algorithm BP1 can find 75.8% (758 cases) global
optimal solutions out of 1000 cases, while the optimal binary partitioning algorithm yields
97.5% (975 cases). We note that the results can be improved by increasing the number
of groups of reasonable cuts of BP:. However, the amount of improvement reduces as the
number of groups of reasonable cuts increases. OQur experimental results reveal that BP:

is a very effective heuristic algorithm. For our experiment, BP4 reaches the same result
as OBP.

Table 4 shows the performance improvement of vertical partitioning as compared with

the system without vertical fragmentation. We note that using the global optimal vertical

16

Deviation (%) from Algorithm
global optimal || BP1 | BP2 | BP3 | BP4 | OBP (| Navl | Nav2
0 758 947 974 975 975 312 142
1 74 29 17 16 16 58 62
2 27 9 4 4 4 26 23
3 19 1 1 1 1 23 24
4 20 4 1 1 1 24 31
5 16 2 1 1 1 21 14
6 12 3 1 1 1 26 24
7 7 1 1 1 1 13 17
8 9 0 0 4] 1] 20 20
9 9 4 [4] 1] V] 17 22
10 5 0 0 0 [} 17 23
11 6 a 0 0 0 20 23
12 3 0 0 0 0 19 21
13 4 D 0 0 0 9 17
14 7 0 0 0 0 18 21
15 2 0 0 1} 0 15 17
16 3 0 0 0 0 13 16
17 7 0 a 0 0 19 19
18 3 0 i} 0 0 14 15
19 0 0 0 0 0 10 9
20 1 0 0 8] 0 11 14
> 20 8 4] 0 0 0 295 426

Table 3: Performance comparison

optimal algorithm.

of heuristic algorithms with that

of the global

Reduction (%) Algorithm
in disk accesses || Global optimal || BP1 | BP2 | BP3] BP4 | OBP {| Navl | Nav2
0 93 146 102 93 93 93 370 352
10 198 171 190 198 198 198 155 162
20 149 145 149 149 149 149 139 142
30 163 161 163 164 164 164 128 150
40 162 150 162 162 162 162 106 99
50 127 120 126 126 126 126 69 58
60 72 75 72 72 72 72 22 32
0 29 25 29 29 29 29 11 5
8O 5 5] Q
90 2 2 2 0 0
100 0 0 g 0 0

Table 4: Performance improvement of vertical fragmentation.

17

fragmentation algorithm, the costs of 907 cases can be improved, two of them can be
reduced by more than 80%, and 93 out of 1000 cases cannot be improved. By using
algorithms BP1, BP2, BP3, BP4, and OBP, there are 854, 898, 907, 907, and 907 cases
in which the cost can be reduced, respectively, as compared to 630 and 648 cases by

algorithms Navl and Nav2.

To study the scalability of the proposed algorithms, we increase both the maximum
number of transactions and attributes from 10 to 20 and keep the remaining parameters in
Table 1 the same. Because of the computation complexity, it is no longer feasible for us to
find the global optimal vertical fragmentation via the exhaustive search on our computer
(a 12.5 MIPs Sparc station). Therefore, we use OBP (which takes roughly four days to

run for this experiment) to compare the results obtained from the heuristic algortthms.

Figure 9 portrays the average reduction of the total number of disk accesses by the
vertical partitioning algorithms as a function of the number of transactions. Each point
represents the average of a thousand randomly generated cases. The heuristic algorithm
BP: diverges from the algorithm OBP as n increases. However, the performance of BP:
is fairly close to that of the OBP as we increase the search space (i.e., increasing t) of

the heuristic algorithm. Note that the result from the algorithm BP4 is comparable with
that of OBP.

Figure 10 displays the probability of finding the binary optimal solutions by the heuristic
algorithms. We note that most of the solutions obtained by algorithm BP: are comparable
with that of the binary optimal solutions. Figure 11 shows the number of cases obtained
by the algorithm BP:, for selected 7, with less than 3% deviation from the solutions of

the optimal binary partitioning algorithm.

5 Conclusion

A new transaction-based approach is proposed to generate vertical partitioning for rela-
tional databases. Since transactions have more semantic meaning than attributes, it allows
us to optimize the vertical partitioning based on a selected set of important transactions.
An optimal binary vertical partitioning algorithm OBP with computation complexity of

O(2™) has been developed. When the number of attributes m is greater than the number

18

of the transactions n in the system, using the proposed algorithm yields a computation
complexity reduction of O(2™ ™). A heuristic algorithm BP:, evaluates only up to the
ith group of reasonable cuts with complexity varying from O(n) to O(2"), has also been
developed. Our experimental results reveal that the optimal binary partitioning algorithm
yields comparable results with that of the global optimal algorithm. However, the com-
putation complexity of OBP is much lower than that of the global optimal algorithm by
exhaustive search. Further, BP: converges rather rapidly to OBP. To obtain an optimal
or near-optimal vertical fragmentation, we only need to evaluate the first few groups (e.g.
i = 4) of reasonable cuts. Therefore, the proposed heuristic algorithm is suitable for

systems even with a large number of transactions.

19

References:

1. Cornell, D. W. and Yu, P. S., ”An effective approach to vertical partitioning for
physical design of relational databases”, |EEE TSE, vol. 16, no. 22, February,
1990.

2. Cornell, D. W. and Yu, P. S., "A vertical partitioning Algorithm for relational

databases”, proc. of data engineering, 1987.

3. Hammer, M., and Niamir, B., "A Heuristic Approach to attribute partitioning”,
proc. of ACM SIGMOD ICOMOD 1979.

4. Hoffer, J. A., "An integer programming formulation of computer data base design

problems”, Information sciences 11, pp. 29-48, 1976.

5. Hoffer, J. A, and Severance, D. G., " The use of cluster analysis in physical database
design”, proc. first VLDB, 1975.

6. Navathe, S., Ceri, S., Wiederhold, G. and Dou, J., "Vertical Partitioning Algorithms
for Database Design”, ACM TODS, vol. 9, no. 4, pp. 680-710 December 1984.

7. Navathe, S., and Ra, M., "Vertical Partitioning for Database Design: A Graphical
Algorithm”, proc. of AMC SIGMOD ICOMOD, 1989.

8. Nijenhuis, A. and Wilf, H. S., "Combinatorial Algorithms:For Computers and Cal-
culators”, Second Edition, p.32, 1978, Academic Press.

9. Selinger, P. G, Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., Price, T. G.,
" Access path selection in a relational database management system”, proc.of ACM
IOMOD, 1979.

20

40

35

30
25
Average
reduction(%)
in disk 2
accesses
15
10
3
0

Figure 9:

| T T | T [
... OBP
..o, BP1 5. BP5
_ ..o. BP2 _&. BP6
AL BP3 |« Navi
..0. BP4 . «. Nav2
g — S— 3
..:ﬁ:::::m::;:::: & [I YOO 'y
B B mt o
B
oo
................. **
T e .
P
2 T T
....................... *..*
"""" * e,
L e Wt
.............. .
| 1 I | | 1
10 12 14 16 18 20

Number of transactions

Performance improvement of vertical partitioning algorithms

21

Probability
of
finding
binary
optimal

solutions

0.8

0.4

0.2

T T T T T
..». BP1 .o. BPS
... BP2 @. BP6
AL BP3 & Navl
..0. BP4 . %, Nav2
A B 2 B @
P — A
o T A..
______ A
o,
. "o,
o
o e
.,
*., N S »
*.. .
...... [
e L e L s res s *®
....-*..-. '*
[1 1 | 1
10 12 14 16 18 20

Number of transactions

Figure 10: Probability of finding binary optimal solutions.

22

1000

Number
of

Cases

300

deviated

no more
than

3% from

the

600

binary
optimal 400

solution

200

Figure 11: Number of cases deviated no more than 3% from the binary optimal

solution.

7 7 T T '
.e. BP1 ._.&. BPs
... BP2 . &. BPé
O BP3 .« Navl
..0. BP4 . .« Nav2
S . Y L IDMIASst Bt - | g """""""""""""" &
o R, Y
P
............ Do
.- s T— Qi
........ 0
" ...,
..
I .
..
— *."
*.,
-‘.* oere *
e,
........... g
| 1 1 1 L
10 12 14 16 18 20

Number of transactions

23

