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Abstract

In order to achieve high reliability, computing systems that perform critical tasks
must be able to continue normal operation despite component failure, i.e., they must be
fault-tolerant. Some methods of achieving fault-tolerance entail a long error recovery
time or add considerably to the cycle time because operation cannot proceed until data
has been verified. Micro rollback provides rapid restoration of previous systemn state
based on fine-grained checkpointing done in hardware. Operation continues without
delay while the data is checked, and if an error is detected a few cycles later, then the

system can be rolled back to an error-free state.

This report describes the design and implementation of the UCLA Mirror Processor,
a VLSI RISC processor capable of micro rollback. Its main mode of error detection is
duplication and comparison. Two processors, a master and a slave, run in lockstep and
perform the same operations. The slave processor compares its external signals and a
signature of its internal signals with the corresponding signals from the master processor.
If an error is detected, the processor state is restored to the beginning of the cycle during
which the error occurred, so that correct processor state may be regenerated. Errors
detected in the register file are corrected by transferring data from the fault-free
processor to the one with the corrupt values. The Mirror Processor architecture, its
operation, and its error detection and error recovery features are described, with an

emphasis on the physical implementation of the datapath.






1. Introduction

Highly reliable computing systems are needed for critical applications such as space
craft control, where human intervention may not be possible or practical after launch.
Fault tolerance is often necessary in order to achieve the required reliability, since the

reliability for the hardware components is insufficient.

In many fault-tolerant systems, checkers are connected between modules to verify
that the data is correct before it is transferred, thus preventing error propagation through
the system. These sequential checks add to the overall cycle time because data may not
be transferred until the checker verifies it is correct. However, the cycle time may be
reduced by adding pipeline stages. This is not a good solution because long pipelines
broken by instruction branches add more cycles to the execution time, and the overall

execution latency is increased.

An altemative to checking data before sending it is to perform the checking in
parallel with the data transmission. Data can propagate through the system unhindered,
and the results of the checking follows a few cycles later. By the time an error is
detected, other modules may have already received erroneous data so that their internal
state is invalid. Micro rollback[Tami88a] allows modules to roll back several cycles so
that a valid system state is restored. Once the system is restored to the state it was at
before the error occurred, the system can continue on with error-free execution. This
report describes the design and implementation of a RISC[Patt82a) (Reduced Instruction
Set Computer) processor capable of micro rollback, built to demonstrate that micro

rollback is a practical, effective technique for use in high performance fault-tolerant



systems.

1.1. Micro Rollback

All the registers, inputs, and outputs of a processor comprise its state, and every
cycle this state changes. As a result of a fault, the state may deviate from the valid state
for correct system operation. A processor can recover from such an error by resetting its

state to the cycle before that in which the error occurred and then continuing on.

Micro rollback is a form of fine-grained checkpointing and error recovery at the
hardware level. Every cycle, the state of a system is stored in a backup memory and the
last n copies are kept. Should an error be detected, the state of the system is restored to
that before the time the error has been determined to have occurred. Hence, error
detection can be performed in parallel with tnstruction execution and can take as long as

the number of cycles that the system saves.

In a system employing sequential data checking, data must be checked before it
enters a functional unit to detect bits corrupted on the sending bus. After the operation,
the results must be verified before being transferred to another unit in order to detect
transient errors originating from the functional unit or the interconnecting bus. The
checking step must be completed after every intermodule transaction, and the system
cannot progress until after the data is verified in order to restrict the error to that module.
Using micro rollback, the time the system must wait for data verification is removed.

Hence the only overhead involved is during error recovery.

Micro rollback is implemented at the hardware level because of the time constraints



involved with error detection and recovery. Allowing software intervention, say by a
trap handler, would add more cycles to the time before the proper state can be restored.
In addition, the checkpoint memory would need to be enlarged to record the increased
time between the cycle of the valid state to be restored and the cycle that the system state
is restored. An added benefit of a hardware implementation is that the fault-tolerance

provided is transparent to both application and system software.

Micro rollback is only used to recover from errors caused by transient faults. If an
error is caused by a permanent fault, this will be detected and rollback will follow. But
since micro rollback only restores system state, the hard error will remain, and so the
error detection and recovery sequence will be repeated. After too many rollbacks within
a certain period of time, the system will assume a permanent fault has occurred and it

will signal a system shutdown.

1.2. Goals

The goal of this research is to investigate the overhead associated with micro
roliback. The ability to perform micro rollback was added to a processor based upon the
Berkeley RISC Ii[Kate83a, Patt82a]. For error checking, two such processors run in
lock-step and compare their states after each cycle. Reflecting upon this configuration,

the chosen name for our project is the UCLA Mirror Processor (henceforth MP).
Specific goals for the MP include minimizing chip area and maintaining high

processor performance. In addition, the MP chip-set should not involve use of glue chips

in order to conserve printed circuit board real estate.



We implemented the MP using full custom layout to most effectively utilize chip
area. Techniques such as precharged logic and dynamic latches were used to minimize
module area. With the full custom layout, the modules could be tailored to fit together
well, and transistors could be sized to drive their actual loads (unlike standard cell
libraries where the load is unknown and so the transistors must be sized to drive a fixed

pre-specified load instead of the actual load).

The time overhead for micro rollback involves two components: normal cycle
operation, and error recovery time. We minimized the overhead associated with normal
cycle operation because this directly translates to operating speed. In order to meet real-
time constraints, error recovery time is also important, even though it may constitute a
small percentage of operating time. Rapid recovery may be critical in an environment

where periods of high fault rates are expected.

1.3. Report Organization

Chapter 2 gives a high level description of the MP’s architecture and operation and
details the design decisions involved in adapting the Berkeley RISC II Processor to
handle micro rollback for fault detection and recovery. Chapter 3 presents the
implementation of the modules forming the datapath; details on the datapath controller
implementation can be found in [Lai%0a). Strategies for ensuring the implementation is
correct and testing the layout are covered in chapter 4. Results of this undertaking are

shown and conclusions are drawn in chapter 5.



2. Design Decisions and Processor Description

This chapter presents the architecture and microarchitecture of the Mirror Processor.
First, the MP architecture and instruction operation is described. After that, features
pertaining to error detection, micro rollback, and state repair are covered in greater detail.
Implementation details of the datapath components are in chapter 3, and details of the

controller can be found in [Lai%0a).

2.1. Processor Architecture

2.1.1. Processor Choice

In order to demonstrate that micro rollback is a feasible method of implementing an
inexpensive fault-tolerant system, we must apply the theory to a real processor. Among
the various processors available, the Berkeley RISC II stands out as the ideal choice for

several reasons.

First and foremost is the documentation provided in the form of Katevenis’
dissertation{Kate83a] and the various papers associated with the Berkeley
RISC[Sher82a]. In addition, ease and speed of implementation is a factor; Katevenis and

Sherburne designed, laid out, and had the Berkeley RISC fabricated in two years.

The Berkeley RISC has various architectural features which prove a challenge to
applying micro rollback. The large register file (132 registers) cannot just be replicated n
times and so a better solution must be found. In the same vein is the program counter

which is set up as a three element shift register. These and other problems allow us to
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Figure 2.1: Delayed Write Buffer with Register
demonstrate the application of micro rollback on a reasonable complex processor that

can be used for real world applications.

2.1.2. Micro Rollback

In order to support micro roilback on the MP, delayed write buffers are placed in
front of every register that holds state from one cycle to the next. Figure 2.1 shows the
block diagram of a delayed write buffer (DWB) placed in front of a register. The buffer
is an n-element shift register with a priority associative tag lookup. When data is written
into the buffer, it is delayed n cycles before it is written into the permanent register.
Saved along with the data is a tag. In the case of the register file, this tag consists of a
valid bit and the address that the data is to be store at within the register file; for single
registers, only a valid bir is needed. For correct operation, the processor must read the

most recent, valid value within the DWB/register. This requires the use of a priority



selection circuit which chooses the data associated with the first valid matching tag.
When the MP rolls back n cycles, it must invalidate the first n tags in the shift register so
that on the next read these will be skipped. Consequently, only data that makes it to the

end of the shift register with a valid tag is written into the permanent register.

We choose to checkpoint four cycles because this is enough time for the state
checkers to detect an error and signal rollback. In addition, saving four cycles allows the

MP to recover from two consecutive rollbacks.

It may appear to be most efficient to shift the DWBs only when writing a value into
them. However, the cycle that a state belongs to is dependent upon its position within the
shift register. In order to maintain the temporal information associated with the data, all
DWBs must shift every cycle whether they are suppose to be written into or not. Data
will always be shifted into the data portion of the DWB, but logical writing of the value
is achieved by shifting a 1 into the valid bit of the tag. During the rollback cycle, the
present instruction is cancelled, and 0’s are shifted into the valid bits of all the registers;

this effectively cancels all writes during the rollback cycle.

2.1.3. Datapath Description

The MP datapath, as shown in figure 2.2, operates on a four-phase clock
(91, 02, 03, ¢4). The implementation details can be found in chapter 3. More detailed

information on the MP at the register-transfer level can be found in section 7.3.

The following modules do not require special changes for micro rollback:
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Figure 2.2: Mirror Processor Datapath

e IMM: The immediate latch, part of the distributed instruction register, is used to
hold the 19-bit or 13-bit sign extended immediate constant embedded within the
instruction for use the following cycle. The value is latched on ¢, during the
instruction fetch, and gated onto busT the following ¢,, to be aligned by the shifter.

® DIMM: The data immediate performs sign extension and zero extension of 8, 16,
and 24 bits upon the data coming in from a load instruction. Data is read in
during ¢ and it is immediately deposited onto busT for data alignment during ¢,.

e  BAR: The byte address register computes during ¢, the 2 least significant bits that
would have been generated by the ALU had it done an add because the ALU cannot
supply this value soon enough. This is needed for load, store, and branch
instructions so the MP can determine if it should trap on address misalignment
before initiating a memory cycle. Also, the store operation performs a data
alignment shift during ¢4 when the byte address is needed and can’t be obtained
from the ALU in time. The BAR holds state over a cycle for the store instruction
and technically needs to be rolled back, but we can accomplish this purpose by
having the BAR read from busOUT duning rollback with minimal additonal
hardware.

e  SDEC: The shift decoder takes a 5-bit shift amount and enables 1 of the 7 shift lines
within the shifter. A value not corresponding to any of the shift lines generates a
bad shift amount trap. Decoding two shift amounts per cycle because the shifter
evaluates twice a cycle may seem like a problem, but the first shift is always by O or



by 13. If the shift by zero control line is true, then the 9, shift is by 0, otherwise it is

by 13. The MP uses shift by zero for the Idhi instruction and state repair, both of
which do not use the shifter during ¢,.

*  SHIFT: The 32-bit MP shifter differs from the Berkeley RISC shifter in that it only
shifts by 0, 1, 2, 8, 13, 16, and 24, and the 13 bit shift is only used for immediates
during ¢,. The dynamic shifter evaluates twice a cycle, and it is given data
starting ¢; this means it must precharge during ¢; and &, and evaluate during ¢,
and ¢, the short phases. Limiting the number of positions the dynamic crossbar
shifter can shift reduces internal capacitance and allows faster evaluation times.
Internally, the shifter is set up as a left bus, busL, and a right bus, busR, connected
together at shift points by NMOS transistors controlled by the shift decoder. A left
shift can be executed by discharging busL and reading busR, and vice versa for a
right shift; left shifts are zero filled and right shifts can be zero filled or sign
extended. Operands read from busS can be put onto either busL or busR, and busT
drives busL. The resulting shift is read off the appropriate bus and gated onto busD.
During ¢,, data can be right shifted from busT or passed from busS onto busR and
into the B input of the ALU.

e  ALU: The 32-bit integer arithmetic and logic unit performs additions, subtractions,
bitwise ANDs, ORs, and XORs, and calculates the conditions codes based upon its
operation and the value of busD. The ALU precharges its manchester carry chain
during ¢,, evaluates during ¢,, and gates the result onto the busses during ¢,.
Condition codes for negative, overflow, and carry are easily generated, but the
precharged NOR used to calculate the zero bit must evaluate on ¢;, when busD is
stable.

In addition to the controller (described in section 2.1.5), delayed write buffers are

placed in front of these registers:

e  PSW: The processor status word contains the current window pointer (CWP = 2
bits), the saved window pointer (SWP = 2 bits), the interrupt enable and system
status bits (Interrupt enable, System mode, Previous system mode), and the
condition codes (Zero, Negative, oVerflow, Carry) for a total of 11 bits. When the
PSW writes onto busD, only the lower 11 bits are driven onto busD, and so the top
21 bits contain whatever value was there from the previous cycle. When the PSW
reads from busD, only the lower 11 bits are stored.

e  RFTRAN: The register file works with absolute addresses, and so the register file
address translator takes a register number and a register window number and
determines a unique absolute address within the register file. The MP instruction
format specifies two source register numbers and one destination register number;



these need to be translated into addresses within the register file. The two source
registers are used before the next instruction is read in, and so they don't need to be
saved, but the destination register number may need to be carried over a cycle for
the load instruction, and so it must be stored. Instead of directly using a delayed
write buffer, the RFTRAN reads the destination register from the controller’s busIR
(see figure 2.3), whose value is restored during the rollback cycle.

e  Register File: The 74-word 33-bit MP register file is half the size of the Berkeley
RISC register file which contains 132 registers. This was done to reduce the stride
and the read latency. As a result of using only 4 register windows, the PSW is also
smaller by two bits, one from the CWP and one from the SWP.

e  PC: The program counter is logically a three element shift register containing the
address of the instruction currently being fetched (NXTPC), the address of the
instruction currently being executed (PC), and the address of the instruction
previously executed (LSTPC).

During rollback, the MP may need to get data from off chip or to send data off chip.
However, with the MP’s tight timing constraints, there isn’t enough time to wait for
values to come in or to regenerate these values to send out. Instead, these transactions
may be simulated by using a delayed write buffer and a register to read the values going
over a bus each cycle, and gating the needed signal onto the bus during the rollback

cycle.

e IR: The instruction register restores the contents of the distributed instruction
register (IMM, RFTRAN, Controller) by simulating an instruction fetch during ¢,
of rollback.

e MAR: The memory address register is used during rollback to initiate the
instruction fetch of the instruction after the one being rolled back to because there
isn’t enough time to regenerate the address from the PC or the ALU.

e SDR: The store data register holds data for the store instruction. Normally, busD
can be used as a temporary latch to hold data over for a cycle, in which case the
SDR would only have to restore the value of busD, and thus, not be used in the
course of normal operation. However, state repair also uses busD, and datapath
timing prevents busD from being restored in time after state repair, and so the SDR
is actively used as a gateway from busD onto busOUT.

10



State comparators and parity checkers detect errors from which the MP recovers by

using micro rollback.

parIN: The parity checker for busIN assures that the data sent in has not been
corrupted and also checks the data from the IR during rollback.

parB: The parity of the value read out onto busB from the register file is checked
with this parity checker,

parD: ParD performs three tasks: check the parity of the value read out onto busA
from the register file, generate the parity from busD to be written into the register
file, and compress the state of busD into 4 bits to be compared with the other chip.

parOUT: To allow the receiving module (e.g. memory) to verify that the
address/data sent off the chip has not been corrupted, parOUT generates a parity bit
to accompany the value.

CMP: The comparator on the slave processor compares its internal state and output
signals with those of the master processor.

The Berkeley RISC uses dynamic busses to transfer data between modules in the

datapath in order to save driver area, but the MP uses static busses to remove precharging

overhead and to meet tighter timing requirements. (Internal busses within a module, on

the other hand, may be precharged to reduce area (as in the register file), or to speed up

function evaluation (as in the ALU).) As a consequence, the busses can be used as

latches to hold values between phases rather than immediately storing them into

registers.

busIN: The input bus into the datapath is driven by tri-state buffers because during
rollbacks, the IR supplies the instruction instead of memory.

busA, busB: Values read from the register file are supplied on these busses.

busD: Data destined for the register file and other datapath blocks is put here.

11



e  busS, busT: Paths to the shifter,
e  busR: The only way into the ALU’s B input is through the shifter and onto busR.
e  busQUT: This bus is for sending addresses and data to the pads.

The region between the register file and shifter in the Berkeley RISC was congested
with 5 busses and interconnect; this would be further aggravated in the MP with its 39
pitch. In the MP, the inputs to the shifter, busA and busB, are multiplexed onto bus$
before being sent out, and the shifter returns its results on busD rather than returning
them on one of two busses like the Berkeley RISC. This reduces the maximum number
of busses running through a bitslice to an acceptable number, three. In addition, all
functional units place their results onto busD, and so condition code generation can be

centralized in the ALU.

2.1.4. Datapath Timing

The MP uses a two-stage execution pipeline consisting of an instruction fetch the
first cycle followed by its execution (operand read, operation, and write) the second
cycle. The Berkeley RISC uses a three-state pipeline because it does not have enough
time after the data operation to write the result into the register file, and so it needs to
hold the value in a temporary register to be written the following cycle. This temporary
register has been replaced in the MP by the register file’s DWB, and so the operation

result can be written into the register file at the end of the second cycle.

Instructions that do not load data from or store data to memory take two cycles to

execute. The load and store instructions, however, need an extra cycle to perform their
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memory transaction. Because the MP can only perform one memory transaction per
cycle, the instruction fetch process must be suspended for a cycle while the load or store

instruction reads from or writes to memory.

Table 2.1 shows the timing of modules in the datapath. Operation is partitioned into
four clock phases in order to accommodate the operation of the register file and the
shifter. The register file performs a dual ported read followed by a single ported write
every cycle. It’s address decoders are precharged, and so it needs four phases to
accomplish its task. The shifter shifts values twice a cycle and uses dynamic shift lines;

it also needs four phases to operate.

The execution of an instruction begins with its instruction fetch. Because the MP
pipeline is two stages deep, the currently executing instruction does not determine the
address of instruction to be executed the following cycle, but that of the instruction two
cycles down. The instruction’s address is put onto busOUT by the PC or the ALU (if it
was a branch) on ¢, and the address goes out to the memory. On ¢; of the following
cycle, the instruction comes in on busIN and into the distributed IR (IMM, RFTRAN)
and the controller (not shown). The controller decodes the opcode and generates control
signals for the datapath to use the following cycle. During the execution cycle, operands
are read out of the register file on ¢, are operated upon during ¢; and ¢,, and the results
are returned to the register file on the result bus (busD) on ¢,. At the same time that this

instruction is executing, the following instruction is being fetched from memory.

If the executing instruction is a load or a store, then the instruction fetch that would

have been initiated for the next cycle during ¢, is suspended, and instead, the data
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Module o3} 0 Y 4
rftran—rf(d) busIN—rftran
rftran busIR—rftran DSW—> rftr(:m Hiran—rf(a.b)
ram read
busD—rf recharge . recharge
it rf—busA I::lf:code:grs ram wnte [zlecode?s
rf—busB
psw—rftran
psw busD—psw psw—Cu psw—busD
psw—pads
parB busB—parB patB—ocu
pads—busIN
busA—busD busiN->busT
gate busB—sbusS busD—sbusOUT busA—sbusS busA-—-busD
busB—busS
imm imm—busT busIN—imm
dimm busIN—dimm
dimm-—busT
. busB—sdec bar—sdec
Sdec sdec—sshift imm-—sdec sdec—shift
parD—rf
parD parD—scu precharge parD—cu precharge
parD—ostate
precharge precharge
shift busS—shift shift—busR busS—shift shift—busD
busT—shift busT—shift
busD—bar bar—sdec
bar bar—dimm
busR—bar bar—cu
precharge alu—busD
alu CCopSW busD—alu evaluate
busR—alu alu—obusQUT
parlN pariN-—cu busIN—parlN
ir ir—busIN busIN—ir
sdr busD—sdr sdr—busQUT
pc busOUT—-pc pc—busD pcpi_b)ll:su(gll)}'r
mar busOQUT—mar mar—busQUT mar—busQUT
parOUT p;?OUJT'jfzgs busOUT—>parOUT p;?OUJT_fzgs busOUT—parOUT

Table 2.1: Mirror Processor Datapath Timing
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address is put out and the following cycle is used to load or store data from or to
memory. After the memory transaction, the instruction fetch process is restarted again.
The MP runs on a four-phase clock with total cycle time of 100ns. The first and
third phases, ¢, and ¢,, take 25ns, and the second and fourth phases, ¢, and ¢, take 15ns.
Between all four phases is 2 5ns underlap. Ideally, the four clock phases are generated
on-chip because the timing scales with the chip process parameters, and hence the rest of
the chip. In addition, only two square-wave clock signals need to be supplied instead of

four irregular phases.

The MP will internally generate the phase clocks or used externally supplied phase
clocks based on whether the clock select pin (pad.csel) is set to 0 or 1. A phase clock
(pad.phi) running four times faster than the cycle time is used to generate the four clock
phases and a synchronization clock (pad.sync) is used to determine which of the phases is

¢;. See section 3.2 for implementation details.

Rollbacks are synchronous, and require all system modules to restore their state to
that as found at the beginning of a cycle n cycles back from the present cycle. In the MP,
rollback action starts during ¢3, when the DWBs are invalidated and the IR simulates the
instruction fetch of the instruction that will be executing at the beginning of the cycle to
be restored. Rollback is completed on ¢,, when the address of the next instruction to be
fetched (or the data to read or written if the executing instruction was a load or store) is
put out by the MAR. We choose the MP cycle boundary to be between ¢, and o
because at this point, micro rollback will be complete and the processor can continue on

with normal operation. This also happens to be the start of an instruction execution cycle

15



consisting of a register file read on ¢, followed by the operation on ¢ and ¢, and the

result returning back to the register file on ¢,.

2.1.5. Datapath Controller

The MP must be able to handle normal operations, error detection, rollback, and
state repair; these four functions are partitioned into three systems:

e  The error detection and recovery controller compares the two chips for mismatches

and signals rollback or state repair; it will be covered in section 2.3.

¢  The rollback mechanism is distributed within the datapath and control; each DWB
is invalidated during the rollback cycle, and the following cycle the proper value is

read out of the register. This is described in section 2.4.

e  The datapath controller manages the datapath during normal operation, and with the
addition of two states, it handles state repair. State repair and the associated
controller states are discussed in section 2.5. Section 2.2 describes normal

operation of the MP.

When the MP rolls back, it restores state to that as recorded at the beginning of ¢,
of the destination cycle. All registers must contain the value they held at this time by the
end of rollback. The controller restores the control signals by simulating an instruction
fetch during the rollback cycle and regenerating the control signals from this instruction.
This is simpler than rolling back the control lines because there are less inputs than
outputs in the controller. Figure 2.3 shows a block diagram of the datapath and

controller together.
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Figure 2.3: The Mirror Processor

When the instruction comes in on ¢,, it goes through combinational logic to
determine the next state. This next state, along with the incoming opcode, is used to
generate controls for the datapath. Memory control signals are needed immediately in
¢4, and are generated using combinational logic. The other signals aren’t needed until
later in the execution cycle, and so they are generated with two dynamic PLAs, one
evaluating during ¢4, and one evaluating during ¢;. Some control signals are derived
from inputs which aren’t stable until later in the cycle or come from external sources

latched in later phases; the base signals are generated by the ¢; PLA and are modified by
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the delayed inputs using combinational logic.

The controller requires two states because the load and store instructions take two
cycles to execute; during the first execution cycle the following instruction is read into
the first stage of the distributed instruction register, and during the memory transaction
cycle the controller must keep the opcode and control bits of the memory instruction
latched in the second stage (busIR) so that it can control the memory transaction. The
first stage is restored from the IR, but busIR requires an additional rollback memory

because the two latches do not always contain the same data.

Two bits contain the current controller state and the previous instruction executed.
These two bits need to be restored upon rollback. Two more controller states are needed
for state repair; this is achieved by adding two more bits to the controller state (see
section 2.5). These two bits don’t need to be restored because during state repair, zeros
are shifted into the valid bits of all the registers except for the register file, which
receives the repaired data. Hence, the state from those two cycles can never be selected
(except from the register file, and this is to cover erroneous data), and so the the MP

cannot roll back to those two cycles.

The two source register fields in the MP instruction format indicate which registers
are to be read out of the register file onto busA and busB. They are used right after the
instruction is read in, and so they can be restored from the IR during the rollback cycle.
However, the destination register field from the instruction may need to be held over a
cycle for the load instruction. BuslR is used by the controller to latch information from

the /oad or store instruction (including the destination register number) to be used during
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the memory data transaction. The RFTRAN reads the destination register from busIR,

and as a result, is restored from the datapath controller during rollback.

More operation and implementation details can be found in [Lai90a].

2.1.6. External Interface

Table 2.2 shows the signals interfacing the MP with the outside world. These are
categorized as power, clocks, /O, interrupts, and error detection and recovery. Clocks,
interrupts, and error detection are covered in sections 2.1.4, 2.2.8, and 2.3. /O deals with

memory transactions and the bus protocol.

The Berkeley RISC performs a memory access every cycle, and if there was a cache
miss or memory delay, then the clocks are stopped until the problem is resotved.
Stopping the clocks for an extended memory fetch is not an acceptable solution,
especially with micro rollback, where every cycle, the system state must be

checkpointed. In addition, the MP doesn’t perform memory accesses during state repair.

We expect memory to be asynchronous with regard to the MP’s clocks, and so the
MP supplies two control signals to manage the time-multiplexed address/data bus, and it
expects a wait signal to indicate if the transaction must be delayed for any number of
cycles. The address is put out during ¢4-¢;, and the data is read in or written out
during 0,-¢s.

Controls to the memory are the read/write pin (0/1), the data size pin (byte=00,
halfword=01, word=10), the instruction/data pin (0/1), and the system mode pin

(kernel=0, user=1). In order to simplify byte transactions, the MP performs its own data
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Pin Size | Type
vdd Vdd 5 input
Power GND GND 6 input
pad.csel clock selection 1 input
pad.phi internal clock phase generation 1 input
pad.sync internal clock synchronization 1 input
Clocks pad.phil external ¢, 1 input
pad.phi2 external ¢, 1 input
pad.phi3 external ¢4 1 input
pad.phi4 external ¢, i input
pad.AD address/data bus 33 i/o
pad.rw read/write l output
pad.size data size 2 output
/o pad.enb.addr memory address enable 1 output
pad.enb.data memory data enable 1 output
pad.wait wait 1 input
pad.id instruction/data 1 output
pad.sysmode system mode 1 output
pad.reset reset 1 input
Interrupts | pad.irr interrupt request 1 input
pad.ira interrupt acknowledge 1 output
pad.ms master/slave I input
pad.state compressed internal state 4 output
Error pad.rb roliback 1 ifo
) pad.RB roliback amount 3 /o
Detection . .
and pad.rcpanm repair busA on master 1 master
Recovery pad.repairAs repair busA on slave 1 slave
pad.repairBm | repair busB on master 1 master
pad.repairBs repair busB on slave 1 slave
pad.shutdown | shutdown request 1 /o
TOTAL 76

alignment from memory reads and writes. Table 2.3 shows the positions that words,
halfwords, and bytes occupy in memory. When reading bytes and halfwords from
memory, the MP only requests the word which the data is embedded in and internally
aligns the data; memory is expected to ignore the two least significant bits of address

(byte address) and the data size for this transaction. As for writing bytes and halfwords

Table 2.2: Mirror Pin Count
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data size | pad.size | padAD<1:0> | <31:24> <23:16> <15:8> <7:0>
word 10 00 d d d d
00 d d
If 1
halfword 0 10 q r
00 d
01 d
b
yte 00 0 p
11 d

Table 2.3: Data Size and Alignment
to memory, the MP aligns the data onto byte or halfword boundaries before sending it out
so memory only has to determine which bytes to write based upon the byte address and
data size. The instruction/data pin is used to determine whether to look in an instruction

cache or not, and the system mode pin is used for memory protection.

3}
o, "
2
/_‘:’"_\_,__
3
by -
Address 1 T3 ——C= out

Read Data 2 ——(-H-H*E—-—- in
Write Data 3 ¢ !

R/W 4 _.._'_;'1 L out

Address Enable § I\ ! tE L out
Data Enable 6 | U out
Wait 7 H‘H-H-Cj ——— in

Figure 2.4: Memory Interface Timing

Figure 2.4 shows the memory timing. For a write cycle, the destination address (1)
is put out during ¢,-9, along with memory control signals (e.g. R/W (4), data size). The

address enable signal (5) is asserted on the leading edge of 0, after all controls and data
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are stable and held until the falling edge of ¢,. Memory latches the address on the rising
edge of the address enable signal, and in the event that it cannot respond in that cycle it
must assert the wait line (7) within 25ns of the leading edge. The wait signal is latched
on ¢, and it determines whether the MP should go into a wait state; 0’s are written into
the valid bits of the the registers during all cycles that the wait line is asserted so that no
new state is logically stored. (The data itself is stored into the register, but it will never
be selected.) Once the wait line is released, the data enable signal (6) is asserted on the
rising edge of ¢3 and held until the falling edge of ¢3. On ¢,-¢5 the data (3) is put out to

memory and is latched using the data enable signal.

For a read cycle, the address and memory enable pins are asserted as in the write
cycle and the same protocol for wait states is observed. However, the trailing edge of the
address enable signal (5) tells memory to start putting the data onto the bus (2) and to
keep it there until the falling edge of the data enable signal. During wait states, the data
won’t be valid, but as long as it is correct by the setup time before the end of ¢, there

should be no problems.

2.1.7. Testing

Once the MP is fabricated, it must be tested to make sure that it is free of fabrication
defects. To venify that the datapath works after fabrication, we considered putting in
scan-in scan-out (SISO) latches[McCl86a]. However, this would entail either making
just the register itself a SISO, or the register and its delayed write buffer into SISOs. The

first option only adds overhead to the permanent register to make it controllable, but does
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not help with the DWBs. The second option allows full control, but at the expense of
adding even more overhead to the space taken up by the DWBs. In any case, the

internals of the MP are easily visible because of the changes made for error detection.

Instead, our strategy is to employ techniques found in [Brah84a] to test the
processor under normal operation. The test procedure involves partitioning the processor
into various logical units and using the instruction set to exercise these components {0
make sure everything is correct. Before we send the MP out for fabrication, we must
thoroughly verify through simulation that it will work (see chapter 4 for details). Once
the MP comes back, the only problems that should crop up will stem from manufacturing

defects. Using the instruction set to test the chips will cull out the bad ones.

If there is a defect in the pads or the datapath controller, then we should be able to
know right away that the chip is bad because it won’t be able to execute any instructions
at all. If there is are problems with the controller, but the processor still correctly
executes most instructions, then we can proceed to test the chip on the assumption that
the controller is functional. Later on in the testing, if the chip should fail any of the tests,
it will not matter what the source of the problem is because we just want to know if the
chip is defective.

In order to test the error detection and rollback circuitry, we added test instructions
to the MP instruction set (see section 2.2.6). These instructions are used to verify that the
chip works after fabrication. Since they are just instructions and require no special

hardware setup, they may also be used for run-time testing of the MP.
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Figure 2.5: Mirror Instruction Format

2.2, Normal Operation

This section describes the operation of the MP without use of error detection, micro
rollback, nor state repair. We describe the MP instruction formats and show how each

instruction exercises the datapath.

2.2.1, Instruction Format

Figure 2.5 shows the MP instruction formats and table 2.4 shows the various
instructions. The 1 in the opcode table indicates whether the instruction is to be decoded
as a long-immediate format instruction or a short-immediate format instuction. The p in
the opcode tabie indicates a privileged instruction; executing this instruction with the
processor in user mode (S=1) causes a trap. The t in the opcode table indicates a test
instruction used for run-time testing of micro rollback and error detection hardware. The

¢ indicates that instruction may cause a branch to the address calculated from the source
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000xxxx 001 xxxx 010xxxx 011xxxx
xxx0000
xxx0001 calli(p) sll Idrbpm(ipt) strbdm(lIpt)
xxx0010 getpsw sra
xxx0011 getlpc(p) srl Idrbps(1pt) strbds(lpt)
xxx0100 putpsw(p) 1dhi(l)
xxx0101 and
xxx0110 clrrbm(pt) or ldxw SIXW
xxx0111 clrrbs(pt) Xor ldrw (1) strw(l)
xxx 1000 callx add ldxhu
xxx1001 callr(l) addc ldrhu(l)
xxx1010 || jmprbm(ipt) addbpm(pt) ldxhs stxh
xxx1011 Jjmprbs(lpt) addbps(pt) ldrhs(l) strh(l)
xxx1100 jmpx(c) sub ldxbu
xxx1101 jmpr(cl) subc ldrbu(l)
xxx1110 ret ldxbs stxb
xxx1111 reti(p) 1drbs(1) strb(l)
Empty boxes are illegal opcodes.
Opcodes with high bit set (1xxxxxx) are illegal opcodes.

¢ Conditional instruction; DEST-field is cond.

I  Long-immediate format instruction.

p Pnvileged instruction.

t  Test instruction.

Table 2.4: Mirror Opcodes
registers if the condition codes in the PSW meet certain conditions; the DEST field is
interpreted as a condition code for conditional instructions and as the destination register
otherwise,
Within the short-immediate format, the shortSOURCE?2 field is interpreted as
source register rs2 if the immediate bit is 0, and as a 13-bit sign extended to 32-bits
immediate value if it is set to 1. If the set condition code bit (scc) is 1, then the condition

codes generated by the ALU during the execution cycle will be saved into the PSW.
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For the instruction descriptions, sl refers to the value of rsl in the register file, s2
refers to the value of shortSOURCE?2, and d refers to the destination in the register file

indexed by rd unless it is used as a source, in which case it is the value in that location.

2.2.2. Register to Register Instructions

The arithmetic, logical, and shift instructions fetch their operands from the register
file or use imm13, perform the appropriate operation, and store the result back into the
register file. The instructions are shown in table 2.5. (The Berkeley RISC also has
inverted versions of subtract, subi and subci, but removing those simplified ALU

implementation.)

opcode operation description
arithmetic: add d sl +s2 add
addc de-sl+s2+c add with carry
sub desl—s2 subtract
subc d & sl—-s2—-c  subtract with carry
logical: and deslas2 bitwise and
or deslvs2 bitwise or
xor desl@s2 bitwise xor
shift: sl d « sl <<s2 logical shift left by s2 mod 32
sra d «sl>>s2 arithmetic shift right by s2 mod 32
srl d & sl >>s2 logical shift right by s2 mod 32

Table 2.5: Register to Register Instructions

Internally, subtraction is performed as addition using the complemented value of the
subtractor. The ALU’s manchester carry chain produces carries from each bit pair for
the next pair (c, - - - ¢35). If the scc bit is 1, then the condition codes in the psw will be
generated for arithmetic operations as z« d=0, n « d<31>, vecqy B cy5, and

C ¢ C3p. For logical and shift operations the condition codes will be set to z«— d=0,
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Figure 2.6: Register to Register Instruction Execution

ned<31> ve0,andc « 0.

Figure 2.6 shows the timing diagram of ALU and shift instruction execution. The
instruction comes into the chip from the address/data bus (1) and is decoded for the
execution cycle (2). If the instruction is an ALU operation, the immediate bit determines

whether busB (6) or the immediate (7) goes to the shifter (12) after the register file
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operand read (4). A shift instruction puts busA onto busS instead (35), and shontSOURCE
determines the shift amount (10). The shifter evaluates o, to fill the ALU’s B latch (9),
while busA is gated onto busD and into the ALU’s A latwch (8). Both the ALU and the
shifter evaluate every cycle (14 12), but only one gates out onto busD for the appropriate
instruction (15 16). The result is written into the register file’s DWB (17). Meanwhile,
the address of the instruction to be executed two cycles down is put onto the address/data

bus for the instruction fetch next cycle (18) and the program counter is updated (19).

2.2.3. Load Instructions

The MP uses a time-multiplexed address/data bus to perform one memory
transaction per cycle. This means that during the read cycle of a load instruction, the MP
cannot be fetching another instruction, and so it must suspend the execution pipeline until
the memory cycle has completed. The ten load instructions are shown in table 2.6. If the

scc flag is 1, then the condition codes saved will be z —d =0, n « d<31>, v « 0, and

ce« 0.
opcode operation description

ldxw d « M[sl + s2] load absolute word
ldrw d « M[PC + sxt(imm19)] load pc relative word
ldxhu  d &« M[sl + s2]<15:0> load absolute halfword unsigned
Idrhu d « M[PC + sxt(imm19)]<15:0> load pc relative halfword unsigned
Idxhs d « sxt(M[s1 + s2]<15:0>) load absolute halfword signed
Idrhs d e sxt(M[PC + sxt(imm19)]<15:0>)  load pc relative halfword signed
ldxbu d « M[sl + 52]<7:0> load absolute byte unsigned
ldrbu d « M[PC + sxt(imm19)]<7:0> load pc relative byte unsigned
ldxbs d « sxt(M[s] + s2]<7:0>) load absolute byte signed

ldrbs d « sxt{M[PC + sxt(imm19)]<7:0>) load pc relative byte signed
Table 2.6: Load Instructions
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Figure 2.7 shows the timing diagram of load instruction execution. The load
instruction comes into the chip from the address/data bus (1) and is decoded for the
execution cycle (2). If the load is from an absolute address, then the short-immediate
format is used and the immediate bit determines whether busB (8) or imm13 (6) goes to
the shifter (11) after the register file read (4); a PC relative load puts imml9 into the
shifter (6). The shifter evaluates during ¢, to fill the ALU’s B latch (9) while busA is
gated onto busD and into the ALU’s A latch (7) for an absolute load; a PC relative load
gates the PC onto busD (8). The ALU calculates the address (13) and passes it out on the
address/data bus (14) while the controller initiates a read cycle. The byte address
calculated in the BAR is sent to the shift decoder (16) and the DIMM along with the size
and sign in preparation for the incoming data so it can be properly aligned and sign
extended. The data comes in and is sign extended in the DIMM (15), right aligned
through the shifter (11 17), and stored into the register file (18) during the read cycle.

Note that during the read cycle, instruction fetches are suspended (19 20).

2.2.4. Store Instructions

Like load instructions, stores also suspend the execution pipeline during the write
cycle because no instruction can be fetched. The six store instructions are shown in table
2.7. The scc bit should not be set, but if it is, then the condition codes saved will be
ze~Nne?ve0andc 0.

Figure 2.8 shows the timing diagram of store instruction execution. The store

instruction comes into the chip from the address/data bus (1) and is decoded for the
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Figure 2.7: Load Instruction Execution

opcode operation description
SIXW d = M[sl + s2] store absolute word
strw d - M[PC + sxt(imm19)] store pc relative word
stxh d - M[sl + s2]<15:0> store absolute halfword
strh d - M[PC + sxt(imm19)]<15:0>  store pc relative halfword
stxb d = M[sl + s2]<7:0> store absolute byte

strb d = M[PC + sxt(imm19)]<7:0> store pc relative byte

Table 2.7: Store Instructions
execution cycle (2). Stores are an exception to the instruction format in the sense that rd
is used to read onto busB rather than rs2 (4) because only two values can be read out of
the register file at a time. Although it is possible to use rs2 for an absolute store, this will

give a bad address (because rd will actually be used instead of rs2), and so imm13 should

30



always be used (5). A PC relative store presents no problems and puts imm19 into the
shifter (5). The shifter evaluates ¢, to fill the ALU’s B latch (8) while busA is gated onto
busD and into the ALU’s A latch (6) for an absolute store; a PC relative store gates the
PC onto busD (7). The ALU calculates the address (14) and passes it out on the
address/data bus (15) while the controller initiates a write cycle. In the meantime, the
byte address calculated in the BAR is sent to the shift decoder (9) so that the data to be
stored (10) can be aligned with word boundaries (12), put in the SDR (16 17), and
eventually memory (18). Note that during the write cycle, instruction fetches are

suspended (19 20).
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Figure 2.8: Store Instruction Execution
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2.2.5. Branch Instructions

Instruction addresses put out the current execution cycle fetch the instruction the
next cycle, which is then executed the following cycle; any changes to instruction
sequencing do not take effect for two cycles. The MP uses this delayed control transfer
due to its two-cycle execution pipeline. Table 2.8 shows the branch instructions. J umps
are conditional and use the conditons in table 2.9. Call and return instructions
decremented and incremented the current window pointer in addition to changing the
flow of execution as a hardware assist for procedure calls. The Berkeley RISC allowed
conditional returns, but ran into timing difficulties determining if it should return and if
this would cause a trap; we encountered the same problems, and as a result implemented
unconditional returns. The return from interrupt, in addition to incrementing the current
window pointer, also enables interrupts (I=1) and restores the system mode bit (S=P) in
the PSW. The scc bit should not be set for the branch instructions, but if it is, then the
condition codes saved willbe z « X, n & X, v & X, and ¢ « X (where X may be O or 1
because two different logic levels (OV and 5V) may be gated onto the bus used for
generating the next cycle’s condition codes, resulting in an indeterminate value (2.5V)).

In addition, the effective address for conditional instructions (jump) will be unknown.

opcode operation description

jmpx PC & sl +5s2 jump absolute

jmpr PC « PC + sxt(imm19) jump pe relative
callx CWP—; d « PC; PC sl +52 call absolute

callr CWP=; d « PC; PC « PC + sxt{imm19) call pc relative

ret PC « sl +s2; CWP+ return from call

reti PC « sl +52; CWP+; PSW(L,S) return from interrupt

Table 2.8: Branch Instructions
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code | symbol name value
0000 nev never 0
0001 gt greater than (signed) m@v)vz
0010 le less or equal (signed) NDv)vz
0011 ge greater or equal (signed) n®v
0100 It less than (signed) n@®v
0101 hi higher than (unsigned) cvz
0110 los lower or same (unsigned) cvz
o111 lo lower than (unsigned) =

nc no carry
1000 his higher or same (unsigned) c

c carry
1001 pl plus (signed) n
1010 mi minus (signed) n
1011 ne not equal z
1100 eq equal z
1101 nv no overflow (signed) v
1110 v overflow (signed) \
1111 alw always 1

Figure 2.9 shows the timing diagram of branch instruction execution. The branch
instruction comes into the chip from the address/data bus (1) and is decoded for the
execution cycle (2). If the branch is to an absolute address, then the short-immediate
format is used and the immediate bit determines whether busB (5) or imm13 (6) goes to
the shifter (11) after the register file read (4); A PC relative branch puts imm19 into the
shifter (6). The shifter evaluates ¢, to fill the ALU’s B latch (9) while busA is gated onto
busD and into the ALU’s A latch (7) for an absolute branch, and the PC is sourced for a
PC relative branch (8). The ALU calculates the instruction address two cycles away (13)
and passes it out on the address/data bus (17) and updates the PC (19) for unconditional

branches and branches fulfilling conditions. Conditional branches failing conditions do

Table 2.9: Mirror Condition Codes
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not branch and default to the PC for the instruction fetch (18 19). The current window
pointer is effectively changed on ¢, for calls and returns (14) so that for call instructions,

the PC can be saved in a new register window (15 16).
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Figure 2.9: Branch Instruction Execution
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2.2.6. Test Instructions

The following instructions were added for run-time testing of the error detection
and micro rollback circuitry. They operate as variations of the standard instructions, only
they intentionally inject errors into the system. Table 2.10 summarizes the instructions

and 1s followed by a more detailed description.

opcode operation description

clrrbm b0 clear rollback bit on master
clrrbs b« 0 clear rollback bit on slave
jmprbm d &« sl; PC« PC+5s2 jump if rollback bit is set, master
jmprbs d s, PC«PC+s2 jump if rollback bit is set, slave
addbpm desl+s2;p add with bad parity on master
addbps desl+s2;p add with bad parity on slave
ldrbpm d - M[PC + sxt(imm19)];p  load with bad parity on master
ldrbps d &« M[PC + sxt(imm19)]; p  load with bad parity on slave
strbdm d — M[PC + sxt(imm19)] store bad data, master

strbds d = M[PC + sxt(imm19)] store bad data, slave

Table 2.10: Test Instructions

e  clrrbm, clrrbs: After every rollback, the rollback bit in the controller is set as an
indication that a rollback has occurred. This bit can only be reset by executing the
Clear Rollback Bit instrucdon. Clrrbm resets the rollback bit on the master
processor and does nothing on the slave processor, while cirrbs acts on the slave
processor and ignores the master processor.

e  jmprbm, jmprbs. Jump if Rollback Bir is Set is used to force a state compression
error, and in addition can be used to verify that a rollback has occurred. If the
rollback bit is set, then a PC relative jump is taken using the value of 152 as the
offset, and sl is stored in the register file (PC « PC + rs2; d « s1). If the rollback
bit is not set, then rs1 is placed onto busD of one processor and rs2 is placed onto
busD of the other. If we choose the values in rsl and rs2 so that the four-bit
signature does not match, this will cause a comparison error to be detected the
following cycle, and roilback will ensue followed by re-execution of the branch
instruction. The second time around, the rollback bit will be set and so the branch
will be taken. It is only practical for rs2, the branch offset, to assume several small
values, and so there are two variations of the branch instruction to allow either
processor to gate any value from rsl onto busD to fully test the state compression

35



logic. Jmprbm causes the master processor to gate rsl onto busD and the slave
processor to gate rs2 onto busD, and vice versa for jmprbs. If we choose values for
rsl and rs2 such that the four-bit signatures match, then we can use this instruction
solely for testing if a rollback has occurred. This application is used in conjunction
with the other test instructions to verify that the subsystem tested actually did cause
a rollback.

e  adabpm, addbps: Add with Bad Parity is used to inject a parity error into the register
file in order to test state repair. The instruction acts like the normal add instruction,
only the inverted parity of the sum is stored into the register file. Addbpm causes
only the master processor to invert the parity, and addbps causes the slave to store
bad parity.

e  ldrbpm, ldrbps: Load with Bad Parity functions like Idrw, except that one of the
processors will invert the parity of the data read in as it is gated onto busIN if the
rollback bit is not set. Ldrbpm flips the parity on the master processor and /drpbs
flips the parity on the slave processor. After the parity error on the incoming data is
detected, a rollback will set the rollback bit, and the parity bit will not be changed
the second time the instruction is executed.

o strbdm, sirbds: Store Bad Data acts like strw, only one of the processors will
attempt to store the contents of the MAR instead of busD if the rollback bit is clear.
This will cause a comparison error on the pad checkers, and rollback will follow.
On the second execution of the store instruction, the rollback bit will be set, and so
both processors will store the contents of busD and there will be no error. For
strbdm, the master processor stores the MAR, while sirbds causes the slave
processor to store the MAR.

2.2.7. Miscellaneous Instructions

Miscellaneous instructions not fitting any of the above categories are shown in

table 2.11. They are all similar in timing to the register to register instructions.

opcode operation description

calli CWP-; d « LSTPC call interrupt

getpsw d « PSW get psw

getlpe d « LSTPC get last pc

putpsw PSW & sl + 52 put psw

1dhi d « imml9 << 13  load immediate into bits 31:13

Table 2.11: Miscellaneous [nstructions
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Referring to the branch timing diagram (figure 2.9), the calli instruction decrements
the register window pointer (14) and stores the LSTPC into the destination
register (15 16). This instruction is used by the hardware for handling interrupts and
traps and should not be used by software. If the scc bit is set, then the condition codes

stored willbez¢ 7, n ¢ ?, v« 0, and ¢ « 0.

Looking at the register to register timing diagram (figure 2.6), gerpsw gates the
PSW onto busD during ¢, (15 16) to be written into the register file (17). Condition

codesare ze— 72, n¢ ?, ve0,and ¢ « 0.

Because the PSW is only drives its 11 bits onto busD, the top 21 bits are whatever
was placed upon busD from the previous cycle. In normal operation, this would be no
problem because the same data would be present on both the master and the slave
processors. However, the jump if rollback bit is ser test instruction forces an internal
state comparison error by placing different values onto busD of the master and the slave
processors if the rollback bit is not set. If the intent of the test instruction is to force a
rollback, then after the rollback, the values placed upon busD of both processors will be
the same and so there will be no problem. The only case where this will be a problem is
if the test instruction is used to detect if the rollback bit has been set by placing two
different values onto busD whose compressed state matches. If a getpsw instruction
follows, then the two resulting values on busD will not match. The problern can be
remedied by either not following any jump if rollback bit is set instructions with a gepsw
instruction, or if the test instruction is used only to detect if a previous rollback has

occurred, to gate the same value onto busD of both processors.
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Getlpc operates the same way as gerpsw, only it gates out LSTPC from the PC onto

busD on ¢4 (15 16). Condition codes are z «—d =0, n « d<31>, v « 0, and c « 0. The
getlpc instruction is used as the first instruction of every interrupt handler in order to save
the LSTPC; when the getlpc instruction is executed, the LSTPC is the address of the
instruction following the interrupted instruction. The cafli instruction saves the address
of the interrupted instruction, and so the way to return from the interrupt handler is to
perform a jmpx to the address of the interrupted instruction followed by a reti to the
address of the instruction following the interrupted instruction. The jmpx refetches the
interrupted instruction, the reti in the jmpx’s delayed slot fetches the following

instruction, and the interrupted instruction restarts execution in the reti’s delayed slot.

Purpsw is like an add instruction, only instead of the destination being the register
file, busD is written into the PSW during ¢, (17). The scc bit should not be set because
that would put the PSW in a write-write conflict and the results are undefined.

Ldhi takes imml19 as data and shifts it on ¢4 (12) onto busD (16) and into the
register file (17) with imm19 occupying bit positions <31:13> and bit positions <12:0>
being zero filled. This is accomplished by having the IMM gate onto busT left shifted by
13. The right shift onto busD is by zero. (Immediates used during ¢, are right shifted by
13 so that the resulting value is properly aligned.) Condition codes are z « d=0,

ned<3l> ve0,andc « 0.
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Type Cause Vector

interrupt | reset 00000000 ¢
trap illegal instruction 00000000, ¢
trap privileged instruction 00000000
trap address misalignment 00000000, ¢
trap bad shift amount 00000000 ¢
interrupt | interrupt request 0000001046

trap register window overflow 000000204
trap register window underflow | 00000030,
interrupt | shutdown 00000040, ¢

Table 2.12: Interrupt Vectors

2.2.8. Interrupts

In the event of a trap or an interrupt with the interrupt enable bit set, the currently
executing instruction is cancelled (by not writing the results into the registers) and the
tetched instruction is discarded. Instead, a hard-wired calli instruction with rd=25 and
scc=0 is read into the instruction register and controller; its execution is similar to a call
instruction except that the ALU does not gate out the address, but instead, the PC is used

to fetch the next consecutive instruction.

The interrupt signal also causes the interrupt enable bit in the PSW to be disabled,
the MP to assume kernel mode, and the previous system mode bit to be saved (PSW(I=0,
S=0, P=S)). During ¢4, the interrupt vector address is put out so the MP can start
executing the interrupt handler after the calli. If the cause was an external interrupt, then
the interrupt request acknowledge line (pad.ira) is asserted to indicate receipt of the
signal.

The interrupt causes and corresponding vectors are shown in table 2,12, Address

alignment is caused by a word operation not being on a word boundary or a halfword
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operation not being on a halfword boundary. The shifter only allows shifts by six
amounts, and so anything other than those causes a bad shift amount trap. A register
window overflow trap can be caused by a call instruction if the new current window
pointer equals the saved window pointer; this means all available register windows are
taken and it’s time to spill a window to memory to make sure there’s always a free
window around. Likewise, a register window underflow trap can be caused by a return
instruction if the new current window pointer equals the saved window pointer; the new
window is in memory and needs to be restored. Reset and shutdown are treated like
interrupts, only reset has highest precedence and shutdown has next highest.

The implementation of the datapath controller requires that interrupts and traps be
generated by the end of ¢, so that the internal interrupt signal can be ready by the
beginning of ¢, to initiate the interrupt process. Unfortunately, the bad shift amount and
address misalignment signals cannot be resolved until the middle of ¢;. However, the
write signal to all the registers can be delayed until ¢4 and the memory address enable
signal is not asserted until the falling edge of ¢,; the solution is to cancel all register
writes and memory transactions which may occur and to invoke the trap the following

cycle for these two events.
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2.3. Error Detection Scheme

The MP performs error detection by nunning two processors, a master and a slave,
in lockstep. A difference between the observable state of the two chips indicates that an
error has occurred and the checker signals rollback to the cycle before the cycle the error
occurred. The master processor performs all transactions with the memory and the rest
of the system while the slave processor reads in the master’s visible states and compares

them with its own independently generated values.

The slave processor is silent except in the event of a discrepancy, and so it is
conceivable to configure a system with one master and multple slaves. This would work

fine except for the present scheme of state repair which requires exactly two processors.

In order to minimalize the number of chips in our system, the checkers must be on-
chip one of the processors. The master and slave processor datapaths are identical; the
only difference is that the slave has comparators and doesn’t drive values on its pins. We
can take advantage of this common denominator by implementing one chip that can be
configured as a master or a slave by setting a pin (pad.ms) to 0 or 1. In fact, the area
taken by this two chip system can be further reduced by taking two chips and bonding all
pads identically except for the master/slave pin, which is bonded to different pins for the
master and slave processor packages. The master and the slave can now be mounted

piggy-back, and thus, present the PCB footprint of a single processor.

Portions of a processor’s state are not externally visible, and so in order to detect
internal errors within a few cycles instead of many cycles later, the MP must export this

internal state to the checker. A total of fifty-five bits of internal state from all the
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modules within the MP must be compared between the master and the slave processors.
Dedicating that many pins for error detection is not a reasonable solution; we reduce the
number exported to four by using data compression techniques. The internal state is
reduced to four bits of interleaved parity by taking the state from each module and
calculanng the parity of every fourth bit to obtain four bits of compressed state. These
four-bit bit vectors from all the modules are then all XORed together to obtain one four-
bit bit vector for internal state exportation. Four bits are enough to show some
differences should the MP be hit by multiple bit errors, yet not so many as to consume a

sizable proportion of the pin allocation.

During rollback, a value read out of a rollback memory may have been corrupted.
A solution would be to protect it with a parity bit, but this turns out to be unnecessary as
all state will be checked within a few cycles, and so the problem will be caught by the
error checkers and another rollback will be signaled to a cycle before the bad data within

the rollback memory.

State comparison of some modules must be temporarily suspended during rollback
because the state between the two processors are not expected to be identical. During
state repair, the bad data from the processor needing to be repaired will be read out again
from the register file, and if this error is not masked, the MP will reinitiate rollback and

state repair instead of proceeding with the current state repair.

The additions to the MP datapath for error detection are shown in figure 2.10. The
external state comparators (CMP), the internal state compressors (parD, PSW,

RFTRAN), and the parity generators (parIN, parB, parD, parOUT) will be explained in
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the following three sections.

et . .
Ry e

buskR | o {busOQUT
Register File parB  parD SHIFT ALU PC MAR parOUT
///i Register Delayed Write Buffer %Bus Delayed Write Buffer Error Detection Hardware

Figure 2.10: Mirror Datapath Additions for Micro Rollback

2.3.1. External State Comparison

The slave compares the output pins shown in the [/O section of table 2.2 and the
interrupt acknowledge pin. The error detection and recovery pins are not checked
because an error may be detected on one processor and not the other and then they would

differ, whereas pins associated with normal Operation should always match.

A pad comparator is merely an XOR sourcing from a pad’s input and outputs (see
figure 2.11). On the master processor, the output pads will be enabled, and so the input
should be identical to the output and no errors will be signaled by the master. The
slave’s pads are disabled, and so input from the pad comes from the master; this

configuration forms an active comparator on the slave processor.
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Figure 2.11: Qutput Comparator

2.3.2. Internal State Comparison

Comparing only externally visible state may not catch all errors that develop
on-chip because the fault may not propagate off-chip for many cycles. To ensure early
detection of errors, the MP exports internal state for comparison. We only have to look
at registers which contain the results of an executed instruction and whose values cannot

be verified directly by external state comparison.

Possible register candidates are the RF, SDR, PSW, PC, MAR, the datapath
controller state, and the distributed IR. Data written into the SDR, PC and MAR is aiso
put out to the pads, where any emrors can be caught by external comparison. Any
changes in the distributed IR will cause the controller to behave differently if the error is
in the opcode; this can be caught by external state comparison. If it is the data portion
that is changed, then the resuit will propagate to the register file or the PSW where it will
be exported. This leaves the register file, the PSW, and the controller for internal state

exportation.

Input ports to the register file are busD (32 bits) for the data, the register file



translator (7 bits) for the address, and the register file write signal (1 bit). All these
values must be monitored because once data is written into the DWB, it possibly may not
be accessed and compared again until it is committed into the permanent register file.
The value of the PSW for the next cycle is calculated every cycle and written into the
PSW’s DWB; we must add the 11 bits from the PSW to the checking list. Normal
controller operation uses two bits of state; adding the two bits used for state repair gives a
total of four bits to be compared from the controller.

Four-way interleaved parity generators are installed in the PSW and RFTRAN as
indicated by the stipples in figure 2.10. In addition to generating the parity of busD,
parD also generates the four-way interleaved parity of busD. The four bits of
compressed state from these three modules, along with the four bits of controller state,
are merged together to form the four bits of exported internal state by XORing together

the four four-bit bit vectors.

2.3.3. Parity Checking

The MP bus protocol includes supplying parity to protect the address/data bus
during memory transactions; this entails checking the incoming parity on busIN with
parIN and generating parity to accompany the data on busOUT using parOUT. ParIN
serves a dual purpose during rollback by checking that the data read out of the IR during

rollback has not been corrupted.

ParD and parB are used to generate the parity of the data read out of the register file

onto busA and busB. This parity, along with the parity read out of the register file, is
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sent to controller for error detection and state repair determination. ParD also generates

the parity written into the register file to be used for error detection and state repair.
During state repair, the MP transfers data from the processor with good data to the

processor with bad data. Data comparison of the data busses is not in effect at this point

because the two processors do not have the same state. The transferred data is verified

the same way as with a memory transaction, by using parOUT and parIN and sending

one bit of parity with the data.

2.3.4. Rollback Arbitration

Once an error is detected, the MP initiates rollback to the cycle before the cycle that
the error occurred. Any chip in the fault-tolerant system may signal a rollback, and we
simplify interconnection of the rollback signals (rollback, rollback amount, and

shutdown) by using wired-ORs.

However, two chips may detect errors with different detection latencies and will
signal rollback to two different cycles at the same time. Simply ORing the two amounts
together will not work because the result may be much larger than either one (e.g. 011
OR 100 = 111). In this case, we want the system to roll back the largest amount
requested so that all errors may be undone. We can use the same arbitration scheme used
by the Futurebus protocol[Taub84a) for determining the next bus master. The chips that
want control of the systern bus put their priority number on the arbitration bus and
asynchronously determine the highest priority. At the end of arbitration, the arbitration

bus contains the winning processor’s priority number. Likewise, at the end of rollback
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Figure 2.12: Relative to Absolute Rollback Amount Translator

amount arbitration, the largest rollback amount will remain on the roilback amount bus.

The rollback controller uses a relative to absolute rollback translator, as shown in
figure 2.12, to handle interactions with the outside world. The valid bits indicate which
cycles contain good data. One of the three inputs is set to 1 and the other two are set to
(. The switching network passes the 1 to the output representing the absolute rollback
amount that corresponds to the relative rollback amount at the input. The first n valid
bits are invalidated for a rollback of n by resetting the bits to 0. The array is shifted once

per cycle, and a 1 is shifted in if the system state is to be recorded and a 0 if it is not.

Externally, rollback amounts are given as a number of cycles from the present
cycle. The rollback controller, however, counts cycles in terms of a relative rollback
amount. After a rollback, the MP considers the last n cycles that it rolled back over to be

invalid because they hold corrupt data stemming from the bad state. If the restored state
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also happens to be bad, then the MP should roll back one more cycle from the last
rollback, or a relative amount of one cycle. If all the states are valid, then the translator
will return the same number put in. The only difference is if some states are not valid, in
which case the number of invalid states is added to the relative rollback amount in order

to obtain the absolute roilback amount.

The rollback controller determines how many cycles to roll back. If the error was
detected from on-chip, then the rollback amount is set to one relative cycle because the
processor (either the master or the slave) was able to detect the error right away. If the
error was detected from off-chip, then the rollback amount is set to two relative cycles
because the bad state took one cycle to get off the master processor and one cycle to get
onto the slave processor to be compared. Rolling back within two cycles of a previous
rollback causes an additional cycle to be added to the relative rollback amount because
the error may have been in a DWB, and so rolling back an extra cycle will erase the bad
data. In any case, the maximum number of absolute rollback cycles the MP requests is
clamped to 4. If too many rollbacks are encountered within a 16-cycle frame, then the
controller signals a shutdown trap because the fault is probably caused by a bad value in
a permanent memory or stems from a hardware fault rather than a transient error. More

details on the rollback controller can be found in [Lai%0a).
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2.4. Rollback Scheme

The rollback control mechanism, as described in section 2.1.2, is distributed
throughout the datapath in order 1o allow for one cycle recovery. When a system unit
signals rollback, this is latched in the MP on ¢,, and rollback proceeds on ¢5. Registers
holding values between cycles are restored and outstanding memory transactions are
restarted. In the case that the rollback amount is more than the MP can handle, a
shutdown trap is signaled. The rest of this section deals with the changes made to the
datapath, how the changes affect instruction operation, and what occurs during a rollback

cycle.

2.4.1. Datapath Changes

When a processor rolls back to a cycle, it restores all state to that which was
recorded at the beginning of ¢, of the destination cycle. For the MP, this includes the
IMM, BAR, PSW, RFTRAN, RF, SDR, PC, and the datapath controller. In addition, any
outstanding memory transactions must be restarted. Not all the units mentioned need
DWBs; some registers can be restored from values put out onto busses during rollback by
other registers. The following modules shown in figure 2.10 are augmented for micro

rollback:

® RF, PC: To cancel the last n cycles of writes into these registers we just need to
place a delayed write buffer before the input of each register. Invalidating the
values means they won't be written into the permanent register nor read out of the
DWB.

*  PSW: The processor status word register evaluates twice in a rollback cycle. It
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must evaluate on ¢, for normal operation because it is written into on ¢, and needs
to be read out immediately, and it must evaluate on ¢, because the bits are needed
to initate the memory cycle and register file read.

CU: (control unit not shown) Load and store instructions take two execution cycles,
and so the controller must restore its state and second stage instruction register.
(See [Lai90a] for more details.)

IR: The RFTRAN, IMM, and the first stage of the controller instruction register
store relevant pieces of the incoming instruction and form a distributed instruction
register. We can take advantage of this and reduce the amount of rollback control
logic by creating a central instruction register (IR) to put out the proper instruction
during rollback and simulate an instruction fetch.

SDR: Without micro rollback or state repair, the MP would temporarily store data
upon busD before a write to memory the following cycle for a store instruction.
The SDR was created to restore the value of busD. State repair, however, also uses
busD to transfer data, and because there isn’t enough time after state repair to
restore busD to its original value, the SDR must instead be used as an active
gateway from busD onto busOUT for the srore instruction (i.e. the data for the store
1s saved in the SDR instead of on busD).

MAR: In order to restart the last memory access within one cycle, the MP cannot
evaluate the ALU or PC but must add another rollback memory, the memory
address register. If the BAR should be used, it will contain the same value as the
two least significant bits of the MAR. We take advantage of this fact by restoring
the BAR from busOUT during rollback when the MAR gates out onto busOUT.

2.4.2. Datapath Execution

The delayed write buffers are two-stage shift registers. Figure 2.13 shows the two

types of cells used for both the data and tag portions. The left cell is a one-stage shift

register cell (basically a latch), and the night cell is a two-stage shift register cell.

Table 2.13 shows at what times the delayed write buffer stages shift and when the

registers evaluate and gate onto the external busses. Load and update mean loading the

first stage and updating the second stage of the two-stage shift register cell. For some
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registers, the value to be written into the first element is not ready until after the first
stage of the shift register cell is loaded; a different load! phase indicates that a one-stage
cell is to be used as the first element so that it can be loaded later and the output will be
immediately updated. The evaluation phase is when the first valid value is found and put
on the DWB’s internal bus (figure 2.1). Gate indicates the phase that the register writes
onto the external busses. Implementation details can be found in section 3.4.1.

loadi load update

Figure 2.13: Shift Register Cell

register RF SDR PC MAR IR PSW CU

loadl b4 04 04 9 b4 04 04
valid load o d ) 9, 04 by Oy
update by by 04 9, $, ¢ )
loadl ¢, ¢ o, 0, 04 ¢, 04
data load ) Y 03 o b4 by 04
update ¢, ol o ¢3 ¢, ¢ 92
evaluate 9, ol 0, 94 93 $1/01 g

gate & ) 004 | 9ofd4 $ 04 &)

Table 2.13: Delayed Write Buffer Timing

Figures 2.14, 2.15, 2.16, and 2.17 show register to register, load, store, and branch
instruction execution along with DWB timing. The DWBs shift every cycle and load
data into the stages every cycle, but logical writing into the register is controlled by
shifting a 1 into the valid bit of the tag. Register evaluations take place every cycle, but
the results are only seen if the values are gated out onto the external busses (e.g. busD,

busOUT).

51



Memory—busIN
decode instruction
precharge RF
read RF&RF.DWB
busA-—-busS—»SHIFT
busB—busS—SHIFT
IMM SbusT—SHIFT
busA—busD—-ALU.AI
SHIFT—>busR—ALU.BI
shortSOURCE2—SDEC 10
precharge SHIFT 11 !
evaluate SHIFT 12 |
precharge ALU 13
evaluate ALU 14 |
ALU—busD 15 |
SHIFT—busD 16 |
busD—RF.DWB 17 |
busQUT —-Memory 18 :
busINSIR.DWB 19
load IR.DWB 20 |
update IR.DWB 21 |
evaluate IR&IR DWB 22 | S : . — 2
load RF.DWB 23 STEET s VENE S STNES S . ‘
updaie REDWB 24 I\ SEEET s VIS SEEES p O
RFDWB—RF 28 | NS S S SEEES S S S :
busOUT—-PC.DWB 26 I L i IR S VO S SEEES pa &
load PC&PC.DWB 27 | SRS pay VN SEEES s VRS :
update PCAPCDWB 28 7 LI SEEDE p VIR S SRS ey
evaluate PC&PC.DWB 29 1L TENEY S § SEEEE .
NXTPC—busQUT 30 | SEEEE ¥ SIS e Z
busOUT-MARDWB 31 I i SEEET S SEINE SEEET a8
load MARDWB 32 7 LU TS (S ¥ BN TS N
update MAR.DWB 33 | e SEEET pa VU '
evaluate MAR&MAR.DWB 34 SEEES pa VNSS! SEEEY p ¥

L-IE- I I N B A
9

..
"
L
et
o
gt
- L
-
L.
rd

Figure 2.14: Register to Register Instruction Execution with Micro Rollback

52



Memory —busIN
decode instruction

precharge RF
read RF&RF.DWB

busB—busS§ »SHIFT
IMM SbusTHSHIFT

busA—busD—SALU AI

PC—busD—ALUA]
SHIFT —busR—ALU.BI

L - BN B WY R P

precharge SHIFT 10 !

evaluate SHIFT 11
precharge ALU 12 &

evaluate ALU 13 i

ALU—SbusOUT 14 |
busIN —sDIMM —busT»SHIFT 15 |

BAR-—SDEC 16 |

SHIFT —busD 17 |
busD—RF.DWB 18 |

busOUT —Memery 19 :

busIN IR.DWEB 20
load [R.DWB 21 |

update [R.DWB 22 |

evaluate [IR&IR.DWEB 23 |
load RE.DWB 24 |

update REDWB 2§ I L

RE.DWB—RF 26 |

busQUT—PC.DWB 27 I L

load PC&PC.DWB 28 |

update PC&PC.DWB 29 I L
evaluate PC&PCDWB 30 I

NXTPC—busOUT 31 ¢

busOUT—MARDWB 32 I L
load MARDWB 33 L

update MAR DWB 34 |

4 B S SRS S S gt S

evaluate MAR&EMAR DWB 35 |

S VRTINS o VI T SN o ¥
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Figure 2.16: Store Instruction Execution with Micro Rollback
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Figure 2.17: Branch Instruction Execution with Micro Rollback
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2.4.3. Rollback Cycle

Figure 2.18 shows the rollback execution timing diagram. The first cycle shown is
a normal operation cycle, and the second cycle is the rollback cycle. The rollback signal
is latched ¢, and determines whether a rollback should occur that cycle or not. On s,
the valid bits corresponding to the number of cycles to roll back are invalidated, and any
the transfer of data from the pads to busIN is cancelled (1). Instead, the IR supplies the
instruction that will be executing at the beginning of the cycle rolled back to so that the
distributed instruction register (RFTRAN, IMM) and the controller can be
restored (6 7 2). On ¢4, the instruction fetch or data transfer is reinitiated from the
MAR (22 23 24). At the same time, the lower two bits of the address are used to restore
the BAR. Note that on a rollback cycle, invalid bits are shifted into all the DWBs so that
the cycle will not be recorded (3 8 14 19 25). Though the PSW normally evaluates on ¢,
it must also evaluate ¢4 during rollback because status bits are needed for the memory
transaction and the current window pointer is needed for the next register file

read (28 29).

2.5. State Repair Scheme

Micro rollback will handle transient errors that are detected a few cycles after they
happen, and even those that develop in the delayed write buffers, but only if rollback is
signaled before the bad data is committed to permanent memory. This means that should
a bit flip in a permanent register, the MP cannot recover. In this case, error detection will

catch the error and signal rollback; the error will be detected again after rollback, and the
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error detection circuitry will again signal rollback. After the fourth rollback, as described

in section 2.3.4, shutdown will be signaled.

The register file occupies a large percentage of chip real estate, and hence, the
probability of the register file being corrupted is greater than that of any single register.
In order to effect better coverage, we invest extra resources into protecting this module
by performing state repair upon the register file should it be the source of the error.
Rather than continuing on from a rollback after an error is detected in the register file, the
chip with the correct data transfers the value to the chip with the bad data in order to

repair the corrupt register file.

We want to effect state repair with a minimum of additional hardware and cycle
overhead. We do not want to use external glue chips to control state repair because they
will comprise another system which is subject to failure, and also they take up PCB real

estate and routing.

One solution is to add a new instruction which will be executed in the event of state
repair. The MP will trap to a software state repair handler employing a conditional store
instruction after rollback. The state repair handler will determine which register caused
the problem by examining the instruction that caused the trap, and then execute a
conditional store instruction which will allow only the processor with a good value to
write into memory. Next, both processors will load the value back into their register files

and return from the trap.

For the lower bound, this sequence will take 2 cycles for the calli instruction, 2

cycles for the store instruction, 2 cycles for a load instruction, and 2 cycles for the reri
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instruction for total overhead of 8 cycles. More cycles are needed to extract the proper
register and manipulate the register window in order to access the register. Furthermore,
state repair may be needed during the register window overflow handler routine which

should never be interrupted under any circumstances.

A better solution is to add states to the controller finite state machine which will
perform state repair without changing any other registers on the chip. Only two cycles
are needed (read the data and transfer between chips) and they leave no recorded trace
except for the corrected data. When we detect an error on the register file, we roll back
to the execution cycle of the instruction that detected this error. This will also read out
from the instruction register the two possible registers at fault. During the rollback, the
twO processors communicate to each other with four lines which one had the error and
needs to be repaired and which source register it was read out of. In case of multiple
errors, priority goes toward first repairing the register read onto busA and then the
register read onto busB. In the event that the same register needs to be repair on both
chips, repair is impossible; instead, the instruction is retried in hope that the error is
transient. If re-execution of the instruction does not clear the error, state repair will be
repeatedly signaled. This policy leads to a shutdown after four rollbacks within a 16

cycle time frame are performed (enforced by the rollback controller).

The rest of this section describes how errors is detected within the register file, what

changes are needed to allow state repair, and what goes on during state repair.

59



2.5.1. Error Detection

For our error model we assume one bit will be flipped in the register file. Using a

single bit of parity will detect this and also all odd numbers of flipped bits.

In the event that an even number of bits are flipped on one processor, the error will
not be caught, but it will be detected by state comparison and a rollback will ensue.
Since this error will not be fixed, the cycle will repeat until the MP signals shutdown.
Even if the MP can’t recover from this error, it will be able to detect the problem and

signal shut down.

There are three cases to examine in the rare event that the same register on both
processors is corrupt. If an even number of bits flip on both, then the case defaults to that
of only one processor with an even number of bits flipped. If both have an odd number
of bits flipped, then the MP can’t recover because both processors are known to be
corrupt. Instead, the MP re-executes the instruction in hope that one of the errors was
caused by a transient error on a bus or a parity generator and is not an error with the
stored data. After enough repeats the MP will initiate shutdown. The one fatal case is if
an odd number of bits is flipped on one processor and an even number on the other. The
even number flipped will not flag an error, and so the MP will assume this is the good

value and repair both processors with the bad data.



2.5.2. Datapath Changes

The MP derives the parity to be written into the register file from both the data and
the register address. This is because while the address is within the delayed write buffer
it may be changed and this can cause the two processors to store the data into different
addresses. The data that is stored into the wrong address will trigger a parity error when

it is read out because its parity will not match its corresponding address.

Additions to do this (figure 2.10) are parD and parB. ParD serves double duty by
both generating the parity to save in the register file and checking the parity of busA read
out of the register file (by gating busA onto busD). ParB checks the parity of busB read

out of the register file.

During state repair, the parity of busOUT is compared with the parity read out of the
register file to make sure that the correct data has not been corrupted on the way out, and
parIN on the destination processor verifies the data safely made it between chips; any

errors start another roliback.

In order to transfer data with a minimal number of extra controls, a gateway is
added from busIN to busT to avoid use of the DIMM, which is controlled by a
combination of the BAR and data size. The SDR was originally used during micro
rollback to restore the value of busD, but since state repair uses busD to transfer data
between the two processors, the SDR was changed to directly gate the data for a store
instruction onto busOUT rather than temporarily storing it on busD so that busD
wouldn’t have to be restored again after state repair. The good data to be sent to the

faulty processor still needs to be sent to busOUT from busD, and so the gateway from
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busD to busOUT was added for state repair. In this case, busD is used as a dynamic latch
to hold the repair data over a cycle. The shifter needs to shift by zero in order to put the
value read from the register file onto busD for sending to the other processor, and it also
needs to shift by zero when it brings the data into the main datapath from busT after the
processors receive the cormrect value; fortunately, the shift by constant zero signal is

already provided for use by the /dhi instruction.

2.5.3. Controller Changes

Once the on-chip parity error is detected, the rollback controller signals a rollback
of one cycle, back to the instruction that read from the bad register, and signals state

repair by asserting the state repair line.

There are four signals associated with state repair (table 2.2). Pad.repairAm and
pad.repairBm are asserted by the master processor if it needs the registers read out of the
register file onto busA or busB repaired. Pad.repairAs and pad.repairBs are asserted by
the slave processor if it needs the registers read out of the register file onto busA or busB
repaired. If any of these lines are asserted during rollback, then state repair is initiated
after the rollback (except when both are asserted for the same bus as described above for
errors in both processors). If both registers read out of the register file need to be
repaired, then priority goes toward first repairing the register read out onto busA and then

the register read out onto busB.

The datapath controller reads the repair signals and controls state repair, Two more

states are needed and the logical step would be to add another bit to the one bit of
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controller state to get four states. However, the MP needs 1o be in the correct state after
state repair to resume execution and there isn’t enough time to restore the state. Instead,
three bits are used for four states with redundant encodings. 000 is the normal state, 001
1s the suspend state, 10x is the first state repair state (repairl), and Olx is the second state
repair state (repair2). Because the last bit can be either O or 1, the MP saves the normal
controller state within the redundant state during state repair. Only the last bit needs to
be restored on rollback because the MP doesn’t roll back into a state repair cycle; zeros
are shifted into the valid bits of all registers (except for the register file) during state

repair so that the two cycles are not recorded.

During rollback amount arbitration, the System unit that requests the largest rollback
amount wins. It is possible that the MP will request rollback to a certain cycle in order to
perform state repair and end up rolling back to the wrong cycle. The instruction will be
different, and so the registers repaired will be the wrong ones, but since there’s no errors
in those registers no harm is done. Once the flow of execution comes back to the
instruction that caused the state repair, the bad data will be read out again and the MP

will again initiate state repair.

2.5.4. State Repair Cycle
Figure 2.19 shows the timing diagram for state repair. An error is detected by the
rollback controller and the MP initiates rollback and state repair. On ¢3, all registers are

invalidated (1) and the IR simulates an instruction fetch (2). As part of rollback, the

MAR gates its value onto busOUT (14), but the controller knows it’s a state repair and
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Figure 2.19: State Repair Execution
doesn’t initiate a memory transaction. The register file is read (4) and the proper bus is

gated to the shifter (5 6).

A path through the shifter must be taken because that is the only way to get a value
from busB onto busD. All shifts are by zero so that the data won’t be changed (7).
Reading from the register file on the corrupt chip will result in another parity error which

is masked by the controller.

The shifter evaluates ¢4 (9) and puts the value to be repaired onto busD (10), The
following cycle, the data is gated onto busOUT and to the pads (11); only the processor
with the good data will write onto the bus. Both processors read the data into the

shifter (12) and shift it into the datapath ¢, (9 10), where it is written into the register



file (13). Now the memory transaction occurring during ¢, must be restarted from the

MAR (14 15), and normal operation can resume. When the instruction reads out the data

it will be correct.

If both registers had needed to be repaired, then at this point the register read out
onto busA from the register file will be correct, but the one read out onto busB will still
be wrong. The instruction will re-execute, and the MP will initiate state repair for the
other register. However, the rollback will be for one cycle, and thus it will not erase the

data from the first repaired register.
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3. Processor Implementation and Timing

This chapter describes the implementation of the various modules in the datapath.
The blocks are broken down into six categories: pads, the clock, busses, registers, error
detection, and combinational logic. Following those descriptions is a summary of the
critical paths, the geometry and overhead of the various blocks, and the power

consumption estimates for the MP.

3.1, Pads

We used the 2um scalable CMOS N-well TinyChip pad set from MOQSIS. These
pads are designed for use with a 44 pin package and so pad power and chip power are
supplied over the same 33um Vdd/GND rails. However, for our implementation, we
used separate power lines for the pads and the processor core in order to isolate the
Mirror from pad voltage transients. We needed to widen the pad power rails to 100um

(the size of a pad) in order to handle the current draw of up to 80 pads.

Our pad set consists of six cells: the tri-state 1/O pad from the TinyChip pad set with
power rails redrawn to a width of 100um, a comer pad supplying Vdd to the pad power
rails, a corner pad supplying GND to the pad power rails, a middle pad supplying GND
to the pad power rails, a pad to supply power to the chip core, and a blank pad with only
rails running through and a disconnected pad. All power pads are drawn with

connections 100um wide.

The tri-state I/O pad consists of a tri-state driver and a buffered input as shown in

figure 3.1 (taken from the TinyChip documentation). We use the IO pad to fulfill all
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four functions we require from an active pad. For an input pad, the enable line is

hardwired to GND. For an output pad, the enable line is controlled by pad.ms; a 0 means

the chip is the master and so the pad should be enabled and a 1 means the chip is the

slave and so the pad should be disabled. Pads tied to pullup resistors (wired-NOR) have

the QUT line connected to GND and the enable line is asserted to activate the pad. For

the bidirectional address/data bus, the datapath controller controls the enable line and

both components of the pad are used.

Timing through the pads can be found in section 3.3.
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3.2. Clock

Our problem is to take a 25ns square wave phase clock (pad.phi) and generate our
four prase clocks (¢, ¢4, ¢3, and ¢,). In order to differentiate which of the phases is ¢,,
we also require a synchronization clock (pad.sync) whose leading edge must precede the
leading edge of the phase designated ¢, and must be after the falling edge of the previous

phase.

Figure 3.2 shows the clock circuit used to generate the internal clock phases from
external clocks. In.phi and in.sync are the phase and synchronization clocks and are
buffered inputs from the pads. We use a 4 element shift register to generate the 4 non-
overlapping phase clocks; after powerup, all 4 phases may be active but after 4 cycles of
the phase clock the internal clocks will be in order. An S-R flip-flop is used to generate a
I every four cycles. The synchronization clock sets the flip-flop once every four phases
using a leading edge pulse generator, and after the signal is latched into the shift register

it is cleared by a falling edge pulse generator based upon the phase clock.

We must somehow load and update a master-slave shift register using a single
clock; this is done by using the phase clock to load the master stage and generating a
pulse from the falling edge of the phase clock to update the slave stage. Throughout the
circuit we used delay inverters to generate a suitable propagation delay. These consist of
one NMOS transistor switched by the input and one PMOS transistor switch by the input

in series with several PMOS transistors switched on to add to the rise time delay.

From the shift register we can pick off the raw clock phases. Since ¢, and ¢; are

25ns long and the shift register shifts every 25ns, we can use the values directly from the
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Figure 3.2: Clock Generation Circuit
shift register to generate those clocks. The short clocks, ¢, and ¢,, are 15ns and a bit
tricker to generate. The phase clock with its falling edge delayed is used as a base and it
is ANDed with a delayed st.phi2 or st.phi4 signal to generate the ¢, or ¢, phase clock.
This signal is actually a bit ahead in time and so it is put through two delay inverters

before being fed to the clock driver,
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Figure 3.4: Clock Generation using Fast-Fast Spice Parameters
In the event that our clock generation scheme doesn’t work, we have the ability to
override internal clock generation by setting pad.csel (clock selection) to 5V and directly
supplying the phase clocks through 4 pads (pad.phil, pad.phi2, pad.phi3, pad.phi4). The
clock dnver is a  S5-stage  logarithmically ramped inverter chain:
8:4524:12564:32—176:88—5472:236 (P:N, w=num).

Figures 3.3 and 3.4 are plots of spice runs using the slow-slow and fast-fast corner
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parameters. The capacitive loads seen by the clock drivers are calculated by summing up

the total capacitance of all routing and gates.

3.3. Bus

Three main data busses run through the MP datapath: busIN to carry incoming data
from the pads, busD to wransfer data between modules, and busOUT to carry outgoing
data to the pads. Figure 3.5 shows the controls and drivers used to put data onto these
busses. The top two circuits control gating during one or two clock phases. The metal
enable lines (enb and C—I'IE) are driven by double-sized inverters (PMOS w=16um, NMQOS
w=8um) and control one of the two bus drivers shown in the bottom half of figure 3.5.

These circuits are used in all registers and functional blocks.

Figure 3.6 shows the circuitry involved in transferring data to or from the datapath.
Blocks that gate onto busOUT use the tri-state driver configuration shown in the lower
right corner of figure 3.5. A double-sized tri-state inverter is used to put data onto
busOUT within the datapath. Routing to the pads (out.AD) is driven by a buffer
consisting of a 24:12 inverter (PMOS w=24um, NMOS w=12um) feeding a 64:32
inverter, For our simulations, we use a 20pF capacitive load on the pads.

Once data comes onto the MP, it is driven through the routing (in.AD) by the pad
input buffers to the busIN driver. We need to bring data in quickly and we do this using
the driver shown in the lower left corner of figure 3.5. The driving transistors are sized
64:32 in order to handle busIN, which runs across the width of the datapath. The IR

simulates an instruction fetch duning rollback and so it too uses the same bus drivers as
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the busIN driver. The MP knows by the beginning of ¢, if there’s going to be an

interrupt and so the calli instruction to be gated onto busIN can be driven by a 32:16

driver.

All modules gating onto busD use double-sized tri-state inverters except for the
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Figure 3.7: BusA Gating onto BusD
shifter; it uses a triple-sized driver because it evaluates in the same phase it is gating onto
the bus (unlike the other modules which already have their data ready at the beginning of
the phase).

The following timing diagrams are representative of most module behavior upon
busIN, busD, and busOUT. The exceptions are the shifter and the IR which will be
covered in their own sectons.

Figure 3.7 shows busA gating onto busD during ¢,. Data put on busD during ¢, is
destined for the ALU, whose data must be valid by the beginning of ¢; (20ns mark), and
for the BAR, which must also be ready ¢,. If a module puts data onto busD during ¢y, it
just needs to be stable before the beginning of ¢, (20ns mark). The inputs to the bus
drivers are assumed to be stable at the beginning of the driving phase.

Figure 3.8 shows a data transfer between two Mirror Processors as would occur

during state repair. The data panel shows a 1 from busD gating onto busOUT, being
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driven to the pads, off the source chip and onto the destination chip, and onto busIN and

finally busT. The shifter needs the data by ¢, which gives this transaction plenty of time

to complete.

Reading at the 2.5V mark, it takes 20ns from the beginning of ¢, or ¢, to write data

or an address to the pads for memory to use. Values put out onto pad.AD are checked by

the comparator on the slave; the difference between out. AD on the master and in.AD on

the slave as shown on the data panel is the time it takes before the comparator can be sure
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Figure 3.9: Pad.AD Gating onto BusIN
there 1s an error on one of the chips. Parity takes about 12ns to generate, but, as shown
on the parity panel, it makes it to the other chip in time for the comparator (latched ¢,

and ¢5) to catch any errors.

In order to determine to setup time required of incoming data, pad.AD was driven
with a 5ns slope and we measured how much time it took for the signal to reach its three
destinations: the datapath controller (cu), the register file translator, and busT. Figure 3.9

shows the results.

For an instruction fetch, the instruction must go through the controller to the ¢4
PLA, it must go through the rftran and to the address decoder of the register file, and it
must be stored into a 19-bit immediate latch reading off of busIN (not shown).

Measuring from 2.5V to 2.5V, worst case is 13.25ns for the rftran.

During a load operation, data must come onto busIN and go through the data
immediate sign extender onto busT (with worst case being 8 bits sign extended to 32
bits). This transaction takes 14.25ns to complete. Since we need these values by the
beginning of ¢4, this gives memory [¢, + underlap + ¢, + underlap + ¢; + underiap -

14.25ns =] 65.75ns after the beginning of the address enable signal to put the requested
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The last case we have to look at (because it uses different sized bus drivers) is the

calli instruction override. Figure 3.10 shows the calli instruction being put on busIN
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Figure 3.10: Calli Gating onto BusIN

during an interrupt cycle with plenty of time to spare.

3.4. Registers

This section covers the registers in the MP datapath that need extra hardware added
on for micro-rollback. These registers are: the register file (RF), the store data register

(SDR), the program counter (PC), the memory address register (MAR), the instruction

register (IR), and the processor status word (PSW).

Section 3.4.1 covers the implementation and operation of all registers and delayed

write buffers except for the RF, which is described in section 3.4.2. The PC and PSW

contain extra combinational logic which are detailed in sections 3.4.3 and 3.4.4.
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3.4.1. Single Registers

We implement micro rollback upon all the registers in the Mirror by placing a
delayed write buffer (DWB) before the regisier into which we write instead of the
register itself. The DWB is set up as a shift register consisting of a data portion and a tag
portion. Selection circuitry chooses the most recent, valid entry which is gated onto the
register’s internal bus, and from there onto an external data bus upon the register read.
We roll back by invalidating the first n tags during ¢, of the rollback cycle. Figure 3.11

shows a prototypical register with a DWB.

All delayed write buffers and permanent registers except for the register file are
implemented with dynamic storage. This is possible because all the single registers are
usually written into at least once every other cycle in normal operation, and so the
permanent registers will be constantly refreshed. The only time that a stream of 0’s will
be written in the the valid bits of the single registers is during wait states when the MP is
waiting for memory to finish a transaction. No valid data is written into the DWBs, and
so the permanent registers will not be refreshed n cycles later when the data reaches the
end of the DWB. Dynamic memory, however, can last for at least a millisecond, and no

memory access should last 1000 cycles.

Operation of a register and DWB is divided into four parts: DWB shift, DWB and
register evaluation (finding the current value), DWB invalidation, and register value

gating onto the external bus (register read).
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Figure 3.11: Prototypical Register with Delayed Write Buffer

3.4.1.1. DWB Shift

In order to minimize the stride, the DWB cell was laid out with poly select lines; I
was able to design a cell with a pitch of 39 and a stride of 72A. The load and update
control lines are driven by buffers connected to the phase clocks (refer to figure 3.11).
Poly has a high RC constant and so we will see large propagation delays at the end of the
lines; for this reason we use non-adjacent clock phases to load and update the data cells

to prevent data shoot-through. The exception to this is the PSW; it is only 11 bits so the
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register RF SDR PC MAR IR PSW

load1 94 04 b4 9, 04 04
valid load 03 ) ¢ o 04 04
update 4 4 4 ¢2 0, ¢
load1 ¢ o, ¢ 9, 04 o
data load (%) Oy > O Q4 04
update & ¢ ¢ $3 ¢, gt
evaluate 9, o, ¢, ¢ 03 01/0,
gate ol ¢, $2/0s | $2/0,4 0 Q4

Table 3.1: Datapath Delayed Write Buffer Timing

propagation delay is small enough to fit within the phase underlap. Section 2.4.2
describes the dwb operation the high design level. Table 3.1 shows the timing for each

of the registers in the datapath.

In order to read from the DWB, the second half of the shift register must contain the
proper value, and so the update phase cannot be after the evaluate phase. Several
registers (RF, SDR, PC, PSW) must read available input from the bus while the DWB
update and evaluate occurs; this is handled by removing the update transmission gate
from the first cell so that basically becomes a latch. This cell is loaded during the update
phase because its outputs will change immediately; the phase the first cell loads is

indicated by loadl.

BusD and busOUT are used twice a cycle with values being gated out ¢, and ¢, and
written into the register ¢, and ¢;. Registers that read from these busses must use metal
control lines for the load transmission gate of the first stage so that the gate won’t stll be
enabled the next phase. This doesn’t increase the stride for the registers which already

have one transmission gate removed, but for the MAR, the overall stride is increased
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end of the poly line (32nd bit) where the delay is the longest. During ¢, the first stage of
the shift register loads, and during ¢,, the second stage updates. The data loads and
updates within 15ns after the clock edges, which covers the case of the IR which shifts

during ¢4 and ¢, the 15ns phases.

3.4.1.2. DWB Evaluation

In order to choose the proper value from a single register and its DWB, we apply a 1
to the select line and the selecdon circuit chooses the correct register and gates it onto the
internal bus where it is held until the next evaluation. Evaluation is performed during ¢,
and ¢4, the 25ns phases, to give it enough time to find the correct value; the select line is
tied to one of those two clocks. The 1 ripples through selection circuit until it reaches the
first valid bit holding a 1, then the corresponding register is enabled and a 0 is passed on
down the remainder of the selection chain. The control lines enabling each register to
gate onto the internal bus are drawn in poly to reduce the piich; as a consequence, the

propagation delay causes the last bit to be the worst case.

The PC is the general case to be considered for register evaluation because in
addition to selecting the first valid register, it also selects the second or third valid
register to be gated onto another bus. Figure 3.13 shows a block diagram of the PC.
Three permanent registers, npc, pc, and lpc, are needed because three different values
may be chosen after all the DWBs are invalidated. The value of NXTPC is gated onto
busNPC, where it is passed through an an incrementer (inc) before being sent to busOUT.

There are two selection circuits to detect both the first valid bit for the NXTPC and the
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Figure 3.13: Program Counter with Delayed Write Buffer

second or third valid bit for the PC or LSTPC. In order to accomplish the latter
operation, we use a three level selection circuit. We set exactly one of the three inputs to
1 and the rest to 0. At each stage, if the valid bit is 1, then the three inputs are shifted
down one step with the bottom input going to gate the register, If the valid bit is 0, then
we pass the inputs through and the associated register is not enabled. Two values may be
read from the PC, and for this reason the first five DWB cells must be dual ported.

Adding another transmission gate to the data cell increases the stride from 72A to 92A.

Timing of the PC evaluation also covers that of the SDR and PSW because 1) they
all evaluate during ¢;, 2) the PC performs a first valid register selection, and 3) the PC’s

internal bus is longer than that of the SDR and PSW. Figure 3.14 shows the timing for
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Figure 3.14: Program Counter Evaluation

NPC Select and Gate

PC Select and Gate

Internal Bus

the PC evaluation of the NXTPC and PC with all the valid bits cleared so that the

selection circuit must ripple all the way through to the permanent registers. The first

panel shows the selection circuitry rippling to the end where the permanent register gate

line is enabled at the 32nd bit. The second panel shows similar happenings for the three

level selection circuit to select the PC or NXTPC. The last panel show the internal

busses set to the proper values within 25ns.

Both the IR and MAR operate under more tight tming constraints because they are

used during the rollback cycle and must evaluate during ¢4, while the valid bits are being

cleared. The MAR can meet its timing criteria using poly gate lines because it has 30ns

(03 + underlap) before busMAR’s value is gated onto busOUT. Figure 3.15 shows
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Figure 3.15: Memory Address Register Evaluation

Valid Bits

Select Register
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Internal Bus

evaluate of the MAR during the rollback cycle. Initially, all the valid bits are 1 and so

the first register (R1) is starting to be gated onto the internal bus. All four valid bits are

then invalidated so the selection circuit now must propagation to the permanent register

(R5) which is then enabled while the first register is disabled.

The IR has even tighter timing because it must invalidate, evaluate, and gate onto

busIN to simulate an instruction fetch all during ¢5 of the rollback cycle. The inputs to

the controller’s PLAs must be set up and the absolute address for the register file read
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must be calculated by the register file translator during this "instruction fetch.” Metal

gate lines are used instead of poly to speed up gating the proper register onto the internal

bus and busIN. Figure 3.16 shows the timing for this process. Note that the gate lines

change value faster than those for the MAR because we replaced the poly lines with

metal. The cost to stride is an increase from 72A to 824 for every DWB cell.
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3.4.1.3. DWB Invalidation

During ¢3 of the rollback cycle the first n tags in every DWB are invalidated
according to the rollback amount. The invalidate decoder is simply a piece of
combinational logic that clears no valid bits for a rollback of 0, the first valid bit for a

rollback of 1, the first two valid bits for a rollback of 2, and so forth.

The first tag of every register is written in on ¢, or ¢, instead of during ¢4 due to the
delayed interrupt scheme which needs until ¢, to cancel a write. In any case, all writes
into the registers are cancelled by the controller during rollback, and so there’s no
Vdd/GND short circuit caused by the controller trying to write a 1 into the first register’s

valid bit while the register’s invalidation circuitry is trying to set it to 0.

As shown before in the case of the IR and MAR, invalidation of the tags takes about
4ns. This is no problem for the registers that evaluate ¢;, but the invalidation causes
reselection of a new value as shown in the timing of the IR and MAR. The PSW
evaluates during ¢ of the rollback cycle in addition to ¢, becaﬁse the proper register
window is needed by the register file translator to calculate the register to read out of the
register file the following cycle. We can use poly gate enable lines for the PSW because

it is only 11 bits wide and the delay is minimal.
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3.4.1.4. Register Gating

Register gating onto busD (PC, PSW) and busQUT (SDR, PC, MAR) is covered in
section 3.3. Timing of the IR gating onto busIN is shown in section 3.4.1.2 because all
three events (invalidation, evaluation, and gating) happen in one phase. The description

of IR bus driving circuitry is shown in section 3.3.

3.4.2. Register File

The register file consists of the permanent register file and its delayed write buffer.
Figure 3.17 shows a block diagram of the register file. The permanent register file is a
dual-port read, single-port write, 33 bit by 74 address random access memory (ram). A
ram column is selected with the decoder (dec), and the read and write operations are
performed with the read/write circuitry (rw). Because there is an address associated with
every piece of data written into the DWB, the tag is comprised of seven address bits and

one valid bit,

dec —
] e A
— - -
ram w F—  dwb f—
h— — -
data

Figure 3.17: Register File Block Diagram
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3.4.2.1. Register File Circuitry

Figure 3.18 shows a register file ram cell, a six transistor static ram. Its dimensions
are 39Ax32A. The bit lines (bitA, bitB) run across in metal2, and the select lines (selA,
selB) run up and down in poly. Because the select lines are in poly, we wanted to

minimize the pitch; the register file’s 39X pitch determined the datapath’s pitch.

Figures 3.19 and 3.20 show the decoder to drive the ram’s select lines and the
read/write circuitry to drive the ram’s bit lines. The address space consists of locations
0-9 and 64-127. The register file translator (section 3.6.3) takes a register number and

the current window and derives a unique seven bit address falling within this range. This
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is then used by the precharged decoder to select the proper register. Every register has
two decoders, one to connect to bitA, and one to connect to bitB. BitB is an inverted bus
because it is connected to the inverted value in the ram cell. The selection circuit (sel)

shown in figure 3.20 is the same static selection circuit used by the prototypical DWB.

The RF’s DWB is dual ported, just like the PC’s, only the tag is more complex.
Each data entry has a corresponding address, and so the tag consists of a seven-bit
address and a valid bit. Figure 3.21 shows the RF DWB tag circuitry. Because the RF is
dual ported, there is actually two sets of comparison logic, but only one set is shown for
clarity. We use a precharged match line to determine if a DWB entry is valid. If any of

the address bits in the address registers does not match with the requested address (r, ),



or if the entry is not valid, then the match line will be discharged and the selection
circuitry (like that used in figure 3.11) will skip that register. If none of the DWB’s
entries match the address, then the permanent register is selected (figure 3.20).

Figure 3.22 shows the circuitry to manage the parity on the data and also shows how
the register file actually interfaces with the rest of the datapath. The bottom slice
represents the 32 bits of data and how they are gated onto the busses. BusA and busB are
the internal busses used by the DWB and permanent register file to store the value read
out. The inverted value is read out and used by tri-state inverters to drive the busses (see

section 3.3 for gating onto busses). Not shown are the lower five bits read off of busB

for the shift decoder.

The middle slice is the parity bit. Before the parity is written in from parD, it is
XORed with the parity of the destination address (rd) generated by parity generator p.d.
This same parity generator also generates the 4-bit state of the address, state.rd, for state
exportation. At this point, the parity can also be inverted (invert) for the add with bad
parity instruction. So that the controller only has to deal with parity of the data, the
address parity is removed from the parity read out of the register file by XORing it again
with the parity of the address (ra, rb) it was read out of. The source address parity
generation circuits, p.a and p.b, actually reside in the register file address translator. The
parity read out of the register file (rfA.par, rfB.par), along with the parity generated from
the data read out of the register file by parB (busB.par) and parD (busD.par) is sent to the

controller for error checking.

Data is logically written into the register file by writing a 1 into the valid bit.
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Because r0 is permanently hardwired as zero, if an instruction should try to write any
value into that register, then the write will be cancelled so that any reads from rQ will
always result in zero. Upon powerup, the register file’s state will be unknown, so at least

four cycles must pass before r0 may be reliably read.

The parity of the address to be written to is generated from the four bits of
compressed address; this state also includes the valid bit. Only data with a valid bit of 1
will be read out of the DWB, and so the bit is inverted before being used to generate the
state so that the parity of the address will not be changed. (Only v=1 will be read out,

v=0, and par(addr) XOR v = par(addr) XOR 0 = par(addr).)

3.4.2.2. Register File Timing

Figure 3.23 shows the timing diagram of a read from the register file’s last entry in
the DWB. The first panel shows the match lines for the first three register initially
charged to 5V, and then being discharged. Initially, the first register is valid because the
match line is valid; after evaluation, the match lines become discharged and so the
selection propagates to the last register as shown in the second panel. The third panel
shows the poly gate lines; note the same behavior as that seen for the MAR (figure 3.15);

the first register is initially chosen and then it becomes invalid with time,

BusA needs to be stable by the beginning of ¢, so that it can be gated onto busD.
BusB needs to be gated onto busS as it is read out so that the input to the precharged
shifter is ready by the beginning of ¢,. In addition, the lower five bits are loaded into the

shift decoder and the parity of busB is generated and driven to the conwoller. These
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Figure 3.24: Register File Ram Read
Figure 3.24 show the worst case read onto busB. The first panel shows the select lines
from the decoder going into the ram. SO is at the first cell, and s32 is the signal at the
end of the poly line. BitA and bitB are read by ratioed inverters (rmot) with a P:N::4:1
ratio in order to trigger quickly on the falling edge of the bit lines being discharged.
Even so, the value of busS is not quite at 5V by the beginning of ¢, (30ns). However,
this is acceptable because the precharged shifter will only discharge a line if the

corresponding input is a 1, and so the shifter can tolerate a late 0 to 1 transition.

During ¢, the value on busD (which was placed there during ¢,) is written into the
first register of the register file’s DWB. This action, consisting of charging an inverter

gate to a new value, will take the same amount of time as the update in the other
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registers. The parity, however, is calculated by parD during ¢; its writing into the
register file and reading out again is covered in section 3.5.2. If the data to be read out of
the register file resides in the DWB, then its match line will not be pulled low during the
evaluation phase, and so the selection circuitry will select the register containing the data
to be gated onto busA or busB. If there are no matches in the DWB, then the data read
from the permanent register file will be gated onto busA or busB instead.

Once a cycle, a value from the last register in the DWB is written into permanent
storage if it is valid. The data and its complement is driven onto bitA and bitB by the
write circuitry on ¢4 regardless if it is valid or not. Choosing whether to write it into the
ram or not is done in the decoder (figure 3.19). The destination address is driven onto the
address lines for both address selectors, and the decoder evaluates if the valid bit (v) is 1.
If a rollback of four cycles happens, then the data to be written into the permanent
register file will become invalid, but there is not enough time to cancel the write.
Instead, the roliback signal (rb) and rollback amount (rb2) are also used to determine if
there should be a write or not. Once the target register is connected to the bit lines, the
inverters in a feedback loop will be quickly overwritten by the capacitance of the bit lines
and the large drivers. Figure 3.25 shows this action. The third panel shows the select
lines being enabled as the bit lines are driven to their proper value in panel 4 and the ram

quickly changes value.

After a read on ¢, the select lines have ¢, to become disabled. However, following
a wrte, the bit lines must be precharged for the following read, and so the select lines

must be discharged faster. We add pulldown transistors to the ends of the poly select
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Figure 3.25: Register File Ram Write
lines to discharge on ¢y; this moves the slowest point to bit 20. In order to insure that the
ram won’t be affected by the precharging bit line, we delay the precharge using a delay

circuit (dnotr) similar to the delay inverters used in the clock generator (figure 3.2).
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3.4.3. Program Counter

In order to prepare for the next instruction fetch, the PC reads the NXTPC
during ¢, and increments the value by four using a modified manchester carry chain.
The NXTPC contains the value of the currently fetched instruction, and so four bytes

down is the next instruction to be fetched if there is no branch taken.

! 4 ﬁﬂq

—OPI_I_I_I_F'"ﬂ_r—Lg 4
c c3 C4L‘ DO*C

cl c2

ev>—| cO'—|

Figure 3.26: Program Counter Manchester Carry Chain

Figure 3.26 shows the manchester carry chain used in the incrementer. Because
only a constant 4 is being added every time, only the third bitis 1 and the rest are 0. This
means there is no need for the generate signal, and the data (d#) can be directly used for

the propagate signal (see figure 3.40 for a full manchester carry chain).

Figure 3.27 shows the timing involved in the NXTPC increment. The value to be
incremented is read out of the PC’s NXTPC during ¢, and will be stable by the end of ¢,.
During ¢, the chain is precharged, and it is evaluated on ¢;. The second panel shows the
worst case of the carry propagating from the third bit down the chain using the carry
bypass. At the end, the carry is XORed with the operand to obtain the sum. This is

needed by the beginning of ¢4 to be gated onto busOUT, and so there are no problems

98



54

—
4 phi3

Volts?;_ Control
| ev
g_llllff!ili!%lllllll
_ -
4]
. /

Volt52 carry Data
1 —
Oluzrmw*ﬂllrtit[u:
0 5 15 20 25

Figure 3.27: Program Counter Incrementer Evaluation

with timing.

3.4.4. Processor Status Word

Figure 3.28 shows a block diagram of the PSW. At the left is the PSW register and
its DWB, as described in section 3.4.1. In the middle is the latch used to hold the value
read from the PSW register stable while the next PSW value is generated in the

NXTPSW block, shown on the right.

In a normal cycle, the value from the previous cycle is read out onto PSW.data on
$,. On ¢,, the latch updates busPSW with this value, and it is used by the NXTPSW
block to generate the processor status for the current cycle. This new value is returned to
the PSW’s DWB on busNXTPSW, ready to be written in on the following ¢,. The latch
is needed because the first element in the DWB may be simultaneously written into and
read out of on ¢;, and since the NXTPSW block consists of pure combinational logic, a

potential feedback loop exists. The latch loads on ¢, to break this loop. In addition, a
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Figure 3.28: Processor Status Word
reset causes the output of the latch to be set to all zeros so that busPSW will be in a
known state for the next PSW generation. During ¢, of the rollback cycle, the PSW rolls

back, and so the latch also loads at this time.

The PSW must export its internal state to the other chip for comparison. The four-
way interleaved parity is generated from the value read out onto PSW.data on ¢, and it is
sent to the controller where it is merged with the other compressed state from the rest of

the datapath.

The next PSW value is generated by selectively gating values from different sources
onto busNXTPSW. Figure 3.29 is an ISP description of this process. Note that though
each field in the ISP description is generated by a mutually exclusive if-then-else clause,
it is possible in the actual circuit to gate several of these values onto busNXTPSW to get
an indeterminate value.

The NXTPSW block is divided into four sections corresponding to the four fields

within the PSW (condition codes, system modes, saved window pointer, and current
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PSW_CWP = PSW<10:9>,
PSW_SWP = PSW<8:7>,
PSW_ISP = PSW<6:4>,
PSW_1I = PSW<6>,
PSW_S = PSW<5>,
PSW_P = PSW<4>,
PSW_CC = PSW<3:0>,
busD_CwWpP 1= busD<10: 9>,
busD_SWP = busD«8:7>,
busD_ISP 1= buaD<6:4>,
busb_CC e busD<3: 0>,
NXTPSW_CWP = NXTPSW<10:9>,
NXTPSW_SWP = NXTPSW<B: 7>,
NXTPSW_ISP = NXTPSW<6:4>,
NXTPSW_CC = NXTPSW<3:0>;
/*

* Condition Codes

*/

if {load.PSW_busCC and (not state.int))
NXTPSW_CC=busCC

else if (load.PSW_busD and (not state.int))
NXTPSW_CC=busD_CC

else
NXTPSW_CC=PSW_CC;
/*
* Interrupt, System Mode, Previous System Mode
*/

if (state.int)
NXTPSW_ISP=0 concat 0 concat PSW 3

else if {(ilcad.PSW_busD and (not state.int))
NXTPSW_ISP=busD ISP

else if (ctrl.PSW_reti and (not state.int))
NXTPSW_ISP=]1 concat PSW_P concat PSW_P

else
NXTPSW_ISP=PSW_ISP;
/*
* Saved Window Pointer
* /

if (load.PSW_busD and (not state.int))
NXTPSW_SWP=busD_SWP

else
NXTPSW_SWP-PSW_SWP:
/*
* Current Window Pointer
*/

if {(load.PSW busD and (not state.int))
NXTPSW_CWP=busD_CWP

else if (state.int)
NXTPSW_CWP=PSW_CWP

else
NXTPSW_CWP=PSW_CWP+ctrl.CWP_inc;

Figure 3.29: Next Processor Status Word Generation ISP Description
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window pointer). The generation of the values for each field is independent of the
others. The condition codes are updated with those from the ALU sent on busCC if the
set condition code bit is set in the executing instruction. If the instruction is a putpsw,
then the condition code field is taken from busD (which is why the scc bit should never
be set on a putpsw instruction). If neither of these conditions are fulfilled, or if an

interrupt occurs, then the old value of the condition code field is used instead.

The system mode field (interrupt enable, system mode, and previous system mode)
is changed in the case of an interrupt, a refi instruction, or a purpsw instruction. An
interrupt causes the interrupt enable bit to be cleared, the system mode bit to be set to
kernel mode(0), and the old value of the system mode bit to be saved in the previous
system mode bit. Returning from an interrupt procedure with rezi will cause the interrupt
enable bit to be set and the system mode bit to be restored from the previous system
mode bit. The putpsw instruction causes this field to be read from busD, and if none of

these conditions apply, then no changed is made by using the old value.

The only way the saved window pointer may be changed is through the putpsw
instruction, and this is cancelled upon an interrupt. Ctrl.CWP_inc is a two bit bus
containing 11 (—1), 00, or 01 and is used to decrement, leave alone, or increment the
current window pointer. If the executing instruction is a putpsw, then the current window
pointer will be set from busD. An interrupt will override this change, as well as the
default action of adding ctrl. CWP_inc to the current window pointer, and instead, cause

the old current window pointer value to be used.
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3.5. Error Detection

This section describes the modules used for error detection in the MP. They can be
divided into three categories: those that perform parity generation using static circuits,
those that perform parity generation using dynamic circuits, and those that perform state

comparison.

3.5.1. Static Parity Generation

ParIN, parOUT, and parB (see figure 2.2) are used to generate the parity of the data
placed upon busIN, busOUT, and busB. The parity can be quickly and efficienty
generated using a two level compressed XOR tree[Trem89a] as shown in figure 3.30.
The layout only requires two levels of XOR cells, and no crossover of signals means only
one layer of routing is needed. The ten transistor static XOR circuit used through the MP

design is shown in figure 3.31.

e s

Figure 3.30: Compressed XOR Tree

Each XOR takes about 2.5ns to evaluate, and a path through the 32 leaf XOR tree is five
nodes for a 12.5ns propagation time. The stride of each XOR is 284, and the stride of the

parity generator (2 XORs + routing) is 87A.

103



Figure 3.31: Static XOR

3.5.2. Dynamic Parity Generation

Generating the parity of busD is a special case, because not only is one bit of parity
generated to protect the register file, but the four-way interleaved parity is also needed
for internal state compression. One way to do this is use a modified XOR wee with at
least six more lines of routing between the nodes to0 accommodate the four-way
interleaving. However, this adds too much to the stride of parD, which we want to

minimize in order to minimize the overall stride of the datapath.

For the parD implementation, we use a dual-rail precharged parity chain[Trem89a).
Figure 3.32 shows one cell in this chain. Both p and p are precharged, and upon
evaluation, the p at the end of the chain is discharged. If d is zero, then the values on p
and p will be passed on to p+ and p+. If d is one, then the parity passing through the cell
will be inverted by passing p and p on to p+ and p+. We implement four-way
interleaving by connecting every fourth cell together into a chain of eight cells. Figure
3.33 shows how this can be done with a minimum of routing crossover. Once the four

bits of parity are generated, they can be merged together with an XOR tree to get the one
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Figure 3.33: Parity Chain Using Dynamic Parity Cells
bit needed by the register file and controller. The resulting stride (including 24\ for

vertical power lines) is 176A.

ParD evaluates on ¢, to calculate the compressed state of busD (state.busD). These
four bits are then reduced to one bit for writing into the register file. The critical path
exists when the first DWB register is selected so that the parity written into the register
file on ¢; is immediately read out and sent to the controller. On ¢4, parD evaluates to
generate the parity of busD, which is usually the value of busA read out of the register

file.
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Figure 3.34 shows the timing of parD. The second panel shows the parity chain

being discharged upon evaluation. In the third panel, the line labeled state shows the

amount of time it takes to send the four-bit compressed state to the controller on ¢,

where it will be merged with the compressed state from the rest of the datapath. The line

marked parity shows the time it takes to generate the parity of busA on ¢, and to send it

to the controller. The critical path, shown in the fourth panel, is a write of the parity bit

into the register file (busD), the read out (busA), and the drive to the controller {cu).

Since the controller does not need the parity read out of the register file until the middle
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of ¢,, there are no timing problems.

3.5.3. State Comparison

The master processor exports all its states to the slave processor where it is
compared. The slave processor, because it is an identical chip except for the setting of
pad.ms, also sends all its states to the pads. Thus, the logical place to compare the
processor states is at the slave processor’s pads. Placing an XOR between the input from
the pads and the output to the pads as shown in figure 2.11 and described in section 2.3 is

enough to catch any differences in state.

Errors arising from differences in control outputs are sent directly to the controller.
Any errors from the 33 bit address/data bus, however, needs to be merged before being
sent to the controller. We acéomplish this using two two-level OR trees (figure 3.35) to
reduce the 33 bits (16+16+1) down to 3 bits for the controller. Each OR node is
positioned next to the comparators by the pads, and so the only extra area taken up is by

the routing between the nodes.

3.6. Combinational Logic

This section describes the modules in the MP that are mainly combinational in
nature and either don’t need to be rolled back, or restore their values from other rollback
modules. The modules described are: the shifter, the arithmetic and logic unit (ALU),
the register file address translator (RFTRAN), the immediate register (IMM) and the data

immediate sign extender (DIMM), the byte address register (BAR), and the shift amount
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Figure 3.35: OR Error Merging Tree

decoder (SDEC).

3.6.1. Shifter

The MP’s 32-bit dynamic shifter performs left shifts, logical right shifts, and
arithmetic right shifts by 0, 1, 2, 8, 13, 16, and 24 bits. Figure 3.36 shows a four bit

arbitrary amount shifter representative of the MP shifter.

Two internal busses, busR and busL, are precharged during every ¢, and ¢,. For
right shifts, a fill bus (busF) used to extend the sign bit is precharged at the same time.
The shift amount decoder (section 3.6.6) drives the poly shift amount lines controlling
the transistors that connect the two internal busses together at various shift points. The

shift amount lines are set during ¢, and ¢, and the shift evaluation happens during ¢,

and ¢,.
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Five kinds of shifts are used in the shifter operation. During ¢,, two of the shifts are
used to transfer data from busT or busS onto busR, the B input of the ALU. If the source
1s an immediate from busT (evT), then each bit in busL is discharged if the
corresponding bit in busT is a 1. The shift by 13 line will be set by the shift decoder
while all the other shift amount lines will be cleared, and so the bit pattern discharged
from busR through the shift transistor will be shifted right by 13. If the shift is a signed
operation and the sign bit is 1, then busF will be discharged so that 1's will be shifted in
from the left. If the operand is read from busS, then busR is evaluated from busS (evR)
so that no shifting occurs. BusR is then read by an inverter to drive busR which feeds the

B input of the ALU.

During ¢,, the two ALU operands must pass through the shifter and busD to set up
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the generate and propagate controls of the ALU’s manchester carry chain (figure 3.39).

Figure 3.37 shows the timing path through the shifter. The shift from busT to busR takes

longer than the shift from busS to busR because busR must be discharged through a shift

transistor in the former case. The first panel shows the control lines to discharge busL,

the second panel shows the busses discharging, and the third panel shows the input to the

ALU and the ALU’s manchester carry chain control set up by the beginning of ¢3 (20ns).

The other three shifts happen during ¢,. The left to right (evL, gateR) and right to
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left (evR, gateL) shifts from busS onto busD are used for the three shift instructions, and
the left to right shift from busT to busD (evT, gateR) is used to bring data into the main

datapath from the the pads for the load instructions and state repair. Figure 3.38 shows



the worst case shift during ¢4 of a right to left shift from busS onto busD. BusL runs
stepwise diagonally across the shifter and therefore is more capacitive than busR.
Evaluating from busR forces more charge to flow through the shifting transistor, and
hence, cause a longer shifting delay. The first panel shows the control lines to discharge
t;l_si, the second panel shows the busses discharging, and the third panel shows the

shifted value being driven onto busD and ready by the beginning of ¢, (20ns).

3.6.2. Arithmetic and Logic Unit
The MP’s 32-bit integer arithmetic and logic unit (ALU) performs additions,
subtractions, bitwise ANDs, ORs, and XORs, and calculates the conditions codes based

upon its operation and the value of busD. Figure 3.39 shows a bitslice of the ALU.

At the top are the latches, loaded during ¢, that hold the inputs stable while the
ALU evaluates on ¢;. The MUX at the B input selects between the true and complement
value for an add or subtract operation. Next are the three logic gates that perform the
ALU'’s logic operations; these results are fed into a precharged MUX which evaluates on
Q3. At this same level is the precharged manchester carry chain with a carry bypass
every four bits (figure 3.40). The AND and XOR gates are also used as the generate (g#)
and propagate (p#) inputs to the manchester carry chain, which evaluates on ¢;. Upon
evaluation during ¢;, the final MUX selects between an arithmetic operation or a logic

operation. The result is gated out to the busses on ¢,.

In order to perform a logic operation, the B input MUX selects the complemented

value of B.in, the second MUX selects the chosen operation, and the last MUX selects
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Figure 3.39: Arithmetic and Logic Unit
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Figure 3.40: Manchester Carry Chain with Four Bit Carry Bypass
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the logic operation MUX. For an arithmetic operation, the B input MUX selects the
complemented value for an add and the true value for a subtract. The second MUX
selects the XOR gate to do the one-bit adding of the two operands, and after the
manchester carry chain evaluates, the carry from the previous bit is added with another

XOR. The final MUX then selects this sum for gating onto the busses,
The negative and zero condition code bits are generated from busD during ¢,. The
negative bit is simply the most significant bit of busD, but the zero bit must be generated

from busD using a precharged 32 input NOR gate; this takes 8.5ns to evaluate and drive

to the PSW.

For an arithmetic operation, the overflow bit is determined by XORing the last two
carry bits (c31 and ¢32) from the manchester carry chain together, and the carry bit is the
carry out (c32) from the manchester carry chain. For a logic operation, these bits are
defined to be zero. During ¢, these two condition code bits calculated from the
manchester carry chain are ANDed together with the control line that selects between

logic (0) and arithmetic (1) operation to obtain the correct condition codes.

Setup of the manchester carry chain inputs during ¢, is detailed in sections 3.3 and
3.6.1 for busD and shifter operation. Figure 3.41 shows the critical path during ¢4, when
the manchester carry chain evaluates and the sum is generated. The first panel shows the
evaluate line charging up. The second panel shows the worst case manchester carry
chain configuration of the first bit in generate mode and the next 31 bits in propagate
mode. A carry is generated at bit 0 and propagates to bit 3, where it skips by the next six

groups of four bits to bit 29, and then it propagates up to bit 31. The carry is then
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Figure 3.41: Arithmetic and Logic Unit Evaluation
XORed with the partial sum at bit 31 as shown in the third panel, and the result is ready

to be gated onto the busses by the tri-state inverters during ¢,.

3.6.3. Register File Address Translator

The Register File Address Translator (RFTRAN) takes a register number and the
current window pointer, and calculates a unique address within the register file. We use
the same register file windowing scheme as the Berkeley RISC[Kate83a], only instead of

using 8 windows, we implement 4 windows on the MP in order to reduce the size of the

register file from 138 registers to 74 registers.

Figure 3.42 shows the RFTRAN. Rsl and rs2, from the instruction source register
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Figure 3.42: Register File Address Translator

fields, are latched from busIN into registers RA and RB during the instruction read on ¢;.
The register numbers are then translated into register file addresses (iran) and sent to the
register file on busRA and busRB along with the parity (par) of the addresses. The
register file needs these values by the beginning of ¢4, so that it can start to precharge its
address decoder in preparation for the register file read on ¢,. BusRA selects the register
read onto busA and busRB selects the register read onto busB. Figure 3.9 shows the
amount of time it takes to read in a value from busIN, translate the address, and send it to

the register file.

Rd, the destination register field, is used for the register file write. However, the
next instruction is read in before the result from the current operation is written into the
register file, and so the destination address must be latched for an extra cycle and
restored on rollback. Instead, as described in 2.1.5, the destination register is read from
buslR and latched into RD on ¢,. The translated address is written into the register file's

DWB on ¢, so there’s no timing problem.

In order to support state repair, the MP must be able to write data into one of the
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Figure 3.43: Relative to Absolute Address Translator
two source registers indicated in the fetched instruction in addition to the destination
register. The controller chooses whether the translated address from RA, RB, or RD will

be gated onto the destination address bus, busRD.

Figure 3.43 shows the circuitry used to translate the register address, and figure 3.44
shows the ISP description of the translator circuit. If the requested register is from 0 10 9,
then one of the ten global registers is selected. Otherwise, bit 6 is set to indicate a read

into the local registers and the correct window and register in the window is calculated.
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/* pass through bottom four bits */
out<3:0>=in<3:0>;

/* determine if register is global or local */
out<é>=not {((in leq 9) and (in geq 0));
next;

/* if global, then zero extend address */
if (out<é> eql 0)
out<5:4>=0

/* else find the proper window */
else
if (in<4> eql 0)
out<S:4>=cwp<l: 0>+1
else
out<5:4>=cwp<l:0>;
next

Figure 3.44: Relative to Absolute Address ISP Description
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Figure 3.45: Immediate Register and Data Immediate Sign Extender
3.6.4. Immediate Register and Data Immediate Sign Extender
The immediate register (IMM) and data immediate sign extender (DIMM) are used
to bring data from busIN down into the main datapath via the shifter. Figure 3.45 shows

a block diagram of the IMM and DIMM.

The IMM loads the lower 19 bits of the instruction coming into the MP during ¢, of
the instruction fetch. During ¢, of the following cycle, the data is gated onto busT left
shifted by 13 bits. If the immediate is to be used as an operand for the ALU, then only
the lower 13 bits are put onto busT and the upper 6 bits are filled by the sign of the 13 bit
immediate (busT<31:26> = busIN<12> (sign), busT<25:13> = busIN<12:0>,

busT<12:0> = 0). The shifter will perform an arithmetic right shift by 13 bits on the data
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so that when it reaches the datapath it will be properly aligned. If the immediate is to be
used for the /dhi instruction, then all 19 bits are gated onto busT (busT<31:13> =
busIN<18:0>, busT<12:0> = (). The shifter will then perform a right shift of zero bits so
that the immediate will appear on busD left shifted by 13 bits as needed by the Idhi

instruction.

The DIMM consists of four buffers from busIN to busT that drive the lower §, 16,
24, or 32 bits (sxt8, sxtl6, sxt24, sxt32) and either zero extend or sign extend the
remaining top 24, 16, 8, or 0 bits. Extending the sign is accomplished by driving the sign
bit to the upper bits and selecting between the sign or GND to gate out. Table 3.2 shows
which module will be selected based upon the data word size and its byte address for the
load operations. During state repair, the data transferred from the other chip is put onto
busT via sxt32. Combinational logic selects the proper driver for these two operations.
Figure 3.9 shows the amount of time it takes to load data into the MP and pass it through

the DIMM (sxt8) and onto busT.

data size | out.size busBAIi 31224 | 23:16 15:8 7:0 module
word 10 00 d d d d $xt32
00 d d sxt16
halfword 01 10 d d <32
00 d sxt8
01 d sxt16
byte 0 10 d x24
11 d sxt32

Table 3.2: Data Immediate Sign Extension Module Selection
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3.6.5. Byte Address Register

The byte address register (BAR) is used to calculate the byte address of the next
memory operation because the ALU cannot finish before ®3, when the address is needed
by the shift decoder. Its functionality is that of a two-bit adder, though because it needs
to be rolled back, the implementation is a bit more complicated. Instead of dedicating a
rollback memory for two bits, we can restore the proper value from the MAR as it gates

onto busOUT during a rollback because it is the same value.

The BAR holds it value on its two-bit bus, busBAR. During 9, and the underlap
between ¢, and ¢;, the BAR gates the calculated value of busD<1:0>+busR<1:0> onto
busBAR, and during ¢, of the rollback cycle the BAR gates busOUT<1:0> onto
busBAR. Figure 3.46 shows a description of the BAR. See figure 3.7 for timing from

busD onto busBAR, which takes longer to evaluate than from busR onto busBAR.

busD(
z H >°—Ci %—‘ busBARO
busR0Q

busD(Q
busRO

busD1
busBAR1

busR1

busoum>—f>o—<{$—» busBARO
busOUT1 ’—D"—{Af—‘ busBAR1

Figure 3.46: Byte Address Register
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3.6.6. Shift Amount Decoder

The shift amount decoder (SDEC) takes a shift amount and enables the proper shift
line in the shifter. If the shift amount doesn’t match any of the amounts that the shifter
can shift by (0, 1, 2, 8, 16, 24), then the badshift signal is asserted and the MP traps the
following cycle on a bad shift amount trap.

Figure 3.47 shows the shift amount decoder and shift line drivers. During ¢,, the
shifter only shifts by 0 or 13 bits. The SDEC either enables the shift by 0 bits shift line,
busSDECQO, or the shift by 13 bits shift line, busSDEC13. The load shift amount with
zero line serves double duty by selecting whether to shift by 0 or 13 bits.

For the ¢, shift, a shift amount is loaded into the shift amount register (SHam)
during ¢, and ¢, and is processed by the SDEC. The controller determines which of four
sources is loaded into the SHam. During ¢,, the SHam can be loaded with values from
busB (busB<4:0>), the IMM (IMM<4:0>), or with zero. The BAR evaluates during ¢-,
and so it is loaded into the SHam on ¢, (left shifted by 3 bits so that 0—0, 158, 216,
and 3—24). The shift amount decoder circuitry then evaluates and the proper shift line is
enabled while all the rest are disabled. If the shift amount is not one that the shifter can

handle, then the badshift error is signaled to the controiler.

Figure 3.48 shows the SDEC timing. On ¢4, the SHam is loaded with the value of
the BAR*8. This value propagates through the shift amount decoder and the shift line
drivers onto busSDEC. The shift control lines are drawn in poly, and so there is a
propagation delay from the first bit to the last bit within the shifter. ShiftQ and shift31 in

figure 3.48 are the shift control line at the 1st and 32nd bits. The last bit is ready by the

121



SHamO
SHam]

SHam3 ,
SHamd phil

SHam1

SHam3 load 0
SHam4 sl
SHam(

b

busSDECO
SHam(
SHam3 ) S0
SHam4 $
SHaml phi3
SHamO
SHaml = :{
SHamd4 s8 phll
SHam3
am sl busSDEC!

SH 0 52 bUSSDEC2

SH:rr:l s8 busSDECS

SHam3 sl6  sl6 busSDEC16

SHamd 524 , busSDEC?24
phi3

SHam3

SHam(

SHaml1 s24

SHam4

2R
Fo ——

-~

EI

w

50 i6ad 0 busSDEC13
s8 :
516 badshift phil
5§24
SHam?2

Figure 3.47: Shift Amount Decoder

5__ S —

L~
4 /phi3/| SHam f |
3 shiftQ /

Volts 5 | shift31

1 -
0

LI T T O O O
5 10 15 20 25 30

Figure 3.48: Shift Amount Decoder Evaluation

122



beginning of ¢4 (30ns), when the shift begins.

3.7. Critical Paths

We aimed at an operating cycle time of 100ns for the MP, and have achieved this

level of performance in our circuit simulations. In addition, the timing of the delayed

write buffers and error detection circuitry does not figure into the critical path of each

clock phase. It takes 10ns to load and update the DWBs, which is well within the

duration of each of the four clock phases, and a single register DWB evaluation takes

20ns, which is less than the length of ¢, or ¢4.

0

&,

¢3

s

The critical paths for each clock phase within the datapath are:

The read from the permanent register file, followed by a read from the register file’s
DWB (section 3.4.2.2). The value is read onto busB, which then must make its way
onto busS and to the shifter.

A tie between the shift from busT onto busR and to the ALU (section 3.6.1), and

any register or bus gating onto busD and to the ALU (section 3.3).

The ALU manchester carry chain evaluation and operand summation (section
3.6.2). The next closest contender is the write into the permanent register file from

its DWB (section 3.4.2.2),

A shift operation gating onto busD (section 3.6.1), followed by any register or bus
gating onto busD (section 3.3). The shifter was the original critical path, and so its

drivers were increased to reduce the gating time. The drivers for the other registers
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and busses only have to place the value onto busD no slower than the shift
operation, and so we minimized the size of those drivers in order to reduce the

stride of the datapath.

The critical paths for the controller[Lai90a)] are:

¢1-¢;The rollback controller determines the absolute number of cycles to roll back on 9,

9,

04

and sends to rollback amount to the rollback amount bus for arbirration. The
resulting rollback amount is read in, and sent to all the modules before the
beginning of 0.

On ¢, the next instruction to be executed is read in and sent to the ¢4 PLA to be
decoded. It takes about 12.5ns for the instruction to propagate to the control lines of
the PLA from the pads (section 3.3), and the controller needs the input lines stable
by 23ns after the beginning of ¢3. The memory must place the instruction on the
pads by 10.5ns after the rising edge of ¢5 in order to maintain this critical path.
During rollback, the IR simulates an instruction fetch; this process brings the

instruction to the controller 23ns after the beginning of ¢s.

The signals need by the datapath during ¢, are generated by the ¢, PLA. The PLA

evaluates on ¢4, and drives the control signals to the datapath in 13ns.
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Figure 3.49: Mirror Processor Layout

3.8. Geometry

Figure 3.49 shows the relative sizes and positions of the modules in the mirmor

processor as derived from the Magic layout editor. The rectangles are the bounding

boxes of each module, including some routing for power lines and intermodule

connection. The routing to the pads and the control lines are not shown. The upper

cluster of blocks form the controller, and the lower half is the datapath. The small blocks

adjacent to the pads are the pad comparators (pademp). Calli and ivec are used to gate

the calli instruction onto busIN and the interrupt vector onto busOUT to be sent to the
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pads. GateAD are drivers to gate busA onto busD and to gate busA and busB onto busS.

The busIN driver block drives busIN from in.AD, and the busOUT driver block drives

out.AD to the pads from busOUT.

The following list is a brief description of the controller blocks:

padenb: generate the memory address enable and memory data enable signals.
ext: synchronize external signals to the internal clock.

valid: determine what values to write into the valid bits of the DWBs.

cmp: process comparisons in the datapath and from the pads.

int: handle traps and interrupts.

state: perform state compression bit vector merging from the datapath.

ns: determine the next processor state while the instruction is read in on 0.

post: adjust the datapath control signals after they are generated by the PLAs for
signals that depend upon input that isn’t stable until after the PLAs evaluate.

mem: generate memory control signals needed during ¢, by using combination
logic instead of PLAs.

cond: determine if the condition code bits from the PSW meet the conditions
specified by the conditional instruction.

irlatch: drive busIR and also latch the instruction following a load or store
instruction for temporary storage during the memory transaction cycle.

phid: PLA evaluating ¢, for control signals needed by the beginning of ;.
cudata: rollback memory to restore busIR and the controller state.

phila: PLA to generate half of the control signals needed after 0;. There were so
many signals that the original phil PLA was split into two PLAs in order to reduce
the overall height of the controller.

philb: The PLA to generate other half the control signals needed after d;.
rb: determine if a rollback should occur and arbitrate the rollback amount.

Table 3.3 shows the MP pad assignments. The corner pads in figure 3.49 are

numbered for indexing into the pad assignment table. The Vdd/GND pins are clustered

together to minimize PC board routing. There are two Vdd clusters in the upper left

corner (84, 1) and the lower right corner (41, 42, 43), and two GND clusters in the upper

right comer (16, 22, 23) and the lower left comer (64, 65, 66). Eight pads remain unused
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1 Vdd (pad) 24 pad.ira

2 pad.statel 25 pad.irr

3 pad.state2 26 pad.wait

4 pad.state3 27 pad.sysmode
5 pad.id 28 pad. AD

6 pad.rw 29-40 pad. AD

7 pad.szl 41-42 Vdd (dp)
8 pad.sz0 43 Vdd (pad)
9 pad.enb.addr 44-63 pad.AD
10 pad.enb.data 64 GND (pad)
11 pad.repairAm 65-66 GND (dp)
12 pad.repairAs 67-74 blank

13 pad.repairBm 75 pad.ms

14 pad.repairBs 76 pad.csel
15 pad.reset 77 pad.phi4
16 GND (pad) 78 pad.phi3
17 pad.rb0 79 pad.phi2
18 pad.rbl 80 pad.phil
19 pad.rb2 81 pad.sync
20 pad.rb 82 pad.phi
21 pad.shutdown 83 pad.state(
22 GND (pad) 84 vdd (cu)
23 GND (cu)

Table 3.3: Mirror Processor Pad Assignment
(67-74), and they are positioned to the left of the register file where no control signal

routing needs to be done.

Figure 3.50 and table 3.4 show the position and dimensions of the datapath and
controller halves within the chip. The sizes given are of the entire chip, the entire chip
without the pads but with routing to the pads and the pad comparator, the MP core
without routing to the pads, the datapath without routing to the pads but with busIN, and

the controller without routing to the pads but with control routing between its blocks.
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Figure 3.50: Mirror Processor Area Breakdown

Area_ Width A) [ Height (1)
chip B 8395 6715
chip ~ pads 7725 6045
datapath + controller 7400 4890
datapath 7138 3337
controller 7363 1553

Table 3.4: Mirror Processor Area Breakdown
The transistors are distributed within the chip as shown in table 3.5. Numbers are
given for the chip with and without the pads. The core is broken down into the datapath,

the controller, the clock generator, and the comparators at the pads.
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Area Number
chip 52644
chip — pads 49609
datapath 41063
controller 7247
clock 389
padcmp 910

Table 3.5: Mirror Processor Transistor Breakdown

Module Width (A) | Height (A) | Area (A> | Transistors
f 3006 2409 7241454 20441
rfpar 188 772 145136

parB 87 1340 116580 322
gateAB 122 1467 178974 430
parD 179 1671 299109 532
shift 581 1436 834316 980
alu 612 1447 885564 2671
sdr 412 1527 629124 1922
pc 854 1629 1391166 3689
mar 423 1527 645921 2000
ivec 39 1429 55731 51
parOUT 87 1337 116319 316
busQUT 100 1330 133000 136
ir 1566 561 878526 2434
calli 1428 32 45696 76
parIN 1389 87 120843 340
ritran 1112 342 380304 822
imm 1330 381 506730 1213
busIN 464 612 283968 677
bar 421 130 54730 144
sdec 342 318 108756 254
pSW 1007 706 710942 1613
datapath 16135489 41063

Table 3.6: Mirror Processor Datapath Module Geometry and Transistor Count
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Table 3.6 gives the bounding box of the active area and the transistor count for each
module in the datapath. The active area is the smallest box that fits around a module but
excludes routing for power and busses that run vertically to the upper portion of the
datapath. Rfpar corresponds to the circuitry shown in figure 3.22. This region extends to
the right of the register file and occupies space above the main datapath, so it was
counted separately instead of including it in the active area of the register file along with
extra empty space.

Table 3.7 shows the active area bounding boxes and the transistor counts of each
controller module. The datapath and controller active areas, along with miscellaneous
modules, are summarized in table 3.8. Dimensions are given for one pad comparator and

one pad, but the area and transistors of all the pad comparators and pads are accounted

for,

In order to add the ability to perform micro rollback to a RISC processor, delayed
write buffers are added to the registers in the datapath. Figures 3.51, 3.52, 3.53, and 3.54
show the register breakdown and the actual ratio of control area to data area. The
register file layout is partitioned into four sections, analogous to the block diagram of the

register file shown in figure 3.17.

Each subcell is labeled with a letter legend. The d’s indicate data cells, the g's are
the drivers onto the external busses, and the b’s are drivers to buffer the control lines.
The v’s are valid bits which are used by the selection circuitry (s) to select the proper
register. Invalidation circuitry (i) resides at the top of the cell along with the clock and

control inputs. In the PC layout, mc and xor denote the manchester carry chain and adder
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Module Width (A) | Height (\) | Area (A*) | Transistors
padenb 124 74 9176 44
ext 176 86 15136 58
valid 293 151 44243 166
cmp 116 417 48372 180
int 167 316 52772 196
state 132 500 66000 228
ns 189 371 70119 210
post 308 230 70840 218
mem 189 471 89019 248
cond 420 287 120540 248
irlatch 365 362 132130 378
phi4 593 674 399682 610
cudata 560 905 506800 1328
phila 994 679 674926 048
philb 1028 682 701096 1044
th 690 1371 945990 1143
controller 3946841 7247

Table 3.7: Mirror Processor Controller Module Geometry and Transistor Count

Module Width (A) | Height (A) | Area (A®) | Transistors
datapath Bl 16135489 41063
controller 3046841 7247
clock 620 404 250480 389
pademp x 45 200 46 41400 910
pads x 65 200 335 4355000 3055
chip 24729210 52664
chip — pads 20374210 49609

Table 3.8: Mirror Processor Module Geometry and Transistor Count

used by the NXTPC to increment the address for the next instruction. In the PSW layout,
[ is the latch used to break the feedback loop. Cwp, swp, isp, and cc are combinational
logic used to calculate the next state of the PSW, and st is the state compression logic

used for error checking.
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Figure 3.51: Single Register Layout
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Table 3.9 shows the active area overhead that error detection, micro rollback, and

state repatr take up within the datapath. The overhead of the various modules was found

by calculating the area that would have been saved had the width and height of the

module been reduced. If W and H are the width and height, and dx and dy are the

reduction in width and height due to a feature being being removed, then the overhead of

(W—dx)x(H—dy)
WxH

that feature is OV=1 . Some modules are used for more than one

purpose; only after all functions are removed is the total overhead calculated in order to
avoid redundant area. The register file contains one bit of parity used for error detection

and state repair, and the PSW contains the state compression circuitry used for error
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Figure 3.54: Processor Status Word Layout
detection in addition to the DWBs. As shown, the total overhead of the datapath portion
of the MP 15 41.3%.

The active area overhead in the controller is shown in table 3.10. Though it has a
higher overhead of 67.1%, the total active area is less than the datapath. As shown in
table 3.11, the total overhead of error detection, micro rollback, and state repair in the
Mirror Processor is 41.6% counting the pads, and 45.9% not counting the pads. Though
state repair accounts for 8.4% of the active chip area, almost all of this area is shared
with error detection, and so the cost considerably less. Most of the active area overhead
is taken up by the DWBs used for micro rollback; in some cases, an entire register was

added in order to implement micro rollback.
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Module Errcg__ Detection | Micro Rollback | State Repair Total
parD 100% 100% 100%
parQUT 100% 100% 100%
parIN 100% 100% 100%
21.9% 21.9%
rftr
an (83400) (83400)
psw 15.6% 44.29% 57.6%
(110842) (314012) (409154)
o 1.6% 32.3% 1.6% 33.7%
(117234) {2335644) (117234) (2442114)
rfpar 100% 100% 100%
sdr 100% 100%
pe 54.5% 54.5%
(758880) (758880)
mar 100% 100%
ir 100% 100%
32.1% 32.1%
bar (17550) (17550)
parB 100% 100%
Catonth 6.2% 34.5% 5.7% 41.3%
P {992883) (5579657) (915221 (6662656)

Table 3.12 shows what the reduction in chip width and height would have been had
error detection, micro rollback, state repair, or all three been removed from the chip. The
reduction in width came entirely from the datapath and the pad comparators. The

reduction in height came from the datapath, the controller, and the pad comparators,

Table 3.9: Mirror Processor Datapath Module Overhead

though the only reduction from the controller came from the PLAs.
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Module Error Detection | Micro Rollback | State Repair Total
13.7% 13.7%
padenb (1258) (1258)
. 5.5%
valid 100.0% MO 100.0%
4.8%
cmp 100.0% (2320) 100.0%
. 5.4% 5.4% 5.4%
(2839) (2839) (2839)
6.6% 6.6%
state 100.0% (4356) (4356) 100.0%
. 31.0% 74.2% 83.1%
(21735) (52059) (58239)
. 39.0% 20.8% 13.0% 41.6%
P (27600) (14720) (9200) (29440)
. 20.0% 20.0%
(17766) (17766)
irlatch 100.0% 100.0%
hi4 17.4% 17.4%
P (69538) (69538)
cudata 100.0% 100.0%
bl 17.9% 27.9% 41.0%
P (121142) (188116) (276626)
Hilb 48.4% 25.8% 56.0% 64.1%
p (339040) (181014) (392464) (449696)
76.9% 3.8%
rh (27486 100.0% (35880) 100.0%
ol 30.6% 50.1% 19.7% 67.1%
controtier (1208498) (1977289) (775892) | (2648937)

Table 3.10: Mirror Processor Controller Module Overhead

137




Module Error Detection | Micro Rollback | State Repair Total
6.2% 34.5% 5.9% 41.3%
d h
atapat (992883) (5579657) (915221) (6662656)
30.6% 50.1% 19.7% 67.1%
controller (1208498) (1977289) (775892) | (2648937
clock
padcmp 100% 100%
pads 7.7% 7.7% 7.7% 21.5%
(335000} (335000) (335000) (938000)
chi 9.1% 32.1% 8.4% 41.6%
P (2577781) (7933346) (2067513) (10290993)
. 11.0% 37.3% 8.5% 45.9%
chip—pads | 5540781y (7598346) (1732513) | (9352993)
Table 3.11: Mirror Processor Module Overhead
_ Width (&__L Height (A) | Area Overhead
chip 8395 6715
— error detection =312 -358 3.8%
— micro rollback —1488 -1217 32.6%
— state repair —-353 207 7.2%
— all three ~1887 ~-1504 39.8%

Table 3.12: Mirror Processor Chip Overhead
3.9. Power Consumption
We need to know the current draw of a module so that we can size its power lines in
order to prevent electromigration. According to {West85a], the average current density
should be limited to a range from 0.5mA/um to 1.0mA/um. We generate a worst case
estimate of the total current a module draws by calculating the amount of capacitance

that must be charged and discharge each clock cycle.

Table 3.13 shows the average current draw of each of the modules in the datapath.
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Current (mA)

Module Transistors Bus Extra Total

if 32.75* 3275
parB 0.74 0.74
gateAB 1.20 1.97 3.17
parD 1.18 1.18
shift 3.17 1.97 1.40 6.54
alu 6.52 1.97 8.49
sdr 4.58 1.50 | 0.32 6.40
pe 8.83 347 | 046 12.76
mar 4,75 1.50 | 0.32 6.57
ivec 0.16 1.50 1.66
parOUT 0.71 0.71
busOQUT 1.37 1.45 2.82
ir 6.31 263 | 033 9.27
calli 0.24 2.63 2.87
parIN 0.78 0.78
rftran 1.90 1.90
imm 275 2.75
busIN 2.15 2.63 4,78
bar 0.39 0.39
sdec 0.66 0.66
DSW 3.81 1.97 | 0.33 6.11
datapath 84.95 1247 | 3.16 | 100.58

Table 3.13: Mirror Processor Datapath Average Current Consumption

Current {mA)

Module Transistors Bus Extra | Total
dwb 6.47 0.29 6.76
™w 4.02 0.44 4.46
dec 5.03 5.03 10.06
ram 10.74 | 047 11.21
sel 0.26 0.26
f 15.52 1074 | 649 | 3275

Table 3.14: Register File Average Current Consumption
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For most of the modules, finding the average current can be easily done by counting the
number of transistors and basing the total charge being moved upon that transistor
capacitance. For each transistor, its source, gate, and drain capacitance is calculated to
find the total capacitance of that transistor. The total capacitance of the module then can
be found by summing together the capacitances of all the transistors. Vdd is 5V and the

cycle time is 100ns, and so we can find the average current draw of each module using

==
T
Some modules drive busses (busIN, busD, busOUT); the charge to fill these
capacitances needs to be added to the total current draw of those modules. The total
capacitance of the bus is due to modules reading from the bus, modules driving the bus,

and the metal lines of the bus itself. This extra current is added to the average current

draw of applicable modules.

Some modules contain capacitances that change value more than once per cycle.
The shift lines in the DWBs are charged and then discharged once per cycle, and the
shifter shifts twice per cycle. This extra current draw is taken into account by calculating

the capacitance of the area that changes value more than once per cycle.

The register file is a special case to consider because though it contains almost half
the transistors in the datapath, not all of them are used each cycle. Table 3.14 shows how
the register file average current calculation breakdown. The register file’s DWB’s
current is calculated like the other DWBs. The read/write circuitry (RW) operates once
per cycle and so a transistor count suffices (with adjustments for control lines charging

and discharging). The decoder (DEC) operates twice a cycle, once for the read, and once
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Module Current (mA)
padenb 0.13
ext 0.18
valid 0.46
cmp 0.42
int 0.49
state 0.64
ns 0.57
post 0.61
mem 0.70
cond 0.60
irlatch 1.12
phi4 1.62
cudata 3.59
phila 2.34
philb 2.52
rh 2.83
controller 18.82

Table 3.15: Mirror Processor Controller Average Current Consumption
for the write, and so it is accounted for the second time in the extra column. The ram is
static, and so the main current draw from this region comes from the read/write circuitry
driving the bit lines. For the read cycle, both bit lines are precharged to 5V and then
either one or both may be discharged. For the write cycle, the two are driven to
complementary levels. Each bit line will experience a maximum of two voltage
transitions per cycle. Also included in the ram current is the extra current for charging
and discharging three sets of select lines and the current from 33 bits flipping on a write.
The ends of the poly select lines are clamped to OV at the end of ¢,; the SEL entry

accounts for this current usage.

The current used by the controller modules was calculated by just taking the
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transistor count of each module. Table 3.15 shows these values,

The datapath and the controller use separate rails to supply Vdd and GND 1o the
modules. The datapath draws 100.58mA; this is handled by two 200um wide power
rails, each supplied by two pads (pins 41, 42, 65, and 66). The upper chip power supply
is handled by two 100pum wide power rails sourcing from pins 23 and 84.

Two aspects of clock power consumption must be considered: the minimum width
of the clock lines, and the average current the clock generator uses. In order to avoid
electromigration, not only must the width be wide enough to handle the average current,
but any current peaks should be no larger than ten times the average current. We apply
this rule of thumb in reverse to find a minimum wire width. Spice simulations show that
the maximum current peak is 33mA on the ¢y clock line. The two peaks occur on the
rising and falling clock edges. So, the minimum line width needed is 3.3um; the lines
leave the clock generator as 8jum wide lines and split up into two sets of 4jum lines going

into the datapath and the controller.

Current derived by a transistor count of the clock generator gives 1.80mA. The
circuitry operates four times a cycle and drives each of the four clock lines (6.87pF,
6.60pF, 8.17pF, 7.46pF) twice, once for the rising clock edge and once for the falling

clock edge. The total current consumed by the clock generator is 10.11mA.

The pad power rails are sized to handle two pad voltage transitions per cycle with
two Vdd and two GND pads at the four chip comers. Spice simulation of an I/OQ pad
driving a 20pF load shows a total draw of 1.26mA for a OV to 5V change and a 5V to OV

change. If the pad frame were fully filled, then each Vdd/GND pair would need to
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| __Module Current (mA)

_d;ttapath 100.58
controller 18.82
clock 10.11
padcmp 3.77
pads 49.77
chip 183.05
chip — pads 133.28

Table 3.16: Mirror Processor Average Current Consumption
handle 40 I/O pads for a total average current of 50.40mA. The pad power rails are
drawn 100um wide in order to handle this worse case. The [/O pad is also used as a
wired-OR pulldown; spice simulations show this draws 6.81mA through the GND rail.
The MP uses five pads in such a manner, and we handle this 34.05mA current draw by
placing the five pads between one of the comer GND pads (pin 22) and an extra GND
pad rail pad (pin 16). During normal operation without any interrupts, nine pads will
make one voltage transition and 35 pads will make two voltage transitions. This gives a

worst case average current draw from the pads of 49.77mA.

The pad comparators are split into two groups: cne set draws off the datapath power
lines, and one set draws off the controller power lines. The datapath portion consists of
the 33 bit pad.AD comparator with 33 XORs and two sets of 16-1 OR trees. Current
estimated by transistor count gives 1.65mA, and double this is used because the pads
may change value twice a cycle. The controller portion consists of XORs on the control
output pads; this gives a transistor count current of 0.47mA. The total pad comparator

current draw is 3.77mA.

Table 3.16 shows the average current used by the MP with and without pads. With
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Vdd=5V, the Mirror Processor average power consumption is 915.25mW.
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4. Verification

This chapter deals with the methodologies used to ensure that the Mirror
Processor’s design and implementation are correct. The goal was to determine that the
architecture was functionally correct before layout began and to verify that the final
layout corresponds to the architectural description. Before layout, we used
Endot[Zyca88a], a hardware register-transfer level (RTL) simulation system, to model a
functional description of the system. A commercial version of Spice, Hspice[Meta87a],
was used for preliminary timing estimates. Layout was performed with Magic[Scot85a],
a physical layout editor, and afterwards Bdsim{Segaal, a switch level simulator, was used
to verify functionality. Actual circuit timing was determined with Hspice, and
Crystal[Scot85a], a timing analyzer, was used to verify the critical paths in the resulting

layout.

4.1. Register-Transfer Level Simulations Using Endot

Before we started any layout of the MP, we wanted to make sure the architecture
was correct and that the modules (e.g. register file, ALU) would properly interact
together. We used Endot to simulate the processor at the register-transfer level. All
blocks within the processor were written up in ISP [Zyca88b], a hardware description
language based upon ISP[Bell70a]. We determined if various circuit configurations were
feasible for our timing goal of 100ns by running preliminary Spice circuit simulations of

key building blocks.

The system is modeled as a console, a processor pair, and a memory. With this
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setup, we can assemble small programs, load those into the memory, and actually run
them. The modules are listed in section 7.3.

After each module was written, it was tested by feeding it various test vectors to
make sure it conformed to the architectural specifications. The entire system as a whole
was tested by running a series of small test programs and observing the interactions of

the modules on a phase by phase basis. Details of the test procedures are covered

in {Lai90a].

4.2. Circuit Simulations Using Spice

It’s not practical to run Spice on an entire chip, so we only simulate modules and
paths between modules. A clock phase is long enough for most control and data signals
to stablize, so that at the beginning of a phase, the only signal that should change is the
clock. However, should a transaction should take longer than one phase (e.g. PC writing
onto busOUT and to the pads), then we simulate the whole operation and include as
many clock phases as needed. We simulate the circuits using a 2ns rising and falling
clock edge, and we define the beginning and end of a phase to be the point in time where

the clock starts to rise or fall.

Should a circuit’s input values change, we supply the actual driving circuit rather
than using a spice voltage source in order to obtain a more accurate time. An example of
this is the ALU’s manchester carry chain. The chain consists of eight identical
subcircuits, each of which produce 4 carry bits and a carry bypass. The first subcircuit in

the chain is set up to generate a carry, and the other seven are set up to bypass the carry
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* NM(OS Theoretical Slow Model

.MODEL CMOSN NMQOS

+LEVEL=2 VT0=0.9 TOX=430E-10 NSUB=1,0E+16 XJ=.15U
+LD=.20U U0=620 UCRIT=.62E5 UEXP=.125 VMAX=5.1E4
+NEFF=4.0 DELTA=1.4 RSH=38 CGS0=2.1E-10 CGD0=2.1E-10
+CJ=215U CJISW=540P MJ=.76 MJISW=.30 PB=.8

* NMOS Theoretical Fast Model

LMODEL CMOSN NMOS

+LEVEL=2 VT0=0.65 TOX=370E-10 NSUB=6.0E15 XJ=,15U
+LD=,200 U0=680 UCRIT=.62E5 UEXP=.125 VMAX=5.1E4
+NEFF=4.0 DELTA=1.4 RSH=34 CGS0=1.8E-10 CGD0O=1.8E-10(
+CJ=175U CJISW=460P MJI=.76 MISW=.30 PB=,8

* PMOS Theoretical Slow Model

.MODEL CMQOSP PMCS

+LEVEL=2 VTC=-0.9 TOX=430E-10 NSUB=6.6E+15 XJ=.05U
+1LD=.20U UQ=240 UCRIT=.86E5 UEXP=.2% VMAX=3,0E4

+NEFF=2.65 DELTA=1.0 RSH=110 CGS0=2.05E-10 CGD0=2.05E-10

+CJ=2750 CJSW=400P MJ=.535 MJISW=.34 PB=.3

* PMOS Thecretical Fast Model

.MCDEL CMOSP PMOS

+LEVEL=2 VT0=-0.,6 TOX=37CE-10 NSUB=5.4E+15 XJ=.05U
+LD=.20U0 U0=270 UCRIT=.8€6E5 UEXP=,29 VMAX=3.0E4

+NEFF=2.65 DELTA=1.0 RSH=92 CGS0=1.75E-10 CGDO=1.75E-10

+CJ=225U0 CJSW=300P MJ=.535 MJSW=.34 PB=.8
Table 4.1: Spice Transistor Models

directly from the carry-in to the carry-out. We could just simulate one of these seven

subcircuits and multiply the resulting timing by seven, but then we would introduce

errors by choosing a start and end time. Instead, we simulate the whole chain to find the

critical path.

We hand extract the critical paths from our layout rather than let the CAD tools do

it for us because they do not handle the extraction properly. In particular, Magic will

extract a poly wire controlling many gates as a point node when in fact it should be done
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Area Capacitance ndiff pdiff poly metall metal2 units
subs 0.250 0300 { 0.057 | 0026 0.016 | fF/um*
diff - - 0930 | 0.047 0.022 | fF/jum®*
poly - - - 0.047 0.022 | fF/um?®
metall - - - 0.044 fF/um?

Edge Capacitance ndiff pdiff poly metall metal2 units
subs 0.600 0.400 0.080 0.075 0.068 fF/um
diff - - 0.085 0.086 0.073 fF/um
poly - - - 0.086 0.073 fF/um
metall - - - - 0.085 fF/um

Resistance ndiff pdiff poly metall metal2 units
sheet 40 150 30 0.050 0.040 Q0
2x2 via 50 100 7 - 0.1 Q

Table 4.2: Spice Parasitics
as a chain of resistors, capacitors, and gates. In addition, the tools extract the whole

circuit when we are only interested in simulating a particular path.

Capacitances of local interconnect are small enough to be ignored; we only take
into account long signal lines and busses. For metal lines, the propagation delay is
negligible, and so only the capacitance is included. However, poly lines have a high RC
constant. In the layout, we use long poly control lines that run across the bit slices in
order to reduce the stride. This is modeled with a chain of transistor gates and resistors

using Hspice’s wire resistor model, which handles capacitance and RC delays.

We used the SPICE level 2 corner parameters provided by VTI for their 2um
CMOS N-well process (table 4.1). These transistor models represent the slowest and
fastest transistor switching speeds for the NMOS and PMOS transistors, and hence allow

for the four possible ranges of operation: slow NMOS and slow PMOS, fast NMOS and
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fast PMOS, slow NMOS and fast PMOS, and fast NMOS and slow PMOS. The parasitic
parameters we use are derived from VTI’s 2um N-well CMOS/BULK wafer acceptance

specifications and are summarized in tabie 4.2.

Transistor parasitics are taken care of by using transistor subcircuits from a library;
each subcircuit consists of a transistor with full parasitics on the source and drain.
Hspice allows four parasitic parameters to be attached to a transistor instance. These are:
source and drain diffusion perimeter capacitance (ps, pd), source and drain area
capacitance (as, ad), equivalent squares from source or drain via contact to transistor
channel (nrs, nrd), and source and drain via contact resistance (rsc, rdc). Figure 4.1
illustrates the first three regions for three transistors with channel widths of 4um, 6um,
and 8um. The fourth parasitic is obtained by dividing a 2x2 via resistance by the number
of vias in the source or drain. Figure 4.2 shows four sample transistors defined as
subcircuits and an inverter defined in terms of these transistors. The perimeter is given in
microns, the area in square microns, and the resistance in ohms. Even if a resulting
circuit does not exactly reflect the layout (e.g. shared drain rather than two drains), the

actual worst case capacitance is still be better than the modeled case.

4.3. Switch Level Simulations Using Bdsim

To verify that our layout is logically correct, we used the extractor from Magic and
an accompanying filter (Ext2sim) to obtain a netlist suitable for simulation. We
generated Bdsim test scripts that separately exercised all the modules in the datapath and

controller and then the whole chip together. Qur strategy is to test the chip hierarchically
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Figure 4.1: Transistor Parasitics from Layout Geometry

vpbulk vpbulk 0 dc Sv
vnbulk vnbulk 0 dc Qv

* n4: drain gate source

ml 2 3 4 vnbulk cmosn 1=2u w=4u
+ad=20p as=20p pd=14u ps=14u
+nrd=.5 nrs=.5 rdc=50 rsc=50

* p6: drain gate source

ml 2 3 4 vpbulk cmosp 1=2u w=6u
+ad=26p as=26p pd=1l6u ps=16u
+nrd=.,33 nrs=.33 rdc=100 rsc=100

* n6; drain gate source

ml 2 3 4 vnbulk cmosn l=2u w=6u
+ad=26p as=26p pd=l6u ps=l6u
+nrd=.33 nrs=.33 rdc=50 rsc=50

* p8: drain gate source

ml 2 3 4 vpbulk cmosp 1=2u w=8u
+ad=40p as=40p pd=18u ps=18u
+nrd=,25 nrs=.25 rdc=50 rsc=50

* k%

vdd 1 0 dec Sv

*

* inverter example
*

x1 out in 1 p8
x2 out in 0 n4

Figure 4.2: Transistor Subcircuits with Parasitics
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from the bottom up. At the bottom level, we exercise a module through its external
interface and verify that its internal values and external outputs are correct. At the top
level, we know the modules work correctly internally, and so we only have to monitor

the interfacing control and data signals and supply the proper values on the pads.

Each module consists of latches and combinational circuits. For registers such as
the register file and the PC, which consist mainly of latches, we break functionality down
into four parts: writting out onto the external bus, writting into the register, reading out
the correct register from the DWB, and invaliding valid bits for rollback. The circuitry
consist of multiple instances of a few subcircuits, and so the modules are simple to test.
These portions were separately tested with arbitrary bit vectors (0xABSC155A,
O0xCCOOFFEE, OxDEADCODE, OxGEODESIC, 0x6005EE66), and then the whole

module was exercised for several cycles to verify that it operated correctly.

Large combinational circuits like the ALU and the shifter are a bit harder to verify
because of the potentially large test space. We can fully test small combinational circuits
like the shift decoder by using all possible input vectors, but for larger ones like the 32-
bit ALU, we must choose some cntical test vectors and cover the rest of the input space

with randomly generated vectors.

Once we have verified the internal workings of each module, we must verify that
they will properly interact together. In this case, only the signals going in to and out of
the module need to be checked. To manually create test vectors for the whole processor
would be a nontrivial task. Instead, we take advantage of the fact that we already have a

working RTL simulation of the chip. In order to generate test vectors for use with
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Bdsim, we run the Endot code with some test programs, set the pads of the Bdsim
simulation to the same values found on the pads in the Endot model, and verify that the
signals transmitted between the modules at the switch-level match with the

corresponding signals at the register-transfer level.

We wrote four test programs (section 7.2) to exercise the modules and
interconnections between the modules in the processor. Linear.ras is a sequence of all
the instructions in the MP instruction set except for the jump and test instructions.
Jmp.ras is a small application to extract the condition codes from the PSW using the
conditional jump instructions. Int.ras is used to test all possible interrupts and traps.
Test.ras exercises the test instructions, and in the process, tests the error detection, micro
rollback, and state repair circuitry. By executing every instruction and forcing every
exception that the MP would encounter in actual operation, we can verify that all the

modules will work together properly in all situations.

Simulation time was broken up into eight phases: the four clock phases and the four
underlap times. These are named phill, phil2, phi22, phi23, phi33, phi34, phid44, and
phi41. Phi(i)(i) corresponds to clock phase ¢;, and phi(i)((i mod 4)+1) corresponds to the
underlap time following ¢;. In order to generate the Bdsim test scripts, we first compiled
a list of all the control and data signals within the datapath and controller and determined
at what times they are relevant. For instance, the PC determines if it should gate onto
busOUT during ¢4 by taking the control signal gate INC_busQUT and ANDing it with
the ¢4 phase clock. If the PC is supposed to gate onto busQUT, then gate.INC_busQUT

will be 1, otherwise it will be 0. Since the PC has already been tested in isolation, we can
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be sure that no erroneous gating will result if gate. INC_busOUT is a | on any clock

phase other than ¢,. This signal will be used during ¢4, and so the times that the signal
needs to be verified are ¢4 and the underlap times before and after (phi34, phid4, phi41).
Data signals are transferred between modules, and so the busses need be verified for the

times that they are written into each module connected to the databus.

4‘3’_:7

busIN

00X

Y

Figure 4.3: Data Transfer Through Pass Transistor Logic (Charge Sharing)

The signals are grouped into three categories: signals coming into the chip that need
to be set, internal signals that need to be verified, and certain internal signals propagated
through pass transistor logic. This last category is needed because Bdsim does not
handle charge sharing, so that if a transistor connects two capacitors with different values
together, charge from the larger capacitance will not flow to the smaller capacitance.
Only a driving transistor or a Bdsim ser command will cause a node to change value.
Charge sharing is used to transfer the values on busIN, busQUT, and buslR into the IR,
the MAR, and the controller rollback memory. Figure 4.3 shows the case of busIN and
the IR. Data is placed onto the bus during ¢4 by a tri-state driver, and when the IR’s

transmission gates conduct in order to store the data into the register, no transistors are
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driving the bus. This is not a problem with the other modules because they read off the
bus directly with an inverter and this inverter will drive a value to the transmission gate
in that module. OQur fix is to first verify that the value on the bus is correct, then
explicitly set the value so that it will be transferred into the register, and then release the

bus.

A translation file with the names of the signals in the Endot and Bdsim models and
the times they are active (section 7.2) is used to create Bdsim scripts from the Endot
simulations of the four test programs. This signal list was manually generated by
scanning the ISP code for the times when the control or data signal is used. It does not
matter when a signal is generated, as long as the signal line contains the proper value at
the time it is needed. The translation file is passed through a filter to create Endot
commands, which, when executed during the simulation of the test programs, will write
Bdsim commands to a file using values from the Endot simulation. In order to simplify
the RTL model, the ISP specification does not exactly match the physical layout (e.g.
events may happen on the trailing edge of the clock). Assuming that the phases when a
signal is used are correctly identified, a signal will only be set or verified the simulation
phases before, during, and after it is actually needed in order to avoid verification
problems between the Endot simulation and the Bdsim simulation. The layout is then
simulated with Bdsim using the controlling test scripts. When the layout passes these
tests, then we know that the layout at the switch-level conforms to the register-transfer

level model, which has already been verified in greater detail.

In order to create the Bdsim scripts, a test program is first assembled and the
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execution order of the test program is determined. The Endot control script consists one
Endot macro call (cycle) to generate Bdsim commands for every cycle that the program
executes. As a debugging aid, each cycle is annotated with the disassembled listing of
the executing instruction. The cycle macro itself consists of eight Endot macro calls to
deal with each of the eight clock phases and underlap times. For each phase, a command
is sent to Endot to set its clock and evaluate until all signals are stable. Then, the
corresponding Bdsim command is written to the Bdsim script file. Using the results from
the translation file, Bdsim setr commands are written to the script file using values from
the Endot simulation for signals coming into the chip and verify and set commands are
written for the signals propagated by charge sharing. The Bdsim evaluate command is
then written into the Bdsim script. If the Bdsim simulation were to execute its script up
to this point, then the clock and inputs will have been set and the system will have
evaluated and become stable, thus matching the Endot simulation state. Now, Bdsim
verify commands are written to the script using the values from the Endot simulation.
This process is repeated for the other seven macro calls, and the cycle macro call is

repeated for as many cycles as many cycles as the program executes.

When the Bdsim simulator is started, all the registers are in an unknown state.
Single registers are easy to initialize by using short Bdsim initialization scripts, but the
register file is harder because all the memory can only be accessed through one port. We
initialize the register file at the beginning of each test program by writing 0’s into all
registers within the register windows that will be used, so that the values put on busA and

busB, even though they may not be needed, will match that from the Endot simulation.
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During this initialization sequence, we used the scycle Endot macro instead of cycle. The
only difference is that scycle does not write verify commands to the Bdsim script so that

there can not be any errors during initialization.

4.4. Critical Path Analysis Using Crystal

Though we may have determined the critical paths of each clock phase by analyzing
what modules operate that phase, a longer critical path may be missed due to human
error. Crystal is a timing analyzer that will determine the critical path in a circuit without
considering any specific input values. We use Crystal to verify that there are no hidden

critical paths in the layout that are longer than the ones that we have identified earlier.

Crystal is guaranteed to find the worst-case timing behavior of the circuit because it
doesn’t depend on user input to find the critical paths. Instead, Crystal tries all
possibilities at each point unless told otherwise, and picks the worst branch. The
problem with this approach is that Crystal may examine paths that could not possibly
occur in actual operation. We prune away these false critical paths by selectively setting

node values to constant values so that impossible branches won't be taken.

The following are the paths found by Crystal for each of the four clock phases. The
clock phase name indicates which clock phase the path belongs to, and the path
description is in the form of - - - —element— - - -, where element is a functional block or
a bus. Entries of the form element(subelement) indicate actions within the element. The
paths are listed in the order they were found, and the last one in each sequence is the

critical path for that clock phase.
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rf—busB—parB—cmp

The comparator doesn’t need the parity of the value read out of the register file onto
busB until ¢;. Section 3.4.2.2 shows that this value becomes stable 40ns after ¢,.
Since this isn’t the critical path within ¢;, we prune away this path by clamping
parB after the first level of XOR gates so that Crystal will not follow this path.

rf(rfB.par)—cu

The controller doesn’t need the parity read out of the register file until ¢,. This
parity is generated by reading the parity from the register file and passing it through
and XOR gate to remove the parity due to the address. It takes 25ns to read a value
onto busB from the register file (section 3.4.2.2) and to pass it through an XOR
takes an additional 2.5ns. This path is removed by clamping the parity bits read out
of the register file.

rf—busB —busS31s—shift(sign)
This is a false path because the sign bit is not used for a shift from busS to busR
during ¢,. It is removed by clamping the bus$ sign bit.

rf—busB—busS—shift

The critical path during ¢, consists of reading a value onto busB and sending it on
busS to the shifter. Section 3.4.2.2 shows that this process takes slightly more than
30ns, which is acceptable.

pc—busD—alu(ai)—alu(mec)

A false path because once data is loaded into the ALU, it starts evaluation when in
fact the manchester carry chain is actually precharging during ¢,. This is remedied
by clamping the manchester carry chain.

pc—busD—busOUT—parOUT—out. AD32—pads—cmp—cu
No operations cause a module to write onto busD and then gate onto busQUT.
Clamping the busD to busOUT gateway fixes this problem.

state.reset—state.rb—out.state »cmp(error)—cu
The comparison isn’t needed until the following ¢,. Clamp state.reset and state.rb.

rftran—busRD—rf(par)
Not needed until ¢,. Clamp busRD.

sdr—busOUT—parOUT —out. AD32—pads—cmp—cu
This critical path to send data off the chip with the parity takes all of ¢, and half
of ¢, and is shown in section 3.3. This path is removed by clamping parOUT.
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psw(out.sysmode)—cu—state.int—valid—ctrl. MAR_write
Cancelling a write due to an interrupt is done during ¢, when the valid bits are
shifted. This path is removed by clamping the privileged opcode error signal.

pc(mec) precharge
False path. Precharge does not take this long. Clamp precharge control.

mar—busOUT—pads—cmp-cu
Not needed untl ¢. Clamp busOUT.

ns-sstate—pad.state—cmp
Next state is generated during ¢, and its comparison isn’t done until the next 0y.
Clamp state.repairl and state.repair2 signals.

padenb—pad—cmp
The pad comparison isn’t needed until ¢,. Clamp pad enable signal.

psw—rint—state.int—valid—ctrl. MAR _write
Not needed until ¢,. Clamp psw.

pc—busD—alu(ai)—alu(mec)—carry
False path. Once again, the manchester carry chain tries to evaluate while it is
suppose to be precharging. Clamp carry out.

ns—state - pad.state—cmp—cu
False path. Not done until ¢; and not needed uniil the following ¢,. Clamp

state.suspend.

pc—busD—bar—busBAR—imm
Not needed until ¢5. Clamp BAR after busD inputs.

rftran
Not needed until ¢4. Clamp cwp.

ext—state.shutdown—int—state.int—valid —=ctrl. MAR _write
Not needed until ¢4. Clamp state.shutdown.

ext—state.wait—>mem—out.enb.data—cmp—cu
The comparison isn’t needed until the following ¢,. Clamp state.wait.
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shift—busR—bar—busBAR—imm
Not needed until ¢4 next cycle. Clamp BAR after busR inputs.

busB-ssdec-sctrl.badshift-cu
Not needed until ¢,. Clamp shift lines.

int—state.int—valid—cal. MAR_write
Not needed until ¢,. Clamp state.int.

pc—busD—alu(ai)—alu(mec(propagate))

The critical path during ¢, consists of the PC gating onto busD, latching the value
into the A input of the ALU, and generating the propagate inputs to the manchester
carry chain. Section 3.3 shows that this takes 17ns, which is before the ALU
evaluates 20ns after ¢,.

ir—busIN—rfran—busRB >rf(dec s write)
False path. The destination register is selected by the address from the register
file’s DWB. Clamp busRA and busRB.

sdec—shiftobusR—sbar—busBAR—sdec—shift—-busR—obar—
—sdec—ctrl.badshift—cu—state.int3—int—pad.ira—cmp—cu

False path. The BAR is generated during ¢, and the underlap following ¢,. Clamp
busR.

rf(decsram—bitA—rw) (read)
False path. Reads are not done during ¢;. Set bitA and bitB to 1 and 0 in case of a
write.

psw—state. PSW—state—pad.state—cmp—rb
Not needed until ¢,. Clamp psw.

pc(mec—xor) not using bypass
False path. Clamp PC’s manchester carry chain.

ir—busIN—rftran{busRB —-busRD)—busRD—rf
False path. If busRD was used (for state repair), then the RD register would not be
loaded during the data transfer. Also, not used during normal operation. Select

busRD.

ir—busIN—rftran(busRB—»par)
Not needed until ¢4. Clamp busRA .par and busRB.par signals.
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alu(mcc—xor) using bypass
The ALU’s manchester carry chain takes 27ns to evaluate on ®; as shown in
section 3.6.2.

pc—sbusD—bar—busBAR—imm
False path. The BAR does not change on ¢,. Clamp BAR.

rb—pad.RB2—rb—pad.RB1—rb—pad.RBO
Arbitraton isn’t complete until ¢,. Clamp rollback amount enable signals.

alu—busOUT—-parOUT—out. AD32—pads—cmp—cu

This critical path to send to address off the chip with parity takes all of ¢4 and half
of ¢,. The timing is covered in section 3.3. This path is removed by clamping
parQUT.

mem—gate.busOUT_padAD4—pad. AD—cmp—cu
This is part of the previous path. Clamp pad enable lines.

pc—busD—psw
The PC gates onto busD and the input to the PSW is set. Section 3.3 shows this is
ready by the beginning of ¢,.
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5. Conclusion

As shown in chapter 3, it is possible to apply micro rollback, error detection, and
state repair to a RISC style processor without any significant degradation in performance.
We were able to achieve our goal of a 100ns cycle time without significantly adding to
the critical paths of a processor based upon the Berkeley RISC I, and we also minimized
the number of extra cycles needed for micro rollback and state repair. In fact, the only
incurred cycle overhead is during ¢,, when the read from the register file is delayed by

less than 3ns due to the increased capacitance from the register file's DWB.

The area overhead, however, is a large percentage of the active area on the chip.
The active area overhead of error detection, micro rollback, and state repair is 41.6%. If
these features were removed from the MP chip, the the chip dimensions of 8395Ax6716
would be reduced in width by 1887A and in height by 1504A for a overhead of 39.8%.
One must keep in mind though, that the initial area of the Mirror Processor is less than
that of the Berkeley RISC IT because the MP’s register file contains half the number of
registers that the Berkeley RISC’s register file contains. If the MP were implemented
with 132 registers, then the overhead would be less because more area would be

dedicated toward normal functionality.

The MP chip is designed so that the master and slave processors use identical pins
except for the master/slave pin; this allows a slave chip package to be mounted on top of
a master chip package so as to present the footprint of a single chip on a printed circuit
board. Though the overhead of micro rollback in terms of silicon real estate is high, at

the higher level of the printed circuit board, the Mirror Processor presents a profile
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comparable to a RISC type processor without micro rollback.

If we were to design a second generation of the Mirror Processor, the first problem
we would work on would be the critical paths during ¢,, when the register file is read and
during ¢, when the ALU evaluates its manchester carry chain. The poly select lines
within the register file ram constitute a considerable delay which could be alleviated by
redrawing them in metal. In order to keep the stride of the ram cell minimal (because
there are 74 addresses), we would have to increase the pitch of the datapath. An
implication of changing the register file to metal control lines is that the evaluation
control lines in the delayed write buffers may also have to be redone in metal to keep up

with the increase in speed.

The ALU uses a manchester carry chain, which is an optimized precharged ripple
carry adder. Faster results can be gained by using a carry look-ahead adder, but at the

expense of an increase in pitch and stride.

The shifter performs the dual role of data alignment for immediate operands and
load and store instructions, and data shifting for the shift instructions. Adding a data
aligner to the datapath would allow the shifter to move its operation out of the critical

path in ¢4 to ¢4, where it can operate in parallel with the ALU.

Any processor design is a series of tradeoffs, and implementing micro rollback on a
RISC style processor is no exception. Micro rollback allows error detection to be
performed in parallel with normal processor operation so that error detection time will
not be added to the overall cycle time. Instead of waiting for data verification to

complete before proceeding with the next cycle, the Mirror Processor proceeds with
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execution on the assumption that it can recover from an error detected several cycles
later. In order to do this, area must be dedicated toward error recovery. With the Mirror

Processor, we have traded off area in order to maintain high performance.
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7. Appendix

7.1. Instruction Reference

Table 7.2 summarizes the Mirror Processor instructdon set. Table 7.1 lists the

condition codes for the conditional branch instructions. See section 2.2 for more details.

code | symbol name value
0000 nev never 0
0001 gt greater than (signed) nm@&vivz
0010 le less or equal (signed) nM®v)vz
0011 ge greater or equal (signed) név
0100 It less than (signed) n@®v
0101 hi higher than (unsigned) cve
0110 los lower or same (unsigned) cvz
0111 lo lower than (unsigned) <

nc no carry
1000 his higher or same (unsigned) c

c carry
1001 pl plus (signed) n
1010 mi minus (signed) n
1011 ne not equal z
1100 eq equal z
1101 nv no overflow (signed) v
1110 v overflow (signed) v
1111 alw always 1

Table 7.1: Mirror Condition Codes For Conditional Branch Instructions
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opcode operation description

add desl+s2 add

addbpm de—sl+s2;p add with bad parity on master
addbps desl+s2;p add with bad parity on slave
addc desl+s2+¢ add with carry

and de—slAas2 bitwise and

calli CWP—, d « LSTPC
callr CWP—-, d « PC; PC « PC + sxt(imm19)
callx CWP—, d<-PC; PC 51 +52

clrrbm e

clrrbs b0

getlpe d « LSTPC

getpsw d — PSW

jmpr PC « PC + sxt(imm19)

jmprbm d « 351, PC « PC+5s2

jmprbs desl;PC—PC+s2

jmpx PCesl+s2

1dhi d «imml9 << 13

ldrbpm d « M[PC + sxt(imm19)]; p
1drbps d « M[PC + sxt{imm19)]; p
ldrbs d « sxtM[PC + sxt(imm19)]<7:0>)
ldrbu d « M[PC + sxt(imm 19)]<7:0>
ldrhs d « sxt(M[PC + sxt(imm19)]}<15:0>)
ldrhu d « M[PC + sxt(imm19)]<15:0>
ldrw d « M[PC + sxt(inm19)]

ldxbs d « sxt(M[s1 + 52]<7:0>)

ldxbu d « M(sl +52]<7:0>

ldxhs d « sxt(M[s] + 52]<15:0>)
ldxhu d « M[sl +52)<15:0>

ldxw d « M[s]l +52]

or de—slvs2

putpsw PSW « sl +s2

ret PC « sl +52; CWP+

reti PC « sl +52; CWP+, PSW(1,S)
sll desl<<s2

sra desl>>s2

srl desl>>s2

strb d = M[PC + sxt(imm19)]<7:0>
strbdm d = M[PC + sxt(imm19)]

strbds d - M[PC + sxt{imm19)]

strh d — M[PC + sxt(imm19)]<15:0>
strw d —» M[PC + sxt(imm19)]

stxb d — M[sl +s2j<7:0>

stxh d = MJsl +s52}<15:0>

StXw d - M{sl +s2]

sub desl-s2

subc desl-s2-¢

Xor desl@s2

calt interrupt

call pc relative

call absolute

clear rollback bit on master
clear rollback bit on slave

get last pc

get psw

Jjump pc relative

jump if roliback bit is set, master
jump if rollback bit is set, slave
jump absolute

load immediate into bits 31:13
load with bad parity on master
load with bad parity on slave
load pc relative byte signed
load pc relative byte unsigned
load pc relative halfword signed
load pc relative halfword unsigned
load pc relative word

load absolute byte signed

load absolute byte unsigned
load absolute halfword signed
load absolute halfword unsigned
load absolute word

bitwise or

put psw

return from call

return from interrupt

logical shift left by s2 mod 32
arithmetic shift right by s2 mod 32
logical shift right by s2 mod 32
store pc relative byte

store bad data, master

store bad data, slave

store pc relative halfword

store pc relative word

store absolute byte

store absolute halfword

store absolute word

subtract

subtract with carry

bitwise xor

Table 7.2: Mirror Processor Instruction Set
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7.2. Bdsim Test Programs

The following four Mirror Processor assembly language programs and the following
signal list are used to test the signals between all the modules in the datapath and the

contoller.

Linear.ras tests all the normal instructions except for the jump instructions, which
are covered by jmp.ras. Interrupts and traps resulting from normal operation are tested
by intras. Error detection, micro rollback, and state repair are tested by running the test
instructions in test.ras. The first section of code in each program is used to initialize the
register file to a known state so that the endot simulation state and the bdsim simulation
state will match before the blocks are tested. Verification is not performed during this
initialization.

Mirror.signals is an equivalency list of bdsim signals and endot signals and the

times that the signals need to be valid.

linear.ras
'
[ test linear instructlons
4
i getpsw, getlpc, putpsw, callx, callr, ret
] 511, sra, srl, ldhi, and, or, xer, add, addg, sub, subc
4 laxw, ldrw, ldxhu, ldrhu, ldxhs, ldrhs, ldxbu, ldrbu, ldxbs, ldrbs
L] stxw, strw, stxh, strh, stxb, strb
]
tnir:
add 0, r0,rl
add rQd, r0,r2
add rQ,rQ,r3
add r0,r0,r4
add r0, 0, rs
add r0,r0,r6
add rd,rl,c?
ada 0, 1r0,z8
add rQ,r0,r9
add ro,r0,rlt
add r¢,r0, rll
add ro,r0,rl2
add rd,r0,rl3
add r0,r0,rld
add rQ,r0,rls
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endinit:

misc:

load:

parity:

add
add
aad
ada
add
add
add
add
add
add
add
add
agd
add
add
add
putpsw
add
add
add
add
add
add
add
add
add
add
add
add
add
adad
add
add

add

getpsw
putpsw
getlpc

add

ldr
add
ldhu
sil
idrhu
or
add
ldh
sl
idrh
and
add
addg
ldbu
sll
ldrou
or
sll
ldb
and
add
sll
ldrb
and
or

ldhi
sra
srl
xor
sra
xor
srl
srl
xor
sra
xQr

—

r0,r0,zrl6
rd,rd, 17
rd,rC,rl8
rQ,r0,rl9
rQ,r0, r20
rg,r0,r2l
r@,r0,r2z2
r0,r0,123
0,0, 24
rQ,r0, 2%
£0,r0,c26
rQ,r0, 27
r0,r0,r28
r0,z0,r29
tQ,r0, 130
r0,r0,ril
Ux68a (rd)
r¢,ro, rlo
rQ0,r0, ril
rQ,r0, ri2
r¢,r0,r13
r0,10,rl4
r0,r0,rls
r0,r0,rl6
rl,r0,rl7
£0,r0,rl8
rd,r0,rl9
rd,rQ, r20
r¢,r0,r2l
tQ,r0,r22
r0,r0,r23
rd,rd,r24
r0,rQ,r25

rQ,r0, r0

rl
0x085 (r0)
rl

r0, $Sabsclssa, r2
0(r2},rs
coffee, b

r0, Sdeadcode, r2
o(r2)y,c7
r7,516, 17
deadcode+2,rl
c7,rcl, 7

rQ, $gecdesic, r2
0{r2),r8
rd,516,r8
geodesic+Z, rl
rl,SOxfEfL, rl
ré,rl, 8

rQ, $gooseeqgqg, £2
Q(r2y, 9
r9,58,r9
gooseegg+l, rl
r9,rl, 9
r9,58,r9
21{r2},rl
rl,$0xtf, rl
r9,rl,r9
r9,58,r9
gooseegg+d, rl
rl,50xft,rl
r%,rl, 9

$0x8000,r2
r2,%24,r2
r?,r2,rl
r?,rcl,rl
rl, $8,r2
ri,r2, rl
rl,s2,r2
rl,s$2,r2
rl,r2,rl
rl,sz,r2
rl,r2,rl

- -

cwp=ll, swp=0l, 1sp=00Q0,

getpsw, putpsw, getlpc

cwp=00, swp=Cl, lsp=000,

ldxw, ldrw, ldxhu, ldrhu,
larbs

ldxbu, ldrbu, ldxbs,
add, sil, o¢r, and

rs ABSC155A
ré CCOOFFEE

r7 DEADCODE

8 6EQDESLC

9 6QCSEE6E

xor, ldahi, sra, srl,
parity (DEADCODE}

16
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znvc=1010Q

znve=0101

ldxhs, ldrhs
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srl
Xor
and

dadd:
add
addc

dsub:
sub
subc

stare:

add
st
str
sth
strh
sth
strb

subr:

add
add
call
add
add
callr
add
add

add
add
add

acd
ret
add

absclssa:

.word
coffee:

.word
deadcode:

.werd
geodesic:

.word
gooseeqg:

.word
mem:

.ward

ine,

add
add
add
add
add
add
add
add
add
add
add
add

rl,sl,r2
rl,r2,rl
ri,$0x1,rl

r6,c8,rl, (c}
rS,c?,r2,1c}

£?,r%,rl, {c}
ré,r8,rc2, {c}

r0, 5mem, rl
£5,0(rl}
6, mem

r?7, 001y
8, mem+2
r9,04rtl)
r5, mem+3

r7,c0,rls
r0, $inec, r1
Jirly, r26
r0, 0,10
rld,rd,rls
inc,r26
r0,rd, z0
ri4, 0, rl

rd,r0,z0
0, 10,0
r0,r0,c0

r31,51,r30
alw,B8(r2s)
ro, 0, o

Ox5A155CAB
OxEEFFOQCC
OxDECCADDE
Ox1CESCDGE
OX6E6EEQS560

0x00000Q000Q

ipl, Jnv, Julc

r0,r0,rl
rd,r0,r2
r0,r0,rl
c0,z0,r4
rQ,r0,r5S
r0,rC, 6
rd,c0,r7
rQ, 0,8
rd,rl,r9
ré,rd, rld
r¢, 0, rll
r0,r0,rl2

-

-

add, addc
ABSClS55A . CCOOFFEE+DEADCODE. 6E0DESLIC

sub, subc
CCOOFFEE.DEADCODE-6EODES1C, 600SEEGE

stxw, strw, stxh, strh, stxb, strp, add

call, callr, add

rat, add

uncondtitional

OXABSCLS55A
ORCCOOFFEE
OXDEADCOCE
OX6EQDES1C
OX6005SEEGE

test condltlional branch lnstructions
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erndinit:

§CC:

end;

oC:

ccend:

add
add
add
add
add
add
add
add
add
add
add
addg
add
add
add
add
add
add
add
putpsw
add
add
acd
add
add
add
add
add
add
add
add
add
add
add
add
add

add

putpsw
call
add
add
putpsw
call
add
add
putpsw
call
add
aqd

add
aqad
add

add

impr
add
ar

imp
ada
or

impr
add
or

imp
add
or

ret
acd

r0,r0,rll
r0,r0,rld
r0,r0,r£15
rl,r0,rlé
rQ,r0,rl7?
r0,r0,r18
r0,r0,rl9
rd,r0,rzo0
0,0, 21
rg,rd, r22
rd,r0,r23
r0,r0,r24
rl,r0,r25
rd,rd,r26
rd,r0,r27
r0,r0,r28
eQ,r0,r29
r0, 0, rio
r0,r0, ral

Ox&EBa(r0) f cwp=ll, swp=01, lsp=000,

rd,r0,rl0
rd,r0,rll
r0,r0,rl2
£0,r0, rll
rQ,r0,r14
r0,r0,rls
r¢,r0,rlé
rd,r0,rl7
rd,r0,rla
r0,r0,rl9
£0,rQ,r20
rQ,rQ, 21
rQ,ro,r22
rt,rl, r23
r0,r0,r24
rQ,r0, r2s

rQ, rd, o

Jx083(ro) § cwp=00, swp=01, isp=000,

cc,rz2é
rQ, 0,
rl5,r0,rl

Ox087 (ro) §f cwp=00, swp=01, isp=000Q,

cc,r2e
rQ, r0, ro
ris, rQ,rl

JxC8D{r0) § cwp=00, swp=01, 1s5p=000,

cc,r2e
rd, rd, rQ
rls,ro,rl

rd, rQ, 0
r0, r0, 10
r0, 0,0

r0, 0, il

ne, n
rQ,5v,rleé
r3l,s0x8,r31

pL,0(rl6}
rd, 0,0
ril, $0x4,r32

nv, ¢
rQ, Sccend, rl6
r3l, $0x2,r3l

ule,0{rl6)
r0, 0, 0
r3i, $0xi, 3]

alw,B(r26) # unconditicnal
r0,r0,r0
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- -

trapv:

overv:

underv:

trap:

Inie:

test lnterrupts,

reset,

getlpc
impr
GeLpsw
.word

getlpc
jmpr

gerpsw
.space

getlpc
impr

getpsw
.space

getlpce
impr

getpsw
.Space

ldr
jmp
add

add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
aad
add
add
add
add
add
add
add
add
add
add
add
add
add
add
putpsw
add
add
add
add
add
add
add
add
add
add
add
add
add
add

badop, privop,

r24
alw,trap
r23
ox4cooQoce

r24d
alw,int
r23

4

r24
alw,over
r23

4

r24

alw, under
r23

P

ntrap,r22
alw,0(r22)
rd, rg, ro

ro,r0,rl

rg,ro,r2

rd, r0,rd

ro, o, r4

rc, r2,rs5

r0, r0,ré

rG,rd, 7

rg,r0,r8

r0,r0,r9%

rQ0,r0,rl0
rd,r0,ril
rd,rd, rl2
rQ,r9d,rl3
rQ,r0,rl4
rd,r0,rls
rQd,ro, rle
r0,r0,rl?
0,0, rle
r0,rd,rl9
rd,r0,r20
ro, 0, r2l
rQ,r0,r22
rd,r0,123
0,0, r24
r0,r0,r25
rd,r0, 26
rd, rd, r2?
r0,r0, 28
r0,r0, r29
r0,r0, 30
r0,r0, r3l
Ox6B0 (r0)
r0,r0, rl0
r0,r0,ril
r0,zr0,rl12
rd,r0,rl3
rd,r0,rl4
rd,rd,rls
rd,r0,rlé
rQ,rc0,rl?
rd,r0,rla
rQ,rd,rl9
r0,r0,r20
rd,r0,r21
r0,r0,r22
r¢,rd,r23

traps, and walts

badaddr, badshifr,

¢ inic:

§ cwp=l1,

swp=01,

int, over,

isp=C00,
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acd
add
putpsw
add
add
add
add
add
add
add
add
add
acd
adad
add
add
add
add
add
add

reset;:
add
st
putpsw
add
add

badop:
add
st
putpsw
.word
add

privep:
add
st
putpsw
putpsw
add

padaddr:
add
st
puLpsw
impr
add

badshift;
ada
st
putpsw
srl
add

Jmp
reti
add

aversaet:
PULDSW
calir
add

Qver:

underset:
putpsw
ret
add

under:

intset:
putpsw
add
adg

walt:
add
st
la

end;
add
add
add

rQ,r0,r24
rQ,r0, r2s
Ox280(rQ)
rd,r0,rl6
rQ,r0,rl7
r0,r0,rl8
rd,r0,rl9
rd, 0, r20
r0,r0,r21
0,0, r22
rQ,r0,r2ld
rQ,rC,r24
ré,rd,r2s
rd, 0,26
r0,r0, 27
rQ,r0,r28
rc,rQ, r29
rd,r0, rid
rd, 4, ril
rQ, 0,0

rd, Sbadeop, r22
r22,atrap
O%CEO (r0)

rd, ro,

rQ, ct, 0

=3, Sprivop, r22
r2z,ntrap
0xQEQ {rC)
0x00000000
rd,r0,rl

rQ, $badaddr, 222
rzz,ntrap

OxQEQ {rQ}

0x0EQ {r0)

rQ, ro, 0

0, Sbadshlft,r22

r22,ntrap
OxQEQ (£0)
alw,badaddr+1
ro, 0,z

rQ, Soverset, r22
rz2,ntrap
OxQED (r0)
ro,%$4,r2z2

rQ, r0, 0

alw,0{r25}
alw,01(r24)
r0, 0, ro

Ox1ED (r0)
over,r2é
rC, r0, 0

Ox0EQ (L0}
alw,8{r26}
rQ,r0,t0

0xCEQ {rD)
rd, r0, o
r0, 0,0

eQ, 50xFQ0, r22
r22,mem
mem, r2l

r0,r0,r0
rQ, 0, 0
r0,10,r0

‘

*
+

cwp=01, swp=01, isp=000,

cwp=00, swp=01, 1isp=110,
assert reset line

cwp=00, swp=0l, 1isp=110,
badop

cwp=00, swp=01l, isp=l110,
privop

cwp=00, swp=01, isp=110,
badaddr

cwp=00, swp=Cl, lsp=110,
badshift

cwp=00, swp=11l, isp=110,
overflow

cwp=00, swp=01, isp=110,
underflow

cwp=00, swp=01, isp=110,
assert interrupt line

assert wait
assert wait
assert wais
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mem:
.word 0x00000000

test.ras

]

+ test test [nstructlens, error detectian, rollbacks, and state repair

L]

] clerbm, clrrbs, jmprbm, jmprbs

¥ addbpm, addbps

] ldrbpm, ldrbps

# stribdm, strbds

[ ]

reset:
jmpr alw, Init2
aad r0,r0,rl
.space @8

int:
.space 16

over;
.s5pace 16

under:
.space 16

shutdown:
add ro, rd,rg
add ro, rd, o
add r0,r0,r0
add r0d, 0,0

inir2
add rd,r0,r2
add rQ,rQ,r3
add r0,r0,r4
add rQ,z0,r5
add c0, 0,6
add rd,r0,xr7
add rd, G, 8
add ro, rd,r9
add ro,r0,rl0
add rG,r0, rll
add rd,ro, rlz
acd r0,r0,ril
add rQ,rc0,rl4
add r0,r0,rls
add r0,r0,rlé
add £, 0,17
add rd, ro, rl8
add rQ,r0,rl9
add r0,r0,r20
add r0,r0, r21
add ro,r0,r22
add r0,r0, 23
acd r0,r0,r24
add r0,r0,r25
aad ro,r0,r26
add r0,r0,r27
add r0,r0, 28
add r0,r0, 29
add rd,r0, r30
add r{,r0,ri3l

endinit:
add ¢, 0,0

master:
clrrbm
clrrbs

ldrbpm mem,rl

add 0, 0,0
add tQ,r0,r0
clrrbm
clrrbs
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addbpm rl,S1,r2

add r2,51,r3
adad 0, ro, ro
add ro, r0, 0
clrrom
clrrbs

strbam r3, mem

adad ro, rQ,
add rd, 0,0
clrrbm
clrrbs
add £0,C, 10 # reset rollback counter
add rd, r0, 0
add r0, 0,0
add 0, 0,0
add 0, 0, rd
add rd, rd, rd
add r0,rd, 0
add ro, 0,0
add rQ, 0,0
add ro,ro,r0
add r0, rd, rd
add ro, o, ro
add r, 0,0
add rQ,rg, o
add rQ,r0,r0
add r0,rQ,ro
siave:;
clrrbm
clrrbs
ldrbps mem,rl
add rQ, 0,
agd rQ,rd, cd
clrrbm
clrrbs
addbps  rl,$51,r2
add r2,51,r3
add rC,r0,r0
add rd,r0,r0
clrrbm
clrrbs
streds 3, mem
add rQ,r9, 0
add £, rd, 0
clrrbom
clrrbs
add r0, rd, r0 # reset rollback counter
add rd, 0, 0
add rQ, 0,
add 0, 0,0
add rQ,r0,r0
add ro, 0,0
add r0, 0,10
add G, r0, 0
add rd, r0, rQ
add r0,r90,rz0
add rd, 0,0
add r0, 20, £0
add rQ, r0, 0
add rd, 0,0
add rQ,rd, 0
add r¢,r0,rC
Jumg:
add ro0,$16,rl § branch offset
ada r0,SOxFCO, r2
clrrbm
clrrbs
jmpzbm r2,rl,rd
add rd, 20,0
loopm:
impr alw, loopm
add rd, ro, ro
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clrrbm
clrros

jmprbs  r2,rel,r3

add rd,rd, o
leops:
jmpr alw, locps
add rd,rl, o
dle:
add ro,8$8,rl # branch cffset
clrrbom
clrres
jmprbm  r2,rl, 0
add rd,rd,r0
clrrbm
clrrbs
jmprbm r2,rl,r0
add rQ, r0,r0
add rc, r0, 0
add rC, 0, 0
mem:
.word OxDECOADDE # OxDEADCODE
mirror.signals
]
] mirror.signals - bdsim and endot signal names and active times
]
' m> bdsim make vector
# s> set signal
] v> verlfy signal
¥ ¢> charge sharing propagated signal
mv:

m>mv pad.AD pad.AD32:0
m>mv in.AD in,AD32:0

m>my _busA _DusAll:(

m>mv _HusB  busB3l:0

m>mv busB_3DEC busB4:0_SDEC

m>mv busD busD3l:0 -

m>mvy busIMM busIMM4:0

m>my BUSIN busIN32:0

m>my busIR busIR13:0

m»my busOUT pbusCQUT31:0

m>mv busR buskR31:0

m>mv busS buss3l:0

m>mv busT busT3l:0

m>mv out, AD out . AD12:0

mrmv busCe busCC3:0

m>my busCWP busCWP1:0

m>mv busRA DusRA6:0

m>mv busRB busRB6:0

m>mv busRD busRDé:Q

m>my busSDEC busSDECZ4 busSDECLE busSDEC13 busSDECE busSDECZ busSDEC! busSDECS
m>my bBusBAR busBAR1:0Q

m>mv state,.PSW state,PSW3:Q

m>mv state.RFaddr state,RFaddr3:Q
m>mv state.busD state,busD3:0
m>my state.cc state.cc3:0

m>mv _lvec _lvecé6:4

momv ctrl.ALU op ctrl,ALU_op4:0
m>my ctrl,CWP_lne ctrl.CWP_incl:0Q
m>my out.slze out.slzel:0

m>my pad.size pad.slzel:0

m>my state.RB state.rb2:0

m>my CUdata.ln CUdata.inl:0

m>mv busCU3 busCUIl busCUA0

m>mv enb.pad.RB enb.pad.RB2:0
m>my error.state error.state3:0_
m>mv in.RB {n.RBZ:0

m>my pad.RB pad.RB2:0

m>mv st st2:0

m>my out.state out,.statel:0

m>mv pad.state pad.stateld:Q

c=2C;
c>busIR :busIR 'pl2 p22 p23 p33 p3i4 p44d pal
v>ALU.carry_car tALU.carry_car Tp23 p3i3 pi4
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v>ALU,carry val
v>ALU.gate0lT
v>ALU.gatedUT cond
v>CUdata.in
v>INC.gate
v>INC,gate cond
v>IR.write™
v>PAR.bushA
V>PAR.busB
v>PAR.BuSIN
v>PAR.busQUTA
v>PAR.busCUTB

P write
v>AF.write

v>busCUl

v>cond

vrctrl,CU write
vrctrl RB wrlite
v>grri.pbadop
vretrl,clrrp
vrctrl.norepalr
v>ctrl,over under
v>crrl_gverride master
vrctrl.override slave
vyerrl.privep -
v>gate, IR
v>gate.,busCUT _padAD2
v>gate.busOUT_padAD4
v>load,PAR bushA
v>lcad,PAR busB
v>load.PAR_busIN
v>load.PAR busOUTA
v>load.PAR_busCUTB
vrrepalra ~
vorrepairh

vrrepalrB
vrrepalrd

¥>st -
v>state.I0
v>state,op_prev
v>state.repalrl
v>state.repair2
v>state.shutdown
v>state,suspend
v>state,walt

c=->d:

v>_lvec

vretrl ALY ¢
v>crrl ALU op
v>ctrl,CWP Inc
vrorrl DIMM_sxt
vr>ctrl.IMM write
vrctrl.IR write
v>ctrl.MAR write
vrerrl,PC select
vrctrl.PC wrlite
vrcerl PSW_retl
vrCrrl.PSW write
v>Ctrl.RF_write
v>ctrl,RFpar_invert
v2CLrl.50R_write
v>ctrl,SHIFT sxt§
v>ctrl,SHIFT sxt?
v>cerl.busINpar lnvert
v>gate ALU busD
v>gate.ALU busOUT
v>gate.DIMM_busT
v>gate.IMM13 busT
v>gate.IMM19 _busT
v>gate,INC busOUT
v>gate,MAR _busQuUT2
v>gate . MAR busOUT4
v>gate,PC_busb2
v>gate,PC busD4
v>gate.PSW busD
v>gate.SDR_busQUT
v>gate,SHIFT_busL
v>gate.SHIFT bush
v>gate.busA_busD2
v>gate.busA_busD4
v>gate.busA DusS
v>gate.busD_busOUT
v>gate.busIN DusT
v»gate.padAD busIN
v>load,BAR_bUsDR
v>ioad.PSW_busCC
v>load.PSW_buaD

ALU.carry val
:ALU.gateOUT
:ALU,gateCUT cond
rcuiClUdata.in
:INC.gate
:INC.gate_cond
:IR.write
;PAR.busA
:PAR.busB
:PAR.DusIN
tPAR,.DUsSOUTA
PAR . busOUTRB
iPC.wrlte
iRF.write
1Cu:tbusCU
tcuscond
icuiccrl.CU write
ictrl.RB_write
retrel.badep
ictrl,clrrb
ictrl.norepalr
ictrl.over_under

'p23
'p3d
'p34
1p23
'p34
p34
'p23
'p23
'p23
'pdl
ipal
'p4l
'p34
'piq
tp23
'pll
'pi4
'p23
'pl2
'pdl
Ip23
1p23

:fsmictrl.override master

ifsmictrl.override slave

ictrl.privop
:gate. IR
igate,.busOUT padAD2
rgate.busOUT padAD4
iload.PAR_busA
:lecad.PAR busB
:load.PAR busIN
:load.PAR_busQUTA
:load,PAR busQUTB
:fsm:repalrh
ifsmirepalrA_
fsm:repairs
tfsm:repalrB_
(fsm:st

istate. [0
;fsm:istate.op prev_
rstate,.repalr?
istate.repair?
istate.shutdown
:state.suspend
:state,wait

tint:ivec
ctrl.ALU ¢
tctri.ALU op
ictrl.CWE inc
cctrl DIMM sxt
rctrl IMM write
tetrl IR write
retrl MAR write
ictrl.PC_select
ictrl .PC_write
ictrl.PSW_reti
ictrl.PSW write
Ictrl.RF_Write
tctrl . AFpar invert
ictrl.SDR_write
tctrl . SHIFT sxt§
rccrl SHIFT sxtT
tctrl.busINpar invert
igate ALU busD
igate.ALU_ busQUT
igate.DIMM busT
igate.IMM13 busT
igate.IMM19 busT
igate.INC_busQUT
tgate.MAR_busOUT2Z
igate.MAR busQUTHY
:gate.PC_busD2
tgate.PC_busD4
igate.PSW_busD
igate,50R_busQuUT
:gate,SHIFT busl
igate.SHIFT_busR
sgate.busA busD2
igate,bush_busD4
:gate.bush_buss
tgate.busD_busQUT
:gate.busIN_busT
:gate.padAD_busIN
:load.BAR_busDR
:load.PSW_busCC
:load.PSW busD

Tpl2
1223
'pi2
'p34
1p23
'p23
'pdl
!p4l
pdl
1pll
‘pll
'pll
'pll
'p34
'p4l
'pl2
'pll
'pll
'p4l
'plz2
lpll

'p34
'p2l
tp22
'pl2
'p23
'p23
'p34
ipdl
pdl
'pl4
Tpda
'pl4
'p3d
'p4l
'p34
'pl2
Ipld
1p23
'p34
'pl4
'p23
'p4l
'pal
'pd4
ipl2
'pld
‘pl2
'pld
'pdd4
'pl2
'p34
'pi4
'pl2
p34
pll
'pl2
'p23
'p23
'pl2
tpdl
Ipdl

p33
péd
pda
pll
pa4
pd4
p33
pa3
pi3
pll
pl1l
pil
pd4
pdd
pi3
pl2
pd4
pll
pé2
pll
p33
jeER

p22
P33
pa22
pdd
pll
pll

pll
pll
pl2
pl2
pl2
pi2
pé4
pll
p22
pl2
pl2
pll
pe2
el2

pé4
p33
p23
p22
p33
pi3
péd
pll
pil
pdd4
pdl
pd4
pdd
pll
P44
p22
pa2
pil
pd4
p44
p33
pll
pll
pdd
p22
pdd
p22
pi4
pdd
pZ2
pdd
p44
p22
p44
pl2
p22
p33
pi3
p22
pll
pll
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pld
pdl
pal
P4
p4l
pdl
p34
pid
+X L]
pilz
piz
pl2
pal
pal
=KL ]
o34
pdl
p34
p23
pl2
pi4
p34

'pl2
‘plz

p23
pla
p23
pdl
pi4
pl4
pl2
pl2
pl2
p23
p2l
p21
p2l
pdl
plz
pal
p22
p22
pl2
vl
p23

pdl
pi4
p3l
p23
p34
P34
pd4l
pl2
pl2
pdl
pll
pdl
pdl
pl2
pdl
p23
p23
pid
pél
pdl
+XLE]
pi2
plz
p4l
pa3
p4al
p23
pal
pil
p23
pal
p4l
p23
p4l
p22
p2a
pld
pid
p23
pi2
pl2

P44 pal

p4d4 pdl

p22 pa3

p22
p22

p23
p23

B33
p33
P RE]
pa3

pl4
plq
pl4
plq

pd44d pal
p44 pa.
p44 p4t

pd3
p23
p23
p22
p33
p33

p34
p33
p33
p23
p34
P34

pla
pl4
pll

p4a

P34

p31 pid4

pl?2

p34 pdd p4l
p34 pdd pal

p23 p33 pld pi4d p4l

pid
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v>load.RFTRAN busIN
v>load. RFaddr RA
v>load,RFaddr RB
v>load,RFaddr RD
v>load.SHIFT TMM
v>load.SHIFT busl
v>ioad.SHIFT busk
v>load.SHIFT busT
v>ioad.SHam 0
v>load.SHam_BAR
v>load, SHam MM
v>load. SHam_busB

c->p:

v>enb, AD_
v>enb.pad.RB
v>enb,pad, rb
v>enb.pad.shutdown
viout.enb.addr
v»out.erb.data
vrout.la
v>out.lira
v>rout.repairaA
v»out ,repalrB
VIout, r'w -
v>out.state
s>pag. rw
s»pad.enb.addr
s>pad.enp.data
s>pad. id
s>pad.lra
s>pad.state

cw>c,d:
vrstate.int
v>state.rb
v>state.RB
vrstate.reset

c->d,p:
v>out.slze
s>pad.size

d->»c:
v>busB.par
v>pusd.par
v>pusOUT . par
v>cirl.badsnlft
vrcrri.int_enb
v>error,busINl
v>rfA.par
vrrf3,par
v>state,PSW

v>state,PSW overflow

v>state.RFaddr
v>state.busk
v>state,cc

g->d:

v> bush

v> busB
v>ousB_SDEC
v>busD
v>busIMM
c>busOUT
v>busR
v>buss
v>busSils
v>busT
v>_busRA.par
v>_busRB.par
v>busCe
v>busCWP
v>busD,.par_RF
v>busRA
v>busRB
v>busRD
v>busSDEC
v>rfD.par

d->pi
v>out.AD
d=>c,d:
cxbusIN
v>busBAR

d=->c,p:

:load.RFTRAN busiN
:load.RFaddr_RA
:lecad.RFaddr RB
:load.RFaddr_RD
:1lcad.SHIFT_IMM
:load,SHIFT buslL
sload.SHIFT busR
iload.SHIFT busT
iload,5Ham_0
t1load.5Ham_BAR
:load.SHam_[MM
:load.SHam_busd

:cmprenb.AD
:rb:enb.pad RB
;rb:enb.pad.rh
irb:enb,pad.shutdown
:pad.enb.addr
;pad.enb,.data
:pad,id

:pad,ira
irbiout.repatrh_
:rb:out.repalrB
rpad.rw -
icmp:state,state
spad.rw
:pad,enb.addr
tpad.enb.data
:pad,id

:pad,.ira
:pad.state

:state,int
:state.rb
:state.RB
:state,reset

out.size
:pad.size

tpar:busB.par
tbusD.par
:busOUT . par
tctrl._badshift
tctrl.int_enb
sparserrer . busINl
:rfA.par

srfb.par
;state,.PSW
tstate.PSW_overflow
:state. RFaddr
:state,busD
sstate.cc

:bushA

:busB
tgate:busB_SDEC
tbusD

tbusIMM
+busOUT

tbusk

:buss
igate:busSlls
:busT
:busRA.par
:busRB.par
tbuscC
sDbusCWP
tbusD.par
:busRA

:busRB

tbusRD
:busSDEC
irf:rfD.par

tbus:busOUTI3

:bus:busIN33
:busBAR

'p2l
'p34
'pld
'plg
'pl2
'p3d
'p34
1p34
'pdl
tp23
1pl2
‘pl2

'pl2
'pll
pll
1pll
'pll
pll
‘pll
‘pll
pll
'pll
1pll
'pll
'pll
'pll
'pll
'pll
1p1l
'pl1l

'p23
‘pll
‘p23
‘pll

pl2
pll

1p23
tp23
'pdl
p23
tpl2
'pdl
'pl2
tpl2
'pél
'pl2
tpddq
'pll
‘pl2

'pdl
'pdl

Ipll
Ipl2

'p33
tpll
Tpdd
tpad
'p4d
‘pl2
'pll

'pil

1933
tp22

p33
pdd
P44
p4q
p22
pd4
pdd
p44
pll
£33
p22
p22

pe2
plz
pl2
pl2
pl2
piz2
pl2
pl2
piz2
pl2
pl2
pl2
pl2
pl2
pl2
pl2
pl2
pl2

pil
pl2
pi3
pl2

péz
pl2

pl3
pll
pll
p3l
pZ2
pll
p22
p22
pll
p22
p4l
pi2
p22

pll
pll
p22
pl2
p22
pl2
p22
pl2
pl2
plz2
p22
paz2
pll
pl4
ple
pél
p4l
p4l
p22
pl2

pl2

P34
p23
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pl4
pdl
pdl
pdl
p21
p4l
pdl
pdl
plz
pl4
p2l
pid

p23
p22
p22
p22
p22
p22
n22
p22
p22
p2
p22
p2
e
p22
pe?
p22
p22
p22

p34
p2l
pl4
p2

p23
pa22

pl4
p34
pl2
plq
p23
pl2
p23
pZ3
pl2
p23

P23

gl2
plz2
p2l
p22
p2l
p22
p23
p22
p22
p22
p23
p23
pl2

pll
pll
pll
e23

p22

p44
pil

pe2

B34
p2l
p2l
p2l
p2l
pél
p23
p23
p23
p2l
p23
p23
pl3
p23
p23
n23
p23
p2l

pd4d
p33

p23

p33
p3

pd4
pdd
p23

p33

p33
p33
p23
pil

r23
p2l

p23
p2l
p23
p33
p33

pl2
k1

p23

pdl
p34

p23

pa4
pi3
pl3
+RX]
pl3
pil
pl3
p33
pia
p33
P33
p33
plil
p3il
p33
P33
P33
pi3

pdl
p34
pi3

pl34
pa2

p4l
pdl
pl3

pl4d
p34
p3d

p33
pi4

pi3
pll
e33
p33
pl3

pl4
pld

paa

pil

pal
pid
p34
pi4
D34
D34
D34
pl4
pig
pid
pid
p3q
<EL]
pl4
034
pl4
pid
pid

pll
pad

pl4

joX L]

p34

pdd
pid
pid

p34
pli4
p34
pl4
pla

pd4d
pad

pdl

P34

pd4

pl2
pal

p44

pad

pal
pal

p44
pd4

pdd
pd4d
pid
pdi
pdl

pd44 pdl

g4l
pal
s
[sL A
cal
[sEIA
oél
o4l
241
g4l
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'
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v>0out ,.sysmode
s>pad.sysmode

p->c:
v>error.ADO
v>error.ADl”
vrerror ADp_
v>errar,CMP_
vrerror.busk
v>aerror.bushs
v>errer,busoyT
vrerror.enb.addr
v>errer.enb.data
vrerror.ld_ B
vrerror.lra
vrerror.rw
vrerror,size
v>error,state_

v error. sysmode_
w>in,RB

v in_ irr

v>ln,rb
v>in,repalrAm
v>in.repalras
v>in.repalirBm
v>in.repairBs
v>in,reset
v>in.shutdown
vrin.wait
s>pad.walt
s>pad.reset
s»pad.irr
s>pad.rb
s5»pad,RB
s>pad.repalrAm
s»pad.repairhAs
s»>pad.repalrbm
s>pad.repalrBs
s>pad.shutdown

p->d:
s>pad.AD
v>in,AD

iout.sysmode
out . sysmode

cmp:error . ADO_
rcmp:error.ADl _
:cmprerror ADp
icmpierror.GMP_
terror.bush
rerror.bush
ipar:error.busQUT

rcmp:error,end,addr_
lcmp:ierror.enb.data_

icmplerror, ld
icmprerror.ira
iCmMpIerror.rw_
tempierror.size_
rcmpierror.state

rcmprerror, sysmode_

irb:pad.RB
ipad.irr
tpad.rb
ipad.repairAm
:pad.repalirhs
ipad.repalrim
ipad.repalrBs
ipad.resat
:pad. shutdown
ipad.walt
ipad.wait
ipad.reset
tpad.irr
ipad.rb
:rb;pad.RB
ipad.repalrAm
:pad.repalrAs
ipad.repalrBm
:pad,repalrBs
:pad.shutdown

:pad.AD
1pad.AD

'pl2
'pll

'p4l
'p4l
'pdl
‘pdl
‘p3d
'p34
pail
'pdl
lpdl
fpdl
p4l
'p4l
ipdl
'p23
'p23

p22
pl2

pll
pll
pll
pll
pd4
pd4
pll
pll
pll
pll
pil
pll
pll
p33
p33
p22
pe2
p22
piz
pi2
p22
P22
p22
p22
p22
pi2
pl2
pl2
pl2
pl2
pl2
pl2
pl2
pl2
pl2

plz
P34
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p23
p22

pi?
pl2
pl2
pl2
pél
p4l
pl2
pl2
piz
pl2
pl2
pl2
pl2
pl4
P34
pll
p23
p23
p23
pa3
p23
p23
p23
p23
pl
p22
p22
p22
p22
p22
p22
p22
p22
p22
p22

p22

£23 pl3

p23 p33
p23 pi3
P23 p33

p23
p23
P2l
p23
o2l
pZ3
p23
p23
p23
p23

p23

P33
SEE]
P33
pi3
p33
pi3
pil
pi3
p33
p33

pil

pl4 pad pdl

p34
pla
p34

p34d
p34
p34
p3d
p34
p34
pl4
pid
pi4
pld4

P34

pa4a
pda
pd4
pa4
pdd
pd4d
pdd
p44
pd4
pdd

pd1
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7.3. Endot Code

This section contains the Endot code used to simulate the Mirror Processor at the
register-ransfer level. Console.isp is used to send signals into the system and read
values out of the system (because some lines are active low). Memory.isp is the memory
system the processor pair interfaces with. The rest of the modules form one processor.
Two instances of this processor are connected together in the topology file, with pad.ms

in the master processor set to 0 and pad.ms in the slave processor set to 1.

Most of the names match with the datapath modules and are self explanatory.
Cmp.isp contains the pad comparators and part of the coniroller. Cu.isp, fsm.isp, int.isp,
and rb.isp make up the datapath controlier. The parity generators are described in
par.isp, and the bus drivers to gate between busses are described in gate.isp. Endot only
allows wired-OR or wired-AND signals; once the driver is removed, the signal goes back
to 0 or 1. Bus.isp is a hack to make the interconnecting wires behave like VLSI

capacitive wires that are capable of holding charge for short periods of time.

console.isp

,,'-

. console.lsp - Control and Examine the System
*

/

state
in.reset,
in.irr,
in.rb,
in.RB<3>,
in.shutdown,
out ,reset,
out.lrr,
out .,walt,
out .rb,
out ,RB<3>,
enb,.RB2,
enb.RBL,
enb.RBO,
out ,RBZ,
out ,RB1,
out .RBO,
out.shutdown;

179 console.isp



port

phll ‘’output,
phiZ ‘output,
phild ’outpuc,
phid ‘output,

pullup.reset 'cutput:and,
pullup.irr ’output:and,
pullup.rb ‘output:and,
pullup.RB2 *output:and,
pullup.RBl "output:and,
pullup,RB0 routput:and,
pullup.shutdown ’'output:and,

pad.reset ‘bldirectional:and:disconnect,
pad.lrr ’bidlrectlonal:and:disconnect,
pad.rb ‘bldirectional:and:discennect,
pad.wait ‘output,

pad.RBZ ‘bldlrectional:and;dlscennect,
pad.RBl "bidirectional:and:disconnect,
pad.RB0 'bidirectlonal:and:dlgconnect,
pad.shutdown ’'bldlrectlenal:and:disconnect;

main:=/{

when

when

when

when

when

when

when

when

when

pullup.reset=1;
pullup.irr=1;
pullup.rb=1;
pullup.RB2=1;
pullup.RBl=];
pullup.RBO=1;
puilup.shutdown=1;

pad.reset=0;
pad.lre=0;
pad.wait=0;
pad.rb=Q;
pad.RB2=0;
pad.RB1=0;
pad.RBO=0;
pad.shutdown=0;
next;
termlnate;

{pad.resef) =
in.reset=pad.reset;

{pad.lrr):=|
in.irr=pad.irr;

{pad.rb) :={
in.rb=not pad.rb;

{pad.RB2, pad.RB1l, pad.RBO):={
in.RB<2>=not pad.RBZ;
in.RB<1l>=not pad.RB1;
In.RB<Q>=not pad.REO0;

{pad.shutdown} s=1{
in.shutdown=pad,.shutdown;

{cut.reset) ;=
if {out.reset eql 1)
connect (pad.reset)
else
disconnect {pad.reset);

{out.irr) 1=
1f (out.irr eql 1}
connect (pad.lrr)
else
disconnect (pad.iry);

{out ,walt) :={
pad.walt=out.walt;

(out.rb) =
if {out.rb eql 1)
connect (pad.re)
else
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dlisconnect (pad.rb};

when (out.RB):={

out .RBZ=gut ,RB<2>;
out .ABl=out.RB<1>;
out .RBO=out ,RB<O>;

when (enb.RB2:change, ocut.RB2:change, pad.RB2:change) :=¢{

delay(l); /* Insert propagatlon delay */
1f {enb.RB2 and out,RB2Z)
caennect (pad.RB2)
else
disconnect (pad.RB2);
enb.RBl=enb.RB2 and (out,.RB2 or pad.RB2};

when (enb.RBl:change, out.RBl:change, pad.RBl:change):={

deiay(l}; /* Insert propagation delay */
Lf {enb.RBl and out.AB1l)
connect {pad.RB1l}
else
dlsconnect (pad,.RBl};
anb.RBC=enk,RBl and {cut.RBl or pad.RBl);

when {(enb.RBO:change, out.RBO:change, pad.RBO:change):={

delay{l); /* Insert propagatlon delay */
if (enb.RB80 and out.RBO)
connect {pad.RBQ)
else
Lsconnect (pad.RBO} ;

when f(out.shutdown) :={

else
disconnect (pad.shutdown);
}
.
memory.isp
e
. memory.lsp - Memory
*/

macro
WORD = 32s;

state
address<3io>,
bar<2>,
rw,
data_iatch<WORD>;

port
pad.AD<WORD+1> rbidirectlional:dlisconnect, /* address/data bus
paa.size<2> finput, /* width code */
pad.enb.addr "input, /* address enable "/
pad.enb,data ‘input, /* data enable */
pad,.rw ‘lnput, /* read/write */
pad.rb ‘lnput:and; /* rollback signal */

memory

1f ({out.shutdown egl 1}
connect (pad.shutgown)

inst [0:0] <WORD>;

when LATCH (pad.enb.addr:lead):={( /*addr must be on bus before enable */

)

delay(i); /* latch and decode address +/
address=pad.AD<31:2>;

par=pad.AD<1l:0>;

TwW=pac.rw;

when READ (pad.enb.addr:itrail, rw

{{pad.enb.addr eql 0) and {rw eqgl 0})}:={
delay(2); /* simulate read access delay */
connect (pad.AD}
pad.AD=parity(inst[address]) contat lnst[agdressj;
walt (pad,snb.data;trail);
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dlsconnect (pad.AD)

}

when WRITE (pad.enb.data:lead, rw
{{pad.enb.data eql 1) and (rw eql }}):=¢

delay(l);

data_latch=pad.AD;

next:

/% lateh data */

If (pad.rb egl 1} {
case {pad.slze concat bar

8: /Y IWIRIW W] s
inst{address]=data lacch
4 AR EEE B FE Y
Lnst [address]|<15:0>=data latchelS:0>
61 IYOAWIRL || ey B
inst [agdress]<3]:16>=dataz_latch<3l:16>
Q: AR B TR
inst[address]<7:0>-data‘latch<7:0>
1: ANE RN F N Y
inst(address|<l5:8>=data latch<l5:8>
2: I WLy -
inst [address]<23:16>«data latche<?3:16>
3: AL I R Y B
inst{address}<3l:24>=data latch<3l:24>
esac; -
1
}
N
alu.isp
/e
N alu.lsp - Arithmetlc/Logic Unit
./
macro
WORD e 32s;
state
AI<WORD>,
BI<WCRD>,
A<WORD+1>,
B<WORD+1>,
AXorB<WORD+1>,
AancB<WORD+1>,
AOCB<WORD+1>,
L<WOQRD+1>,
C<WORD+1>,
D<HWORD+1>;
port

phil *lnput,
phi2 finput,
phld rinput,

pnid ’input,
busD<WORD> ‘bidirectional:disconnect,
busR<WORD> ’ input,
busQUT<WORD> ’output:disconnect,
busCC<4» ’outpur,
ctrl ALV op<5> ‘input, ! 4: i=subtraction
- ! 3: 1=XOR
! 2: 1=AND
! 1: 1=0R
! 0: l=sgum OQO=legic

ctrl.ALU
gate ALU

¢ ‘input,
busd ' input,

gate. ALU busOUT ‘input;

when {(phl2, busC,
{phi2 eql 1
delay(l);
Al=busD;
BI=busR;
}

when {AI, BI, ctr
delay(l);

busR
1)i=¢
/* Insert propagatlcen delay */

1.ALU op):i={
/* Insert propagation delay */

A=pl ext 33;
if (ctrl,ALU_op<q> eql 1}
Bs{not BI} ext 13
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)

when (phid:trail):={
delay(l); /* Insert propagation delay */
L= (AxorB and (ctrl.ALU op<3>» sxt 33)) or
(AandB ard (ctrl.ALU_op<2> sXt 3 or
{AozB and {ctrl.ALU_op<l> sxt 33));
C=(A+3+{ctrl.ALU ¢ ext 33)) xor (A xor B};
next;
1f (ctrl.ALU_op<0> eql 1)
C=L xor C
alse
b=L;
H
when (phid;lead}:={
busCC<i>»=( {A<31> and B<31> and {not D<31>)) or
{({not A<31>») and ({not B<31>} and D<3l>})
ctrl.ALU op<0>;
busCC«0>=D<32> and ctrl,ALU op<0>;
)
when (D)=
delay(l); /* Insert propagatlon delay */
busD=0D<31:0>;
busCUT=D<31:0>;
)
when (phil, busD
{phil eql 1)}:={
delay (1}, /* Insert propagatiocon delay */
BusSCC<2>=busD<31l> eql 1;
)
when {phll;lead}:={
delay (i), /* Insert propagaticn delay */
bustl<3>=busD eql 07
)
when (phid, gate.ALU_busD
{ipnid eqgl 1) ard lgate.ALU_ busD eql lj)})i={(
delay(l); /% Insert gate opening delay */
connect (busD) ;
wait (phid:;trall, gate ALU busD:trail);
delay{l); /= Insert gate closling delay */
disconnect (bush) ;
}
when f(phid, gate.ALU_busCQUT
{(phld4 egl 1) and (gate. ALU_busOUT eql 1})):={
delay(l}; /* Insert gate opening delay */
connect (busQUT) ;
walt (phid:trall, gate.ALU busOUT:tralil);
delay(l}y; /* Insert gate closing delay */
disconnect (busQUT) ;
)
bar.isp
,’t
. bar.isp ~ Byte Address Reglster
7
macro
WORD e 326;
state
phi23;
port

else

B=BI ext 337
next;
AxorB=A xor B;
AandB=A ang B;
AorB=A or B}

phi2 ’input,
phil ’ input,
pnid ’lnput,

busDCWORD> input,

18
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when

when

when

when

when

when

busR<WORD> ’ input,
busQUT<WORD> * {nput,
busBAR<2> ’‘oputput:disconnect,
busMAR<2> ‘outputidisconnect,

load.BAR_busDR *input,
state,.rb ‘input;

{ph123, lcad.BAR busDk

((phl23 eql! 1) and {loag,BAR_busDR eql 1)1} 1={
delay(1l); /* Insert gate opening delay
connect {(busBAR) ;
walt {phi23:trall, load_BAR_husDR:trall);
delay{l}; /* Insert gate closling delay
disconnect (DusBAR);

(phi2:lead) :=(
delayil); /* Insert gate opening delay
phi23=1;

{(phil3:lead}:={
delay(l); /* Insert gate openlng delay
phli23=0;

(phid4, state.rb

{{phid eqgl 1) and ({state.rb eql 1))}:=(
delay{l}; /* Insert gate opening delay
connect (DusMAR}) ;
walt (prid4:trail, state.rb:trail);
delay(l); /* Insert gate closing delay
disconnect (busMAR) ;

{busD, busR):={

*/

*/

*f

*/

*/

delay{1l): /" Insert propagatiocn delay =/

busBAR<O>»=pusD<0> xor busR<0>;

busBAR<1l>=busDcl> xor bush<l> xor (busD<Q> and busR<O>) ;

(busOUT) ¢ =(

delay(iy; /* Insert propagatlon delay */

bUusSMAR=busOUT<1:0>;

bus.isp

Al

./

macro

state

pore

when

bus.lsp - Retaln data on busses

WORD = 32&;

busIN33<33>, /* BDSIM */
busQUT33<33>; /* BDSIM +/

bus IN<WORD> ’'bidirectional:connect,
busIN.par ‘bidirectional:connect,
busIR<l4> -bidirectional:connect,
busCU«2> ‘bidirectional:connect,
busT<WORD> 'bidirectional:connect,
DusD<WORD> ‘bldirectional:connect,
busD.par “bidirectiocnal:connect,
busBAR«<2> ‘bidirectlional:connect,
busQUT<WQRE> ’bidirectional:connect,
busOUT,par *input; /* BDSIM */

{busIN
{(drivers {busIN} gtr 1) and (pertstable{busIN)
disconnect {busIN};
delay (0);
busIN=busIN;
next;
connect {busIN} ;

gtr 0)}):={
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when

when

when

when

when

when

when

when

when

{busIN.par

({drivers(busIN.par} gtr 1) ‘and (portstable(busIN.par) qtr 0))):=¢{

disconnect (busIN.par);
delay(0);
busIN.par=busIN,par;
nexc;

connect (busIN.par);

{(busIN, busIN,par):={
busIN33«bysIN.par concat busIN;

{busIR
({arivers(busIR} gtr 1} and (portstable(busIR} gtr 0))):=!{
alsconnect {(busIR);
delay(Jy;
busIR=busIR;
next;
connect {busIR);

{busCU
{{drivers (busCU} gtr 1) and (portstable(busCU} gtr 0))):=(
disconnect (busCu) ;
delay{Q);
busCU=busCU;
next;
connect {busCd) ;

(busT
{{drivers (busT) gtr 1) and {portstable (busT} gtr 0)}) :={
dlsconnect (busT);
delay {0},
ousT=busT;
next;
connect (busT} ¢

{busD
(fdrivers (busD} gtr 1) and {portstable{busD} gtr 0))):={
disconnect {busD) ;
delay (0},
busD=busD;
next.:
caonnect (busby;

{busD.par

{(drlvers (busD.par) gtr 1} and (portstable(busD.par) gtr 0))):=¢

discennect {busD.par};
delay (C);
busD.par=busD.par;
next;

connect {(busD.par);

{busBAR

((drivers (busBAR) gtr 1) and [portstable{busBAR) gtr 0})):={

disconnect (busBAR) ;
delay{0};
pusBAR=bDUusBAR;
next;

connect {(busBAR);

(busCUT

{(drivers (busOUT) gtr 1} and {portstable (busCUT) gtr 0})):={

dilsconnect {busOUT) ;
dalay(0);
busOUT=busQUT;
next;

connect (busOUT} ;

(pusQUT, busCUT.par) :=({
busQUT33=busQUT.par concat busQUT;
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.
cmp.isp
‘IQ
* cmp. isp - Compare on-chip ocutputs with off-chlp outputs for errors
.
macro
WORD M 32&;
state
error.enb.addr,
error.enp,.data,
error.rw,
error.size,
error.id,
error.sysmode,
error.lra,
error. A,
error.D,
error. CMP1,
errcr.state,
state,.state<qd>,
save,.shutdown,
save.rb,
save,.repairl,
enb.AD , /* BDSIM */
error.Adl , /* BDSIM v/
error.ADD , /* BDSIM */
errar . ADp , /* BDSIM */
error.iMP_, /* BDSIM =/
error.enp.addr_, /* BDSIM =/
error.enb.data_, /* BDSIM */
error.id , /* BDSIM */
error,ira , /* BDSIM */
error.rw_, /* BDSIM */
error.slze , /* BCSIM */
error.state <4>, /* BDSIM =/
error.sysmode_; /* BDSIM */
pars

ophil "input,
phl2 input,
phi3 *input,
phia ’lnput,

out.enb.addr ’inputc,
pad.enc.addr ‘bldirecticrnal:dlscennect,

out .enp.data ‘input,
pad,enb.data *‘bldirecticnal:disconnect,

out.rw ‘1input,
pad.rw 'bldirectional;disconnect,

out,s5ize<2> *linput,
pad.size«<2> ’'bldirecticnal:disconnect,

ocut.id *input,
pad.ld 'bidirectional:discennect,

cut.sysmode *input,
pad,sysmode ‘bidirectional:disconnect,

out..ira ‘input,
pad.ira "bidirectlonal:dlsconnect,

state.busD<4> ’input,

stace.PSW<4> ’input,

state,RFaddr<4> ’input,

state,suspend ‘input,

state.op_prev ‘lnput,

pad.state<4> ‘bildirectlicnal:dlsconnect,

busQUT«32> ' Lnput,

busQUT.par ' lnput,

pad.AD<33>» 'bldlirectional:disconnect,
error .CMP ‘bldirectional,

state.rb ’input,

state.repalrl ‘lnpput,

state.repalrd ‘linput,

state.shutdown *input,

gate.busCUT_padADZ ‘input,
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Gate.busOUT padAD4 ‘input,
pad.ms ’i{nput,

ctrl.overrlde master ‘lnput,
ctrl.override_slave ’input;

main:={

when

when

when

when

when

when

when

when

when

when

1f [pad.ms eql O) {
¢onnect {pad.enb.addr);
connect {pad.enb.data);
cannect (pad, rw);
connect (pad.size);
connect {pad.id);
connect {pad, sysmode} ;
connect {pad.ira};
connect (pad.state) ;

HH

enb.AD =1;

error.AD]l =1;

error,ADO " =1;

error.ADp_=1;

error,CMp =1,

error.enb.addr_=1;

error.enb.data =1;

error.ic_=1;

errcr.ira =1;

error.rw_s=1;

error.size =1;

error.state_=1111;

error.sysmode =17

next ;!

terminate;

{cut.enb.addr, pad.enb._addr):={

aelay(l}; /* Insert propagation celay */
error.enb,addr=out.enp.addr neq pad,enb.,addr;
next;

error.enb.addr_=not error.enb,addr;
{out.enb.addr):={

delay{l); /* Insert propagation delay */
pad.enb,addr=out .enb.addr;

(out.enb.data, pad.enb.data):={

delay(l); /* Ingert propagatlon delay =/
error.enp.data=cut.enb,data neq pad.enb.data;
next;

error.enb.data _=not error.enb,data;
{cut.enb,data) 1=

delay(l); /* Insert propagation delay */
pad.enb.data=out .enb.data;

{out ., 7w, pad.rw}i=(

delay(l); /* Insert propagation delay */
error.rw=out.rw neq pad,tw;
next;

error.rw_-not errcr.rw;
(cut.rw):i={

delayi{l); /* Insert propagation delay */
pad.rw=out ,rw;

(out.slze, pad.size):={

delay(1l}; /* Insert propagation delay */
error.size=out.size neq pad.size;
next;

error.size_=not error,.size;
{cut.slze) =

delay(i); /* Insert propagatlon delay */
pad.size=gut.size;

fout.id, pad.id}:=¢(

delay(l); /* Insert propagatlon delay */
error, id=cut.id neq pad.id;
next ;

error.ld =not error,ld;
(out. id):={(

delay{l}:; /* Insert propagatlon delay */
pad, la=out . 1d;
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when

when

when

whan

when

when

when

when

when

when

when

{our,.sysmode, pad,sysmode);={
delay(l); /* Insert propagation delay */
error.sysmode=out .sysmode neq pad.sysmode;
next;
error.sysmode_=not error.sysmode;

{out.sysmode) 1=
delay{l}; /* Insert propagatlon delay */
pad,sysmcde=out . sysmode;

{cut.lra, pad.ira}:={
delay(l); /* Insert propagation delay */
error_lra=cut.lra neq pad.ira:
next;

error.lra_=not erreor.lira;

{out . fraj:={
delay(i); /*
pad.lra=out,lra;

Insert propagation delay */

{phil, state.shutdown, state.repairl
{phil eqgl 1}}:=¢{
delay{l}; /* Insert propagation delay */
save.shutdown=state.shutdown;
save.rb=state.rb;

save.repairl=state.repalrl;

state.rb,

(state.busD, state.PSW, state.RFaddr,

state.repalri, state,repair?, state.rb, save.rb,
delay(l}; /* Insert propagation delay */
state.state=({state,busD and

state,suspend,
save.repairi}:=¢(

cmp.isp

state.op_prev,

(i{not (save.rb or save.,repalrl}} sxt 41) xor
{state.PSW and ({not state.rb) sxt 4}} xor
{(state,RFaddr and {(not save.rb) sxt 4}) xor

(state.suspend concat state.op_prev concat
state.repalrl concat state,repalr2);

{state.state, pad.state):={
delay{l}; /* Insert propagation delay */
error,state=(state.state neg pad.state)
error.state =not (state,state xor pad.state};

(state.state) 1=
delay{i); /* Insert propagatlon delay */
pad.state=srate.state;

{pusQUT, busOUT.par, pad.AD):={ /* BDSIM */
delayil}; /* Insert propagaticn delay */
errcr.ADl_-busOUT<31:16> eql pad.AD<31:16>;
error ADO_ =busOUT<15:0> eql pad.AD<15:0%;
errer.ADp_=busQUT.par eql pad,AD<32>;

{pnil, busOUT, busOUT.par, pad.AD
{phii egl 1)} :=¢(
delay(l); /* Insert propagatlon delay */
error A={ (busOUT.par concat busOUT} neq pad.AD)
{phi3, busCUT, busOUT.par, pad.AD
(phi3 eql 1)) :={
delay(l); /* Insert propagaticn delay */

error.D={ (busQUT.par ccncat busOUT)

{phi2, gate.busQUT_padAD2,
pad.ms,
{phi2 aql 1}):i=¢(
delay{l); /* Insert propagation delay */
1f ({gate.busOUT_padAD2 eql 1) and
({{pad.ms eql 0)
{ctrl.override_slave eql 0)))
connect {pad.AD); enb.AD_=0;
) else |
dlsconnect {pad.AD); enb.AD_=1;
)

{phid, gate, busQUT_padAD4, pad.ms
{phid4 egl 1}):={
delay(1}; /
if {(gate.busCUT_padAD4 eql 1) and
connect (pad.AD); enb.AD_=0;
) else {
disconnect (pad.AD); enb.AD =1;
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Insert propagation delay */
(pad.ms eql 0}) |

and {save.shutdown eql 0Ji;

and gate.busOUT_padAD4;

and gate.busOUT_paaADZ;

or (ctrl.overrlide master eql 1)) and
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):

)

when (busOUT, busOUT.par) :={
delay(l); /* Insert propagatien delay */
pad.AD=busCUT,par cencat busQUT;

¥

when (phli, state.rb, state.shutdown,
error.enb,addr, error.enb.data, 8rror.rw, error.size,
error,ld, error.lra, error.A, error,D
tphil eql 1)) :={
delay(l); /* Insert propagation delay */
error.CMPi=error.enb.addr or error.enb.cata Or error.rw or
error.slze or errcor.ld or error.ira or
ferror.D and (state.rb eql 0) and (state.shutdown eqi 91
)

when (phi3, state,rb, state,shutdown,
errcr.CMP1l, error.state, error,.sysmede, errer.A
(phid egl 1)):=¢
delay(l) /* lnsert propagation delay */
error.CMP={error.CcMFl or error.state or error.sysmode or errcr.A) and
{state.rb eql 0) and {state.shutdown eql 0);
)
when f{error.CMP}:=(
error,CMP_=not error.CMP;
)

cu.isp
s*
- cu.lsp = Centrel Unit
"/
macro
WORD - 32s,
RB 1= 4&;
state

CUdata.in<2>,
CUdatal [0:RB]<16>,
CUdata2{D:RB}<16>,
CUvalidl[Q:RB],
CUvalid2{0:RB],
cond,

cond, 2<4>,
crri.CU_write,
folul - -2

Clerror,
busiRerror,
op_prev;

port
phil ‘input,
pni2 ’input,
phil rlnput,
phld *lnput,

pad.walt ‘input,

busIN<WORD> *input,

busTR<14> ’bidirectiocnal:disconnect,
busCU«<2> ‘bldirecticral:disconnect,
bualR3«14> ’bidirectlional:discennact,
busCU3<2> ‘bidlrectional:disceonnect,

state.cc<4> ‘input,
state.repalr? ‘input,
state.repairl ‘input,
state.suspend ‘input,
st.repair2 ’linput,
st.repalrl ‘linput,
state.int 'linput,
state.{ntd "input,
state,IC "input,
state.walt ’'bldirectional,
state.rb ‘input,
State,RB<I> *input,
state.reset ’Iinput,
state.shutdown ’input,
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format

main: ={

)

ctri.badep "input,

ALU.carry_car ‘lnput,
AlU.carry val ‘linput,
ALU,gate0UT rinput,
ALU.gateOUT_cond ‘lnput,

ENB ‘{nput,

PAR.busIN 'input,
PAR.busA ‘lnput,
PAR.usB ’ lnput,
PAR.busCUTA *input,
PAR.DusCUTB ‘input,

INC.gate 'linput,
iNC.gate_cond ‘input,

SHIFT.sxtT *input,
gate.busA busS4 ‘linput,

IR.write *input,
BC.write ’input,
RF.Wwrite 'input,

ctrl.AlU_c ‘output,
gate.ALU busD ’'output,
gate.ALU_busOUT ’output,

gate.padAD busIN ‘output,
gate.INC busQUT foutput,
gate,.IR ‘lnput,

out.enb.addr ‘output,
out.enb.gata ‘output,

gate.pusA DusS ‘output,

load.PAR_busIN ‘output,
load.PAR_DusA ‘output,
icad.PAR_busB ‘output,
icad.PAR_busQUTA ‘output,
icad.PAR_busOUTB "cutput,

load.RFTRAN_busIN "output,
crrl.SHIFT sxtT 'ourput,

ctrl.IMM write ‘output,
ctrl.IR write ‘output,
ctrl . MAR wrlte ‘output,
ctrli.PC_write ’oucput,
ctri.PSW_write ‘output,
ctri.RB_write ‘output,
ctrl.RF write ‘output,
ctrl.SDR_write ‘output;

op ] busIN«<31:25>,
sce Hd BusIN<24>,

rd H busIN<23:19>,
imm 1= pusIN<13>,
cc_z H co<lx,

cc_n = co<i>,

cc_v i= ce<l>,

cc_c i= co<l>;

CUvalidl [RB]=1;
CUvalld2{RB|=1;
next;
terminate;

when [phid:trail):={

state
cu<iz»;

CUdatal (0]=CUdata.in concat buslR;

CUvalldl[0)=ctrl.CU_write;

cu=1;

next;

while {cu lss RB) {
Cudatal{cu|=CUdata2(cu-1]|;
CUvalldl[cu]=CUvalid2{cu-1];
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cu=gu+l;

1

1f (CUvalid2([RB~1} eql 1) ¢
CUdatal [RB] =CUdata2 [RB-1];
ClUdata2{RB]=CUdata2 (RB=1];

)

when (phl2;trally:r=¢
state
cu<iz>;

cu=Cy

next;

while {cu iss RBY {
Cldataz([cul=ClUdatallcu];
Clvallad2{cu}=CUvalldl[cu];
cu=cu+ly

}

when (phl3, state.rb, state.RB
(iphi3 eql 1) and (state.rb eql 1))):i=(
state
cu<32>;

delay({l}; /* Insert propagation delay */

cu=0;

next;

while ({cu lss (state.R8 ext 32)) and (cu lss RB}) ¢
CUvaildl{cu}=0;
CUvalid2(cu|=0;
cu=cu+l;

L

while (CUvalid2[cul eql 0}
cu=cu+l;
bBusCUlaCUdata2(cul<iS:14>;
buslRI=CUdata2(cu]<13:0>;
]

when (phli3, state.rb
{{phli3 eql 1} and {state.rb egl 1))):={
delay{l); /* Insert gate opening delay */
connect (busIR3} ;s
connect (pbuscuU3};
walt (phi3:trall, state.rbitrall};
delay(l); /* lnsert gate closing delay */
discenrect {busIR3);
disconnect (busCU3};
!

when (pnl2, pad.wait, state.rb
{phi2 eql 1)) :=¢
delay(l); /* Insert propagation delay */
state.walt=pad,wait and (not state,rb);
4

when (phi3, IR.write, state.lnt, state.walt, BusIN
{{phi3 eql 1) ang
[{(IR.write eql 1) and (state.walt edql 0)) or
(state.int egl 1) or (state.rb egl 1)}}):={
delayil); /* Insert propagatlon delay */
busIR=op concat scc concat rd concat imm;
)

when (phl3, gate.IR, state.int, state.walt, state.rb
{iphi3 eql 1) and
({(gate,IR eql 1) and {state,wait eql Q) and (state.rb egl 0}} or
[{state.int eql 1) and (state.rb eql 0))))):={
delay(l); /* Insert propagation delay */
connect {busIR];
walt {phi3:trail, state.rb:lead);
delay(1l}; /* Insert propagatlon delay */
dlsconnect {buslIi);
!

whan (phl4, busIR, st.repalrZ, st.repairl
{phid eql 1)) :=(
if ({st.repalri eql 1) or {(st.repalr? aegl 1)}
cp pray=busCU<0>
else -
op_preve=busIR<12>;
)

when (state,suspend, op_prev):={
busCU~state,suspend concat op_prev;
1
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when {(phi3, state.suspend
(phi3 egl 1)) :=¢
delayi(l); /* Insert propagaticn delay */
CUdata.in=state,suspend concat cp prev}

when (state.rb, st,repalirl, st.repalr2
{{state.rb eql 0) and (st.repalrl eql 0) and (st.repalr? eql 0))):={(
delay(l); /* Insert propagatlon delay */
connect (busCU}
waiz{state,rb;lead};
delayil); /* Insert propagation delay */
dlscannect (busCl);

when (phi2, LbusIR
{(phi2 eql 13)1)i=i
cond.2=busIR<4:1l>;

when {phl2, state.cc
(pnl2 eql 1)) :={
delayil}; /* Insert propagation delay */
cec=stlatle.ccy

when (phl3, cond.?, cc
(ph13 eqi 1)) :={

delay(i); /* Insert prcpagation delay ¢/
case f{cond,2)
: /* nev */
cond=0
1: PN 1
cond=not ({CC_n Xor cc_v) or cc_z)
23 /i* le */
cond={CC_N Xor cC_v} or ccC_Z
3: /% ge %/ -
cond=not {cc_n xor <c_v)
4: /ol o/
cond=cc n xXer cc v
St /* ni 7 -
cond=not {({not cc_c)} or cc_z)
°H /* las *f
cond={not cc_g) or cc_z
7: /* lo |i nc */
cond=not €C_c
q: /* hts 11 ¢ */
cond=cc c©
9: /* pr *7
cond=not cc n
10 /xmi o/
cend=cc n
11: /* ne *7
cond=not cc_z
N /e eq */
cand=cc_z
13: /* nv *7
cond=not cc v
14: TR SN -
cond=cc_v
15: /* alw */
cond=1
esac;

)

when ALU.post (ALU.carry_car, ALU.carry_val, state.cc, state.lnt, state.rb,
state.repair?, ALU.gateOUT, ALU.qateOQUT_cond, cond):=|
delayily; /* Insert propagatlon delay */
ctrl.ALU_c=(ALU.carry_car and cc_g) or
{{not ALU.carry_car) and ALU.carry_val}:

gate,AlLU _busOUT-{ALU.gateOUT or ({ALU.garelUT_cond and cond)) and
(state.int eql 0} and (state.rb eql 0} and
{state,repair?2 eql 0);
i

when busIN.post {state,lnt, state.wailt, state.rb):=(
dalay{l); /* Insert propagation delay */
gate.padAD DbusIN=(state.int eql 0) and (state.walt eql 0) and
{state.rb eqgl 0Q);
)

/‘t

when MEMORY.postl (phil, ENB}:={
"/

when MEMORY.pcstl (phld:trall):={

delay(l); /* Insert propagation delay */
out .enb,addr=ENB and {state.wait eql 0} and (st.repalrl eql O)
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./

when

/e
when
~/

when

I

Ls

when

when

when

when

when

when

and {st.repairZ eql 0} and phil;
and (st.repalr2? eql 03;

(Phil:trall}:=¢
out.enb,addr=0;

MEMORY,.postd (phild}:=|

MEMORY,post3 (phi2:trall):s=¢
delay{l}; /* Insert propagatlen delay */
out.enb.data={state.walt eqgl Q) and (state.repairl eql 0) and

(state.repair? eql 0) and pnl3;
(state.repalr2 eql O);

(phl3:icraily:=¢
out.enb.data=0;

PAR.post (PAR.busIN, PAR.busA, PAR,bus3,

PAR.busOUTA, PAR.busQUTB, state.rb, ctrl.badop) =
delay({l); /* Insert propagatlion delay */
load,.PAR_busIN=PAR,busIN and

[state.shutdown eql 0) and (ctrl.badop eql 0);
icad.PAR busA=PAR.busA and (state.rb eql J) and
(state,shutdown eql O} and {ctrl.bacop eql 0};
load.PAR_busB=PAR,busB and (state.rb eql ¢} and
{state.shutdown eqgl 0} and {(ctrl.badop eql 21;
ioad.PAR_busOUTA=PAR.busQUTA and (state.rb eql 0} and
{ctrl.badop eql 0};
load.PAR_busQUTB=PAR.busOUTB and {state.rb eql 0! and
(ctrl.badop eql 0};

PC.post (INC.gate, INC.gate_cond, cond, state.int, state.rb):={
delay{l); /* Insert propagation delay */
gate.INC busQOUT=(INC.gate or (INC.gate cond and {not cond}}) and
{state.int eql 0) and (state.rb eqi 0};

RFTRAN.post (IR.,wrlte, state.wait, state.int)i={
delayil); /* Insert propagation delay */
load.RFTRAN busIN=(IR.write and (state.walt egl 0)) or state.rb;

SHIFT.post (phll, SHIFT.sxtT, gate.,busA_busS4
(ghil eql 1)) :={
delay{l); /* Insert propagation delay */
ctrl,SHIFT_sKtT=SHIFT.sxtT;
gate.busA busS=gate.pusA_bus54;

WRITE.post (IR.write, PC.write, RF.write, state.lnt, state.lnt3,

state.I0, state.wait, state.rb, state.repalrl, state.repalrZ,

state.reset, state.shutdown) :={
ctrl.CU_write={((not state,wait) and (not state.rb} and
fnot state.repalrl) and {(not state.repalir?) and
(not state,int3)) or
{state.int and (state,I0 or {not state.int3))) or
state.reset or state,shutdown;
ctrl.IMM write={IR.write and (not state.wait)) or state.rb;

ctrl.IR_;rlte-(IR.write and (not state.walt) and (not state.rb} anc

{not state.repairl) and {nct state.repair2) and
{net state.lntd)} er
{state.lnt and {state.I0 or (not state,lnt3d))) or
state.reset or state.shutdown;
ctrl MAR write=({not state.walt) and {not state.rb) and
{not state.repairl) and (not state.repalr?) and
{net state.intd)} or
(state.int and {state,IQ or (not state.intd)}) or
state.reset or state.shutdown;
ctrl.PC_write=(PC,write and {not state,walt) and (not state.rb)
- (not state.repalrl! and (net state.repalr?) andg
{not state,intd}} or
{state.int and (state,I0 or (not state.lnt3))}) or
State.reset or state.shutdown;
ctrl.PSW write={(not state.walt) and (net state.rb) and
- {not state.repairl) and (not state.repalr2) and
(not state,lntld)) er
{state.int and (state,.I0 or (not state.int3))} or
state.reset or state.shutdown;
ctrl.RB write={(not state.walt) and (not state.rb} and
- (not state.repalrl) and (not state,repalr2) ana
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{not state,lintd)) or
(state.lnt and {state,i0 or (not state.intd))}) or
state,reset or state_shutdown;
ctrl.RF_write=RF.write and (not state.lnt} and

{not state.walt) and (not state.rb) and (not state.:

ctrl.SDR_write=((not state.walt) and (not state.rb) and
(not state,repairl) and (neot state.repalir2} ang
(not state.lntl3)) or
{state.lnt and (state.I0 or (not state.int3))) or
state.reset or state.shutdown;

dimm.isp
’fl
. dimm.isp - Data Immedlate Reglster and Slgn Extender
v/
macro
WORD = 32&;
port

phi3 ' input,

bus INKWORD> '’ input,

busT32<WORD> 'outputidiscoennect,
busT24<WORD> ‘cutput:disconnect,
pusT16<WORD> ‘cutput:disconnect,
busT8<WORD> ‘oputput:dlsconnect,

out.slze<2> *input,
busBAR<2> ‘linput,
ctri.DIMM_sxt ’linput,
gate.DIMM busT *input,
gate.busIN busT “input;

wnen {phl3, gate,DIMM busT, gate,busIN _busT, cut.s|ze, busBAR}:={
if ({phi3d egl 1) and
({{gate.DIMM busT eql 1) and
{{our.slze<1> eql Obl) or
{pusBAR egl 0Opll} or

{{out.size<d> concat busBAR<1>») egl Obll)!}) or
{gate.busIN busT eql 1)}} |
delay (1) ; /* Insert gate openlng delay */

connect (busT22);
) else |
delay (1l}; /* Insert gate closing delay */
disconnect {busT32};
|
)

when {phl3, gate.DIMM_busT, out,.slze, busBAR):=(
tf ((phi3 eql 1} and (gate.DIMM_busT eql 1) and
{{cut.slze concat busBAR) eql 0bCQl0}) (

delay (1) /* Insert gate cpening delay */
connect (busT24);

] else {
delay (1} ; /* Insert gate closing delay */

disconnect {busT24);

when (phl3, gate.DIMM_busT, out.size, DusBAR):={
Lf ({phi3 eql 1) and (gate.DIMM _busT eql 1) and
{({out.slze concat busBAR<1>») eql ObQlC) or
({out ,silze<l> concat DbusBAR} eql 0Ob0G1l))) ¢

delay (1) ; /* lnsert gate cpening delay */
connect {DusT16);

} else ¢
delay (1) /* Insert gate closing delay */

disconnect {busT16);

when (phl3, gate,DIMM busT, out.size, bDusBAR}:=(
if ((phi2 eql 1} and (gate,DIMM busT eql 1) and
{{out,.slze concat busBAR} egl 0b000OO)) |
delay{l}; /* Insert gate openling delay */
connect (busT8);
)} else (
delay{l}; /* Insert gate closing delay */
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disconnect (busTl);
y:
)

when (busIN, ctrl.DIMM sxt) ;=
busT32:=busIN<3I1:0>;
tf (ctrl.DIMM sxt eql 1) {
DusTZ4=busIN<23:0> sxt 232;
DusTlé=busIN<15:0> sxt 32;
busT8=busIN<7:0> sKxt 32;

) else |
busT24=busIN<23:0> ext 32;:
busTl6=busIN<1S;:0> ext 32;
DusTB=busIN<7:0> ext 32;
b
}
fsm.isp
/=
. fsm.isp - Finite State Machine
*/
TMacro
WORD 1= 32&,
st_normal H (st eql ChCOO)&, /"
5T_suspend = (st egl OBOOl}&, /*
St _repair] H {st<l> eql 1}s,
st _repalr2 e {(st<2> eql lis&,
opx00000x = {{op<5> aql 0) and (op<4d>
(op<3> eql Q) anc (op<2>
{opel> eql O))k,
opxx000x0 1= {{ep<4> eql 0} and {op<3>
{op<2> aql 0) and {op<0>
opxQ00011 1= [{op<5> eql 0) and {op<d>
{op<3> eql Q) and (op<2>
{op<l> eql 1} and (cop<O>
opxx0010x o {{op<4> eql 0} and (op<i>
(op<2> eql 1) and (op<l>
cpx00011Q r= ({op<5> eql 0) and (op<4>
{op<3> eql 0) and (op<2>
{op<l> eql 1) and (op<O>
opx0001xl HL ({ep<5> eql 0) and [op<4>
{op<3> eql Q) and {op<2>
{op<0> eql 1)}4&,
opxQ0x000 g {{op<3> eql 0) and (op<4>
{op<?> egl Q) and (op<l>
(op<0> eql Q})a4,
cpx(001001 e {(op<3> eql 0} and (op<d>
{op<3> agl 1} and (op<2>
{op<l> eql 0) and {op<O>
opx001010 HL {{cp<5> eql 0) and (op<4>
{op<3> eql 1) and (op<2>
[op<l> eql 1) and (op<Q>
opx001G11 H {{op<5> eql 0) and {(op<4>
{op<d> eql 1} angd (op<2>
{(op<l> egql 1} ang {op<0>
opx001100 = {(op<3> eql 0) and {op<4>
(op<3> eql 1) and {op<2>
{op<l> eql 0) and (op<0>
opx00x101 Hd {{op<5> eql 0} and (opcd>»
{op<2> eql 1} and {op<l>
(ep<0> eql 1})&,
opx0x1110 = {(ep<5> aql 0) and (op<3>
{ep<2> eql 1) and (op<l>
{op<d> egl 0))&,
opx0x1111 s= {{op<5> eql 0) and (op<3>
{op<2> eql 1) and (op<l>
{op<0> eql 1))&,
opx01000x - {(op<5> eql 0) and (op<d>
{op<3> eql 0) and (op<2>
{op<l> eql 0)}s,
opxx100x0 Hd {{op<d> eqgl 1) and {op<3>
{op<2> eql Q) and {op<0>
opx010011 e ((op<5> eql 0) and (op<4>
(op<i> eql 0) and {op<2>
{op<l> eql 1} and {op<0>
opXx10x00 Hd ({op<d> eql 1} and {(op<d>
{op<l> aql 0} and (op<0>
cpxxx01901 H {{op«<d> eql 0} and (op<2>
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ncrmal l-deccde
suspend 1-deccde

eql 0) ang
eql 0) and

eql 0) and
eql O))&,
eql 0} and
eql 0} and
egl 1l)}s&,
eql 0) and
eql O))&,
egl C) and
egql 1} and
eql 0))a&,
eql 0} and
eql 1) and

eql 0) and
eql 0) and

egql 0) and
eql 0} and
eql 1)},

eql §) and
eql 0) and
eql 0))&,

eql Q) and
eql 0) and
eql 1l))a&,

eql 0) and
eqgl 1)} and
eql 0))&,

eqgl 0) and
egl 0) and

eql 1) and
egl 1) ang

eql 1) ang
eql 1) ang

egl 1} and
eql 0} and

eql Q) and
eql C)}s,
eql 1) and
eql C) and
eql 1))s&,
egl 0) and
eql 0))&,
eql 1) and

*/
~f
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opx01lx11l0

opx01x111

cpxx1xQ00

opxx113501

opxC112190

opxJ11911

opxxillCd

opx0111x1

spxl100x0x

opx1000ix

opx100x10

opx1001xl

apx1xx000

opxlxlCcCl

opx1C0x010

opx10101%

opxlxx100
opxlxxl0Ol

opx13111Q

opx1Ql111

opxllxx0x

cpx11301x

opxl110xx0
opxll0xxl

opxl1110x0
opx1110xl
opx1111x0
opxllllxl
CPLlXXXXXX
opxxx0000
opxx00101

apx31lllx

opx1lx00x0

{op<l> eql 0) and
({op<5> eql 0) and
{op<2> eql 1) and
(op<0> eql 0))4&,
({ap<S> eql 0) and
{op<2> eql 1) and
(op<0> egl 1))4&,
{{op<4> eqgl 1) and
{op<l> eqgl 0) and
{(op<4> eql 1) and
{op<2> eql 0} and
(op<Q> eql 1)) &,
{{op<5> eql 0) and
fop<3> eql 1} and
{op<l> eqgl 1} and
{{op<5> eql 0) and
fop<ld> eql 1} and
fop<l> eql 1) and
{{cp<4> eql 1) and
{op<2> eqgl 1} and
{op<0> eql 0})&,
({op<5S> eql 0} and
{cp<3> eql 1} and
(op<Q> eql l}}&,
{fop<S> &gl 1) and
{op<3> eql 0} and
{{op<5> eql 1) and
{op<3> egl Q) and
{op<l> egl 1)1)&,
({op<5> eql 1) and
{op<3> eql 0) and
{op<0> eql 0))s&,
{{op<5> eq¢l 1) and
{op<d> eql 0) and
(op<0> eql l)}&,
{{op<5> eql 1) and
(op<l> eql 0) and
{{op<5> eql 1) and
(op<2> eql 0} and
(op<0> eql 1))&,
{{op<5> eql 1) and
{op<2> eql 0) and
(op<0> eql 0))&,
{{op<5> eqgl 1) and
{op<3> eql 1) and
{op<l> eql 1) and
{{op<5> eql 1) and
{opel>» eql 0) and
{{op<5> eql 1) and
{op<l> eql 0) and
({op<$> eql 1) and
{op<3>» egl 1} ang
{op<l> eql 1} ang
[{op<5> egi 1) and
{op<3> eql 1) ang
(op<l> egl 1} and
{(cp<5> eql 1} and
{op<l> eql 0))4&,
{(op<5> egl 1) anag
{op<d> eql 0} ancg
(op<l> egl 11)&,
{lop<5> eql 1} and
(ep<d> eql Q) and
{(op<%> eql 1} and
(op<3> eql 0) anc
({cp<S> eql 1) ana
{op<d> eql 1) and
{op<0> eql 0))&,
({op«S> eql 1) and
{cp<3> eql 1) and
[cp<O> eql 1))&,
{{ep<5> eql 1) and
{op<3> eql 1) and
{op<0> eql 0))&,
{{cp<5%> eql 1) and
(ep<3> eql 1) and
{op<0> eql 1))&,

{op<6> eql L&,
{{op<3> eql 0) and
{op<l> eql 0O} and
{lop<d4> eql Q) and
{op<2> eql 1) and
{op<0> eql 1))&,
{{ocp<5> eql 0) and
{op<d> eql 1) and
{op<l> eql l)}&,
{{op<5> eql 1) and
{op<2> eql 0) and

{op<0>
{op<4>
{op<l>

(op<d>
{op<l>

{op<2>
{op<0>
{op<d>»
{op<l>

{op<4>
{op<2>
(op<C>
(op<4>
{op<2>
{op<0>
{op<i>
{op<l>

lop<4>
{op<2>

{op<4>
{op<l>
(op<4>
{op<2>

{op<d>»
{op<l>

{op<4>
(och)

(op<2>
{op<C>
{op<i>
{op<l>

{op<4>
{op<i>

(op(é)
{op<2>
{op<0>
{op<2>
{op<0>
{op<2>
{op<0>
{op<d>
(op<2>
(op<0>
{op<d>
lop<2>
(op<0>
(op<d>

{op<4>
{op<2>

{op<4>
{op<0>
(op<4>
{op<0>
{op<4>
(op<2>

(op<4>
{op<2>

{opcd>
{op<2>

{op<a>
{op<2>

{op<2>
({op<Q>
{op<3>
{op<l>

{cp<d>
lop<2>

{op<d>
{op<0>
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eql
eql
eql

eql
eqgl

eql
eql
eqgl
eql

eql
eql
eql
eql
eql
eql
egl
egl

eql
eql

eql
eql
eql
eql

agl
eql

eql
eql

eql
eql
eql
eql

eql
eql

eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql

eql
eql

eql
eql
eql
eql
eqgl
eql

egl
egl

eql
eql

eql
eql

aql
eql
eql
eql

egl
eql

eql
eql

e,
1) ang
1) and
1) and
1) and
G} anrd
Cle,
1) and
€} and
1) and
%) and
o1&,
1} and
0} and
e,
1} and
C} and
1} and
1} and
0} and
At ra,
0} ang
0} and
} and
i} and
0} and
i} and
0y and
9y ra,
1y ard
9) and
0) and
1) and
Q) and
Q) ang
4,
1) ang
30 &,
1y and
))&,
0) ang
1) ang
0)rs,
0} and
1) and
1))&,
1) ang
1) and
0) and
1} and
01 &,
1} and
l})a,
1} and
01 and
i) and
Q) and
1) and
1} and
1) and
1} and
0r and
Oy ra,
0} and
0y and
1) and
1) and
Q) and
o1&,
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state

opx1x010x
opx1lllx0x
opx001xxx

opxX1x0xxx
opX1lx10xx

opxlxxxxx
opxllxxxx

op_calli
op_getpsw
op_getlpc
Op putpsw
op_clrrbm
cp_clirrbs
op callx
op_callr
op _imprbm
op_ Jmprbs
op_jmpx
op_impr
op ret
op_reti
op_sil

op sra

op sri
op_.dhi
op and
ap_or

Op Xor
op_add
op_addc
op_addbpm
op_addbps
op_sub
op_subc
op_ldrbpm
op_ldrbps
op_ldxw
OpZidrw
op_ldxhu
op ldrhy
op_idxhs
op_ldrhs
op_ldxbu
op_ldrbu
op_idxbs
op_ldrbs
op_strodm
op_strbds
op_STXw
op_strw
op_stxh
op strh
op_stxb
op_strIb
op_aluy

op_clrrbh
op_imprb
op _ldrbp
ap_idx

op_ldr

op_ld
op_strbd
ap_stx
op_str
op st
op:bidop

mem_cp_branch
mem_op lsw
mem_op_lLsh
mem_op_ls
mem_op_st

st_preve<l:,
$T<I>,
op«<7>,

fsm.isp

({ep<5> eql 1} and (op<3> aql Q) and
(cp<Z> eql 1) and {op<l> eql 0)}&,
{iop<S> eql 1) and {op<d> eql 1) and
(op<3> eql 1) and {op<l> eql 0))&,
({op<5> eql 0) and (op<d> eql 0) and

(op<3> eql 1)}&,
{lop<5> eqgl 1) and (op<3> eql 0))&,
{lop<5> eql 1) and {op<3> eql 1) and
{op<2> eql 0))4&,
{op<5> eql 1}s,
((cp<3> aql 1) and (op<4> eql 1))&,

opx00000xs,

opxx000x0é,

opx000Q1Lg,

opxx0010xs,

opx(00110¢,

opxQ001xle,

opx0Cx000¢&,

opx0C1l001s,

opx001010Q4&,

opx001011¢,

opx0011004&,

opx00x101&,

opx0x11164&,

opx0xlilis,

cpxC1l000%e,

oprx100x0¢,

opx010011&,

opxx10x004,

opxxx01014,

opx0ix11i0s,

opx0lxllle,

opxx1lx00Cs,

opxx11001&,

opx011010C4,

opx011C11ls,

cpxx11100¢,

opxQ0lilxle,

opx100x0x&,

opx10001xe,

opxl00x10s,

opx100ixla,

opxlxx000&,

opxlxl0014,

opx10x010&,

cpx101011g4,

cpxlxx100s,

opxlxx10ls,

opx1C1110s,

opxlilllls,

opxllxx0x&,

opxl1001ixe,

opxll0xx0&,

opx110xxls,

opx1110x04,

opx1110x1¢,

opx1111x0s,

opx1111x14,

(op_and or op_or or op_xor or
op_add or op_addc or
op_addbpm cor op_addbps or
op_sub or op_subc)é,
(op_clrrbm or op_clrrbs)&,
(op_jmprbm or op_jmprbs) &,
(op_ldrbpm or cp_ldrbps)s,
(op ldxw or op_ léxhu or op_ldxhs er
op_ldxbu or op_ldxbs)s,

(op ldrw or op_ Tdrhu or op_ldrhs eor
op_ldrbu or op_ldrbs or op ldrbp) &,
(cp_ldx or op_ldr)s,

(op strbdm or op_strbds)a,
{op_stxw or op_ stxh or op_stxb) &,
(op strw or op_strh or op_strb or op strpd) 4,
{op_stx or op_ strié,
topIxaxxxx or opxxxooco or opxx00101 or
opx01111lx or opxlx00x0 or opxlx010x or
opalllxOx} e,

opx001xXxx&,

opx1x0Oxxxé&,

opxlxlOxxs,

OpXIXXXXX&,

OpXlIXxXxXx&;
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cp_prev,

imm,

sce,

int,

ws,

b,

repalrA,

repaircA_,

repairB,

repalr8 ,

ctrl.override master , /* BDSIM */
ctrl.override slave /7 BDSIM #*/
state.op_prev_; - /* BCSIM ~/

phil ’input,
phi2 ‘input,
phi3 *input,
phid * inpurc,

busIR<1l4> *{nput,
busCU<2> ‘input,
state.int ‘linput,
state.walt rlinput,
state.rb ’input,
ctri.repalrA ‘linput,
ctrl.repalrA_ ’lnput,
ctrl.repalrB *input,
ctrl.repalr8_  *input,
ctrl.norepaifr ‘input,
state.rb blt rinput,
pad,ms ‘Input,

state.repairl 'bidirecticnal,
state.repair? ‘bidirectional,
state,suspend 'bidlirectional,
state.cp prev ‘output,
st.repair? ‘output,
st.repairl ‘output,

ctrl.badep *output,
ctrl.privop ‘output,
ctrl.over_under ’output,

ctrl,ALU op<5»> ‘output,
AiU.carry_car 'output,
ALU.carry val ’output,
gate.ALU_busD ‘output,
ALU.gateQUT ‘output,
ALU.gateCUT_cond ‘output,

load.BAR_busDR *output,

ctrl.DIMM_sxt ‘output,
gate.DIMM busT ‘output,

gate.busIN_busT ‘output,
gate.busA busD2 ‘output,
gate.busA_buslD4 ’output,
gate.busD_busOUT ‘output,

gate.IMM13 busT output,
gate.IMM19_busT ’output,

IR.write routput,
gate.IR 'cutput,

gate.MAR_busOQUT2 ’‘output,
gate.MAR_busOUT4 ‘output,

ctrl.override master 'bldlrectional,
ctrl.override_slave ‘bldirectional,
gate busOUT _padAD2Z ‘output,
gate.busOUT_padAD4 "output,

aut,id ‘output,

out,.rw ‘output,

ENB 'output,

out .size<?> ‘output,

PAR.DusIN ‘output,

PAR.DUsSA ‘output,

PAR.bUsSBE ‘output,

PAR.busOQUTA ‘ocutput,
PAR,DUSOUTB ‘output,
ctrl.RFpar_lnvert ’output,
ctrl.busINpar_invert ’output,

PC.write ’output,
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ctrl.PC select ‘output,
gate,PC busD2 ‘output,
INC,gate 'output,

INC.gate_cond routput,
gate.PC_busD4 ‘cutput,

ctrl.CWP inc<2> ‘qutput,
load.PSW_busCC *output,
ctrl.PSW reti ‘autput,
load.PSW_busD ‘output,
gate.PSW_busD ‘output,

ctrl,clrrb focutput,

RF.wrlte ’output,

load.RFaddr_RA ‘output,
load.RFaddr RB ’'output,
load.RFaddr_RD ‘output,

lead.SHam 0 ‘output,
load, SHam BAR 'cutput,
lcad.SHam IMM ‘sutput,
load.SHam_busB ’output,

gate. SPR busCUT routput,

load.SHIFT IMM ‘output,
load,SHIFT busT 'output,
icad.3SHIFT busR ’output,
load.SHIFT busL ‘output,
ctrl.SHIFT sxts "output,
SHIFT.sxXtT ‘output
gate.5HIFT busR ’output,
gate.SHIFT busL ‘output,

gate.busA busS4 ‘output;

when (busIR):={
delay(l); /* Insert propagatlon delay */
op=pusIR<l3:7>;
SCCEDUSIRSE>;
imm=busIR<0>;
!

when (state.repair2:change, state.repalrl:change, pusCU):=¢{
deltay(l); /* Insert propagation delay */
5L _praev=state.repair? concat state.repairl concat busCU<l>;
ap prev-busCU<0>'

when {phid, op_prev
phi4 eql 1)):=¢
delay{l); /* Insert propagation delay */
state.op_prev=op prev;
state.cp_prev_snot op_prev;

when {(state.lnt:change}:={
delayi{l}; /* Insert propagation delay */
int=state.int;

when (state.wait:change):=(
delay(l}; /* Insert preopagatlon delay */
wWws=state.wait;

when {state.rb:change}:={
delay(l); /* Insert propagatlion delay */
rb=state.rb;

when (phl3, state.rb, state.repalr?, state.repairl,
ctri.repalrA, ctrl.repairA_, e¢trl.repalrs, ctrl,repalrB
({phid eql 1) and
({state.rb eql 1} or
({state.repalrl eql 0) and (state.repair2 eql 0))}}):=¢
repatrA=ctrl.repairAh;
repalrh _=ctrl.repalrA_;
repairB=ctrl,.repairB;
repalrB_=ctrl.repairB_;
)

when STATE.3 (phi3, st_prev, int, rb, repalrA, repairB, ws, op_prev,
ctrl.norepatr
(phild eql 1}):=¢(

iIf (int eql 1)
st=0b000 /* normal */
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eise If ((rb eql 1) and ({ctrl.norepair eql 0} and
{(repairA egl 1) or (repairB eql 1}))
st=0b0l concat st_prev<(> f* repalrl */
else Lf (st prev<i> eqgl 1) /* repalrl */
st=0bl0 concat st_prev<(> /* repair2 */
else Lf {ws eql 1}
St=St prev
else if (st_prev<0> egql 0) { /* normal */
Lf {cp_prev eql 1)
st=0b001 /* suspend */
else
st=0b000; /* normal »/
) else Lf (st prev<Dd> eql 1) /* suspend */
st=0b800; /* normal */
]
wnen (st)i=|

st.repalr2=st<2>;
st.repalrl=st<i>;
)
st

when STATE.Z (phl2,

{phi2 eql 1)):=

state.repalr2=st<2>;
state.repalrl=stgl>;
state, suspend=st<i>;
)
when (phil, op
{pnil eqgl Ii) =g
ctrl.badep=op_badop;
ctrl.privop=cp_callil
op_clrrb
op_lidrbp

ctri.over_under=op_calll or op_callx

}

when ALU.1 (phil, st, op,

(phil egl 1)) :={

(

or op_getlpc or op_putpsw or op reti or
or op_ “addepm or op_addbps or cop_jmprb or
or op_ “strbd;

or cp_callr;

state,.rb_blt

ctrl.ALU op<4>=0p_sub or op_subc;

ctrl.ALU op<3>=op putpsw or op_callx

or op_callr or

op_impx or op_Jmpr or op_ret or op_retl or

op_X0r or op_ add or op_addec or op_sub or op_subc or
op addbpm or op _addbps or op_ jmprom or op _ imprbs or
((op ld or op_ st} and st ncrmal),

ctrl. AL

curi ALU op<1>-op _or;

_op<2r=0p_ and;

ctri ALY ap<0>uop _Putpsw or op_tailx or op_callr or
op_Jmpx or op_ jmpr or op_ret or op retl or
op_add or ep_ adde or op_ sub or op_ subc or
op_Jmprem or op_Jmproi or op addbpm or op_addbps of

((op ld or op_ st

and st normal),

ALU.carry_car-op_addc or op_subc;

ALU.
gate,ALU_busD=

carry_val=op_sub;
(op_putpsw or op_alu} and
(not st_repalrl)

and {rot st _repalr?);

ALU.gateQCUT=(op _calix or op_callr or op_ ret or ocp_reti or
(op_jmprb and {state.rb bit eql 1)) or

{{op ld

or op st} and st _normal}} and

{not st_repalr?):;

ALU.gateOUT_cond= (op_

when BAR.1 ({(phil, st

tphil eql 1)):={
load.BAR_busDR=not
)

when DIMM,1 (phil, st, op

{phil eql 1)):i=¢(

Jmpx or op_jmpr} and (net st_repalr2);

{lop_ld or op_st} and st_suspend);

ctrl.DIMM_sxt=cp_ldxhs or op_ldrhs or op_ldxbs or op_ldrbs;

gate.DIMM busT-op ld

GATE.4 {pnid4, st, op,

(phiqd eql 1)} :={

when

and {not st repairZ),

repairA

gate.busA_busS4=op_sll or op _sra or op_srl or
{(FepalrA eql 1)} and st_repalrl);

when GATE.l1 (phll, st, op,

pad.ms,
(phil eql 1)):i={

state,.rb_bit

/* gate shifts for parity chacking */

gate,pusA busD2=({op
op_

op_

_putpsw or op_callx or
impx or op_ret or op_retil or

sll or op_sra or op_srl or op_alu) and
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(not st_repair2)} or

(f{op_ldx or op_stx) and st normal};
gate.busA_busD4=(op_Jmprbm and” {pad.ms eql 0)) ar

{op_Jimprbs and {(pad.ms eql 111 or

{op_Jmprb and (state.rb bit egl 1)y,
gate.pusIN busT=st repair2; /% Same”as gate.MAR DusOUT4 +/
gate.busD_busOUT=st_repalr2; /* Same as gate.MAR busQUT4 */

when IMM.d4 (phi4, op
(phid eql 1)}:={(
gate.IMM13 busT=cp_putpsw or op_callx or op impx or
op_ret or op_reti or op alu or op_ldx or op stx;
Jate.IMM1d busT=op callr or op_jmpr or op_iaht or”ep_ldr orop str;

when IR.1 (phlil, st
(phil eql 1))i={
IR.write=st normal;
gate,IR=(st_normal and (not lop_ld or op_st})) or st_suspend;

wher MAR.1 (phll, op, st, pad.ms, state.rb blit
(phil eql 1y):=¢ -
Gate.MAR_busOUT2={(op_strbdm ane {pad.ms eql 0}} or
{cp_strbds and {pad.ms eql 1)}) and
(state.rb bit eql 0) and st suspend;
gate.MAR_busOUT4=st_repalr3; -

when MEMORY.4 (phid, st, op, repalra, repairh , repalrB, repalrB
(pntd eqgl 1)}:=¢ - -
qate.busOUT_padADz-(op_st and st_suspend) or
(t{{repalrh eql 1) and (repalrA_ eql 0)) or
{{repalrB eql 1) and (repalrB8” eql 0) and
(repairA eql 0))) ang -
st_repalr?);
ctrl.override _master={{(repalrA eql 1) and {repairA_ eql 0}) or
{{repairB eql 1) and (repairB_ eql Q) and
(repalrA eql 0))} and
st repalr2;
ctrl.override slave=(((fepalrA egl 1} and {repalrh_ eql 1)} or
{(repalrB eql 1} and {repair8_ eql 1) and
(repalrA eql 0))) and
st_repalr2;
ENB=5t _nermal or st suspend;
/™ Fast */ -
gate.busOUT padAD4=(st _normal or st _suspend) and (ws egl 0);
/* fast */ -
out.ld=st_suspend and mem_op ls;
out.rw=mem_op_st and st_suspend;
out.size<l>=mem_op branch or mem op_lsw;
out.stze<O>=mem_op_lsh; -
)

when (ctrl.override_master, ctrl.override_slave):-(
ctri.override master =not ctrl.override master;
ctrl.override_slave_=not ctri.override_slave;

}

when PAR.1 (phll, repalrA , repalrB_, repalrA, st, op, state.rb _bit
{phil eql 1)}:={
PAR.busIN=nct st_repalril;
/* gate.busA_busD */
PAR.busA={ (op_putpsw or op callx or opP_Jjmpx c¢r op_ret or
op_retl or op_sIl or op_sra or op_srl or op_alu) and
(not (st_repalTl and repalrA_}) and (not st_repalir2)) or
({op_ldx or ep_stx) and st _normal);
PAR.busB=( (imm aql 0) and
(op_putpsw or op_callx or op_jmpx or
op_ret or op_retl or op_sll or
op_sra or op_strl or op_alu or
{op_ldx and st _normal)}7y and
(not™ (st_repalr] and repairB_}} and (not st_repalr2)} or
(op_st and st _normal};
PAR.busQUTA~st repair2 and repalirA and (not repairhA );
PAR.busOUTB=st repair? and repalrB and (not repairB_) and (not repalrd);
ctrl.busINpar Invert=st suspend and (state.rb_blt eql 0) and
- {(op_ldrbpm and (pad.ms sql 0)) or
(op_ldrbps and (pad.ms eql 1}));

)
when PAR.2 (phi2, repalrA_, repairB_, repalrA, pad.ms
{phi2 egl 1))r={

ctrl.RFpar_invert=(cp_addbpm and (pad.ms eql 0)) or
(op_addbps and (pad.ms eql 1)}
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when PC.4 (phld, st, op
(phid eql 1)) :=|

ctrl.PC_select=op_calll or op_getlpe;

)

when PC.1 (phil, st, op, state.rb bit
(phil eql l)):={

FC.write={st_normal and (not {op_ld or op_st))) or

INC.gate=(not (op_calix or op_ callr or op jmpx or
ap_impr or cp_Tret or op_reti or
(op imprb and (state. rb_blt eql 1)

and st _normal)}) and

({op id or op_st}
(not st repalr?);

st_suspend;

or

[NC.ga%e cond={op _impx or o¢p_jmpr) and (not st_repalr2);
gate.PC busD2=op callr or op_Jmpr or op _jmprb or

((op ldr or op_str)

and st _normal};

qate_PC_buqu=op_callL or op getlpc or op callx or op_callr;

)

when PS5W.4 (phid, op
{phid4 egl 1)}:={

ctrl.CWP_lnc<l»=op_calll or op_ cailx or op_callr;

ctrl.Cwp~ _ire<0»=op_calll or op_callx or op_ “callr or op_ret or op reti;

)

when PSW.l (phil, op
{phil eql 1)) :=(
gate.PSW _busD=cp_getpsw;
]

when PSW.2 (phi2, op, scc
{phi2 eql 11} :={(
load.PSW_busCC=scc agl 17
ctrl.PSW retli=cp reti;
load.PSW_busD=op_putpsw;
)

when RB,l {phli, op, pad.ms
(phil egl 1liy:=(

ctrl,clrrb={op_clrrbm and {pad.ms eql
lop_clrrbs and {pad.ms eql

}

(S ]

when RF.1 (phil, st, op, repairA, repalrA , repairB, repalrB_

{phii eql 1)}:i={

RF.write=({op_calli or op_getpsw or op_getlpc or
op_ “callx or op_callr or op_sll or op sra or
op_ “srl or op_ 1dh!i or op_ all or op_ imprb)
st _normal) or fop_ld and st _suspend} or st _repalrcl;

load.RFaddr_RA={repalrA eql™ 1) and st_repair2;

load.RFaddr RB={repair8 eql 1)} and (repairA eql O

locad.RFaddr_RD=nct st_repalr;
)

when SDEC.4 (phid, st, op
(phid eql 1)) :={

load,SHam_0=o0p ldhi cor st_repalirl or st_repalr2;

]

when SDEC.1 ({phil, st, op
(phil eql 1)) :={

and

and st _repair2;

load.SHam_BAR=(not (op_ldhi or op_sll or op_sra or op_srl or

{op ld and st pormal) or

(not st_repalrl) and (not st_repair2);

icad.SHam_IMM={op sll “eor op sra ar op_srl)

{not st repalTl) and (not st _repair?);
icad.SHam_busB={(op sl or op_Sra or op srl) and {lmm egl 0) and

(not st repairl)
y

when SDR.1 (phll, st
iphil eql 13):={

and

gate.SDR_busQUT=({op_st and (not op_strbd}}) or
(op strbodm and (pad.ms eql l}) or

(op_strbds and
{op_strbd and
st_suspend;
}

when SHIFT.4 {phi4, st, op
{phid eql 1i}:={

{(pad.ms eql 0)) or
(state.rb_bit eql 1})) and

lop_st and st_suspend})) and

H

Tand {imm eql 1) and

H

{not. st_repalr2i;

load.SHIFT_IMM=(imm eql 1) or op_callr or op_Ilmpr or
({(op_ldr or op_str) and st normal),

SHIFT,sxtT=not (op_sll or op_ srl er op_ sra or
op_ldxhu or ep_ldrhu or op_ldxbu or op_idrbu);

}

when SHIFT.l (phil, st, op, pad.ms
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(phil eql 1)}):={
ctrl,SHIFT_sxtS=op_sra;
load.SHIFT busT=op_ldhi or f{op_ld and st_suspend) or st repair2;
load.SHIFT_pusR=op_sll or (op_5t and st normal) or st repalrl;
load.SHIFT_busl=op_sra or op_srl or op_Jmprb; -
gate,.SHIFT busL=op_sll or (op st and st normal) or st repalrl;
gate,SHIFT busReop_sra or op_srl or ap_ldai or -
{op_ld and st_suspend) or st _repair2 or
{{{op_3imprbm and {(pad.ms eql 1)) eor
{op_Jmprbs and (pad.ms eql 0))) and
(state.ro_blt eql 03);

gate.isp

I
. gate.lsp - Gate one bus cnto anothker
~/

macro
WORD HE 32¢;

state
busB_SCEC<S>, /* BDSIM */
buss3ls; /* BDSIM */

phiz ‘lnput,
phil *input,
phid4 *input,

pad.AD<WORD+1> *bildirectisnal,

bus IN<WORD> ’output:disconnect,
busIN.par ‘output:disconnect,
cusA<WORD> * Lnput, /*® lnverted */
DusB<WORD> * input, /* lnverted */
busS<WORD> ‘output,

PusD<WORD>» 'bidirectlonal:disconnect,
busQUT<WCRD> *output:disconnect,

ctrl.pusINpar_invert ‘input,
gate,padAD_busIN 'lnput,
gate.busA_busDZ 'input,
gate.bush busD4 *lnput,
gate.pusA_buss ’input,
gate.busD_busOUT ’linput;

main:={
pad.AD=0; /* Endot slllyness for BDSIM */
next;
termlinate;

b

when (phi2, gate.bushA busD2
({phl2 eql 1) and (gate.busA _busD2 eql 1)})=(
delay(l}; /* Insert gate opening delay */
connect (busD} ;
walt (phi2:trall, gate,busA busD2:trail);
delay(l); /* Insert gate closing delay */
disconnect (busD) ;
)
when (phid, gate.busA_busD4
({phid4 eql 1) and {(gate.busA_busD4 eql 1))}={(
delay(l}; /* Insert gate openlng delay */
connect {(busD) ;
walt {phid:trall, gate.busA_busD4:trail);
delayi{l); /* Insert gate closing delay */
disconnect (busD);

when [(busd}:i={
busD=not busA;

when (phl2, gate.busD busQUT
((phl2 eql 1) and {gate.busD_busOQUT eql 1}))={
delayi{l}; /* Insert gate opening delay */
connect (busOUT} ;
walt (phiZ:trail, gate.busC_busQUT:trall);
delay(l); /* Insert gate closing delay */
disconnect (busQUT};
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when (busD}:={
busQUT=busD:

when {phl3, gate.padAD busIN
({phl3 eql 1) and (gate.padAD_busIN egl 1))} ={(

delay(2); /* Insert gate openlng delay </
connect {(busiN};
connect (busiN.par);
walt {phl3:trall, gate.padAD busIN:trall);
delay(l); /* Insert gate closling delay =/
disconnect (busIN) }
disconnect (busIN.par);

wnen {pad.AD}:={
busIN=pad. AD<31:0>;
busIN.par=pad.AD<32> xor ctrl.busINpar_invert;

when [gate.busA_busS, busA, bDusB):={
deiay (i}, /* lnsert propagation delay */
if {(gate.busA busS egl i}
busS=net bush;
busSlls=not DuUsA<3Il>;
) else |
busS=net busB;
busSlls=not busB<3l>;
)

when (busB}:=|{
busBd SDEC=not busB<d4:0>;

imm.isp
s
. imm.isp - Immediate Register
"/
macro
WORD H 32&;
port

phil * input,
phild *input,

tus INCWORD> ‘input,
pusT13<WORD> 'output:dlscennect,
cusT19<WORD> ‘output:disceonnect,
busIMM<5> ‘output,

ctrl.IMM write "lnput,
gate,IMM13 busT ‘input,
gate,IMM1% busT *input;

when (ghil, gate.IMM13 busT
{{phil eql 1} and (gate.[MM11 busT eql 1)}):=(

delay(l}; /* Insert gate opening delay */
connect {busT13);
walt {(phil:trail, gate,IMM13 busT:trall};
delay(l); /* Insert gate closing delay */
disconnect (busTl3};

!

when (phil, gate,IMM19 busT
{(pnil eql 1) and (gate.IMM19 DusT eql 1})}:=(

delay(1l}; /* Insert gate opening delay */
connect {busT19};
wait (phil:trall, gate.IMM19 busT:trail);
delay(l): /* Insert gate closing delay */
disconnect {busT19};

)

when {phi3, ctrl.IMM_write, busIN
{iphi3 eql 1} angd (ctrl.IMM write eql 1)}):i={(
delay(l}); /* Insert propagation delay */
pbusTli=(busIN<i2:0> sxt 32) ":legical 13;
busTl9={busIN<iB:0> sxt 32) *:logical 13;
busIMM=pusIN<4:0>;
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state

port

when

when

when

when

when

int.lsp - Interrupt Logic

WORD = 32&;

lvec<6: 4>, /* lnverted, BDSIM ¥/
16, Ii, 12, 13, I4, privop, badaddr, 1int4;

phil2 ’input,
phil ‘input,
phid4 'tinpurt,

CUSIN<WORD> ‘output:dlscennect,
busiN.par ‘output:disconnect,
busQUT<WORD> *output:disconnect,

state.repairl ‘input,
state.repair2 ‘input,

pad.reset ‘lnput:and,
pad.lrr ‘linput:and,
pad.shutdown *lnput:and,
state.PSW overflow ‘input,
ctrl.over under *input,
ctrl.badop *input,
ctrl.privop ‘input,
ctrl.int_enb ’lnput,

out .sysmode ' {nput,
out,slze<2> ’linput,
busBAR<2> ’input,
curl.padshift ‘{nput,

state,int ‘bldirectional,
state,intd 'bldirectional,
state.I0 ‘output,

out.ira ‘ecutput,
state.reset 'bidirectlicnal,
state.shutdown ‘cutput,
state.rb ‘input;

(phi2, pad.reset

(phi2 eql 1}) :={
delay(l}; /* Insert propagation delay */
state.reset=not pad,reset;

{phi2, pad.shutdewn

(phi2 eql L)) :={
delayil); /* Insert propagatlicon delay */
state,shutdown=not pad,shutdown;

(phiz, IO, 11, 12, 13, I4, ctrl.int_enb, state,rb,
state.repalrl, state.repair?, state.reset
(phl2 eql 1)) :={
delay(l); /* Insert propagation delay =/
state.lnt=state,reset or I4 or
((X0 or I1 or I2 or I3} and
ctrl.int_enb and (aot state.rb} and

(not state.repairl) and (not state.repalr?));

{phi2, 1I0

(phi2 eql 1)) :={
delay(l); /* Insert propagatlon delay */
state,l0=I0;

(phll, state.int

{(phl3 eql 1) and (state.int egl 1))} :={
busIN=CB0OC0000101100100C0000C00CO0C000G0;
busIN.par=0b0;
delay(l); /* Insert gate opening delay */
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when

when

when

when

when

when

wren

when

when

when

when

connect {busIN};

connect {busIN,par);

wait (phil:;rrall, state.int:ctrail};

delay(i}; /* Insert gate clesing delay */
dlsconnect (busIN);

dlsconnect (pusIN.par);

{phi3, Il, state.int, state.lntd
{phild eql 1)) :=(
delay(l}; /* Insert gate opening delay */

out.ira=Il and (not I0) and state.lnt and {(net state,intly;

{phid4, state.int

(iphl4 egi 1) and (state.int eql 1})}):=¢{
delay(l); /* Insert gate opening delay */
connect (busQUT);
walt {phid:trall, state.int:trail}:
delay(l); /* Insert gate closing delay */
dlsconnecrt {busQuUT);

(ehid, 10, I1, I2, I3, I4, state.reset

pnl3 egql 1y} :=¢
delay(il); /* Insert propagatlion delay */
lvec<t>=not (I4 and {not state.reser)};
ivec<d»=not ((not [4} and (not 12} and (IZ or I3});
lvecdd>=not ((not I4) and (not I0) and (not I2})};
next;
BusQUT={ {not lvec<6>) concat {not lvec<5>) conca:t

{not lvec<d>) concat (0 ext 4)) ext 32;

{state.reset, ctrl.badep, privop, intd):={
delay{l}; /* Insert propagatlon delay */
IC=state.reset or ctrl.badcp or privop or intd4;

{pad.irr):={
delay{l}; /* Insert propagatlon delay */
il=not pad.lirr;

(state.PSW_overflow, ctrl.over_under):={
aelay({l); /* Insert propagatlion delay */
I2=state.PSW_overflow and ctrl.over_under;
I3=state.PSW overflew and (net ctrl,over under);

{pad.shutdown) :={
deiay(l); /* Insert propagattion delay */
I4=rot pad.shutdown;

{ctrl.privop, out.sysmode) :={
delay(l); /* Insert propagation delay */
privop=ctrl.privop and out.sysmode;

fout.slze, DusBAR) :={
delayil); /* Insert prepagatlon delay */
hadaddr={{out.slze eql Cbl0} and (busBAR neqg 0)} or
{{out.size eql Ob0l} and (busBAR<O> neq 0));

{phi3, badader, ctrl.badshift
(phi3 eql 1)) :=¢(
delay(l); /* Insert propagatlon delay */
state.int3:=(badaddr or ctrl.badshift) and
ctrl.int_enb and (not state.rb) and
(not state.repairl) and (not state,repalr?};

(phi4, state.lntld

(phid eqgl 1)) :=(
delay(l); /* Insert propagation delay */
intd=state,inc3;
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/'
* ir.1sp - Instruction Reglster
./

macro
WORD t= d2&,
RB I= LT

state
TRdatal [O:RB] <WORD+1>,
IRdata2{0:RB] <WORD+1>,
[Rvalldl[0:RB],
TRvaligz{0:RB);

part
phl2 ' linput,
phi3 ‘input,
phid4 *input,
busINCWORD> “bildirecticnal:disconnect,
busIN.par ‘bidirecticnal:disconnect,
state.rb input,
state.RB<3> ‘input,
ctrl.IR _write 'linput;

main:={

!

IRvalidl[RB|=1;
[Rvalid2[RBl=1;
next ;
terminate;

when {phid:tratl):={

state
freda2>;

IRdatal[J] =busIN.par concat buysIN;

IRvalidl[Ol=ctrl.IR_write;

itr=1;

next;

while (1r lss RB} (
IRdatal(ir|=IRdataz[ir-1];
IRvalidl(ir|=IRvalld2{ir-1];
ir={r+l;

)

1f (IRvalid2{RB-1] egl 1) {
IAdatalfRB]=IRdata2 (RB-1};
IRdata2(RB]}=IRdataz [RB~1};

r:

when (phi2:trall}):={

state
fre32>;

lr=C;

next;

while {ir lss RB} {
IRdata2[ir])=IRdatallr
IRvalid2([ir]«IRvaliagl(
lr=ir+l;

1
ir}:

when ({phil), state.rb, state.RB

(phi3 eql 1)}:=y

state
1red2>;
delay(l); /* Insert propagation delay */
1f (state.rb eql 1} |
tr=0;
next;
while {(lr lss (state.RB ext 32}) and (ir lss RB)}
IRvalidl{ir]=0;
IRvalid2(ir]=0;
lr=ir+l;
Y
)2
1r=0;
next;
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)

when

while (IRvalid2(lr} egql O)
ir=ir+l;

busIN=IRdata2(ir]<21:0>;

busIN.par=IRdata2(ir]|<32>;

{phi3d, state.rb
{{ph!i3 egl 1) and (state.rb eql 1}}):1={

delay(1i}; /* Insert gate openlng delay */

connect {busIN);
connect {busIN.par);
walt{pnil:trall, state.rbitrall);

delay(l}; /* Insert gate closing delay */

disceonnect (busIN);
discannect (busIN.par);

mar.isp

i

./

macra

maln:=

whean

whan

)

when

mar,isp - Memory Address Reglster

WORD 1= 32s,
RB = a4%;

MARdatal[0:RB1<WORD>,
MARdata2(C;RB|<WORD>,
MARvalldl(0Q:RB],
MARvalid2[0:RB];

phil *input,
phiz *inpuc,
phid *input,
phid *input,

pDusOUT<WORD> ‘bldirectlonal:dlsconnect,

state,rb *lnput,
state.RB<3> ‘' input,
ctrl.MAR write ’'linput,
gate,MAR_busOUT2 'lnput,
gate.MAR_busOUT4 ‘input;

MARvalidl [RR] =1
MARvalid2 [RB]=1;
next;
terminate;

{phil, busCUT, ctrl.MAR write
(phil eql 1}):=({

delay({ly; /* Insert prepagatlon delay */

MARdatal[Q)]=busOUT;
MARvalidl[Q]=ctrl, MAR write;

{phil:itrail) :={
state
mar<d2>;

mar=l;

nexc;

while (mar lss RB) |
MARdatal [mar]=MARdata2[mar-1];
MARvalidl [mar]=MARvalid2(mar=-1];
mar=mar+l;

V;

1f (MARvalid2[RB-1] eql 1) {
MARdatal (RB}=MARdataZ [RB~1];
MARdata? [RB) =MARdataz {RB=1];

I

{phi2, gate.MAR busQUT2

({phl2 eql 1) and (gate.MAR busOUT2 egl 1))} :={

delay{l); /* Insert gate opening delay */
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whnen

when

}

when

)

when

connect {busQUT) ;

wait{pht2:crall, gate.MAR_busQUT2;:;trally;
delay(l); /* Insert gate closing gelay */
disconnect (pusCUT) ;

tphi2:itrall) ;=
state
mar<3iz»;

mar=Q;

nexc;

while {mar lss RB} {
MARvalid2 [mar|=MARvalidl (mar];
mar=mar+i;

{phi3, state,rb, state.RB
{{phld eql 1} and (state.rb egl 1))} :={
state
mar<iz»;

delay(l); /* Insert propagation delay ~/

mar=0;

nexc;

while ((mar lss {state.RB ext 32}) and {mar lss RB)} ¢
MARvalidl [mar)=0;
MARvalld2[mar)=0;
mar=mar+l;

1

(phid:trail) =g
state
mar<ia»;

mar=G;

next;

while (mar lss RB) |
MARdata2 [mar|=MARdatal (mar];
mar=mar+l;

Vi

mar=0;

next ;

while (MARvalld2[mar] eql 0)
mar=mar+l;

busOUT=MARdata2([mar];

{phlid4, gate.MAR _busOUT4, state.rb

{{phi4 eqgl 1} and ({gate.MAR busQOUT4 eql 1) or (state.rb agl 1¥))) =4

delay(1l); /* Insert gate cpening delay */

connect {busCUT) ;

wait{phid4:trall, gate.MAR busQUT4:trail, state.rb:trall);
delay{l); /* Insert gate closing delay */
disconnect (busOUT);

par.isp

/e
*/

macro

state

port

par.lsp - Parity Generators

WORD - 32&;

busB.par,

errer, busIN],

rfA._pard,

rfB._par4,

error.busQUT_; /* BDSIM =/

phil "input,
phiz ’input,
phid ‘input,
phid4 ’input,
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main:

when

when

when

when

when

when

when

when

whnen

when

bus I[N<WORD> ‘ input,
busIN,par ‘input,

rfA.par ‘lnput,

busB<WORD> ‘input,

rf8.par ’lnpuc,

busD<WORD> ’input,
state.busD<4> ‘output,
busD.par ‘bldirecticonal,
busQUT<WORD> ‘input,
cusQUT.par ‘bidirecticnal,

error.busIN ‘output,
error,pusA "output,
error.busB Toutput,
error.busCUT "bidirecticnal,

load .PAR busIN finput,
locad.PAR_busA ' input,
load.PAR_busB ’lnput,
load.PAR_busOUTA 'linput,
load.PAR_busQUTB 'lnput;

error.busQUT_=1;
next;
Terminate;

(phil, busIN, busIN.par

fphil egl 1)) :i={
delay(l): /* Insert propagatlon delay
error . pusIN!=pusIN.par neg parity (busIN);

(phll, error_ busiNl, load.PAR_DusIN

tphl3 egl 1)) :=¢
delayii}; /* Insert propagatlon delay
error.busIN=error.ousINl and icad.PAR_busIN;

fphld, rfA.par, rfB.par

{phi4 eql 1)) :={
delay(l); /* Insert propagatlon deiay
rfA.pard4=rfA, par;
rfB.pard4=rfB.par;

{phil:lead):={
delay{l); /* Insert propagation delay
state.pusD=pusD<I1:28> xor busD<27:24> xor
busD<23:20> xor busD<l3:16> xor
husD<15:12> xor busD<11:8> xor
busD<7:4> xor busD<3:0>;

(phil:lead, phi3;lead}.:=(
delay(l}; /* Insert propagation delay
busD.par=parity{busD);

{phi3, busD,par, rfA.par, load.PAR_busA
{phid eql Ll}):={
delay(l}; /* Insert propagatlon delay

-/

L

4

*/

*/

*/

error.bush=(rfA.par xor busD.par} and lcad.PAR_busA;

(busB) i={(
delay(l}; /* Insert propagation delay
busB.par=parity{busB};
(phi3, busB, rfB.par, load.PAR_busB
{phil eql 1}):={
delay{l}; /* Insert propagation delay

=/

*/

errcr.busB={rf8.par xor busB.par) and load,PAR_busB;

{busQUT) 1={
delay(l); /* Insert propagatlon delay
busCUT.par=parity (busCUT};

{(phi3, bDusOQUT.par, rfA.pard, rfB.pard,
load.PAR_busOUTA, lcad.PAR_busOUTB
{(phil eql D))=
gelay(l); /* Insert propagation delay
error,busQUT={ (busCUT.par xor rfA.pard) and
[ (busCUT.par xeor rfB,pard) and

*/

=/
load.PAR_busCUTA) or
load,.PAR_pDusCUTB) ;
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/v

-

“/

macro

state

main:={

)

next;
error.busOUT_=not errcr,busCUT;

pc.isp = Program Counter

WORD = 32a&,
RB t= 4&;

PCdatal [0:RB+2 | <WORD>,
PCdata2{G:RB+2)<WORD>,
PCvalldl[0D:RB+2],
PCvallid2{0:RB+2],
PCvalid;

phil " inpuc,
phi2 ‘inpuc,
phil *input,
phid *input,

busD<WORD> ‘output:disconnect,
busOUT<WORD> ‘bidirectional:disconnect,

ctrl.PC write *lnput,
state.rb ‘input,

state, RB<3> ‘{nput,
ctrl.PC select *{nput,
gate,.INC busOUT *input,
gate._?C busD2 rinput,
gate.PC_busD4 ‘input;

PCvalldl(RB}=1;
PCvalid2(RB| =1;
PCvalidl[RB+1l=1;
PCvalid2 (RB+]1|=1;
PCvalldl(RB+2]|=1;
PCvalid2[RB+2])=1;
next;

terminate;

when (phi3, state.rb, state.RB
{pni3 eql 1}):={

)

state
pe<dd>;

delayil); /* Insert propagation delay */

pc=_;

next;

while ({pc lss (state.RB ext 32}) and (pc lss RB}}

PCvalidl[pc]=0;
BCvalid?[pc]=0;
pee=pc+l;

when (phild:ztrail):=¢

state
pc<3z>;

pc=1;

next :

while {pe lss RB) {
PCdatal [pc] =PCdata2[pe~-11;
PCvalidl (pc|=PCvalid2[pc=-1];
pc=pct+l;

Yi

PCvalld=PCvalld2 [RB=1]);

Lt (PCvalild2[RB~1] eql 1) {
PCdatal [RB| =PCdataZ (RB-1];
PCdatal[RB+1]=PCdata2[RB];
PCdatal [RB+2)=PCdata2(RB+1];
PCdataz[RB+2]=PCdata2 [RB+1];
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}

when

)

whaen

4

when

)

when

!

when

}

when

(phld:trail) :=(

state
pc<3z2>;

PCvalldl[0]=ctrl.PC write;

PCvalldZ2{0)=ctrl.BC_write;

pc=1;

next;

while {pc lss RB) ¢
PCvalidZ[pc|=PCvalldl [pc);
pc=pc+l;

(ehil, busCUT

{phll eqi 1)}:=¢

delay (1} /* Insert propagation delay */

PCdatal Q| =busCUT;
PCdataz{C]| =busCUT;

(pril:trally:=¢

gtate
nxtpc<dd>», pe<3?2>, lstpe<32>;

pc=l;

nexc;

while (pc lss RB} ¢
PCdataz{pci=PCdatal [pc];
pe=pe+l;

yi

if (pCvalid egl 1) {
PCcdataz[RB])=PCdatal[RB);
PCcataZ[RB+1)|=PCdatal {RB+1};

HH

nxtpc=0;

naxt;

while {BCvalidZ{nxtpc] egl 0}
nXcpCc=nxtpc+l;

pc=nitpc+l;

next;

while {fCvalla2{pc] egl O)
pce=pc+l;

istpc=pc+l;

next;

while {PCvalidZ{lstpc]| egl 0}
lstpc=lstpctl;

busQUT={PCcataz(nxtpct+4) and (not (0bll ext
tf (ctrl.PC_select eql 1)
busD=PCdatal[lstpc]
else
busD=PCdata2(peci;

(phi2, gate.PC_busD2
{iphi2? egl 1} and {gate.PC_busD2 eql 1)}}:i={

delay(l); /* Insert gate cpenlng delay
connect (busD} ;

walt (phi2:trall, gate.PC_busD2:trail);
delaytl); /* Insert gate closing delay
dlsconnect {busD} ;

{phid, gate,PC_busD4
({phi4 eql 1) and (gate.PC_busD4 eql 1})):={(

delay(l); /* Insert gate opening delay
connect (busD) ;

wait(pnid:trail, gate.PC_busDd:trall);
delay({l}; /* Insert gate closlng delay
disconnect (busD);

{phid, gate,INC_busOUT
({pnid4 eql 1) and (gate.INC_busOUT eqgl 1)) :={

delayi{l); /% Insert gate cpenling delay
connect {busQUT) ;

walt {phild:trall, gate.INC_busQUT:trall};
delay(l}; /* Insert gate closing delay
disconnect (busOuT);

azyyg

«/

*/

*/

./

212

pe.isp

psw.isp



psw.isp
’e
v psw.lsp - Processor Status Word
*/

macro
WORD 1= 32&,
RB H 45,
PASS t= Obo0s&,
INC I= Ob0ls,
DEC = Cblls;

state
ctrl.CWe_inc2<2>,
PSWdatal(0:RB}<11>,
PSWdata2 (0:RB}<11>,
PSwWvalldl [Q:RB),
PSWvalid2(Q:RB],
PSW.data<il>,
PSW<1l>,
NXTPSW<il>;

port
phil ‘input,
phiZ ’input,
phi3 'input,
phid4 ' lnput,
busD<WORD» ‘bldirectleonal:disceonnect,
busCWE<2> ‘output,
busCC<4> ‘{nput,
ctri.int _enp ‘output,
out.sysmede 'output,
state.PSW _overflow ’'cutpur,
state.cc<4> ‘output,
state.PSW<d> ‘output,
state.lnt ’'inpuc,
state.rk “input,
state,RB<3> ‘lnput,
state.reset ’lnput,
ctrl.PSW_write ‘input,
ctrl.CWP inc<2>» 'lnput,
gate.PSW busD linput,
load.PSW_busCC * Input,
ctrl.pPSWw retl ’input,
load,PSW busD ‘input;

format
PSW.data_CWP i= PSW,data<10:9>,
PSW.data_SWP L PSW.catac8:7>,
PSW.data CC te PSW.data<3:0>,
PSW_CWp H PSW<10: 9>,
PSW_SWP o= PSWe<8: 7>,
PSW ISP Hl PSW<E: 4>,
PSW I e P5SW<E>,
PSW 3 1= PSW<S>,
BSW P H PSWcq>,
PSW_CC T- PSW<3:0>,
busD_CWP e busD<10:9>,
SusD_SWP e busD<B: 7>,
busD_ISP He busD<6: 4>,
busb_CC i= busD<3:0>,
NXTPSW_CWP HO NXTPSW<10:9>,
NXTESW_SWP = NXTPSW<B: 7>,
NXTESW_ISP T= NXTPSW<6: 4>,
KXTPSW_CC Ho NATPSW<3;0>;

main:i={

4

PSWvalidl [RB] =1}
PSWvalld2 (RB|=1;
next;

terminate;

when (phi4:trall):=¢(

state
psw<i2>;

PSWvalidl[Q]=ctrl PSW_write;
psw=l;
next;
while (psw lss RB) (
PSWdatal [psw|=PSWaata2 [psw-1];
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PSWvalldl [psw] =PSWvalld2 [psw~1!;
pSwW=psw+l;

i

if (PSWvalld2{RB-1] eql 1) {
pSwWwdatal [RB| =PSWdata2 [RB-1];
PSWdataZ [RB|=PSWdataZ [RB-1];

HH

}

when {phil, NXTPSW
{phil eql 1¥)i=¢

state
psw<i2>;
delay{i}s /* Insert propagation delay */
PSWdatal [0 =NXTP5W;
PSWdata2(0)=NXTPSW:
PSWvalld2[0]=PSWvalldl[0];
psw=1;

next;

wnile (psw lss RB) {
PSWdata? [psw]=PSWdatal {pswl|;
PSWvalidZ (psw]=PSWvaiidl [pswi;
pSWwepsw+l;

17

psw=0;
next;
whiie (PSWvallid?2[psw] eql 0)
pSW=DswW+l;
PSW.data=PSWdatal[psw];
)

when (phi2, phl3, PSW.data, state.rb
{{phi2 eql 1) or {{phild eql 1) and (state,.rb eq!l
delay{l); /* Insert propagation delay */
if {state.reset eql 1)
PSW=0p00C000002000
else
PSW=PSW,data;
|

wnen (phl?, ctrl,CWP_1inc
{phi2 egl 1}):;={
deiay{l); /* Insert propagatlon delay */
ctrl.CWP_lnc2=ctrl.CWP_lnc;
)

wnen (phld, state,rb, state,RB
{{pnld eql 1) and (state.rb eql 1))):={
state
psw<32>;

delay{l); /* Insert propagation delay */
psw=0;
next;
while {{(psw lss (state.RB ext 132}) and (psW lss
PSWvalldl (psw]=0;
PSWvalld2ipsw]=0;
pSw=psw+l;
):

while {PSWvalid2(psw] eql Q)
pDSW=pSwW+l;
PSW,data=FPSWdata2 (psw];
]

wnen (phl4, gate.PSW_busD
{{phid4 eql 1) and (gate.PSW_busD eql 1))):={

delay{l}; /* Insert gate cpening delay */
connect (busDi;
walt {phid4:trall, gate.PSW_busD:tratl);
delay{l}): /* Insert gate clesing delay */
disconnect (busD) ;

4

winen (PSW.data):;=(
delay{l}; /* Insert propagation delay */
busCWP =PSW.data CWP;
state.cc=P5SW.data_CC;
state,P5W={(0b0 concat PSW.data<%> concat

)=

RB)} !

PSW,data<l0>» concat PSW.data<B») Xor

PSW,data<?:4>) xor PSW.data<3:0>»;
!

when (PSW) :={

delay{l}; /* Insert propagatlion delay */
busD=PSW ext 32;
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4

when {load.PSW_busD, load.P5W_busCC, ctrl.PswW_retd,

out . sysmode=2SW_S;
ctrl.int_enb=PSW_I;

pusC, byscC, PSW, state.int:change):=(

!

delay(l); /* Ingert propagation delay */

if (load.PSW_busCC and {not state,!lnt))
NXTPSW_CC=busCe

eise if (lcad.PSW_busD and {not state,lnt))
NXTPSW CC=busD CC

else - -
NXTPSH_CC-PSH_CC;

1f (state.lnt)
NXTPS5W_I5P=0 concat 0 concat PSW §
else 1f (load.PSW_busD and (not state.int})
NXTPSW_ISP=DusD ISP
else 1f (ctrl.PSW_reti and (not state.lnt)}
NXTPSW_ISP=1 concat PSW_P concat PSW P
else -
NXTPSW_ISP=PSW_[59;

if (load.PSW_busD and (not state,int))
NXTP3W_SWP=busD SWP

else - -
NXTPSW_SWP=~PSW_SWP;

1f (load,.PSW busD and (not state.int))
NXTPSW _CWB=busD CWP

else {f (statel.int) -
NXTESW_CWP=PSW_CWP

else
NXTPSW_CWP=PSW_CWP+ctrl.CWP_tnc2;

when (PSW.data, ctrl.CWP inc):={

rb.isp
YA
-/

macro

state

pore

delay(l}; 7* Insert propagaticn delay */

state.PSW overflow={(PSW.data_CWP+ctrl.CWP_inc) eql P5W.data_SWP);

rb.isp - Rollback and State Repair Logic

RB i= &

RBvalldl{0:RB+2},
RBvalld2[0:RB+2],
rbcount<3z>,
rbl<32>,

r2<32>,

rp3<32>,

enb.RB2,

enb. RB1,

enb, RBO,

out. kB2,

out ,RA1,

cut.RBC,
ctrl.shutdown,
out.repalri_,
cut.repalirB ,
ctrl.RB_enable,
enable count<3>,
shutdown_countl<4>,
shutdown_count 2<2>,

rhshutdown,

enb,pad . RBO, /* BDSIM */
enb,pad.RB1, /% BDSIM */
enb,pad,RB2, /* BDSIM */
enb.pad.RB<3>, /* BDSIM */
enb.pad,rb, /* BDSIM =/
enb.pad,shutdown, /* BDSIM */
pad.RB<I>; /* BDSIM */

phil 'input,
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mailn:i={(

!

phl2 '’ lnput,
phi3 ' lnput,
phi4 ' input,

pad.rb 'bldirectional:and:dlsconnect,
pad.RB2 ’wldirectienal:iand:disconnect,
pad.RBl ‘bldirecticnal:and:disconnect,
pad.RBC 'pldirecticnal:and:disconnect,
error.pbusa 'input,

error.bus8 ‘input,

error.pusIN rinput,

error.CMP *lnput,

error,busCUT *input,

state,rb ‘bldirectiocnal,

state.RB<3> 'bidirectional,

pac.ms ‘lrput,

pad.repairAm *bidirectional;and;dlsconnect,
pad.repalrAs ‘bidirectlonal:and:disconnect,
pad.repalrBm ‘bidirectlonal:angd:d!sconnect,
pad.repairBs ‘bidirectlonal:and;disconnect,
pad.shutdown *bidlrectional:and:disconnect,
state.reset ’input,

state,shutdown ‘input,

ctrl.RB write *input,

ctrl.repalrA_ ‘bldgirectlonal,

ctrl.repalrA ‘output,

ctrl.repaira_ ‘bidirectional,

ctzrl.repairB ‘output,

ctrl.clrre * lnput,

ctrl.norepair ‘output,

state.rpb _blt ‘output;

RBvalidl [RB]=1;

RBvalid2[RB]=1;

RBvalidl [RB+1]=1;

RBvalid2[RB+1]=1;

RBvalidl{RA+2|=1;

RBvalidZ([RB+2]=1;

pad.rb=0;

pad.RB2=0;

pad.RB1=0;

pad.,RBO=0;

pad,shutdown=Q;

rbcount=0;

cut.repairhA_=1;

auc.repaira_-l:

Lf {pad.ms egl O} {
connect {pad, repalirhm);
connect {pad.repalrBm);

) else |
connect (pad.repalrAs);
connect {pad.repalris);
HH
enb.pad.RBO~C;

enb.pad.RB1=0;
enb.pad . RBZ=0;
enb.pad.RB=0;
enb.pad.rb=0;
enb.pad.shutcown=0;
pad.RB=0;

next;

terminate;

when (pni3, state.rb, state.RB, ctrl.RB_write
{phld eql 1)):={

state
rh<32>;
delay{l}; /* Insert propagatlion delay */
if {state.rb eql 1) (
rb=0;
next;
while ((rb lss (state.RB ext 32)}) and (rb lss RB})
RBvalidl {rb]=0;
RBvalid2{rb]=0;
rh=rb+l;
¥
rhcount=1;
|
RBvalidl[0]=ctrl.RB_write; /* should be 0 en rb */

when (phild:trall):=¢(

state
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'

when

)

when

}

when

when

when

when

when

rh<izy;

ro=1;

next;

while (re lss RB)
RBvalidl[rb]=RBvalid2[rb-1];
rbarp+l;

{(phid:trail):=¢
state
rbe3z»;

ro=0;

next

while (rb lss RB) {
RBvalld2{rb}=RBvalldl(rbj;
rh=rb+1;

b2

if ((state.rb eql 0) and (rbecount gtr Q)
rbcount= (rbcount+1) med 4;

(phil
{phil egl 1)) :={
state
rb<32>;
delay{l}; /* Insert preopagation delay */
rol=0C;
next;
while (RBvalid2(rbl] eql 0}
rbl=rbl+l;
rh2=rbl+l;
next ;

while (RBvallid2(rb2] eql O)
rb2=rp2+1;

rb3=rb2+1;

next;

while {RBvalidz[rb3] eql 0}
rbi=rb3+l;

next;

rol=rbl+1;

re2arb2+1;

rhi=arbld+l;

next;

{phi2, pad.rb, state.reset, state.shutdown, pad.RB2, pad.RBl,

pad.repalrAm, pad.repalrAs, pad.repalrBm, pad.repairBs
(phi2 egl 1)) :={
deiay{l); /* Insert propagation delay */

state.rb=((not pad.rk} and {not state,reset) and {not state,shutdown}):

state.RB<2>=not pad.RB2;

state,RB<1>=not pad.RBl;

state,RB<0>=not pad.RBO;

pad.AB=pad.RB2 concat pad.RBl concat pad.RBO;
ctrl.repairA={not pad.repalrAm) or (not pad.repalrAs!};
ctri.repalrB={not pad.repalrBm) or {(not pad.repalrBs};

(phi2, state.rb, ctrl,clrrb
(phi2 eql 1)) :=(
If (state.rb egl 1)
state,rb_bit=]
else 1f (ctrli.cirrb eql 1)
state.rb bit=0;

{phld4, error.busA, error.busB

{phl4 eql 1)) :={
delay(l); /* Insert propagaticn delay */
ctrl.repalrA_=error.busA;
ctrl.repalrB_=error.busB;

{phi4, state,reset, state.shutdown
{phid4 eql 1)) :={(
delay (1) /* Insert propagatlcen delay */
1f {{state.shutdown eql 1) or (state.reset egl 1)
enable_count=4
else 1f (enable_count neq 0}
enable count=enable _count-1;

(enable_count):i=(
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delay(l); /* Insert praopagatlcon delay */
ctrl,RB_enable=(enable_count egl 0);
}

when (phll, error.busIN, ctrl.repairA , crrl.repairB_, errocr.CMP,
error.busOUT, ctrl.RB_enable, rbl, rb2, rb3
({phil eql 1) and (ctrl.RB_enable eql 1} and
({error.busIN eql 1} or (error,CMP aeql 1} or (error.busOUT egl 1) or
{ctrl.repalrA_ eql 1} or {curl.repalrB_eql 1l)i}i:i=|
delay({l); T /* Insert propagaticn delay */
connect (pad.rb}; enb,pad.rb=1;
1f {{rpcount egl 3} and ({error.busIN eql 1} or (error.CMP eql 1)})
1f {rb3 leq 4) |
out ,RB2=rb3«2>;
Qut . RBl=rbi<l>;
out ,RBO=rbi<0>;
) else {
out ,RB2=1;
out ,RB1=0;
out .RBO=0;
Vi
y eise i{f (rbcount eql 2} |
1f (rb2 leq 4)
out .RB2=rp2<2>;
cut ,RBl=rb2<l>;
out ,RBO=rb2<0>;
' else {
out .RB2=1;
out,RBL=0;
out ,RBO=0;
i
y else {f ({error.busIN eql 1) or (error.CMP egl 1}} ([
out ,RB2=0;
out.RBl=1;
out,RBO=0Q;

} else |
out.RB2=0;
out.RBl=0;
out,RBO=1;

;
enb,RB2=1;

)

/* Titus’s ugly endot hack */
whnen {phil, ctrl,RB_enable, error.busIN, error.CMP,
error,busQUT, ctrl.zepalrA , ctrl.repairB_
{{phil egl 1) and
{{ctrl.RB_enable eql 0} or
{{error.busI¥ egl Q) and (errocr,CMP eql 0) and
{error.busOUT eql ) and (ctrl.repalrA_ eql 0} and
(ctrl.repair8 eql O)}1)):=|
delay({l); /* Insert propagaticon delay */
disconnect (pad.rb); enb,pad.rb=0;
enb.RB2=0;

when (phil, ctrl.repalrh_
{(phil eqgl 1) and (ctrl.repalrA_eql 1)1)):={
delayi(l); /* lnsert propagation delay */
out . repairh_=0;

when (phll, ctrl.repalrB_
({phil eql 1) and [ctrl.repalrB_ eql 1}))i={
delay(l}; /* Insert propagation delay */
cut.repairB_=0;

when {(phi4
(phid4 eql 1)) :i={
delayi{l); /* Insert prepagatlon delay */
dliaconnect {(pad.rb); enb.pad.rpo=0;
enb.RBZ2=0;

out.repalrA_=1i;
cut.repalrB _=1;
dlisconnect {(pad.shutdcwn); enb.pad,shutdown=0;

when (phid4, state.rb, state.reset, state.shutdown, ctrl.clrrb
(phid eql 1)} :i=(

delay(l); /* Insert propagation delay */

{f {{state.reset egl 1) or {state.shutdown)} |{
rbshutdown=0;
shutdown_countl=0;
shutdown_count2=0;

) else |
1f (state.rb egl 1) {

rbshutdown=|shutdown_count2 eql 3);
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when

when

when

when

when

when

when

when

when

next;
shutdown_count2=shutdown count2+};
next ; -

) else 1f (ctrl.clrrb eqgl 1) ¢
rhshutdown=0;
shutdown_countl=0;

) else
rbshutdowna=0;

next;

Lf ((ctrl.clrrb eql %) or (state.rb eql 1) ¢
shutdown_countl=(shutdocwn countl+l) mod 16;
next; -

{f {shutdown_countl eql 0)
shutdown_count2=0;

(phid4, state,rb, state.RB, rbshutdown
(phid eql 1)) :=t
delay (i}, /* Insert propagatlon celay ¢/
ctrl.shutdown=({state.rb egl 1) and {{state.RB ext 32) gtr RB)) or
(rbshutdown eqgl 1};

{ehi2, pad.repalrAm, pad.repalras, pad.repairBm, pad.repairBs
{phi2 egl 1)) 1=
deiay{l); /* Insert propagatlion delay =/
ctrl.rorepalr={(pacd.zrepalrhm eql 0} ang {pad.repalrAs egql 0)} or
({pad.repairBm eqi 0) and {pad.repalrBs eql ©¢));

(phil, ctri.shutdown

({phil eql 1) and (ctrl.shutdown egl 1))):={
delay(l); /* Insert propagatlion delay */
connect {pad.shutdown); enb.pad,shutdewn=1;

(enb,RB2:change, out.RB2:change, pad,.RB2:change):={
delay(l}; /* Insert propagatlion delay +/
{f (enb.RBZ and out.RB2) |

connect (pad.RB2); enb,pad.RB2=1;
) else |

disconnect (pad.RB2); enb.pad.RB2a0;
Y
enb.RBl=enb.RB2 and (out.RB2 or pad.RB2);

{erb.RBl:change, out.ABl:change, pad.RBl:change):=|(
delayil}; /* Insert propagation delay */
1f {(en2.RBl and out.RAl) |

connect (pad.RB1}; enb.pad.RBl=1;
)} else (

disconnect (pad.RBl}; enb.pad.RBl=0;
HH

enb.RBO=enb.RB1 and (out. RBl or pad.RBl}:

{enb.RBO:change, out.RBO:change, pad.RBO:change}:={
delay(l}; /* Insert propagation delay */
1f {enb.RB0 and out.RBO)

connect {pad.RB0O); enb.pad.RB0=1;
} else |
dlsceonnect {pad,RB0} ! enb,pad.RBO=0;

r

(enb.pad.RB0O, enb.pad.RBl, enb.pad.RB2):={
delay{l) /* Insert propagation delay */
enb.pad.fAB=enb.pad.RB2? concat enb.pad.RBl concat enb.pad.ABl;

(out.repalrA_):={
delay(l); /* Insert propagatlon delay */
pad.repairAm=out .repairi_;
pad.repairAs=out._repalirh ;

{eut.repalrB_):={
delay(l}; /* Insert propagation delay */
pad.repalrBm=out.repairBd_;
pad.repalzBs=out.repairB_;
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macro

port

rf.1sp - Reglster Flle

WORD HE 32,
RB H 4&;

busA.par, /* lnverted */
busB.par, /% inverted */
rfD.par, /* BDSIM */
RFdatal (0:RB-1]|<WORD+1>,
RFdata? [0;8B-1]<WORD+1>,
RFaddrl [J:RB~1]<7>,

RFaddrZ [Q:RB-1]<7>,

RFvalid,

AFvaligl[0:RB-1),
RFvalla2{0:RB-11],

RFglobal [0:9]<WORD+1>,
BFlocal [Q:63 ] <WORD+12>;

phil ‘input,
phild ’"input,
phi4 *input,

busRA<7> " input,
busRA.par ‘lnput,
busRB<7> input,
busRB,par ‘input, /* inverted */
busRD<7> finput,

busD<WORD> ’input,

busD.par ‘input,

busA<WORD> "Qutput, /* inverted */
rfA.par ‘output,

busB<WORD> foutput, /* inverted */
rfB.par "output,

state.RFaddr<4> ‘hidirecticnal,

~

* lnverted */

state.rb "input,
state,RB<3> “input,
ctri.RF_write *input,
ctrl.RFpar invert ‘input:

main:={

when

when

RFgiobal {C]=000C0Q0Q0000000CC0000000000000000000;

next;
terminate;

(pni3, state.rp, state,RB
{phild eql 1)} :i={
state
rf<dd>;

delayi{l); /* Insert propagatlion delay */

Lf (state.rb eqgl 1) {
rf=0;
next;

while {(rf lss {state.RB axt 32)} and

RFvallidl(rf]=0;
RFvalld2[rf]=0;
rfarf+l;

(phidstrail):={
state
rf<32>;

rf=1;

next;

while (rf lss RB} |
RFdatal(rf}=RFdata2[rf-1]1;
RFaddrl|rfl=RFaddr2(rf-1];
RFvalidl[rf)=RFvalid2[rf-1);
rf=rf+l;

17
{f {RFvalld2{RB-1] eqgl 1) (
1f {RFaddr2[RB-1]<6> egl Q)

AFglobal [RFaddr2[RB-1] ext B|=RFdata2({RB-1]
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when

)

~hen

when

when

rf.isp

else
RFlocal [RFaddr? {RB=11<5:0> ext 8)=AFdataZ(RB-~1;

(phid, ctrl.RF_write, busRD
(phid4 eql 1)) 7i=(¢
RFvalid-ctrl.RF_erte and {busRD neq Q) ;
next;
state.RFaddr=((not RFvalid) concat busRD<6:4>) xor busRD<3:G>;
RFaddrl (0)=busRD;
RFaddr2 (0l =pusRD;
RFvalldl[0}=RFvalid;
REvalidZ[0]=RFvalld;

(phid:trall):={
state
rf<i2>;

rf=};

nexc;

while (rf lss RB) {
RFaddr2[rf]=RFaddrl(rf];
REvalld2{rf|=RFvalldl(rf);
rf=rf+l;

1

(phil, busD, busD.par, state,RFaddr, ctrl,RFpar invert
(phil eqgl 1)):=¢ B
delayi(l); /* Insert propagation delay */
RFdatal [0)=(ctrl,RFpar invert xor {parity(state.RFaddr)) xor
ousD.par) concat busD;
RFcataz{Q]|={ctrl.RFpar_invart xor {parity(state.RFaddr)) xor
pbusD.par) concat busD;
rfD.par=ctrl.AFpar_invert xor (parity(state.RFaddr)) xor busD.par;

(phil:lead):=|

state
rf«32>, rfa<i2», rfpb<ii>;

delay{50Q); /* Sllly Endet hack for BDSIM */

rf=1;

next;

while (rf lss RB) ¢{
RFdata2[rf)=RFdatal [rf);
rf=rf+l;

HH

rfa=0;
next;
while (({(RFvalld2(rfa] egl 0) or (RFaddr2{rfa) neq busRA)) and
(rfa leq RB))
rfa=rfa+l;
if (rfa leq RB) (
busA=not RFdatal(rfa|<31:0»;
busA.par=not RFdatal[rfa)<iz>;
} else ¢{
1f {busRA<é> eql 0) {
busA=not RFglobal [busRA ext 8]<31:0>;
busA.par=not RFglobal (busRA ext B|<i2>;
) else |
busA=not RFlccal [busRA<5:0> ext H)<31:0>;
busA.par=not RFlocal [busRA<5:0> ext 8]<32>:

I

rfh=0;
next;
while ({{RFvalid2[rfb] eql 0) or (RFaddr2(rfb] neq busRB)) and
(rfb leq RB}}
rfbsrfb+l;
if (rfb leq RB) {
busB=not RFdata2!{rfb|<31:0>;
busB.par=not RFdata2(rfb|«<32>;
) else {
if {DusRB<6> eql 0} {
busB=not RFqlobal (busRB ext 8]<31:0>;
busB.par=not RFglobal (DUSRB ext 8)<32>;
} else |
busB=not RFlocal [busRB<5:0> ext 8]<31:0>;
busB,par=not AFlocal [busRB<5:0> ext 8)<32>;

[

221 rf.isp



when
)
when

)

{busA.par, busRA.par}:=(
rfA.par=bush.par xor busRA.par;

{busB,par, busRB,par):={
rfB.par=busB.par xor CusRB.par;

rftran.isp

i

-

b

macra

state

port

when

when

when

when

rfrran.isp - Reglster Flle Translator

= 32&,
RB A 48;

ra.in<s>,
rb, in<5>,
rd. in<5>,
ra.out<i>,
rb.out<?>,
rd,out<7>,
CWP<2>;

phil *tinput,
phiz 'input,
phild ’irnput,

busIN<WORLC> *input,
busIR<id> *input,
busCwWP<2> *lnput,
ctrl.CWP inc<2> "lnput,
state.int ‘input,
state.rb " lnput,

busRA<7> "output,
busRA.par 'output, /* inverted */
busRB<LI> ‘output,
busRB.par ‘output, /* inverted ~/
busRD< 7> ‘output,

load.RFTRAN busIN ‘input,
load.8Faddr_RA ‘input,
load.RFaddr_ RB 'input,
load.RFaddr_8D "lnput;

{phil, ra.out, rb.out

(phil eql 1)) =t
pusRA.par=not parity(ra.out);
DusRB.par=not parity(rb.out);

fphiz

(phi2z eql 1)} :={
delayi{l): /* Insert prcpagatlon delay */
rd.in=busIR<5:1>;

{phl3, busCWP, state.lnt, state.rb, ctrl.CWP_inc
{phi3 eql 1)) :={
delay (1) /* Insert propagation delay */
tf (({state.int eql 0} and (state.rb eql 0))
CWP=busCWP+ctrl.CWP_inc
else
CWP=busCWF;

(phi3, load.RFTRAN busIN, busIN
(iphi3 eql 1) and (load.RFTRAN busIN egl 1)}}:={
delay(l}; /* Insert propagation delay */
ra.in=busIN<18:14>;
1f (busIN<30:29> eql Obll)
rb, ln=busIN<23:19>
else
ro.ln=busIN<4:0>;
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when

)

when

)

when

}

when

{load.RFaddr RA,

(ra.in, CWP):=(
state rac<i»;

delay(l); /* Insert propagation delay */

ra<3i:0>=ra._ {n<3:0>;
ra<5:4>=CWP-{ [not ra.ln<d>) ext 2};

ra<é»=rot ((ra.in leg 9) and (ra.ln geq 0)):

naxt;
if (ra<é6> egl 0)
ra.out=ra<3 ;0> ext 7
ejise
ra.gut=ra;
next;
DUsSRA=ra.out;

{rb.in, CWP):={
state rb<i>;

delay(ly; /* Insert propagatlon delay */

<3 0>=rp, In<3 C>;
rpe3:4>=CWP-{ [not rb.in<4>} ext 2};

rb<é>=not ({rb.ln leq 9) and (rb.in geq 0});

next;
if {rp<é> eql 0)
rb.out=rb<3:0> ext 7
else
rb.out=rh;
next;
busRB=rb,out;

{rd.in, CWP):=(
state
rd<?>;

delay(l); /* Insert propagation
rd<3;0>=rd.in<3:0>;
rd<5:4>aCWP-{ (not rd.ln<4>») ext 2);

rd<é>=not ({rd.in<4;0> leq 9) and (rd.

next;
{f (rd<6> eql 0)
rd.out=rd<3:0> ext 7
else
rd.out=rd;

{load,RFaddr RD eql 1)}):={

delay{i}; /* Insert propagation

DusRD=(ra.out and {load.RFaddr_RA sxt
{rb.out and {load.Rfaddr RB sxt
{rd.out and (load.RFaddr_RD sxt

sdec.isp

/

.
./
macro

state

port

sdec,.isp - Shifter Decoder

WORD tw 32¢;

SHam<5>;

phil *linpuc,
pni2 'input,
phil ’input,

busIMM<5> ’lnput,

delay "/

ln<q:0> geq 0)1);

RB egl 1} or

delay */
M) or
1) or
Ny

busB<WORD> ' Llnput, /* inverted (but actually true}

busBAR<Z> ‘input,
cusSDEC<?> 'bldirectional,
etrl.badshift ‘output,

load.SHam_IMM ‘input,
load.SHam_busB * input,
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lead.5Ham_0 ’ lnput,
load,SHam_BAR "lnput;

when (phil, load.,SHam_0
{phnil eqgl 1}):1={

delay{l); /* Insert propagatlon delay */
pusSDEC<O>=lcad. SHam_U; /v Qo
BusSDECK1>=0; i1 %/
PUsSSOEC<2>=0; /v 2o/
BusSCECK3>=0; /v 8
pusSDEC<d»=not load.SHam O; fv 13 e/
BusSCEC<S»=0; /T 186/
BUsSSDEC<E>=0; /24 %/

wher (phi2, load.SHam IMM, lcad.SHam busB, load,SHam_9O, busIMM, busB
{{{load.SHam IMM egl 1} or (lead,SHam busB eql 1} or
(load.SHam_0 eql 1}} and (phi2 eql T)}}:=(
deiay(l); /* Insert propagatlon delay */
SHam={(ousIMM and (load,SHam_IMM sat 5}) or
{{not busB<4:0») and (load.SHam busB s5xt 5} or
{0 and (load.SHam_0 sxt $)); -

when (phil3, load.SHam_BAR, busBAR
({load.SHam_BAR egl 1) and {phil eql 1)}}:=(
delay(l}; /* Insert propagatlen delay */
SHam= {DusBAR ext 5)*8;

when {SHam) 1={
delay(l); /* Inserct propagaticon delay */
ctrl.padshift={SHam neq 0) ang¢ (SHam neq 1) and (SHam neq 2)

{SHam neq 8) and (SHam neg 16) and (SHam neq 24);

when (phi3, SHam
(phi3 eql 1)) :={

delayil}; /* Insert prepagatlon delay */
busSDEC«0>=(5Ham and 0b11011l) eql 0O; /v Q ¢/
BusSSDEC<i»={S$Ham and 0b11011) eqi 1; P
busSDEC«2>={SHam and 0bllOll) egl 2; AR SN
busSDEC<3»={SHam and 0bll0ll) eql 8; St 8 */
busSDEC<4>=0; AL B
busSDEC<S>=({SHam and ObliQll) eqgl 16; /" 16 */
pusSDEC<6>={SHam and Obl1l011l) eql 24; /v 24 %/
delay(l); /* Insert propagatlion delay */

1
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i

* sdr.lsp - Store Data Register
"/

macro
WCRD H 2%,
RB = 46

state
SCRdatal [D:RB] <WORD>,
S5DRdataz[0:RB! <WORD>,
SDRvalldl[C:RB],
SDRvallid2{0:RB];

port
phil ’1input,
pni2 ‘lnput,
pnil ’lnput,
phid4 ‘lnput,

busD<WQRD> *{nput,
pusQUT<WORD> ‘output:idlsconnect,

state,rb flinput,
state.RB<3> ’linput,
ctrl.SPR_write *lnput,
gate.SDR_busCQUT “lnput;

maln:i={
SDRvalldl (RB]=1;
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SDRvalid2[RB|=1;
next;
terminate;

)

when {pnhl3, state,rb, state.RB
({phld eql 1) and (state.rb eql 11}):=¢

state
sdr<i?2s;
delay(l}; /* Insert propagatlon delay */
sde=0;
next;

whlle ((sdr lss {state,RB ext 32}) and {sdr lss RB)
SDRvalldl[sdri=0;
SCRvalld2(sdr]=0;
sdr=sde+l;

H

when (phl3:trall):={
state
sdr<3i2>;

sdral;

next;

wnile (sdr lss RB} {
SDRdatal[sdr]-SDRdataZ[sdr-l];
S5DRvalldl [sdr)=SDRvalidZ[sdr-1};
sdr=sdr+1;

1

Lf (SDRvalld2[RB-1] eql 1) {
SCRdatal (RB}=SDRdata2 [RB=1};
SDRdataz (RB|=SDRdata2(RB-1];

)

when (phid:trall):=¢
state
sdr<3z>;

S0Rvalidl [0]=ctrl,.SDR_write;

SCRvalid?(Ql=ctrl.SDR_write;

sdr=1;

next;

while {sdr lss RB} (
5DRvalid2(sdr|=SDRvalidl(sdr];
sdr=sdr+1;

HH

)

when (phil, busD
(phil egl 1)):={
delay(l): /* Insert propagattion delay */
SDRcatal[0]=pusD;
SDRdataZ[0)=pbusD;
)

when (phil:trall):={
state
sdr<3d>;

sdr=1;

next;

while (sdr lss RB) {
SDRdata2([sdr)=SDRdatal [sdr];
sdr=sdr+l;

1

sdr=0;

nexrt ;

while (SDRvalid2(sdr] eql 0)
sdr=sdr+1;

busQUT=SDRdata2[sar];

)

when (phiz, qate.SDR_busOUT
({phi2 eql 1) and (gate.SDR_busQUT eql 1))} :=(
delay(l); /* Insert gate opening delay */
connect (busQUT);
wait (phl2:trail, gate.SDR_busOUT:trall);
delay{1l); /* Insert gate closing delay */
dlsconnect (busQUT);
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shift.isp
s
. shift,lsp - shifter
.y
macro
WORD r= 3242
statle

port
phil *lnput,
prni2 ‘linput,
prlld “irnput,
phid ’input,

DusSS<WCRC> * input,
busT<WCRD> * Input,
pusSDEC<?> ‘ inpuct,
bUsSOR<WGRI> ‘output:disconnect,
cusDL<WORD> ‘output:disconnect,
cusR<WCAD> Y output,

T busT ’linput,
FT pusR ’input,
FT busL ’'input,
10ad.SHIFT_IMM ’ Lnput,

ctrl.SHIFT sxt§ 'input,
ctrl.SHIFT sxtT *input,
gate.SHIFT_busR 'input,
gate.SHIFT_busl "input;

when (phil:lead, phl3;lead) :={
delay(l}; /% Insert propagation delay */
SHITT.right=not 0;
SHIFT.left=nct O;
SHIFT.fill=not O;
}

when {phi2, load.SHIFT_IMM, ctrl.SHIFT_f111, bus$, busT
(phi2 egl I)):i={
delayi{l}; /% Insert propagation delay */
if {ioad,SHIFT_IMM eql 1)
SHIFT,left=SHIFT.left and {not busT)
else
SHIFT.right=SHIFT.right and {(not bus5};
if ({eurl.SHIFT fl1l eql 1) and {load.SHIFT_IMM eql 1}
SHIFT,fT11=0;
)

wren {phid, load,SHIFT_busT, load.SHIFT_busR, load.SHIFT busL,
ctcol SHIFT fill, busS, busT -
(pri4 eql Drya=(
agelay(l); /* Insert propagatlon delay */
if (load.SHIFT_busR eql 1)
SHIFT.right=SHIFT.right and (not bus§);
Lf {(load.SHIFT busL eql 1) and {load,SHIFT _busT eql 1)}
SHIFT,left=SHIFT.left and {not busT) and (not busS)
else 1f (load.SHIFT buslL eql 1)
SHIFT.left=3SHIFT.left an¢ (not buss)
else Lf (load.SHIFT_busT eql 1)
SHIFT.left=SHIFT,left and (not busT);
1f (ctrl.SHIFT fill eql 1)
SHIFT.Z111=0;
)

when {phid4, g@ate,SHIFT busk
{{chi4 eql 1)} and {gate,SHIFT_busR eql 1})}:=|

delay(l); /* Insert gate openlng delay */
connect (busDR) ;
wait (phid:trall, gate.SHIFT busR:trail);
delayi{l); /* Insert gate closing delay */
disconnect {(busDR) ;

}

when (phid4, gate.SHIFT_busL
({phl4 eql 1) and {gate.SHIFT_busL eql 1))}:={
delay (1} /* Insert gate opening dalay */
connect (busbDL} ;
wait {phl4:trall, gate.SEIFT busL:trall};
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delay(l}; /* Insert gate clesing delay +/
disconnect {busDL) ;
}

when (buysSDEC, SHIFT,right, SHIFT.left, SHIFT.f111):={
delayi{l): /v Insert propagatlon delay */

if (busSDEC<0> eql 1Y ( /* Shift 0 ./
SHIFT.rlght=SHIFT.right and SHIFT.lefr:

next;
SHIFT.left-SHIFT.riqht:
next;

)

if (busSDEC<1> eql 1) { /* Shift 1 *s
SHIFT.right=SHIFT.right and

{SHIFT.fL11<0:0> coneat SHIFT,left<31:1>)

next;
SHIFT.left<3l:1>=8HIFT.right:
SHIFT_f111<0:0>=SHIFT,right<31:31>;
next;

1

Lf {busSDEC<2> egl 1) [ /* Shift 2 »/

SHIFT.rlght=SHIFT.right and

(SHIFT.f111<1:0> concat SHIFT.left<3l:2»)

next;
SHIFT.left<31:2>=SHIFT.zight;
SHIFT,f{11<l:0>=5HIFT, right<31:30>;
nexc;

if (busSDEC<3> eql 1) ( /* Shift 8 «/
SHIFT.right=SHIFT.rlght and

(SHIFT.£111<7:0> concat SHIFT,left<31:8>)

next;
SHIFT.left<31:8>=SHIFT.right;
SHIFT.f111<7:0>-SHIFT.rlqht<31:24>;
next;

——
[

(busSDEC<4> eql 1) ( /* Shift 13 =/
SHIFT.right=SHIFT,right and

(SHIFT.f111<12:0> concat SHIFT.left<31l:13»};

next;
SHIFT.left<31:13>=5HIFT,right;
SHIFT.f111<12:0>=SHIFT.right<31:19>;
next;

fa—
Fne

(busSDEC<S> eql 1) ( /* Shift 16 */
SHIFT.rlght=SHIFT.right and

(SHIFT.£111<15:0> concat SHIFT.lefr<3l:16>});

next;
SHIFT,left<3l:16>=SHIFT, zight;
SHIFT,f111<15:0>=SHIFT.right<3i:16>;
next;

Pt

(bus3DEC<E> eql 1} { /* Shift 24 +/
SHIFT.right=SHIFT.right and

(SHIFT.f111<23:0> concat SHIFT,left<3l:24>);

next;
SHIFT.left<31:24>=5HIFT.right;
SHIFT.f111<23:0>~SHIFT.right<31:8>;
next;

)

when (SHIFT.right):=¢
delay(l); /* Insert propagation delay */
busDR=not SHIFT.right;
busR=neot SHIFT,.right;

)

when (SHIFT.left):=(
delay(l); /* Insert propagation delay */

busDL=not SHIFT.left;
]

when {ctrl.SHIFT_sxtS, buss, ctrl.SHIFT_sxtT, busT):=(
delay(l), /* Insert propagatlon delay */

Ctrl.SHIFT_fill={ctr]l.SHIFT_sxt$ and busS<3il>} or

(ctrl.SHIFT sxtT and busT<31>);
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