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ABSTRACT

There has recently been a tremendous rebirth of interest in neural networks, ranging from dis-
tributed and localist spreading-activation networks to semantic networks with symbolic marker-
passing. Ideally these networks would be encoded in dedicated massively-parallel hardware that
directly implements their functionality. Cost and flexibility concerns, however, necessitate the use
of general-purpose machines to simulate neural networks, especially in the research stages in
which various models are being explored and tested. Issues of a simulation’s timing and control be-
come more critical when models are made up of heterogeneous networks in which nodes have differ-
ent processing characteristics and cycling rates or which are made up of modular, interacting sub-
networks. We have developed a simulation environment to create, operate, and control these types
of connectionist networks. This paper describes how massively-parallel heterogeneous networks
are simulated on serial machines as efficiently as possible, how large-scale simulations could be
handled on current SIMD parallel machines, and outlines how the simulator could be implemented
on its ideal hardware, a large-scale MIMD parallel machine.

1. INTRODUCTION

Connectionist networks, often known as neural networks or spreading-activation networks, have recently
been the subject of a tremendous rebirth of interest, as researchers have begun to explore their advantages
for cognitive models ranging from low-level sensory abilities to high-level reasoning. Connectionist models
employ massively parallel networks of relatively simple processing elements that draw their inspiration
from neurons and neurobiology, as opposed to traditional symbolic artificial intelligence (AI) models,
which are generally based on serial Von Neumann architectures.

tAppears in Parallel Computing 14, 287-303, 1990 (special issue on neural networks).
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A few designers have implemented neural networks directly in special-purpose VLSI hardware (e.g. [Akers
& Walker, 1988} and [Mead, 1989]) that achieves the networks’ true parallelism and offers tremendous
speed-up over simulation on serial machines. Unfortunately, such special-purpose hardware is too inflexi-
ble and expensive for the exploration and testing of different types of models. Because of this, there is a
need for software tools to allow researchers to design and simulate the many kinds of connectionist network
models.

An effective simulation environment is particularly critical for development of heterogeneous neural net-
works, which may contain elements with different processing characteristics or effective cycling rates, and
which may be made up of modular or more complicated interacting sub-networks. Another area of research
requiring simulation is that of hybrid networks that integrate elements from more than one paradigm of
connectionist modelling, ranging from distributed and localist connectionist networks to symbolic marker-
passing networks.

We have developed DESCARTES (Development Environment for Simulating Connectionist ARchiTEctureS)
[Lange ef al, 1989a, 1989b] to create, operate, and control heterogeneous and hybrid connectionist networks.
This paper describes how DESCARTES simulates massively-parallel networks on serial machines as effi-
ciently as possible, how large-scale simulations could be handled on current SIMD parallel machines, and
outlines how the simulator could be implemented on its ideal hardware, a large-scale MIMD parallel ma-
chine.

2. CONNECTIONIST MODELS

Connectionist networks are made up of a large number of relatively simple computing elements, called
nodes, which are connected by links [Feldman & Ballard, 1982]. Nodes are simple, neuron-like processing
elements that each have an internal numeric activation level and a numeric output level that is spread to
other nodes in the network. A node’s activation, ai(t+1), is calculated by its activation function from the

outputs coming from its incoming links (calculated by a net input function) and possibly its previous activa-
tion:

aj(t+l) = fz(a; (), net;(t+1))

Usually the net input function to a node, net;{t + 1), is the sum of its weighted inputs, or:

net;i (t+1) = Z wjjo5(t}
j
where wjj is the weight on the incoming link from node j to node i, and 0j(t) is the output of node j at cycle 1.
Weights are either positive (“excitatory”) or negative (“inkibitory”) real values. Other net input func-

tions are possible, with one common variant adding a self-biasing activation term to the sum of its
weighted inputs.

A node’s output, ¢j(t + 1), is generally a function of its activation:
oj (t+l) = fo(ai(t+l))

Both the activation and output functions for nodes vary from model to model, and are sometimes collapsed
into one (i.e. the activation and output are the same). Some variants are the output function of the percep-



tron [Rosenblatt, 1962], which is equal to a linear threshold of the net input; the activation function of sim-
ple PDP nodes [Rumethart ef al, 1986], which is equal to a sigmoidal function of the net input; and the acti-
vation function of nodes in Boltzmann Machines [Hinton & Sejnowski, 1986), which is a stochastic rule.

2.1. Paradigms of Connectionist Processing

Within the connectionist approach there are three paradigms, each having its own advantages and disad-
vantages: Distributed Connectionist Networks (DCNs), Localist Connectionist Networks (LCNs), and
Marker-Passing Networks (MPNs).

DCNs, sometimes known as Parallel Distributed Processing or Subsymbolic models, are networks which rep-
resent knowledge as distributed patterns of activation across their nodes. Most DCN models have learning
rules, such as backpropagation [Rumelhart et al., 1986), to train their links’ weights to generate desired in-
put/output behavior. With such training rules, DCNs are able to perform statistical category generaliza-
tion, perform noise-resistant associative retrieval, and exhibit robustness to damage. They have been suc-
cessfully employed for tasks such as visual pattern recognition [Fukushima ef al., 1983], speech consonant
recognition {Waibel, 1989}, and assigning roles to constituents of sentences [McClelland & Kawamoto, 1986].
On the other hand, DCNs have (so far) had difficulty with both dynamic variable bindings and the repre-
sentation of structure needed to handle complex conceptual relationships, and so are not currently well-
suited for high-level cognitive tasks such as natural language understanding and planning,

LCNs also use nodes with simple numeric activation and output functions, but instead represent knowledge
using semantic networks in which concepts are represented by individual nodes and their interconnections.
Unlike DCN, localist networks are parallel at the knowledge level and have structural relationships be-
tween concepts built into the connectivity of the network. Because of this, LCNs are especially well-suited
for cognitive tasks such as word-sense disambiguation {Waltz & Pollack, 1985] and limited inference
{Shastri, 1988]. Unfortunately, LCNs lack the powerful learning and generalization capabilities of DCNs
and also have had difficulty with dynamic variable bindings and other capabilities of symbolic models.

MPNs are unlike DCNs and LCNs in that their nodes do not use numeric activation functions, but instead use
built-in symbolic capabilities. Like LCNs, they also represent knowledge in semantic networks and retain
parallelism at the knowledge level. Instead of spreading numeric activation values, MPNs propagate
symbolic markers, and so support the variable binding necessary for rule application while preserving the
full power of symbolic systems. Because of this, they have been able to approach high-level areas such as
planning [Hendler, 1988] and natural language understanding [Charniak, 1986]. On the downside, MPNs’
nodes are more complex than those of DCNs and LCNs, they do not possess the learning capabilities of
DCNs, and they do not exhibit the constraint-satisfaction capabilities of LCNs.

2.2. Heterogeneous and Hybrid Connectionist Models

While the majority of connectionist models are made up of a single network of homogeneous elements, a
number of researchers are exploring heterogeneous networks made up of elements with different processing
characteristics (e.g. [Shastri, 1988], [Tomabechi & Katino, 1989), [Lange & Dyer, 1989a,b,c]). Another type
of heterogeneous model uses multiple interacting sub-networks that communicate via shared elements, such
as modular networks — DCNs composed of networks that are trained separately (e.g. [Waibel, 1989],
[Miikkulainen & Dyer, 1989]). Yet another area of connectionist research lies in hybrid models which com-
bine elements from DCNs, LCNs, and/or MPNS in order to approach problems that would be difficult or im-
possible using a single paradigm (e.g. [Hendler, 1989], [Lange et al., 1990b]).



Figure 1 illustrates many of the concepts of heterogeneous and hybrid networks. The figure shows a simpli-
fied network built to understand the sentence, “John put the pot inside the dishwasher because the police
were coming” (Hiding Pot). Network-A in Figure 1 is a combined LCN and MPN whose nodes and connections
represent part of the real-world knowledge needed to understand the sentence. The MPN supports vari-
able-binding and rule-firing, while the LCN activates and combines evidence for individual schemas.
These then combine their functionality to support predictions and perform inferencing and disambiguation?,

The figure also shows how different connectionist approaches may be combined by having separate net-
works that interact with each other, where each one performs a different cognitive task. Network-B in
Figure 1 is a DCN trained by backpropagation to recognize words from line segments. It feeds into Network-
A to provide the input for its semantic processing. Network-B itself could be built up of two modular sub-
networks — one trained to recognize letters from the line segments, and another trained to recognize words
from those letters.

A final feature of heterogeneous models is the ability to have different effective cycling rates of node up-
dating. For instance, the constraint-satisfaction disambiguation process of the LCN in Hiding Pot isa
slower process than marker-passing. It would therefore be desirable for the LCN nodes of Network-A to cy-
cle more quickly than the MPN nodes. One might also want to have the nodes of Network-B cycle more
quickly than those of Network-A, since Network-B must first recognize the words from all of the line seg-
ments before any semantic processing can occur.

3. THE DESCARTES CONNECTIONIST SIMULATOR

While there are several existing connectionist simulators (e.g. [D’Autrechy et al., 1988)], [Goddard et al.,
1989], [Mesrobian et al., 1989], and [Wilson ef al., 1989]), none allows the simulation of multiple interacting
heterogeneous or hybrid networks, as in Hiding Pot, that integrate elements from more than one paradigm
of connectionist modelling. We have developed the DESCARTES simulation environment specifically to
address this kind of integration. DESCARTES enables researchers to design, simulate, and debug heteroge-
neous and hybrid connectionist architectures that combine elements of distributed, localist, and /or marker-
passing networks.

DESCARTES is implemented in COMMONLISP, the ANSI Lisp standard, and the COMMONLISP Object Sys-
tem, CLOS, which provides hierarchical inheritance for DESCARTES classes and ensures flexibility by al-
lowing the user to use pre-defined functional classes or create his own to customize network semantics. The
DESCARTES system consists of two interactive components: network elements, such as nodes and links, and
processing controllers, which organize network elements and coordinate their processing. All elements and
controllers are instances of DESCARTES classes.

3.1. Processing Controllers

When DESCARTES is loaded and running, the required processing controllers are a meta-controller (a super-
visor for all elements and sub-controllers present in the run-time system) and at least one network controller

IThe inferencing and frame selection needed to understand sentences such as Hiding Pot is explained
more thoroughly in [Lange & Dyer, 1989b,c], which describe ROBIN, a LCN model that performs high-
level inferencing without marker-passing.



Hiding Pot

Goal-Llean-Dish Goal-Avoid-Detection

C) Conceptual nodes over which activation spreads. Thickness of node boundary relative to level of activation.
o Role nodes over which both markers and activation spread.
O
-—

Feature: detection nodes over which activation spresds. Incoming weights learned by back-propagation.
Markers that have propagated (above and 1o the right of role nodes) representing bindings (eg Jo = John).
Link between related concepts over which weighted activation spreads,
Link between concept and a role over which weighted activation spreads,

Phniind Mapping between role nodes over which markers are spread.

Spreading-activation link whose weight is learnable by back-propagation. Legend

Figure 1: The sentence “John put the pot in the dishwasher because the police were coming.” il-
lustrates the utility of integrating semantic networks (Network-A) and distributed networks
(Network-B). The darkest area represents the most highly-activated set of nodes representing
the network’s plan/goal analysis of the sentence. Not all markers are shown. Location role nodes
and other parts of the network are also not displayed.
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Figure 2: DESCARTES Processing Architecture applied to Hiding Pot. Shown in each network
are a few of their nodes, with the class of each node being declared in parentheses below their
names. PDP-Nodes “pot” and “john” are shared by both networks.

(a supervisor for an individual network and its elements). Figure 2 shows the architecture for Hiding Pot,
which is controlled by a meta-controller (Meta-Control) that coordinates the two network controllers
(Network-A and Network-B). In this case the controller for Network-A is of class SA/MP-Control, which com-
bines both spreading-activation and marker-passing functionality, while Network-B is of class PDP-Con-
trol, which enables its spreading-activation nodes to be trained by backpropagation.

3.2. Node Classes and Processing Functionalities

As shown in Figure 2, each node is an instance of a specific class. Each spreading-activation node class has
its own net-input, activation, and output functions, and may or may not have learning capabilities. Because
many connectionist nodes are made up of combinations of similar processing characteristics, classes in
DESCARTES can be built by combining different processing functionalities that define those characteristics.
For example, see Figure 3, which shows the definitions of two of the spreading-activation node classes used
in Hiding Pot.

Both Simple-SA-Node and PDP-Node in Figure 3 are defined to include System-Building-Block-Node, the
class with the CLOS slots and methods necessary for basic node processing. The primary net-input function
of both classes is the same — the sum of the activations on their incoming links (Net-Input-Sum-Functional-
ity). However, PDP-Nodes include an :around net-input functionality (Net-Input-Around-Self-Bias-Func-
tionality) that adds a self-biasing activation term to the primary net-input function, so that:

net; (t+l) simple-sa-Node = Zoj (t)
3

net; (t+1) ppp-vode = P,05(t) + bias;()
3



{Node-Class Simple-SA-Node {Output-Local-Threshold-Functionality
Activation-Around-Linear-Decay-Functionality
Net-Input-Sum-Functionality
System-Building-Block-Node))

(Node-Class PDP-Node (Learning-PDP-Functicnality
Activation-PDP-Sigmoid-Functionality
Net-Input-Around-Self-Bias-Functicnality
Net-Input-Sum-Functionality
System-Building-Block-Node} )

Figure 3: Definition of two spreading-activation node classes and their processing characteristics.

Where 0j(t) in each case is the output stored on incoming link j to the node, and bias;(#) is the self-biasing
activation of the node. Another example is that Simple-SA-Node has an activation :around functionality
(Activation-Around-Linear-Decay-Functionality) that adds a linear decay of its previous activation to its
primary activation function (the default, which is equal to its net-input). Any number of such :around fune-
tionality classes can be used to modify the processing characteristics of each node class, Other node spread-
ing-activation functionalities allow alternative input sites for links to a node that effect the node’s pro-
cessing differently than the normal incoming-links, such as the breakdown between input sites for excita-
tory and inhibitory links in some of the activation rules of [Grossberg, 1980]. Modification and definition of
DESCARTES’ other element classes is handled with similar combinations of functionality classes.

Having :around functionalities that modify each node function’s primary characteristics (as opposed to
simply defining a new primary characteristic for each node class) is important for two reasons. First, it al-
lows for simple definition of new node classes that combine commonly-used processing characteristics.
Equally important is that it allows for potentially substantial speed-ups for simulations on SIMD parallel
machines (described in Section 5).

3.3. The Simulation Cycle

Once the networks have been designed and built, the user runs the simulation by (1) optionally defining the
cycling, termination, and display sequence for each network, (2) initializing the meta-controller to clear out
all activation and markers, (3) activating or marking the desired nodes, and (4) starting the cycling se-
quence and specifying the number of global cycles to run. The meta-controller provides for timing coordina-
tion between the networks to control different cycling rates and functionalities. Networks cycled in paral-
lel behave as if they were a single net, even though they need not operate at the same cycling rates or with
the same functionality. With serial cycling, one network may wait until another network completes a spec-
ified number of cycles or reaches stability before starting to cycle itself.

Each global network cycle is comprised of four steps: (1) determination of which networks need to be cycled,
(2) update of active nodes in the cycling networks, (3) spread from active nodes in the cycling networks to
their outgoing-links, and (4) report any requested output.

Determining Active Networks: The meta-controller determines which of the networks in the system
need to be cycled in parallel on the given cycle, according to defaults and any user specifications.
In Hiding Pot, for instance, spreading-activation nodes in Network-A might be cycled on every



global cycle, while marker-passing nodes might be cycled only on global cycles 1, 4, 7, and so on,
until stability.

Update: Each active node in the cyding networks queries its incoming links for new activation and/or
markers. Spreading-activation nodes calculate their new activation by applying their net input
and activation functions, while marker-passing nodes store any new markers they have received.

Spread-To-Out-Links: Each active node in the cycling networks calculates its output (either activa-
tion or markers) and sends it to its outgoing links. The output of spreading-activation nodes is cal-
culated by applying their output function, while the output of marker-passing nodes is generally
their new markers. The links receive input from their source nodes and store it, multiplied by
their weights if appropriate.

Report Output: The final step of a cycle entails querying the cycling networks for results. Each con-
troller can optionally display the status of nodes at specified cycles or trace new activation
and/or markers,

4. DESCARTES' SERIAL IMPLEMENTATION

Like most general-purpose connectionist simulators, DESCARTES currently runs solely on serial computers.
The execution time for simulation of the synchronous update cycle is therefore linear with the number of
nodes and links in the networks, which constrains the size of networks that can be reasonably simulated.
Fortunately, the efficiency of serial simulations can often be improved by exploiting the dynamics of the
spreading-activation process to prune the number of nodes that actually need to be updated on any given cy-
cle.

Once the networks have been created and their cycling procedure defined (a process described in [Lange et
al., 1990a}), simulating the actual cycling of the networks is relatively straightforward. As described in
the previous section, on each discrete global cycle the meta-controller needs only to (1) determine the active
networks (and hence nodes) that will be updated, (2) serially walk through the active networks’ nodes to
calculate and store their new activations by calling their net-input and activation function methods
(Update), and then (3) serially walk through their nodes again to spread their new output (calculated by
applying their output-function to their new activation) to each of their nodes’ outgoing links (Spread-To-
Out-Links). Due to DESCARTES’ object-oriented implementation, the simulation cycle works exactly the
same for heterogeneous networks as for homogeneous networks — differing node classes simply have differ-
ent net-input, activation, and output function methods.

The timing described above is critical for the serial simulation of synchronous update cycles. Because each
of the nodes’ activation updates depends on the previous cycle’s outputs of their incoming links, all updates
must be performed before any of the newly updated activations are spread to the nodes’ outgoing links.
Whereas in networks with homogeneous cycling rates it is unimportant in which order the update and
spread-to-out-links steps are performed (so long as they are done separately), heterogeneous cycling re-
quires that the spread-to-out-links step be done immediately before the next global cycle so that the nodes’
new output values become available to the rest of the network.



4.1. Speeding Up the Simulation

Connectionist models using synchronous updating assume that all nodes are updated on each cycle, taking
into account effective cycling rates. However, there are often cases in which the simulation process can be
sped up when the activations of individual nodes remain constant over a number of cycles.

Feed-forward backpropagation networks (such as Network-B in Hiding Pot) are one example of this. When
the nodes of the first layer are clamped to the activations of a new input pattern, the activations of the
second layer’s nodes will change on the next cycle, since their incoming links’ outputs have changed. Simi-
larly, on the third cycle, the third layer’s nodes need to be updated as the activation is “fed-forward”.
However, the activations of the second layer remain constant, since their inputs (the first layer) remain
clamped to their original values. There is therefore no need to update their activations, since they are
guaranteed to remain unchanged. In general, only the layer that activation has just reached needs to be up-
dated, thus decreasing the time needed for a serial simulation to feed activation forward from the inputs to
the outputs by an average factor of n, where n is the number of layers in the network.

Feed-forward networks are not the only case in which large subsets of nodes do not need to be updated on ev-
ery cycle. In large LCNS, for instance, activation may have only reached a small portion of the network at
any given cycle, with the rest of the network remaining inactive. In fact, with most deterministic activa-
tion functions, any node whose level of activation stays constant over an update cycle will remain un-
changed until one of its incoming links receives a different output value.

DESCARTES provides a functionality that exploits this by recognizing unchanging nodes and updating only
those nodes whose activation (or markers) have the potential to change on a given cycle. With this func-
tionality, nodes whose activation is unchanged after an update are declared to be asleep and removed from
their networks’ list of actively processed nodes. They remain asleep (and unprocessed) until one of their in-
coming links wakes them when they receive a new output value.

Figure 4 illustrates how activation spreads through a simple network after one of the nodes (A) has been
given an initial activation of 0.5. The figure shows the activations on the nodes and on their outgoing-links
(as modified by their link weights) after each of the first four cycles. Notice that some of the nodes are
asleep on each cycle, limiting the amount of node updates needed to be performed. A more complete descrip-
tion of the simulator’s serial implementation can be found in [Lange ef al., 1989b, 1990al.

5. SIMULATION ON SIMD MACHINES

Although serial simulations can reasonably handle networks of up to medium size, the massively-parallel
nature of neural networks dictates that large models be simulated on similarly massively-parallel ma-
chines. The only current machines with enough processors to allocate a processor per node for large networks
are SIMD (“Single Instruction Multiple Data”) parallel processors. Unfortunately, because all processors in
SIMD machines must execute the same instruction at a time, they are not ideally suited for simulation of
heterogeneous networks. Large numbers of processors must remain idle as the processing functionalities of
each different node class are simulated separately. Even so, the simulation time on a SIMD machine will
be only linear with the number of different processing functionalities. Dramatic increases in simulation
speed are thus possible over serial simulations, since there are at most a handful of different classes of
nodes and links in a given connectionist model, whereas there can be thousands or millions of separate nodes
and links.
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Figure 4. An example of a simple spreading-activation network. Sum-Nodes calculate their
actvation as the sum of their input, while Max-Nodes calculate their activation as the maxi-
mum of their inputs.

5.1. The Connection Machine

For simulations of connectionist networks with arbitrary connectivity, it is essential that the SIMD ma-
chine allow each processor to communicate efficiently with any other processor. The current large-scale
SIMD machine probably best meeting this requirement is the Connection Machine (CM), which consists of
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up to 64 K one-bit processors arranged in a 12-dimensional hypercube [Hillis, 1985]. Each processor has a lo-
cal memory of 256 K bits which can be partitioned by CM microcode to form over a million virtual proces-
sors. Most importantly, the CM has sophisticated routing hardware for parallel communication between
processors. All processors are controlled by instructions broadcast from a (serial) workstation host.

Using these capabilities, simulations of general backpropagation networks on the CM have attained over
10 million weight updates per second [Blelloch & Rosenberg, 1987], a nearly two thousand-fold increase
over the speed of DESCARTES’ serial implementationz. However, connectionist simulations on the CM and
other SIMD machines have so far been limited to implementations of specific, generally homogeneous,
models.

We are currently planning on implementing DESCARTES on the Connection Machine to allow massively-
parallel simulation of general heterogeneous connectionist networks. To retain the network creation, han-
dling, debugging, and flexibility features of DESCARTES, its Connection Machine implementation would
continue to use CLOS object-oriented instantiations of network nodes and links on the CM's host. To realize
massively-parallel simulation, however, all actual network processing would be performed by a mirrored
copy of the network allocated across the processors of the CM.

5.2, Layout of Processors

As long as enough processors are available, the most efficient use of processors for general networks on fine-
grained parallel machines such as the Connection Machine is to allocate one processor for each node and at
least one processor for each link3. The actual processor layout needed to achieve optimal performance on a
given machine depends on the costs of different processor communication operations on that machine.

On the Connection Machine, there are two primary communication techniques — router and scan operations.
The router operations allow any processor to read from or write into the memory of any other processor. The
scan operations allow the summation of the values of many adjacent processors into one processor, or the
copying of the value of one processor into many adjacent ones. Scan operations are generally faster than
router operations, though less flexible.

Using the above information on CM communications’ costs, Blelloch and Rosenberg [1987] devised a processor
layout for homogeneous backpropagation networks of arbitrary connectivity that allocates one processor per
node and two processors per link. Their layout is designed to allow most communication in the spread-to-
out-links and update phases to be performed with fast scan operations to minimize communication delays.

Blelloch and Rosenberg’s basic processor layout will also work for general heterogeneous networks, though
the simulation process itself needs to be extended. The processor for each node is immediately followed by
the processors for all of its outgoing links, and is immediately preceded by the processors for all of its in-

2[Zhang et al., 1990] and [Singer, 1990] describe implementations of backpropagation on the CM that are
even faster for certain networks and training sets, but which are not as easily generalizable to arbitrary
heterogeneous networks.

3One alternative is to only allocate processors for nodes and update their activations by looping
through lists of links stored on each processor. A node-based implementation such as this will force node
processors with small numbers of links to remain idle while processors with larger number of links
continue looping through their remaining links.
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Figure 5, Layout of nodes and links of the network of Figure 4 as would be implemented on the
Connection Machine.

coming links. The beginning and ending of these continuous segments of processors is marked by flags. Figure
5 shows the example network of Figure 4 as it would be allocated using this layout,

5.3. The SIMD Simulation Cycle

The overview of what occurs in each global simulation cycle will remain exactly the same in the CM im-
plementation as in the current serial implementation (Section 3.3). The networks to be cycled need to be de-
termined, all nodes in those networks must be updated, the new output values must be spread to the nodes’
output links, and any desired output must be reported.

The simulation’s meta-controller will reside on the host machine. Because the number of sub-network con-
trollers is always relatively small, the actual network controllers will also reside on the host, where each
cycle’s selection of active network controllers will be computed. If the list of active controllers is different
than on the previous cycle, then the host will broadcast the new list to the CM’s processors. All processors
for nodes and links that are in one of those controllers will be selected; those that are not will be turned off
and will stay off throughout the remainder of the cycle.

5.4. The SIMD Cycle’'s Update Stage

The next part of the global cycle is the update stage in which all active nodes update their activations by
calculating their net-inputs, their activations, and their outputs. All incoming link processors (i.e. 0, 1, 5, 9,
10, and 13 in Figure 5) will already hold the link-modified output (e.g. weighted output) of their source
nodes from the spread-to-out-links of the previous cycle. The first part of the update stage is for all nodes
to calculate their net-inputs. Each net-input processing functionality used in the network must be done sepa-
rately. This will be done by the following algorithm:

1) For each primary net-input functionality in the active networks DO

a) Select the processors of the nodes and links that use it
from the subset of processors already active.

b} Perform a forward scan into the nodes with the reduction function
specified by the net-input functionality {e.g. “+” for net-input-
sum-functionality, "“max” for net-input-max-functionality), storing
the result in the net-input variable of the active node processors.

¢) Return to previously active processors.

12
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Figure 6. Using scans to update: first (a) the nodes with primary net-input function Net-Input-
Max-Functionality (for Max-Nodes), and then (b) the nodes with primary net-input function Net-In-
put-Sum-Functionality {for Sum-Nodes). Processors with shaded node or link names are idle.

2) For each :around net-input functionality in the active networks DO
a) Select the processors of the nodes and links that use it
from the subset of processors already active.
b) Modify the value in the processors’ net-input variable, as specified
by the net-input :around functionality method (e.g. adding a
self-bias for net-input-arcund-self-bias-functionality}.
¢) Return to previously active processors.

As an example, the network of Figure 4 has two primary net-input functionalities: Net-lnput-Max-Func-
tionality for its Max-Nodes (A and B) and Net-Input-Sum-Functionality for its Sum-Nodes (C and D). They
have no modifying :around net-input functionalities. Figure 6 shows the two steps that will be needed to
calculate their net-inputs. In Figure 6a, the processors which use Net-Input-Max-Functionality (0, 1, 2, 5, and
6) are selected, and a forward scan is used to place the maximum output value of processors 0 and 1 (in-links
L1 and L5) into the net-input variable of processor 1 (node A), and the maximum output value of processor 5
(in-link L2) into processor 6 (node B). Afterwards, the processors which use Net-Input-Sum-Functionality are
selected, and a scan is used to sum up the values of the incoming link processors and place them in the net-in-
put variables of the Sum-Node processors (Figure 6b).

After the net-inputs to all of the active node processors have been calculated and stored, their activations
must be calculated. As with the net-input functions, all of the primary and :around activation functionali-
ties used by the nodes in the active networks must be calculated separately, with all of the primaries being
calculated first. Finally, all of the active node processors must calculate their outputs by similarly apply-
ing their primary and :around output functionalities. Unlike the net-input functions, neither the activation
nor output functions will generally require any inter-processor communication.

Although the breakdown between primary and :around node functionalities makes the simulator’s update
algorithm slightly more complicated, it permits large speed-ups for SIMD simulation of heterogeneous net-
works. This is true because it allows common processing characteristics of different node classes to be simu-
lated concurrently. For example, if the net-input functions of the Simple-SA-Node and PDP-Nodes defined
in Figure 3 were simulated separately, then the sum of the net-inputs would have to be performed twice:
once for the net-input function of the Simple-SA-Nodes and once for the net-input function of the PDP-
Nodes. However, with the algorithm described above, the sum of the net-inputs would only have to be per-
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Figure 7. The CM Spread-To-Out-Links process: (a) First a scan is used to copy the output of
the nodes to their outgoing links. (b) After the link functions have been applied, the router is
used to copy links' cutput values from their outgoing link processors to their incoming link proces-
sors. Processors with shaded node or link names are idle.

formed once, when the primary Net-Input-Sum-Functionality is applied. An important aspect of this algo-
rithm is that it has the same efficiency as dedicated homogeneous network simulators when there is only
class of nodes in the network.

5.5. The SIMD Cycle’s Spread-To-Out-Links Stage

After all of the nodes in the active controllers have been updated, their new outputs must be spread to their
outgoing links. First a copy-scan will be used to quickly copy the outputs of all active nodes to their outgo-
ing links (Figure 7a). Then the functions for each different link class used in the active controllers will be
applied (separately) to convert the outputs the links received from their source nodes to the value for their
sink nodes (e.g. weighted links multiply the value received by their weight). Finally, the link output val-
ues are sent using the router to their equivalent incoming links so that they will be available for the next
cycle’s update (Figure 7b).

5.6. Efficient Backpropagation on SIMD Machines

The same layout of processors described for the spreading-activation process can be used for training net-
works’ weights with backpropagation. The forward-propagation process of backpropagation is simply the
global spreading-activation cycle carried out for as many cycles as there are layers in the network. The
backwards error-propagation stage will use the same nodes and processors, with the scans and link routing
being applied backwards to send back the error deltas calculated by the PDP logistic error function.

Because of the nature of feed-forward networks, one problem with simply using the above algorithm is that
it would leave most of the processors idle, since only the layer that activation has just fed forward to (or er-
ror fed backward to) will ever change. Thus the characteristic that serial simulations can take advantage
of for more efficient simulation (Section 4.1) wastes resources on massively-parallel SIMD machines.

A solution to this problem is to pipeline the training set through both the feed-forward and feed-backward
stages [Blelloch & Rosenberg, 1987]. Using this method, the nodes in the input layer are clamped to a new
input pattern on every cycle. Thus, if the network has m layers, a total of 2m patterns will be processed at
any given time, with all processors remaining active. An added requirement is that each node processor
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keep a history of its output values for the last 2m cycles so that the feed-backward error function can use
the corresponding output from its feed-forward stage4. This output history is also useful for debugging, and
allows recurrent backpropagation networks to be trained without the separate layers normally used to copy
the values of recurrent layers.

An added benefit of using the pipelining method of training is that it allows training of separate modular
networks to proceed in parallel, regardless of whether sub-networks have different numbers of layers. Each
modular sub-network simply needs to keep track of its own training set.

6. SIMULATION ON HYPOTHETICAL MIMD MACHINES

The ideal machine for simulation of large heterogeneous connectionist networks is a large-scale MIMD
(“Multiple Instruction Multiple Data”) machine. Because each processor would concurrently execute its own
functions for simulating element processing characteristics, there could be as many different processing func-
tionalities as there are elements without any degradation in performance. This is unlike SIMD machines,
in which large numbers of processors must often remain idle as different node functionalities are simulated
sequentially.

Unfortunately, there are currently no MIMD machines with enough processors to allocate a processor per in-
dividual node and link on large networks. Current MIMD machines are therefore limited to providing
(somewhat less than) linear speedup with the number of processors by simulating either different segments
of the network or different portions of the training sets (e.g. [Pomerleau ef al., 1988]). Simulations on paral-
lel machine with small numbers of processors are certainly valuable tools, as are simulations on supercom-
puters such as the Cray Y-MP, but neither truly take advantage of the massive parallelism that is the very
nature of neural networks.

When technology becomes available to affordably build massively-parallel MIMD machines, their simu-
lation of connectionist networks will be much like simulation on current SIMD machines. As in SIMD simu-
lations, arbitrary connectivity will make it desirable to have at least one processor allocated per node and
link. Each processor, however, need not have huge amounts of local memory — only enough to hold required
processing functionalities and local parameters (such as activations and weights). As with SIMD ma-
chines, communication costs will determine the optimal processor layout of nodes and links.

The meta-controller used to control the overall simulation and interact with the user would still need to be
on a “host” processor or machine. The meta-controller would take on one added duty for the simulation:
that of making sure that all processors are synchronized. Whether synchronization would need to take
place only before the start of every cycle, or also need to be performed before the spread-to-out-links stage
of every cycle would be determined by the optimal processor communication method. If a global communica-
tion method such as the scan operation on the Connection Machine is best, then the scan portion of the
spread-to-out-links stage would have to wait until all active nodes have updated their outputs. On the
other hand, if individual processor-to-processor communications were relatively inexpensive, then each
node processor could “inform” its own outgoing link processors when its output was updated, and therefore
immediately do its own spread-to-out-links. This method would have the advantage of better processor
utilization when subsets of the nodes have relatively quick update but slow spread-to-out-link times.

4In normal backpropagation, a history of output values is not necessary, since the output of nodes
remains constant after activation has been fed-forward through its layer.
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7. CONCLUSIONS

This paper describes a development tool, DESCARTES, which provides researchers with the capability to
simulate heterogeneous connectionist (neural) networks in which nodes and links may have different pro-
cessing characteristics and effective cycling rates, or which are made up of modular, interacting sub-net-
works. DESCARTES also allows researchers to build hybrid networks which combine elements from dis-
tributed, localist, and symbolic marker-passing networks.

DESCARTES is currently implemented on serial machines. It is able to simulate networks of up to medium
size with reasonable performance by taking advantage of the dynamics of the spreading-activation process
to prune unchanging nodes from the update and spreading cycles.

The massively-parallel nature of neural networks, however, dictates that large networks be simulated on
similarly massively-parallel machines. SIMD machines are currently the only machines with enough pro-
cessors to approach this ideal. We have described how DESCARTES could be implemented on a SIMD ma-
chine {the Connection Machine). Every node in the network would be allocated one processor and every link
two processors: one as the outgoing link from their source node, and the other as the incoming link to their
sink node. Because every active processor in a SIMD machine must execute the same instruction, each sepa-
rate processing characteristic of active nodes and links (e.g. different activation or learning functions) must
be simulated sequentially, with processors not using that characteristic remaining idle. Compared to serial
simulations, however, SIMD simulations offer great potential speed-up in run times, since there are gener-
ally only a few different node and link types in a given model, while there may be thousands or millions of
separate nodes and links.

Ideally, heterogeneous networks would be simulated on a massively-parallel MIMD machine with at least
one processor per node and link. Because each processor would execute its own functions for simulating ele-
ment processing characteristics, there could be as many different processing functionalities are there are
elements, with the only degradation in performance being due to processor synchronization.
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