Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE TANGRAM MODELING ENVIRONMENT

Leana Golubchik November 1990
Gary D. Rozenblat CSD-900034
William C. Cheng
Richard R. Muntz

The Tangram Modeling Environment !
Leana Golubchik Gary D. Rozenblat William C. Cheng
Richard R. Muntz
UCLA Computer Science Department

June 28, 1990

1This work was partially supported by a MICRO grant from the University of California and

the Hughes Aircraft Company, by NSF-CNPq Cooperative Research Grant INT 8902183 and by
an equipment grant from DEC.

Abstract

Thus paper describes a prototype modeling environment, Tangram, which incorporates math-
ematical solution of queueing networks and Markov chain models as well as a comprehensive
simulation capability. The system also supports user defined hierarchical modeling, user
specified approximation methods, a graphical interface, and other state-of-the-art features.
Rather than a completed, closed system, we view Tangram as an environment in which
application specific modeling and performance evaluation sub-systems can be added with
minimum effort. The ease with which such extensions are supported is heavily dependent
on the object-oriented paradigm which is used throughout the design: the object-oriented
paradigm is shown to effectively support code reusability across different applications via the
mechanism of inheritance and encapsulation. The envisioned system can be termed a “mod-
eling shell” capable of being easily tailored to specific applications. It supports extension by
allowing new tools, solution techniques, and application areas to be added modularly and
without modification to existing parts of the system. A detailed example is used throughout
the paper to illustrate the ideas.

1 Introduction

Driven by the personal computer revolution, advances in graphics, and the development of
the object-oriented programming paradigm, the opportunities for an advanced modeling en-
vironment have never been greater. This paper presents an architecture for such an advanced
modeling environment. We concentrate on computer systems performance modeling, as that
is where our expertise is, but the principles developed here apply to many other types of

modeling.

A modeling system, to be successful, has to provide many different types of features.
First, it has to be useful over a wide variety of application areas which we will call domains.
Example domains are queueing network models and Markov chains. Other domains can be
associated with particular applications (e.g., communications networks, database systems,
or even tailored to a particular product). Some domains will be specializations of other
domains, e.g. product form queueing networks models are a specialization of extended
queueing network models. Models are constructed from queues or other objects that are
customary to that domain. In addition to the objects, a domain encapsulates specialized

knowledge relevant to the domain, e.g. choosing a solution approach.

Second, the modeling environment should support various types of users, from novices
to experts. In our view, a specialized application oriented domain will often be created by
an expert. There are two main reasons for tailoring the system to a particular application
domain: (1) to create an application oriented interface for less expert users and, (2) to
create a more convenient tool for the particular application by specializing notations, solution

techniques, etc.

To create the application domain, the expert may utilize many different types of tools
available in the system. When complete, an application domain will generally contain differ-
ent types of information, including the types of objects from which models in this domain are
constructed, consistency rules telling when a model is well formed, what solution approachs

are to be used, and how the results are to be displayed.

Third, the modeling environment must be able to incorporate new solution methods.

~ determined by some combination of time, accuracy, etc.) is one that combines a number
of complementary solvers, a protocol is required in which to express the rules by which a

solution technique is chosen in any given situation.

In summary, a modeling system consists of a large amount of software including com-
mand interpreters, analysis packages, query and display facilities. This software represents
a significant investment and one would like it to be applicable to a wide range of application
areas, e.g., queueing network models, reliability models, etc. The objective is to develop an
approach that allows a modeling environment to be tailored to different application domains

while allowing most of the software to be re-usable across application domains.

In this paper, we will further explore the above mentioned issues and goals, discuss
the most difficult obstacles associated with these goals, and present our approach to solving
these problems, which we are implementing within the Tangram modeling environment. The
organization of this paper is as follows. Section 2 will present background information and
a set up of the example used throughout the paper to illustrate our ideas. Sections 3 and 4
will present our approach to implementing the goals stated in this section, and section 5 will
present various solution techniques available in Tangram. Each of the former three sections
has the following structure: general ideas on the topic, followed by an example illustrating
these ideas, followed by implementation details. Finally, section 6 presents the concluding

remarks.

2 Background

2.1 Related Work

Currently, most modeling packages are designed either around one application (e.g. commu-
nication networks) or around one solver (e.g. simulation). Tools designed for analyzing the
performance and reliability of computer and communication networks are most similar to
Tangram’s. While many packages exist for modeling reliability (e.g. SAVE [GOYAS86] from
IBM, HARP [BAVU87] and SHARPE [SAHNS87) from Duke University, ARIES [MAKAS82]
from UCLA and SURF [COST81] from CNRS), they all have the same problem. They

and to coordinate the operation of the data processors. The processors are connected by
a communication network. The particular architecture depicted in Figure 1 is known as a
shared-nothing architecture, i.e. in which disks and memory are only accessible (directly) by
the local processor. This system is intended to run database software, where the workload
(the database transactions) will be represented by task precedence graphs (e.g., see Figure 2).

The transactions submitted to the database are parsed by the query processors and broken

Figure 2: A Job Precedence Graph.

down into database steps; these steps are dispatched to the data processors for execution.
Notice that this is a fairly crude specification of a typical database transaction. One of the
missing details is the transaction commat processing, which we will include in a more detailed

example in Section 4.2.

We will use this example to illustrate how Tangram may be tailored to a particular
application, in this case a database machine. It is recognized that a certain amount of effort
is required to do this customization. Our goal is to minimize this effort. Nevertheless, if one
had only one instance of a model for a database machine to run then going directly to one of
the existing facilities, e.g. queueueing networks, would be the preferred approach. Providing
a customized interface will be justified for example when (1) the modeling effort is part of a
system design and implementation effort and many versions and variations of the database
machine will be studied or, (2) the system is to be used by people less expert in modeling
(e.g. system designers, or later for system configuration or sizing) and the interface needs to

be at a conceptual level more compatible with the application area.

2.3 Implementation Basics

While a number of modeling and simulation tools have been purely text based, we feel that
a better solution lies in providing the modeler with an object-based graphical environment.

The advantages of such systems are realized in a number of ways. Graphics-based systems

systems. A component encapsulates the appearance and semantics of such an element.
Thus the user creates, destroys, and otherwise manipulates components that represent

entities within the problem space.

e Tools support direct manipulation of components. Through the use of animation and
other visual techniques, the user’s perception of the effects of his actions are reinforced
by immediate feedback. Examples of tools include tools for selecting, moving, and

connecting components.

¢ Commands encapsulate operations on components or other objects, Commands are
stateful and can be executed. They are also similar to messages in traditional object-
oriented systems, in that they can be interpreted by components. Unlike tools, com-
mands represent actions that do not require visual feedback or interaction with the
user, and are also used to carry out the effects of a manipulation which is managed by
a tool. Examples include commands for changing the state of a component, duplicating

a component, and grouping several components into a composite component.

Additionall&, a number of general abstractions to allow the composition and coordination of
the above building blocks are supported. These include the Editor class whose instances asso-
ciate tools, user-accessible commands (usually in the form of menus) with a viewing/drawing
area (a viewer). One-of-a-kind object classes are provided to coordinate the interaction of
simultaneously open editors and to manage persistent storage of components, tools, and

commands. A unidraw object and a catalog object assume those roles, respectively.

As the authors of Unidraw point out, components are, arguably, the most important class
of objects in the system. Components are the objects of interest in a particular application
and closely “resemble” their real-world counterparts. Unidraw adopts a well-established user
interface concept of the distinction between the state and operations that characterize an
object and the way the object is presented in a particular context. This is accomplished by
the separation of components into subject and view objects. While the subject encapsulates
the context-independent state and operations of the component, the view supports a context-
dependent presentation of the subject. Component subjects can maintain multiple graphical
and non-graphical views (specified in paralle] class hierarchies) and their definition includes

how they respond to commands and tool manipulation. Component subjects and views can

-1

e a library of solution methods,
e a (specialized) set of queries

¢ the knowledge of how to choose solvers to answer queries on the model belonging to

the domain itself, and

¢ the knowledge of how to transform a model in the current domain to corresponding
(sub)models in other domains, e.g., a high level system model into a queueing network

model.

By encapsulation, we mean that the detailed implementation of these five attributes of a
domain is hidden. There are several major advantages to encapsulation. It allows flexibility
within a domain and at the same time provides a well defined rigid interface to the outside
world. It facilitates the construction of new models, using previously defined components,
and the addition of new solution techniques with minimal effort. Constraints applicable
to the class of problems under investigation can be enforced automatically in addition to

opportunistic selection of solution tools.

Using object-oriented programming concepts, domains can be organized in a hierarchy,

as illustrated in Figure 3. More generalized domains are closer to the root of the hierarchy

PF QN w/
Fork/Join

Figure 3: A Domain Hierarchy.

and more specialized domains are further away from the root. This hierarchical organization
of domains provides two benefits: inherifance and dynamic classification. Inheritance is
used in accordance with traditional object-oriented gains, where a request is passed up the

hierarchy until an ancestor, willing and able to comply, is found. Dynamic classification is a

“reverse” action. Instead of going up the hierarchy and searching for a generalized solution,

complete set of the domain attributes (mentioned at the beginning of this section). Hence,
it is not necessary to wait for changes to occur in all the attributes before creating a new

domain.

There are many other considerations that go into domain creation. These include the
level of expertise and the modeling intent of the user. It is clear that the end user would
not go to the trouble of creating a new domain, however what is not obvious is that it is
not always good practice for an expert user to create a new domain whenever one of the
attributes changes. The judgement call that needs to be made will depend on the intent of
the modeler. If, for instance, the change is in the set of modeling components, but the new
component is experimental and will only be used once, then it does not pay to go through
the labor of creating a new domain. Rather, the new component should be created on the
fly and used as a building-block, until there is more provocation for creating a whole new
domain. This decision process is illustrated in the foilowing section through the use of our

database example.

3.2 Example

To illustrate the use and advantages of the main ideas discussed in the previous section,
we will go through the exercise of creating a new domain, the Database Machine (DBM)
domain. Figure 4 depicts the domain hierarchy that we will be using for the remainder of

this section.

(Domain
CRelabilii
(Mapping>

CDBM) (Markov) (ExtQND

DBEM DBM
Workload % Architecture
DPINg o

-

»
4,"’1//

~
»
5y

Figure 4: An Example Domain Hierarchy.

11

or solution domains is required.

The next step is to define a library of model components which will be available in the
DBM domain for model construction. When dealing with database systems, most models
can be constructed from a workload or an architecture specification, or a combination of
both. Therefore, the primitive objects will either be in the DBM Workload domain or the
DBM Architecture domain. The workload domain will have primitives corresponding to basic
software modules in the system, e.g., parse, dispatch, access, schedule, etc. (Each of these can
be primitives in the domain, or they can be instances of the same task primitive with different
attributes.) The architecture domain will contain objects such as: query processors, data
processors, disk units, communication networks, etc. The first set of primitives is useful in
describing behavior of transactions that can be executed on a database machine; the second
set of primitives is needed to describe the physical construction of a database machine.
Further, we want to be able to mix and match various workloads and architectures, i.e.,

mode] several workloads running on the same architecture and vice versa (see section 4.2).

Next, we must consider the possible queries that will be asked of the system. This
step involves examining the available set of queries in the parent domain and adding an
appropriate set of keywords, necessary for query construction/expression in this new domain.
For instance, one can assume that transaction throughput rate, utilization of data and/or
query processors will be required. In order to formulate such queries, the user must use the
proper keywords and specify, graphically or textually, to which modeling components these
keywords apply. A complete set of keywords would depend on the type of solvers available,
i.e., on the set of queries that the DBM domain (and possibly its children domains) is capable

of recognizing.

As was pointed out earlier, the query should be expressed at a natural or most intu-
itive level of abstraction, i.e., in the domain of the problem/system. The solution, however,
should be computed in the “best” way. This brings us to the next two steps in building
a new domain: interfaces with solvers and transformation into other domains. The library
of solution methods in DBM domain contains all those solvers that can deal directly with
database objects, such as data processors and transactions. For instance, we could take the

equations presented in [TAY85] and implement a solver that analyzes locking performance in

13

dynamicly, at run-time. The Register operation is used by a newly created domain instance
to notify all other domain instances of its existence, so that its ancestor domains (in the

inheritance hierarchy) can delegate, or bind to a solution method in its definition.

Other operations include a Trensform method which transforms a model to a specified
domain, as well as operations for accessing and iterating through the available solvers, de-

scribed in more detail in Section 5.2.

4 Model Specification Techniques

What is a system? A system is a multi-faceted entity, and it means different things to dif-
ferent people. To a system architect, a system is a set of hardware components and their
relationships. To a system analyst, a system is a set of tasks executing on the hardware
platform. To a performance analyst, a system is a collection of resources shared by a col-
lection of users. To a customer, a system may be summarized as a set of cost/performance
trade-offs. In Tangram terminology, these different views of a system are called facets, and

a system is a collection of related facets. Figure 5 depicts a system and some of its facets.

A Systemn

. $ = SOK*M W !
+ 30K*N !
. + 120K Workload !

Conliguration Cost Modeling Performance
Modeling Modeling Facet Modeling
Facet Facet Facet

Figure 5: A System and Its Facets.

15

The interface to the black-box is restricted to a set of ports attached to the icon?. Thus the
ports allow data to flow in and out of a modeling component facilitating data propagation

within a model.

We adopt an entity/relationship/attribute view of describing a model [CHEN76], where
a model is composed of entities, relationships among these entities, and attributes of both
entities and relationships used for further specification. Visually, entities are represented by
iconic facets of building-block systems, relationships are represented by lines connecting ports
of icons, and attributes are represented by name/value pairs. Colors, line thicknesses, line
styles, etc., may be used to graphically distinguish sub-categories of relationships. Different
type of ports may also be distinguished graphically by different shapes and/or colors. The
iconic/modeling facets combination is used for both top-down and bottom-up hierarchical
construction of models. Every entity that is part of a modeling facet make up in some
domain is an iconic facet of a more primitive system in that same domain. When a user
wishes to view a more detailed description of a particular model entity, he expands its iconic
facet (representation) which reveals a corresponding modeling facet in the proper domain.
When a user wishes to abstract the details of a portion of the model, he can iconify that

building-block which replaces the structural representation with a graphical one.

As was mentioned in section 3 and is described in detail in section 5, problem transfor-
mation is a very useful solution technique. In order to be helpful in this task, a modeling
environment should provide support for construction of new modeling facets by combiniag
one or more already existing facets via a transformation. For example, a Configuration Mod-
eling Facet may be transformable to a Reliability Modeling Facet. In more complex cases,
1t is necessary to construct a new domain, a Mapping Domain, whose modeling components
are various types of mappings from one domain to another. This will allow a user to combine
several modeling facets, from different domains, into a single one, in the Mapping domain,
and create ties between various types of modeling objects using mapping components. The

use of this concept is illustrated in the following example section.

Another kind of facet is the solution facet, and it is used to describe model solution

procedures. Solution facets are described in section 5.

2One port is shown in each facet in Figure 6; some ports are not shown on the disks and the controller.

17

Jt

DBM Architecture DBM Architecture

N= M=

=N
Shared- Qpj[tem
DPN|jnum=
. DBM Architecture DBM Architecture

Q iconic facet [
[modeling facet DPNjhum=
C-D system
el @XpANSion

Figure 8: Shared-Nothing DBM Architecture.

For instance, expanding a data processor node reveals a composition of a cpu and a disk

sub-system.

The DBM Architecture facet specifies the resources available in our distributed database
machine. Another aspect of interest, when describing distributed databases, is the workload
imposed on it, independent of its architecture. Therefore, the next facet of interest is the
DBM Workload facet. As is shown in Figure 7, the workload on this system is composed of
two types of transactions: TPx and TPy. A closer look at one of them3, for example, TPy,
reveals a task precedence graph, indicating the order and types of tasks to be performed to
complete a transaction of this type (refer to Figure 9). Much like the architecture of the
physical machine, the workload can be decomposed hierarchically. Each of the tasks can be
a primitive or a building-block. For instance, it is shown that the step task is composed of

two primitive tasks — schedule and access.

The architecture of the database machine and the workload to be executed on it, each
presents a description of the database system that is complete for some types of analysis;
for example, the architectural representation alone is sufficient for performing reliability
analysis. However, many forms of analysis require some kind of mapping of the workload
onto the architecture. For example, one way to compute a performance measure, such as a

transaction response time, is to build a queueing network model, representing the database

3For simplification purposes the remainder of this paper will only consider a single transaction, TPy.

19

architecture facet.

DBM Mapping DBM Mapping
g L]

num=N

et

num=M

DBM Mapping
—— Q port

e NAPPIng Q iconic facet
— precedence [| modeling facet
wasspm expansion (- system

Figure 10: Example DBM Mapping.

Just as hierarchical model construction was useful in building other modeling facets,
so it 1s desirable in building modeling-mapping facets. The building-blocks of the DBM
Mapping domain include predefined mappings between tasks and architectural units. A
simple example of this idea is illustrated again in Figure 10. Here, at the top level, the
step task is mapped onto a date processing node. A closer look at this mapping, i.e. going
down the mapping hierarchy, reveals more detailed and fairly generic mapping that can be
used in many systems, namely that the schedule task is mapped onto the CPU of the data
processor, and the access task is appropriately mapped onto the disk sub-system. Note, that
there needs not exist a one-to-one correlation between the number of abstraction levels or

objects in the workload and architecture specifications.

At this point, it would be instructive to work through a detailed construction of a mapping

between the two-phase commit task, which consists of the prepare and commit phases?, and

“Both prepare and commit have the fork-action-join construct, where the fork represents a query processor

21

query processors (not shown). The details of the commit phase can be defined in exactly
the same manner, with the prepare task replaced by the commit task, still using exactly the

same set of DP id’s, i.e., using the same DP id object.

Suppose that our eventual goal is to compute responses to several performance queries,
which normally involves creation of queueing network models. We now have enough in-
formation to (automatically) construct a queueing network model of the database system
represented by the mapping facet. The query and data processors and the disk sub-systems
correspond to the resources of the network; the workload (mapped onto the resources) de-
fines the set of classes/chains (jobs) in the network, and their routing information. The
model parameters, such as the service time distributions and means, number of customers
in a chain, etc., are defined by the attributes of both the architecture and the workload
facets. For example, the query processor speed, defined in the architecture facet, together
with the number of instructions required by the dispatch task, defined in the workload facet,

determine the service time of a class of customers at a center.

The modeling-queueing facet is constructed automatically by the DBM Perf domain.
The query and data processors and the disk units, primitives in the DBM domain, are
transformed into processor sharing queues, primitives in the Extented Queueing Network
domain. The workload is mapped onto these resources as follows. Transactions of type
TPy enter the network as class 1 customers. After completion of the parse task a customer
changes to class 2 and goes into the dispatch-step cycle. Once the cycle is complete, with
probability p, a customer changes to class 3 and enters the prepare stage of the two-phase
commit process. With probability ¢ ore or more of the data processors decide not to commit,
and the transaction is aborted, i.e., leaves the network at this point. With probability 1 — ¢
a customer changes to class 5 and continues to the commit stage of the two-phase commit
process. Once the commit is completed the customer leaves the network, i.e., this represents
a successful completion of a transaction. See section 5.1 for an example of a detailed solution

of this queueing network model.

23

In order to manage a collection of facets that describe a single system, an instance of
class System is used. Similar, to a domain object, an instance of the system class, is never
accessed or viewed directly, so it is implemented as a base class. Operations for iterating

through the facets, as well as selecting one of a given class and parent domain are defined.

This implementation scheme allows for a consistent and efficient handling of most situ-
ations, i.e., most of the functionality embedded in the Unidraw classes is utilized, and only

exceptions must be re-implemented.

5 Model Solution Techniques

As mentioned in section 3, domains provide model solution techniques such as inheritance
and dynamic classification. The more traditional of the two, inheritance, allows for a general,
default behavior to be defined in the higher levels of the hierarchy, while optimizations and
specialized knowledge can be concisely developed in the lower levels. For example, the
Product Form Queueing Networks (PF QN) domain, shown in Figure 3, can inherit (instead
of redefining) all the queueing components defined by its parent class, Extended Queueing
Networks (Ext QN) domain, while defining its own, with improved efficiency in comparison
to Ext QN, solution techniques, such as MVA [REIS80]. Dynamic classification provides a
complementary effect. Instead of delegating authority up the hierarchy and allowing a parent
to perform an action requested of its child, it allows a parent to delegate the responsibility
of performing an action by re-classifying the request to be more specialized, i.e. belonging to
one of its children. Since the child is more specialized than the parent, the re-classification
allows us to put more constraints on the problem and narrows down the solution space and
hence gain in efficiency. For instance (going back to the queueing network example), given
a model in the Ext QN domain and a query regarding the average queue length at one of
the queueing centers, a general approach would be to simulate the network and measure the
queue length. On the other hand, if the network happened to be product form, we could
re-classify the model as PF QN and use MVA to compute the queue length, in a much more

efficient manner.

There is at least one other technique that can be employed to answer requests posted

25

now time to pose a query on our database system and use all the knowledge accumulated in

domains and all the facets built so far to compute its solution.

We will begin by constructing the query. Suppose we were to enquire about the response
time of successful transactions of type TPy. An appropriate place to pose this query would
be the mapping facet (see section 4.2). A proper way to ask the query is to: a) attach one
port of a dual-ported gauge object, which is a graphical query facility discussed in Section
4.3, to the input port of the parse task and attach the other port of the gauge to the output
port of the commit task, and b) attach an attribute to the gauge object representing the
actual query, namely resp_time=. Once the query construction is completed, the user can

choose the Solve command and await the end of the computation process.

Execution of the Solve command involves three actions: understanding/parsing the query,
searching for a solution technique, and invoking an appropriate solver to compute the answer
to the query. Let’s now follow the solution searching and computation process for this
particular query. Since the mapping facet is defined in the DBM Mapping domain, it (the
domain) has the first try at answering the query. Unfortunately, there is nothing in this
domain that can answer the query. At this point our best strategy is to take advantage of
the domain hierarchy and continue up the domain tree until we find an ancestor that (better)
understands the question asked by the user. This search will bring us to the DBM domain
which does have the keyword resp_time in its lexicon. However, another misfortune befalls us
here; even though DBM understands the query, it has nothing in its solution library capable
of computing an answer to it. Fortunately, DBM can classify this query as a performance
issue and is therefore capable of dynamically re-classifying the facet as a DBM Performance
model. The DBM Performance domain can now invoke the transformation routines, defined
earlier, to construct a queueing network out of the mapping facet® and then delegate the
computation to the Extended Queueing Networks domain. This concludes our search for a

solution technique.

The next step is to find an appropriate solver and compute the answer, i.e., construct
a solution facet in the Extended Queueing Networks domain. There are two basic options

available to us at this point. Since there are no known analytic solution methods available

>This construction was illustrated at the end of section 4.2

27

Figure 13: Fork/Join Queueing Model SM2.

e Solve SM2, in the Ext QN domain, using simulation to compute the total response

time of class_2 customers only (i.e., successful transactions).

¢ Compute the answer to the original query by summing the two values computed for
SM1 and SM2.

The remainder of this process is simple. After obtaining the final result, control can go
back to the DBM Performance domain. It can map the sum of the total response times
of the queueing network submodels into the successful transactions response time, in the
database system. This answer is returned to the DBM domain, which in turn returns it to
the DBM Mapping domain, which can finally display the response as the solution to the
original query.

5.2 Implementation

As previously mentioned (Section 3) domain objects are responsible for selecting the most
appropriate solution technique and invoking the appropriate solver(s). In order to achieve
some of the goals we have discussed earlier, our implementation should provide a general
and consistent protocol for managing a heterogeneous collection of solution tools, which
may include parameterized modules, other programs with complex invocation procedures,

simulation packages, etc. In addition, the computational complexity of a particular solution

29

particular simulation facility. A wide variety of simulation packages are currently available,
ranging from very general to very specialized. Our support for a simulation capability should
be independent of a particular language/system used. Therefore, a particular simulation
package is treated as an ordinary solver. A general Simulation domain class is part of
the Tangram framework. This domain class is further specialized for whatever simulation

package is to be used.

The actual simulation systems are abstracted by instances of the Simulation Solver sub-
classes, which generate the appropriate simulation code, perform the necessary compilation,
instrumentation, and initiate the simulation. Application domains are then specialized to
define application-specific simulation domains (e.g. the DBM simulation domain derived
from the DBM domain). This allows the more advanced user to define and use model com-
ponents and graphical query facilities that animate themselves as the simulation progresses.
The framework also includes classes of graphical data display objects such as graphs and pie

charts,

6 Conclusion

We started with the goal of creating a modeling environment which could accommodate a
variety of analytic and simulation modeling techniques, be easily extensible with respect to
both integrating new solution techniques and tailoring the system to specialized applications.
In support of this goal we have made extensive use of the object oriented programming
paradigm at all levels of the design. A major design decision was to introduce the notion
of domains which are complex objects that encapsulate knowledge about a particular class
of analytic models or applications. The idea is that a model and a query (of the proper
type) can be sent to a domain as arguments and the domain object is responsible for finding
the solution. To the extent that general classes of analytic models or applications can be
defined and encapsulated in this manner two benefits accrue. One is that existing domains
are available as resources upon which to extend the system without having to be concerned
with the details of their implementation. Second, the encapsulation supports the extension of
existing domains without modifying any clients that already use the domain. In addition, we

have shown how domains can be specialized and how the inheritance hierarchy and dynamic

31

[GOYASS]

[MAKAS2]

[MARSS4]

[MELAS5]

[MOLLS2]

[RAMAS2]

[REISS0]

[SAHNS7]

[SAUES1]

[SAUES4]

[TAYS5)]

[WHITS3]

[VLIS89)

A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and K. S.
Trivedi, “The System Availability Estimator,” Proceedings of FTCS-16, July
1986, 84-89.

S. V. Makam and A. Avizienis “ARIES 81: A Reliability and Life-Cycle Eval-
uation Tool for Fault Tolerant Systems,” Proceedings of FT'CS-12, June 1982,
276-274.

A. M. Marsan, G. Conte, and G. Balbo, “A Class of Generalized Stochastic
Petri Nets for the Performnance Evaluation of Multiprocessors Systems,” ACM
Transactions of Computer Systems, May 1984, 93-122.

B. Melamed and R. J. T. Morris, “Visual Simulation: The Performance Anal-
ysis Workstation,” IEEE Computer, August 1985, 87-94.

M. K. Molloy, “Performance Analysis Using Stochastic Petri Nets,” IEEE
Transactions on Computers, Vol. C-31, No. 9, September 1982, 913-917.

K. G. Ramakrishnan and D. Mitra, “An Overview of PANACEA, a Software
Package for Analyzing Queueing Networks,” Bell System Technical Journal
Vol. 10, No. 10, 2849-2872, December 1982.

M. Reiser and S.S. Lavenberg, “Mean value Analysis of Closed Multichain
Queueing Networks,” JACM Vol. 27, 313-322, 1980.

R. A. Sahner and K. S. Trivedi, “Reliability Modeling Using SHARPE,” IEEE
Transactions on Reliability, Vol. R-36, No. 2, June 1987, 186-193.

C. H. Sauer, E. A. MacNair, and J. F. Kurose, “Computer Communication
System Modeling with the Research Queueing Package Version 2,” IBM Tech-
nical Report RA-128, November 1981.

C. H. Sauer, E. A. MacNair, and J. F. Kurose, “Queueing Network Simulations
of Computer Comnmunication,” IEEE Journal on Selected Areas in Communi-
cattons, Vol. SAC-2, No. 1, January 1984, 203-220.

Y.C. Tay, R. Suri and N. Goodman, “A Mean Value Performance Model for
Locking in Databases,” JACM, 1984, 618-651.

W. Whitt, “The Queueing Network Analyzer,” Bell System Technical Journal,
Vol. 62, No. 9, November 1983, 2779-2815.

J.M. Vlissides and M.A. Linton, “Unidraw: A Framework for Building
Domain-specific Graphical Editors,” Proc. of the ACM SIGGRAPH/SIGCHI
User Interface Software Technologies ‘83 Conf., November 1989, 157-167.

33

