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ABSTRACT OF THE DISSERTATION

Boltzmann: An Object-Oriented Particle Simulation Programming System
by

Xioming Allen Lin
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1990
Professor Walter J. Karplus, Chair

An object-oriented programming methodology for particle simulations is devel-
oped. It is established on the reductionist view that many physical phenomena can
be reduced to many-body problems. By doing the reduction, many seemly unre-
lated physical phenomena can be simulated in a systematic way and a high-level -
programming system can be constructed to facilitate the programming and the so-
lution of the simulations. In the object-oriented particle simulation methodology, a
hierarchy of abstract “particles” is defined to represent a variety of characteristics
in physical system simulations. A simulation program is constructed from parti-
cles derived from the abstract particles. The object-oriented particle simulation
methodology provides a unifying modeling and simulation framework for a variety
of simulation applications with the use of particle methods. It allows easy com-
position of simulation programs from predefined software modules and facilitates
software reusability. It greatly increase the productivity of simulation program
constructions.

Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming
system in the object-oriented particle simulation methodology. Boltzmann is im-
plemented in C++ and the X Window System. It contains a library of data types
and functions that support simulations in particle methods. Moreover, it provides
a visualization window to support friendly user-computer interaction. Examples of
the application of the Boltzmann programming system are presented. The effec-
tiveness of the object-oriented particle simulation methodology is demonstrated.
A user’s manual is included in the appendix.

x1il



CHAPTER 1

Introduction

1.1 Introduction

Computers have been used widely in solving science and engineering problems,
the main driving force behind the development of the first mechanical computers
in the earlier centuries and the first electronic computers in the forties [22, 16).
They were first used to evaluate functions such as additions, multiplications, and
logarithmic tables. As the power of computers grew, they were used in more
complicated computations such as the solution of differential equations to simu-
late continuous-time physical systems and real-time system control. In computer
stmulation, finite-difference and finite-element methods, among others, were suc-
cessfully applied to solve systems of ordinary differential equations (ODEs) and
partial differential equations (PDEs). Computer simulation through the solution
of a system of differential equations has been and will be an important methodology
in scientific applications of computers, and extensive researches have been done og
algorithms(55], programming languages (52, 8], and computer architectures [31].

A relatively newer methodology in computer simulation is the simulation of
a system through an ensemble of interacting entities called particles that consti-
tute the system and are often identified directly with some physical objects in
the system. This is called particle simulation (45, 30, 27, 25]. The particle sim-
ulation approach has been widely used in plasma physics (18, 6, 54], geophysics
[56], semiconductor simulation [9], material science [19, 10], fluid dynamics [47],
molecular dynamics {1, 48], and many other fields. The advantages of doing parti-
cle simulation over differential equation methods such as the finite-difference and
finite-element methods include

1. The particle concept is fundamental in many physical sciences and engineer-
ing. If the concept of particles exists already in the physical problem, it is
natural to use the particle simulation approach,

2. Many physical problems have very simple laws governing the microscopic be-
havior of the individual particles but very complicated collective macroscopic
phenomena. The differential equations may be too complicated to be solved
either analytically or numerically.

3. Particle simulation uses a different approach to handle boundary conditions.
and for some problems that approach is easier than that used in the differ-
ential equation methods.



4. The procedure of particle simulation is very much independent of specific
applications. Therefore, standard methods and algorithms can be made as
modules that can be used later without re-implementation.

The disadvantages of particle simulation include

1. The number of real physical particles are usually too large to be imple-
mented on any computer. Approximation is usually required so that this
large number of real particles can be represented by a relatively small num-
ber of super-particles.

2. Some physical problems are better described by continuous equations. In
order to apply the particle simulation method to them, a discretization of
the problem domain is required. This discretization, if not carefully carried
out, may introduce errors that produce non-physical properties and even
instability.

Particle simulation therefore provides a powerful method that can solve many prob-
lems that the differential equation methods have found difficult or inconvenient,
provided it is used with care. .

The preparation of a particle simulation differs from that of the differential -
equation methods in the following aspects:

1. The differential equation methods employ a macroscopic description of the
whole system changing in time, whereas particle simulation employs a micro-
scopic description of the parts that constitute the system changing in time
in relation to each other. The description in differential equation methods
is often the state equation of the system, whereas the description in particle
simulation is often the equation of motion of individual parts. Therefore,
using particle simulation one needs only to specify the behavior of one par-
ticle and its interaction with other particles. The collective result will be
generated automatically.

2. While different classes of problems require very different approaches in the
differential equation methods, most particle simulations take the same or
similar approaches and procedures. Ouly the definitions of the particles
determine the differences among different particle simulation applications.
Therefore, the common models, schemes, and algorithms can be made to be
used again and again. Thereby, a great amount of effort can be saved in
programming particle simulations.

3. The description in differential equation methods is continuous in space and
requires further discretization, whereas the description in particle simulation
is already discrete in space.

[2¥]



4. The outputs in differential equation methods are often the direct solution
of the state equations, whereas the outputs in particle simulation are often
averaged values over different parts. In particle simulation, different outputs
can be generated from the same simulation run. Therefore, visualization in
particle simulation can be made to meet a variety of requirements.

Because of the unusual characteristics of particle simulations, an ob ject-oriented
particle simulation (OOPS) approach is Proposed to allow easy composition of
particle simulation programs and to facilitate software reusability. A prototype
programming system, Boltzmann, is developed to demonstrate the OOPS method-
ology. In section 1.2, the objective of the proposed research is defined. A literature
survey of related research is presented in section 1.3, along with an introduction
to particle simulation and to object-oriented programming in section 1.4 and sec-
tion 1.5. Then, the QOPS methodology is described in section 1.6. Section 1.7
discusses the scope and the organization of the dissertation.

1.2 The Objective

The overall objective is to develop the OOPS methodology and to identify and
solve problems in the design and development of OOPS systems. This objective -
includes the following sub-objectives:

1. Identify the fundamental framework that supports most particle simulation
applications. Identify the basic methods, and algorithms that have been
used repeatly in different particle simulation applications. Identify the most
commounly required outputs from particle simulations.

2. Define the OOPS methodology. Define a programming framework for parti-
cle simulations. Define the partition of functionalities required by the frame-
work. Define the basic procedure of QOPS programming.

3. Design the Boltzmann programming system. Design a hierarchical orga-
nization of the abstract particles and the computational schemes that are
independent of specific applications. These particles and schemes will serve
as templates for more detailed particles and schemes defined by the users in
particle simulation applications. Design the functions of the particles and
schemes and their interfaces with each others and with the outside world.
Design the necessary routines that facilitate the initialization, control, and
the visualization of particle simulations. Design a user interface that allows
easy human-machine interaction.

4. Demonstrate the effectiveness of the QOPS methodology through the appli-
cation of the Boltzmann programming system to scientific and engineering
problems. Evaluate the performance of the Boltzmann programming system



and compare it with traditional programming languages in particle simula-
tion.

The importance of the OOPS approach can be understood in light of the following
agspects:

1. The OOPS approach permits modularity (Integrated Software). Simulations
are constructed from carefully designed building blocks like particles and
schemes, instead of from low-level description like numbers and numerical
arrays. It permits the users to concentrate on the high-level physical concepts
instead of on the detailed low-level implementation.

2. The OOPS approach facilitates software reusability (Software Mass Produc-
tion). Frequently-used models, methods, and algorithms are made as ob ject
classes that can be used repeatedly without the necessity of re-implementing
them. Class derivation allows new classes to be defined on top of existing
classes with minimum effort. ‘

3. The OOPS approach has a standard procedure of programming. Particle
simulation programs are much easier to be composed and much shorter in
the OOPS approach than in the traditional approaches.

4. The OOPS approach is independent of computer architectures. This is im-
portant because it allows efficient implementations on a variety of computer
platforms. Algorithms that implement the classes can be selected carefully
and optimization in the implementation has to be done only once. It can
also take the advantages of special computer architectures such as multi-
processor computers by implementing the classes accordingly. The special
architectures are transparent to the users.

3. An OOPS programming system is extensible. Users can replace the pre-
defined classes with their own definitions. Since classes are organized hier-
archically, new classes can be added easily. Specification of an OOPS pro-
gramming system in some specialized areas of study can be done by attaching
specialized classes of particles and schemes to the existing hierarchies.

The challenge of the OOPS approach is to design particle and scheme classes that
capture a variety of simulation applications using particle methods. They should
be general enough to be used by different applications but flexible enough to allow
easy specialization. The fact that some applications do not render themselves easily
to the object-oriented paradigm, while other applications are best represented in
it, requires careful tradeoff between ease of programming, software reusability, and
efficiency, and iterative refinements of the design of particles and schemes. The
research will benefit scientists and engineers who are interested in using particle
simulation methods to solve their problems but are not satisfied with the traditional
ways a simulation program is constructed.



1.3 Literature Survey

Particle simulation was pioneered by early studies of particle motions in vacuum
tubes [29] and plasmas (7, 17] and molecular dynamics [1, 48). Good introductions
to the subject can be found in the books (45, 30, 27, 25). Most papers on particle
simulation discuss the formulation of mathematical models and numerjcal algo-
rithms to solve them. However, few discuss methodologies for the transformation
from mathematical models and numerical algorithms to computer programs that
are readily to be run. It gives the impression that the transformation s a straight-
forward, although tedious, step-by-step process. That impression is misleading,
given the size and the complexity of most particle simulations,

One exception to the lack of effort on programming methodologies for parti-
cle simulations is the OLYMPUS Programming system that has been in use by
several simulation groups, particularly in the plasma simulation community ({30,
chapter 3], [40]). It is a methodology to assist the transformation from numerical
algorithms to computer programs and the maintenance of computer codes. More
specifically, it is a top-down structural programming methodology composed of
a programming environment, conventions for programs and data structures, and
a library of utility subroutines. OLYMPUS helps to organize programs and data
structures, but it does not offer to improve the way programs are constructed, Pro- °
grams in OLYMPUS are still constructed by interfacing a number of subroutines
in the same way as programs in FORTRAN do.

Another effort on programming methodologies for particle simulation is an n-
terface system developed at Jaycor Corporation for a specialized particle simulation
program called MAGIC [20). MAGIC is a two-dimensional finite-difference FOR-
TRAN program for Particle-In-Cell plasma simulation [24]. The interface system
organizes input parameters about a simulation into high-level structures which
are called “objects”. The objects can then be manipulated in a number of ways
such as being displayed and being modified. A rule-base of constraints enforces
restrictions on an object. A symbol manipulator generates inputs to the MAGIC
program from its collection of objects. The approach taken by the interface system
15 good to specialized particle simulation programs as it rightly claims. However,
different applications would require different interface systems. Therefore, the ap-
proach ignores the similarities among different applications in particle simulation
and the issue of software reusability. In addition, the interface system is only
object-based but not object-oriented simply because it lacks the major character-
istics of object-oriented programming such as function definitions in ob jects, class
inheritance, and automatic binding (polymorphism).

The proposed object-oriented particle simulation approach is new. However,
the concept of object-oriented programming and design has been around for a
while. Object-oriented programming ideas first appear in the programming lan-
guage Simula in the sixties [15], a language based on Algol 60 and often used for
simulation purposes. They were later carried forward in the programming lan-



guage Smalltalk [21], which is one of the main achievements that are responsible
for the popularity of object-oriented programming. Other popular object-oriented
programming languages include Eiffel [42] and C++ [53]. Early examples of object-
based software designs include the Macintosh Toolbox [3], Hypercard [23], and the
X Window System [50]. There are a few examples of real object-oriented software
designs, among which are a number of user-interface toolkits [51, 44, 38]. Most of
the software designs are within the domains of traditional computer science. Few
address issues in scientific computing [49, 35]. None, as far as the author knows,
offers a systematic object-oriented methodologies to simulations with the use of
particle methods.

1.4 Introduction to Particle Simulation

Particle simulation, according to [30], is a generic term for a class of simulation
methods where “the discrete representation of physical phenomena involves the
use of interacting particles. The name ‘particle’ arose because in most applica-
tions the particles may be identified directly with Physical objects. Each particle
has a set of attributes, such as mass, charge, vorticity, position, momentum. The
state of the physical system is defined by the attributes of a finjte ensemble of
particles and the evolution of the system is determined by the laws of interaction |
of the particles.” Particles in particle simulation may have a one-to-one correspon-
dence with particles in the physical systems as in the case of molecular dynamics
(one-to-one particle simulation). They may have no direct physical meaning when
they are introduced by discretizing continuous fluid equations (one-to-zero particle
simulation). In between, a particle in the simulation may represent many phys-
ical particles (one-to-many particle simulation). In that case, the particle in the
simulation is often called a super-particle. The choice depends upon the problem,
the types of the phenomena being investigated, and the computer resources avail-
able. For a microscopic description of a small space-scale comparable with the
mean inter-particle separation and a small time-scale comparable with the system
time-scale such as oscillation or orbital periods, a one-to-one particle simulation
may be required. For a description of a relatively large space-scale compared with
the mean inter-particle separation and a relatively small time-scale compared the
average collision time of the physical system, a one-to-many particle simulation
may be appropriate. For a macroscopic description of a much greater space-scale
and a much larger time-scale than the physical system, a one-to-zero particle sim-
ulation may have to be adopted for the simulation to be meaningful. Examples of
one-to-one particle simulations include the study of solid state and stellar clusters.
One-to-many particle simulations are more often seen in the study of collisionless
plasma and semiconductor devices. The simulation of continuous incompressible
fluid, where the vortex elements are treated as particles, is an example of one-to-
zero particle simulation.

Particle simulation methods also differ in the underlying computational scheme



that specifies how the interaction between particles is calculated. The particle-
particle (PP) scheme calculates the force on a particle by adding up the forces
created by other particles. The particle-mesh (PM) scheme calculates the force on
a particle by computing the potential field over a mesh and then interpolating the
force on the particle. The PP scheme i3 conceptually simpler but computationally
more expenstve than the PM schemeifa very large number of particles are involved.
The PM scheme is generally much faster but less accurate than the PP scheme
because of its limited resolution. However, when the wavelengths of importance of
the physical system is much larger than the spacing of the grid points of the mesh,
the PM scheme can result in a fairly accurate simulation. A hybrid scheme is the
multipole expansion (ME) scheme [26, 2], which is a combination of the PP scheme
and a multigrid PM scheme. The ME scheme uses the PP scheme to calculate the
fast-varying short-range forces and uses the multigrid PM scheme to calculate the
slowly-varying long-range forces. It retains the accuracy in calculating the short-
range forces and avoids the computational complexity in calculating the long-range
forces for many particles.

Each scheme can employ different algorithms for each function it performs.
For instance, solving the algebraic field equations in the PM scheme can be ac-
complished using algorithms ranging from direct methods to iterative methods to
special fast solvers. It is the large number of considerations in a particle simula-
tion (actually in any simulation} which complicates the implementation. And it
is the complexity involved in a particle simulation and the similarity of schemes
and algorithms among different simulations that inspired the idea of building an
object-oriented particle simulation system.

1.5 Introduction to Object-Oriented Programming

Object-oriented Programming is a programming paradigm that views program-
ming as composition of objects [34, 12, 14, 41, 57]. It contains a number of concepts
and characteristics, which include

1. Class definition: object-oriented programming allows the definition of classes
which not only have memory storages for data members but also define the
operations that can be applied to the data members. An instance, or ob-
ject, of a class is then defined functionally, having its behavior encoded in
itself. Unlike in traditional programming, parameters about an object and
initialization of the data structures can all be coded in the same object.

2. Class inheritance: in object-oriented programming, a new class can be de-
fined to inherit properties from an old class. This allows two similar objects
to share the same properties without re-defining the second object.

3. Automatic binding (polymorphism): function calls or operations can be made
generic so that they resolve to the right operations according to the the
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types of the parameters or operands. This allows the user to associate the
conceptually-similar operations together without worrying about calling the
right functions. The compiler takes care of type resolution automatically.

In the context of particle simulation, a class defines not only data members
such as position and velocity but also the interactions within the class and outside
the class under certain conditions. For instance, an electron may define charge and
mass as well as position and velocity as its data members and repulsion of other
electrons and attraction to positively charged particles as its member functions.
When two electrons are put in the same field, they will be sure to repel each other,
relieving the user from worrying how to update the states of the electrons. More-
over, the user may not like the algorithms coded in the definition of an electron.
He is then free to define a new electron derived from the old one with a few algo-
rithms replaced by his own. Then, the new electron will have a behavior identical
with the old one except in those attributes that have been replaced with the new
definitions.

1.6 The Object-Oriented Particle Simulation Methodology

1.6.1 A Programming Framework

After careful studies of many particle simulation methods and applications, a
pattern in the development of particle simulations is identified. In every particle
simulation, some kinds of particles are defined that represent the physical system
collectively. Associated with every particle are its state variables such as position.
velocity, momentum, and energy that represent it in the state space, and equations
of motion that determine its state in the future. The equations of motion can be
either deterministic as in Newton's second law or stochastic as in Monte-Carlo
simulations, or a combination of both. A particle is driven to its next state (as-
suming time is discretized) according to its equations of motion, which may involve
the states of other particles and external conditions. A computational scheme is
devised to solve for the unknowns in the equations of motion and to synchronize
the advancement of the particles. The computational scheme is often independent
of the specific particles the simulation may use.

Therefore, a programming framework is developed to capture the similarities
among different particle simulation applications. The framework is composed of
two abstract classes: a Particle class and a Scheme class (Figure 1.1). The Particle
class is a class of particle templates that can be tailored to specific applications.
The Scheme class is a class of computational schemes that will coordinate the
particles through their change of states in simulations. Another way to interpret
the two classes is that the Particle class is responsible for local computations such
as integration, while the Scheme class is responsible for global computations such
as force calculation. The framework is also called a “Republic” framework, for
the structures of particles decide the structures of schemes and the schemes, in
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Figure 1.1: A programming framework

Step 1: Define particles

Step 2: Choose a scheme

Step 3: Load the particles into the scheme
b

Step 4: Run the scheme

Figure 1.2: Basic steps of OOPS programming

turn, supervise the particles in simulations. Contrary to a possible “Democratic”
framework where particles are “cellular” automata, the Republic framework has the
advantage of efficiency and the flexibility of capturing almost any computational
schemes that exist in particle simulations. The significances of the programming
framework for OOPS include that the same scheme can supervise different classes
of particles and that the same particles can work under different forms of schemes.

An instance of a class is called an object of the class. Particle simulation in
the programming framework is simple. A combination of some Particle objects
and a Scheme object with the use of special-purpose OOPS functions constitutes
a particle simulation. In Figure 1.2, particles are loaded into a scheme (Step
3) before the simulation, which is conducted by running the scheme (Step 4).
Visualization of a simulation process can be done either by specifying the particles
and the scheme appropriately before the sirnulation or by calling the visualization
functions explicitly after the simulation is finished. The characteristics of particles
and schemes can be expanded, modified, and deleted by OOPS functions. In
addition, OOPS functions are the only ways allowed to change the definition of
particles and schemes and are the interface between objects such as particles and



schemes and the human user who employs them to construct his simulation. They
are employed to initialize, control, and visualize a simulation, as well as to perform
housekeeping operations.

The particle class and the scheme class contain many subclasses. Each subclass
differs from its parent class in certain functions. For example, a particle subclass
may have an extra state variable or a different set of equations of motion and a
scheme subclass may use a different computational scheme or algorithm. A subclass
derives or inherits all its functionalities from its parent class, except wherever a
new definition of some functions overrides the old ope. All the OOPS functions
applicable to a class apply also to its subclasses. Also, associated with a class is
a number of alternative functions and parameters that are called the resource of
the class, which can be used to replace functions and parameters of the class. The
resource of a class allows the users to choose from a pool of standard algorithms
without having to implement them. The resource of a class can be used only by
the class or its subclasses.

One of the major advantages of computer simulation is the ability to visualize
the process and to gain insight of the simulated system from the simulation results.
A visualization window provides the human user an effectjve instrument to look
into the simulation process and to grasp the meaning of the simulation results more
easily. Standard diagnosis and analysis functions that measure and display system -
outputs are provided as buttons on the visualization window, Different displays of
the same simulation are effected simply by clicking different buttons.

1.6.2 The Particle Class

An object in the particle class represents a real particle in the simulation pro-
gram. The particle class contains many subclasses and different subclasses rep-
resent different kinds of particles. Each subclass has a name, a set of attributes,
and a set of functions. The class name distinguishs the class from other classes.
The attributes contain parameters relevant to the class of particles and their state
variables. The functions support the functionalities of the particle class, which
may include

e Interaction or influence calculation functions: functions that calculate the
interaction between two particles and the influence on the particle from an
external field. The term influence will be used to represent any kind of inter-
action, among which force is the most common but other kinds of interaction
are also possible. Influence calculation functions include the internal inter-
particle influence calculation function and the external influence calculation
function.

¢ Integration function: function that integrates the interactions into the equa-
tions of motion of the particle and advances the state of the particle from
one time step to the next time step. Integration can have multiple steps.
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Figure 1.3: A particle hierarchy

¢ Display function: function that provides information about the particle to
the outside world. The information may include its relative position in the °
display coordinate (the true position is determined by the combination of the
particle and the scheme which contains information about the space) and its
graphic representation (such as shape and color).

¢ Miscellaneous functions: functions that generate a warning message when
the particle is used inappropriately and explain the structure of the particle
and how it can be used when the particle is inquired.

The core set of functions the Particle class defines the protocol among different
classes of particles and between the Particle class and the Scheme class. The
significance of separating the functionalities in the Particle class is that every
function can be replaced by a new definition without the change of other functions.
Since the functions in the Particle class also decide the functions in the Scheme
class (the Republic framework), the establishment of a clean and robust protocol,
so that later particle classes and scheme classes can be added in without changing
the protocol, requires careful design of the functions and iterative refinements.
The Particle class is organized in a tree hierarchy of subclasses where every
class, except for the topmost particle class, has a parent class from which most of its
properties are inherited. It includes at least two categories: the Classical particles
and the Fluid particles to cover two very different classes of particle simulations
(Figure 1.3). In the Classical Particle class, particles create force field. Whereas.
in the Fluid Particle class,, particles create velocity field. A particle simulation
starts with the choice of the particle class which is closest to and more general
than the particles to be simulated and by adapting it to the specific requirements.

11



A particle class is always more general than its subclasses and hence adaptable to
more applications, whereas the subclasses are more specific and hence require less
effort to adapt when they fit the requirement. Moreover, if a scheme can be applied
to a particle class, then the same scheme can be applied to all the subclasses of
the particle class. The particle class hierarchy is extensible, that is, new particle
subclasses can be attached to the hierarchy.

1.6.3 The Scheme Class

Schemes are particle simulation methods represented as objects. They specify
the computational schemes to be used and provide algorithms to facilitate them.
Their tasks include

¢ Maintaining information about the space domain, such as the boundaries
and boundary conditions.

¢ Calculating the influence on each particle, in the methods the computational
schemes represent.

¢ Advancing the particles, that is, running the particles’ integration functions.

¢ Displaying the particles in various forms, with the help of the particles’ dis-
play functions.

Two most popular computational schemes in particle simulations are the Particle-
Particle (PP) scheme and the Particle-Mesh (PM) scheme,

¢ The Particle-Particle scheme is a computational method that calculates the
influence on each particle by adding up all the influences due to the inter-
action of the particle with other particles. This is a scheme with a com-
putational complexity of O(N?) for long-range influences and of O(N) for
short-range influences, where N is the number of particles.

¢ The Particle-Mesh scheme is a computational method that solves a field
equation for the potential on a mesh over the space and interpolates the
influence on each particle from the potentials at the mesh grid points. This
is a scheme with a computational complexity of O(N + M log M), where M
is the number of mesh grid points.

Like the particle class, the scheme class is also organized in a tree hierarchy
(Figure 1.4). A scheme is always more general than its sub-schemes, that is, if
a scheme can be applied to a particle class, then the parent scheme can also be
applied to the same particle class, but not necessarily the other way around. The
scheme class hierarchy is extensible, that 13, new schemes can be attached to the
hierarchy. An advantage of the OOPS approach is that the same computational
schemes can be applied to different applications, and new computational schemes
can be incorporated to work with existing particle classes without changing their
definitions.

12
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Figure 1.4: A scheme hierarchy

1.7 Dissertation Scope and Organization

The research effort to develop an object-oriented particle simulation program-
ming system consists of the following phases.

1. Design particle classes that characterize phenomena in classical mechanics
and electrodynamics, which include, but are not limited to, particle motion
in a field, oscillation, particle collisions, many-body interaction, wave prop-
agation, and fluid dynamics.

2. Design scheme classes that represent the computational methods applicable
to the particles designed in phase 1. These methods include the action-
at-a-distance methods (e.g. Particle-Particle method), the action-at-a-point
methods (e.g. Particle-Mesh method), and other methods.

3. Design a user-interface that allows convenient input and output specification.
The input includes the initial distribution of the particles and the boundary
conditions. The output includes the graphical visualization of various mea-
surements concerning the state of the simulated system, which may include
phase-space plot, energy distribution, and power spectrum analysis.

4. Implement Boltzmann in C++ [39, 53], an object-oriented extension to the C
programming language {32, 28]. Demonstrate the effectiveness of the OOPS
approach by implementing a number of scientific and engineering applications
in the Boltzmann programming system.

5. Evaluate the performance of the OOPS approach in comparison with the
traditional approaches.

13



6. Provide a user’s manual to facilitate the use of the Boltzmann programming
system by engineers and scientists.

The dissertation consists of eight chapters and three appendixes. Chapter 1
is the introduction. Chapter 2 brings in object-oriented vector arithmetic along
with random variables and unit conversion, which lay down the prerequisite to the
Boltzmann programming system. Chapter 3 and 4 discuss the design of the particle
classes and the scheme classes, respectively. In Chapter 5, initialization and visu-
alization are discussed. Chapter 6 demonstrates the applications of Boltzmann to
a number of scientific and engineering problems. In Chapter 7, the performance of
the Boltzmann programming system is evaluated. Conclusion and further improve-
ments are discussed in Chapter 8. Appendix A contains the Boltzmann programs
for the examples in Chapter 6. A user’s manual to the Boltzmann programining
system is given in Appendix B. The definition files of some of the important classes
are listed in Appendix C.
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CHAPTER 2

Vector Arithmetic, Random Variables, and Unit Conversion

Vectors are extremely useful in particle simulations because many of the at-
tributes of a particle can be represented by vectors. Operations on vectors are
independent of the dimensionality of the problem, whick means the same program
written in vector arithmetic applies to one, two, and three dimensions without
modification. That raises the level of abstraction and reduces the length and the
complexity of a program involving vector operations. The Boltzmann programming
system is built on top of this vector level. The creation of vectors and vector oper-
ations are discussed in this chapter, along with the discussion of random variables

and unit conversion. They serve as a prerequisite to the Boltzmann programming
system.

2.1 Vector Arithmetic

Vectors are specified in one of the following ways:
Vector vector_name(z);
Vector vector_name(z, y);
Vector vector.name(z, y, 2);

which create vectors of one, two, and three dimensions. Vectors that are defined
without coordinates, such as

Vector vector_name;
Vector vector_name[N];

are treated as zero vectors of either one, two, or three dimensions before they are
assigned to other vectors. Vector constants can be specified as

Vector(z);
Vector(z, y);
Vector(z, y, z);

Standard operations on vectors are supported. Operators in the C language
are over-loaded with vector operations so that vector arithmetic can be expressed
in the same way as float-point arithmetic. Vector operations in the Boltzmann
programming system include
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int dimension(Vector), which returns the vector dimensions;

double magnitude(Vector), which returns the magnitude of the vector;
Vector + Vector, vector addition;

Vector - Vector, vector subtraction;

Vector * Vector, component-by-component vector multiplication;
Vector / Vector, component-by-component vector division;

double dot(Vector, Vector), the dot product of two vectors;

double cross(Vector, Vector), the cross product of two vectors. If the
two vectors are one-dimensional, the cross product is a zero vector because
the two vectors are in the same or opposite directions. If the two vectors
are three-dimensional, the cross product is also a three-dimensional vec-
tor. When the two vectors are two-dimensional, the cross product is a one-
dimensional vector, taking the direction perpendicular to the plane formed
by the two vectors;

Vector + double, the addition of a number to every component of a vector.
It is commutative;

Vector - double, the subtraction of a number to every component of a
vector;

Vector * double, the multiplication of a number to every component of a
vector. It is commutative;

Vector / double, the division of a number into every component of a vector:
- Vector, same as Vector * (-1);

1 / Vector, the inversion of every component of a vector;

double - Vector, same as (- Vector) + double;

double / Vector, same as (1 /Vector) = double;

As an example,

cross(Vector(1,2), Vector(3,4)) = Vector(-2)
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2.2 Random Variables

Random variables are another class of mathematical entities that are imple-
mented as objects. A random variable, when evaluated, will return a random
number in accordance with its probability density function (distribution). In Boltz-
mann, the evaluation of a random variable z js denoted by z(). All the random
variables are under the class Random, which is defined in the GNU C++ library
[37). The following subsections discuss the Uniform, Normal, Maxwellian, and
Exponential random variable classes.

2.2.1 Uniform Random Variables

A Uniform random variable can be specified in one of the two choices:
Uniform wvariable_name(double low, double high) ;
Uniform variable.name(double low, double high, RNG *gen);

where low and high are the lower and upper bounds of the random numbers gen-
erated by the variable, and gen is a “seed” generator for the random variable as
discussed in the GNU C++ library manual. When the first specification is used, -
a default seed generator is employed which is often adequate.

2.2.2 Normal Random Variables

Normal (Gaussian) random variables have the distribution

p(z) = Jﬁe‘("“)””’ (—ro<z< +00) (2.1)
o

where 4 is the mean value and o the variance. A Normal random variable can be
defined in the following ways:

Normal variable_name(double y, double o);

Normal veriable_name(double u, double o, RNG #gen);

2.2.3 ‘Maxwellian Random Variables

Maxwellian distribution

p(z) = \/Z;ZTe'""’/“T (—o0 < z < +00) (2.2)

ia a special case of Normal distribution with #=0and ¢ = \/kT/m. It is often
used to set the initial velocities of particles in equilibrium. A Maxwellian random

variable can be as following:
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Maxvellian varigble_name(double T, double m);
Maxwellian variable_name(double T, double m, RNG *gen);

where T is the temperature in Kelvin degree and m is the mass of the particles.

2.2.4 Exponential Random Variables

Exponential random variables have distribution
p(z)=Xe™™ (0<z < 00) (2.3)

where A is any positive constant. It occurs frequently as the distribution of waiting
times between independent random events, such as the time a particle survives
without a collision in an ideal gas. An Exponential random variable is defined in
one of the two choices:

Exponential variable_name(double ));

Exponential varigble_name(double A, RNG *gen);

2.3 Unit Conversion

Scientific computing can be performed in many different unit systems. The
most common ones include the meter/kilogram/second (mks) unit system and
the centimeter/gram/second (cgs) unit system, but other units are also employed
frequently. The selection of appropriate unit system may have a direct impact
on the ease of programming and the accuracy and efficiency of the simulation.
Sometimes, it is desirable to express a problem in one unit system and to compute
in another. To accommodate the variety of different unit systems, a set of macro
definitions is provided to convert various unit system to a default one. Moreover,
the default unit can be changed by the users.

The set of macro definitions is contained in the Unit.h file. The default unit
is chosen to be cgs, for mks is often found too large for particle simulation. Other
units are expressed in term of cgs unit, such as

#define centimeter 1 #define centimeters *centimeter
#define gram 1 #define grams *gram

#define second 1 #define seconds *second
#define esu 1 #define esus *esuy

#define dyne gram*centimeter/sqr(second)
#define dynes *dyne
#define erg dyne*centimeter #define ergs rerg
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#define meter 100*centimeter #define meters *meter

¥define kilogram 1000*gram *define kilograms *kilogram
#define coulomb 3e9*esu #define coulombs *coulomb
#define newton leS*dyne #define newtons *newton
#define joule le7*erg #define joules *joule

#define angstrom le-S*centimeter #define angstroms *angstrom
#define electronvolt 1.60219e-12%erg

#define electronvolts *electronvolt

#define eV electronvolt #define eVs electronvolts

To change the default unit system, it is sufficient to express the egs units in term
of the new default unit system. For example, if the unit length is defined to be

lo = 1.804 x 1078cm |

the unit mass
mo = 5.275 x 10™%¢

and the unit time
to = 3.275 X 107 ¥ g¢c ,

then it is enough to redefine cgs in term of ly, mg, and #,:

#define centimeter 1/1.804+1e8
#define gram 1/5.275%1e26
#define second 1/3.273%1e15

In that case, one electronvolt would be

1 eVs = 1 x electronvolt
= 1x1.60219 x 10~'? x erg
= 1x1.60219 x 1072 x dyne x centimeter
= 1x1.60219 x 107'? x gram x centimeter
[second® x centimeter
= 1x1.60219 x 107" x 1/5.275 x 10?8
x10% x 1/1.804 x 108/(1/3.273 x 10'%)?
x1/1.804 x 10°
1.0 [mo(lo/te)Y]

4
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CHAPTER 3
A Particle Hierarchy

3.1 Particle Definition

The most essential concept in particle simulations is the concept of particles.
The nature of the particles plus their initial conditions and the boundary conditions
completely determine the characteristics of a simulated system. It is the variety of
particles that makes particle simulation a general simulation methodology.

What are particles, anyway? In special-purpose particle simulations, the ques-
tion has been overlooked since it has been taken for granted that our universe is
full of physical particles such as atoms, molecules, and charged particles. In a Sys-
tematic study of particle simulations, however, the question has to be addressed
so that a consistent framework of particle simulations can be established. Here, a
mathematical point of view of particles is presented to make the connection among
seemly unrelated particles. It also allow the possibility of discovering “particles”
that have no counterparts in the physical world and have never been heard of in
particle simulations. It is the identification of particles with Green'’s functions.

Here is a simple example. A charged particle creates an electric field in the
space around it with the potential
€o
¢(r) Ty

(3.1)

where rp is the location of the charged particle and eg is the charge. Any charged
particle at r would experience the existence of the charged particle at ry by an
electric force

660(1‘ - l‘o)

—eVie(r) = Ir = rof?

(3.2)

where e is the charge of the charged particle at r. On the other side of the same
token, the same interaction can be derived from Poisson’s equation

32 32 32
(377 + gy1 + 552)8(r) = —4meod(r — ro) (3.3)

It is known that (3.1) is the solution of (3.3) (with the boundary condition of zero
potential at infinity). If the solution of

Vi(r) = —4ré(r — 1o) (3.4)
is defined as Green's function K(r,r) of Laplace operator V2, which is
1
K(r,ro) = Tra’
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then (3.1) can be written as

#(r) = e K(r, 1)

and (3.2) can be written as
-eV¢(r) = --CCQVK(P, l‘o) .

That is to say that the interaction of a charged particle with other charged part;i-
cles can be recovered from Green’s function of Laplace operator!, or the Green’s
function, plus the information of what field the Green’s function represents, defines
our charged particles.

Almost every well-behaved differential operator has a Green's function under
homogeneous boundary conditions (13]. Therefore, large number of particles can
be defined. The pre-defined particles can then be used to simulate many-body
problems and distributed-parameter systems that can be reduced to many-body
problems. Since Green’s functions are the solution of differential equations with a
point source, those particles can also be used to construct the solution of differential
equations with any distribution of source.

Homogeneous boundary conditions have been assumed in the construction of
the particles. Particles with special non-homogeneous boundary conditions can
also be defined. Moreover, non-homogeneous boundary conditions can be stmu-
lated by image particles and boundary particles [43].

3.2 Particle Classification

Particle classification organizes the large number of particles into a hierarchy
and facilitates software reusability. It makes the large number of particles manage-
able and reveals the connections among different classes of particles. In addition.
a systematic classification strategy would allow new particles to be readily added
in and the possibility of discovering unheard particles.

One rule should be obeyed in the classification of particles: if a scheme is able
to supervise a class of particles, the same scheme should be able to supervise the
subclasses of the particle class. That rule is enforced to make schemes reusable. A
four-step classification strategy 1s devised to produce a hierarchy that is concep-
tually clean, facilitates best software reusability among particles, and obeys the
classification rule. It consists of

1. Classification according to the kinds of field the particles create. The kinds of
field include the force field, which contains all kinds of forces, and the velocity
field. Since force is proportional to the second derivative of the displacement
and velocity is the first derivative of the displacement, a third kind of field

INot quite! A moving charged particle creates not only an electric field but also a magnetic
field. The interactions among moving charged particles are more than the electric force.



may be the zero-th derivative of the displacement or the displacement itself,
Tke class of particles that create force fields is called Classical Particle class,
or Newton Particle class. The class of particles that creates velocity fields is
called Fluid Particle class, or Euler Particle class. The difference of the two
classes is encapsulated in the integration step. Allowing this classification to
be the first step reduces the number of classes and produces a conceptually
clean hierarchy.

. Classification according to Green’s functions. It is the Green's functions
that determine if special schemes can be devised to take advantage of them.
Therefore, different classes of particles with the same Green’s functions can
work with the same schemes. A typical example is Green’s function for
Laplace operator. The field created by particles with that Green’s function
can be solved by the solution of a Poisson’s equation in whatever fast algo-
rithms that are available.

- Classification according to the source of interaction. At this point, the kind of
field and Green’s function have been decided. But the source of interaction
is yet to be fixed. For example, both charged particles and gravitational
objects create force fields and both have the same Green’s function. However, .
the source of interaction for charged particles is charge, while the source of
interaction for gravitational objects is mass.

- Classification due to particle variations. At this potnt, particles of the same
class are basically the same, except for small variations. Those variations do
not change the way particles interact with one another.

Figure 1.3 is a particle hierarchy produced by the classification strategy. The
following sections discuss each class in details. After that, particle derivation is
discussed.

3.3 The Particle Class

The Particle class is the topmost class in the hierarchy. It provides a consistent

framework for all particle classes. The Particle class has at least the following four
member functions:

¢ void internal(Particlek p), which calculates the interaction between this
particle and particle p.

¢ void external(), which calculates the external influence on the particle,

¢ int integrate(double t, int step), which does one step of integration
and returns the number of the next step. It returns zero when all steps are
completed.



® void update(double t), which does the rest updates before the particle is
advanced into the next time step.

The Particle class are defined in one of the following ways:
® Particle particle_name;

® Particle particle_array.name(size] ;

® Particle(internalinfluence) particle_name;

® Particle(internalinfluence) particle_array_namelsize] ;

The former two define a particle and an array of particles, respectively. The later
two define the particle(s) with an internal influence function that specifies the
interaction between any two such particles. When the influence function js not
specified, a default zero influence function js used.

The following OOPS functions return attributes about a particle:

e Vectort Location(Particlet), which returns the position vector of the
particle,

¢ int Color(Part icle&); which returns the color code of the particle at dis-
play,

¢ and float Diameter(Particlek) returns the diameter of the particle at
display,

Moreover, the same set of functions can be used to assign or change an attribute of
a particle by providing two parameters, instead of one, where the first parameter
is the particle and the second one is the new attribute. For example,

Location(a, Vector(z, y));

places particle a at the position (z, ). In addition, the internal and external
influence functions can be changed by the following two OOPS functions:

¢ void Internal(Particlek, IntF influence) , which changes the internal
influence function,

¢ and void External (Particlek, ExtF influence), which changes the ex-
ternal influence function,

where IntF and ExtF are defined as
¢ typedef Vector (*IntF)(Particlek, Particlek);

¢ typedef Vector (*ExtF)(Particlek);
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3.4 Classical Particle Class (Newton)

Classical particles are described by two state variables: the position vector r
and the velocity vector v where v = dr/dt. An equation of motion, which is
Newton’s law 2

r

i F/m (3.5)
i3 associated with every particle. Classical Particle class is also called Newton
Particle class. It is the choice of the force function F that provides the rich variety
of particle simulations that can be done with the two state variables r and v
and Newton’s law (3.5). The position r and the velocity v are vectors of either
one, two, or three dimensions that are specified in the definition of the particle.
In addition, a classical particle contains attributes concerning its correspondence
with the outside world, such as its color and size when it is displayed. Not every
attribute of a particle has to be specified each time the particle is defined. For
some attributes, default values are employed when they are not specified.

Classical particles can be defined in the following way, in addition to the ways
general particles are defined:

Newton particle.name(mass, position, velocity, internal.influence) ;

which specifies a Classical particle with its mass, position, velocity, and inter-
particle interaction. The following OOPS functions return attributes about a Clas-
sical particle, in addition to the QOPS functions that can be applied to general
particles:

® Vectork Velocity(Newtonk), which returns the velocity vector of the par-
ticle,

¢ double Mass(Newtont), which returns the mass,

Similarly, the same set of functions can be used to assign or change an attribute of
a particle by providing two parameters, instead of one, where the first parameter
is the particle and the second one is the new attribute.

The equations of motion for a classical particle are Newton's law (3.5), or

£ = g fien vy
vitl —ym f,f_"“(F/m)dt

where F is generally a function of the positions and velocities of this and other
particles. There exist many numerical algorithms that approximate the solution
of the equations of motion, and they can be found in the literature on initial-valye
problems.

A variety of “experiments” can be set up by the right combination of above
functions. For instance, dissipation in wave propagation can be simulated by giving
an external force proportional to the velocity of the particles: a fixed end of a metal
rod can be simulated by a massive particle at the end or a particle with an empty
integration step.

(3.6)
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3.5 Laplace Particle Class

Forces that are derived from Green’s function for Laplace operator have the

form
er

=P (3.7)

where e is a constant attribute of the particles. They are often seen in the real
world, such as the electrostatic force and the gravitational force. In the case of
electrostatic force, e is equal to the charge and, in the case of gravitational force,
e is equal to the mass multiplied by VG (G is the gravitational constant). The
constant e is called the strength of the particle,

The specification of the inter-particle influence function of a Laplace particle
is reduced to the specification of the strength. Although a Laplace particle can be
defined as a Classical particle, it is more advantageous to define the particle as a
Laplace particle with the specification of the strength of the particle. Internally, the
influence function can be recovered if the particle has been loaded into a scheme
that does not recognize Laplace Particle class. Beside its simpler specification,
the main advantage of Laplace Particle class over Classical Particle class is the
ability to run with faster schemes that take the advantage of the specific influence
function. Examples of the faster schemes include the particle-mesh scheme and °
the fast multipole scheme.

A OOPS function that is defined with Laplace Particle class but not Classical
Particle class is

double Strength(Laplacet);

which returns the strength of the particle. Laplace Particle class is a subclass of
Classical Particle class.
3.5.1 Coulomb Particle Class

Coulomb particles interact with one another in electrostatic forces. Only one
function has been added to the class in accordance with tradition:

double Charge(Coulombk):
which returns the charge of the charged particle. Coulomb Particle class is a

subclass of Laplace Particle class.

3.5.2 Kepler Particle Class

Kepler particles interact with one another in gravitational forces. The strength
of a Kepler particle is the product of the square-root of the gravitational constant
and the mass of the particle. Kepler Particle class is a subclass of Laplace Particle
class.
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3.6 Fluid Particle Class (Euler)

Fluid equations are often macroscopic field equations derived from averaging
microscopic particle descriptions over a space that is large when compared with the
interparticle separation and a time that js long when compared with the collision
time of the microscopic particles. It is often possible to simulate fluids by particles
of field nature that represent properties of the space. Unlike the classical particles,
the particles are often driven by the velocity field instead of the force field. The
class of particles that create velocity field is called Fluid Particle Class, or Euler
Class. The description of fluid with the use of Euler particles is also called Eulerian
description. Fluid Particle Class has one required state variable, the position r,
among 1ts attributes. The equations of motion contain, at least,

dr
where v is the velocity field at the position of the discussed fluid particle. By
employing a priorifluid particles, many phenomena of fluid flows can be simulated.

Euler particles can be defined in the following way, in addition to the ways
general particles are defined: :

Evler particle.name(position, influence_function) ;

The same set of OOPS functions that can be applied to Particle class can also be
applied to Fluid Particle class.

3.7 Incompressible Vortex Class

As a subclass of Fluid Particle Class, Incompressible Vortex Class is a good
example of how a fluid particle is constructed. Vortices have an attribute, the
vorticity w [47, 5], where

w=Vxv (3.9)

From the incompressibility (the mass density p is constant), the velocity field is
divergence-free, i.e.,
V.v=0 (3.10)

It is known that there exists a vector potential v such that [4]
v=Vxy (3.11)

and
V’zp = —w (312)

By solving Equation (3.11) and (3.12), it is seen that the velocity field can be
recovered from the vorticity of the vortices. That is to say that Green’s function
for (3.12), together with (3.11), defines the Incompressible Vortex class. From
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the velocity field at each vortex, the position of the vortex at the pext time step
can be calculated. Unlike the charge attribute in Coulomb particles, however, the
vorticity of vortices does not remain unchanged in general. It is the governing
equation of the fluid that determines the new value of the vorticity of a vortex at
the next time step. Very often, the governing equation for incompressible flow is
the Navier-Stokes equation expressed in vorticity form:

E{=a+(v-V)w

is the rate of vorticity change along the flow lines, and v is the kinematic viscosity
of the fluid. According to the value of the viscosity v, vortices are further classified
into inviscid vortices, where v = 0, and viscous vortices.

Additional OOPS functions that can be applied to vortices include:

® Vactork Vorticity(Vortex&), which returns the vorticity of the vortex,

e and void Vorticity(Vortex%, Vectork w), which assigns vorticity w to .
the vortex.

A vortex can be defined as

Vortex name(Vectoré: r, Vector& w);

3.7.1 Inviscid Vortex Class

For inviscid vortices, the equations of motion are Equation (3.8) and

i‘;‘; =(w-V)v (3.14)

Inviscid vortices can be defined as
Inviscid vortez(Vectork r, Vectork w);

Inviscid Vortex class is a subclass of Vortex class.

3.7.2 The Viscous Vortex Class

Viscous vortices have one more attribute than the inviscid vortices, the viscosity
v. The equations of motion are Equation (3.8) and (3.13). The viscosity term in
(3.13) can be accounted for by simulating the diffusion of vorticity by a random
walk [47, 33], which will be part of the equations of motion. Viscous vortices can
be defined as
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Viscous vortez{Vectork r, Vectork w, double »);
Additional OOPS functions that can be applied to viscous vortices include:
¢ double Viscosity(Viscousk), which returns the viscosity of the vortex,

e and void Viscosity(Viscous®, double v), which assigns viscosity v to
the vortex.

3.8 Particle Derivation

Although a great effort has been made to provide particle classes for a variety
of applications, it is impossible and unwise to prepare a particle class for every
kind of particles that may be used in particle simulations. Particle derivation is
an important mechanism to make the particle hierarchy extensible. Specialization
of high-level abstract particles is done through particle derivation. It contains fa-
cilities to add a variable, to add a new function, or to change the definition of an
existing function, among others. Particle derivation can be considered as a collec-
tion of second-order functions that take particle classes as their domain. C++, the
implementing language underlying the Boltzmann programming'system, provides
static class derivation/inheritance that can be used to support particle derivation.
The syntax for class derivation in C++, however, requires some understanding of
the C++ language, which should be minimized according to one of the principles in
the design of Boltzmann. To this end, a number of macro definitions are provided
to hide certain syntactic details that are not important to the users. At times, it
is desired that C++ language provide dynamic class derivation which would allow
more freedom in particle derivation.

The addition of a variable or variables to a class can be done as in

class derived_class: INHERIT(parent.class, variable_definitions) ;

where variable.definitions are regular definition of variables in the C language, such
as int i and float x. To add a function or to change the definition of a function,
the same macro definitions can be used with the variable_definitions replaced by
function_definitions, as in

class derived_class: INHERIT(parent.class, function_definitions) ;
where function_definitions are regular definition of functions in C in the form
return_type function_name(parameter_list) {statements)

As an example, the following statement defines a subclass, rkParticle, of the
parent class, Particle, that replaces the default leap-frog step function by the
4th-order Runge-Kutta method:
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class rkParticle: INHERIT (Newton,
Vector r0, vo0, £0, vi;
int integrate(double t, int step) {
switch (step) {
case 1: r0 = r; y0 = v; f0 = f;
T += 0 . Sstxy; v +x 0.5%t/m*f;
return 1;
case 2: vl = v; f0 += 2%f:
r = r0+0.5%t*y; v = vO+0.5%t/m*f;
return 1;
case 3: vl += y; £0 += 2xf;
T = r0+t*v; v = vO+t/mef;
return 1;
case 4: r = T0+t/6%(vO+2%vi+v);
v = vO+t/(6%m) *(£0+£);
return 0;
default:
return 0;
}

);

Frequently-used particle derivations are provided by macro definitions more de-
tailed than INHERIT. The following macros return a subclass of the parent particle
class with an integration algorithm designated by the names of the Macros:

¢ EULER(parent_particle): Euler’s method

¢ LF(parent_particle): Leap-frog method

® RK2(parent_particle): the 2nd-order Runge-Kutta method
® RK4(parent_particle): the 4th-order Runge-Kutta method
o DEACTIVATE(parent_particle): empty integration function

For example, the class rkPart iclein the previous example can be defined simply
as

class rkParticle: RK4 (Newton);

The macro DEACTIVATE returns a subclass with an empty integration function,
that is, particles of this class will remain in the same state even though it may
have interaction with other particles. '



CHAPTER 4
A Scheme Hierarchy

4.1 Introduction

According to the programming framework, particles alone can not complete a
simulation. They have to be supervised by computational schemes, or schemes for
short, in simulations. The responsibilities of a scheme include influence calculation,
collision detection, boundary imposition, among other things. In traditional par-
ticle simulation approaches, computational schemes are algorithms that fulfill the
responsibilities. In the OOPS approach, however, schemes are objects, or “black
boxes”, that have the capability of supervising particles through their change of
states in simulations. All the necessary algorithms for a simulation are encapsu-
lated in a scheme. Therefore, a particle simulation can be carried out simply by
loading particles into a scheme and then running the scheme,

The most important responsibility of a scheme is the evaluation of particle-
particle interactions, or influence calculation. It calculates the total influence on
a particle from all other particles due to inter-particle interactions and influence
from the external field, and feeds the total influence to the equations of motion
of the particle. It is also the most time-consuming part of a scheme and often of
the entire simulation, because of the large number of particles that are involved in
influence calculation. Several different schemes are established to take advantage
of influence calculations of different nature. One of them is the Particle-Particle
(PP) Scheme that calculates the influence on a particle simply by summing up all
influence contributions from other particles. It is the most general scheme that
can be applied to the most general class of particles, the Particle Class. Another
scheme is the Particle-Mesh (PM) Scheme that calculates the influence on a particle
by solving a Poisson’s equation for the potential of influence field. It applies only
to Laplace particles. It is considerably faster than the Particle-Particle Scheme
for large number of particles. The Multipole Expansion Scheme, applies also to
Laplace Particle class and is promised to be even faster than the Particle-Mesh
Scheme [26, 2].

In the OOPS approach, schemes also maintain information about the bound-
aries and the boundary conditions. When particles reach the boundaries, schemes
reallocate them in accordance with the boundary conditions. For examples, the
kinds of boundary conditions may include open space (Open), no-flow boundaries
(Bounded), periodic (Periodic), and homogeneous boundary conditions (Dirichlet).
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4.2 The Scheme Class

The Scheme class serves as the basis for all schemes, A scheme always defines
its dimension, a computation space in which particles interact with one another,
a particle stack that is used to contain particles, and a list of boundaries and
boundary conditions. A stack is different from an array, as new particles can be
added and are added to the top of the stack. Boundaries surround special regions of
the computation space such that when particles are entering or leaving the region,
boundary conditions are enforced.

A scheme in the Scheme class is specified in the following way:
Scheme scheme_name(Vectork low, Vector& high, BC bc) :

where low and Aigh are the lower bound and the upper bound of the computation
space, respectively, and bc¢ is the boundary condition for the space, which can
be one of the enumeration constants Open, Bounded, Periodic, Dirichlet, and
Neumann. The default boundary condition is Bounded when be is not given. For a
one-dimensional scheme, the lower and upper bounds are vectors of one dimension.
For a two-dimensional scheme, they are vectors of two dimensions. The following
functions return information about a scheme: '

¢ int Num(Scheme) returns the number of particles loaded in the scheme,
¢ int Dim(Scheme) returns the dimensionality of the scheme,

® Vector& UpperBound(Scheme) returns the upper bound of the space of the
scheme,

® Vectork LowerBound(Scheme) returns the lower bound of the space of the
scheme,

¢ and Particlek Scheme[int i] returns the ith particle in the particle stack
of the scheme.

The following member functions define the behavior of the Scheme Class:

e void Calculation() calculates the influence on every particle stored in the
scheme.

¢ void Advance(double t) advances all the particles one time step of size t.

4.3 The Particle-Particle Scheme
The Particle-Particle Scheme, denoted PPscheme in the programming system,

is a subclass of the Scheme class. Whereas the Scheme class does not specify how
the influence on every particle is calculated, the Particle-Particle Scheme calculates
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Figure 4.1: Short-range influence calculation in PP Scheme

the influence by summing up all influence contributions from other particles. It
1s, in general, a O(N?) scheme in computation time, where N is the number of
particles. For certain types of influences, however, the Particle-Particle Scheme
can facilitate special arrangements that reduce the computation time, usually to
the order of N. Two special arrangements are for the calculation of short-range
influences and of influences existing only between fixed pairs of particles.

For short-range influences, the Particle-Particle Scheme allows the specifica-
tion of a cut-off distance, beyond which the influence of a particle is assumed to
be negligible. The arrangement for short-range influences can be illustrated in
Figure 4.1, where each cell is a square of the length d equal to the cut-off distance.
The influence on a particle is the sum of the influences from other particles in the
same cell and from the particles in the neighboring cells. Assuming the number of
particles in each cell is N/M on the average, where M is the total number of cells,
then the computation time for calculating the influences on the particles in one cell
is O(N/M)?. The total computation time for all the cells is then O(N?/M). Since
the number of cells M is approximately equal to (L/d)?, where L is the length
of the space, the computation time for the calculation of short-range influences is
O(Nd/L).

Certain applications require influence calculation only between fixed pairs of
particles. It is then necessary to specify where influences exist so that the scheme
does not create extra influences and consumes less computation time. The Connec-
tion Class is defined to designate a partial specification of the particle pairs where
influences exist. An instance of the Connection Class, or connection, is denoted by

(t:7:k)

32



10 11 12 13 14

15 16 17 18 19

(a)

{0:4:1) U (58:1) U (10:14:1) U (15:19:1} U (20:24:1) U
(0:20:5) U (1221:5) U (222:5) U (3:23:5) U (4:24:5)

(b)

Figure 4.2: A connection

which represents the set of particle pairs

{(Gyi+ k), (i + kyi + 2K), ...,

(i (52 =k + L)
For example,
(0:5:2) = {(0,2),(2,4)}

where there exist influences between particle 0 and particle 2 and between particle 2
and particle 4. A union of connections gives a full specification of all particle pairs
where influences exist. For example, the connection in Figure 4.2(a), where a
line designates an influence between the two particles at the two ends, can be
represented by the union in Figure 4.2(b).

A Particle-Particle scheme is specified in the following way:

PPscheme scheme_name(Vectort low, Vectorg high, BC be,
double d);

where d gives the cut-off distance of the short-range influence. The default cut-off
distance, when d is not given, is infinity. To add a connection to a PP scheme, the
function AddConnection is used:

void AddConnection(PPschemek, int i, int j, int k);
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4.4 The Particle-Mesh Scheme

A particle creates an influence field E in the space it occupies. For a Laplace
particle, the field is conservative, that is, there exists a potential field ¢ such that

E=_vg (4.1)
For an influence as defined in Equation (3.7), Poisson’s equation states that
V% = —4med(r — ro) (4.2)

where the particle is located at Fo. The potential of a collection of particles is then
a superposition of the potentials created by every individual particle,

Vi = —4r Z eib(r —r;) (4.3)

The influence on a particle at r is then
F = eE(r)

The Particle-Mesh Scheme solves the equation (4.3) on a mesh over the space
and interpolate influences on the particles from potentials on the mesh. The influ-
ence calculation steps are as listed below:

L. Distribute the strength density function on the grid points:

p(r) =3 ed(r—r,)

2. Solve the Poisson’s equation for the potential on the grid points:

Vi = —4xp (4.4)

3. Calculate the influence field on the mesh from Equation (4.1).
4. Interpolate the influence at each particle from the influence field on the mesh.

It is important to realize that distributing the strength density function in
Step 1 has the effect of reducing collisions among particles, and thus the Particle-
Mesh Scheme is good only when collisions are not important in the physical sys-
tem. In addition, the finite mesh has the effect of filtering out signals of wavelength
smaller than the distance between two neighboring grid points. When the Particle-
Mesh Scheme is applicable, however, it usually out-performs the Particle-Particle
Scheme in speed. Of the four steps in the influence calculation, Step 1 and Step 4
are of the order of N in computation time, Step 2 is O(M log M) where M is the
number of grid points of the mesh, and Step 3 is O(M). The total computation
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complexity, O(M log M + N), is considerably smaller than the computation com-
plexity, O(N?), of the Particle-Particle Scheme when N is much larger than M.
The size of M is decided by the characteristic wavelength of the physical system.

There exist many approaches for the interpolation of the strength density func-
tion on the mesh and the interpolation of influence field from the mesh to the
particles. Two popular ones are the Nearest-Grid-Point (NGP) and the Cloud-In-
Cell (CIC) approaches. In the NGP approach, the strength of a particle is assigned
to the nearest grid point in step 1 and the influence at a particle is made equal to
the influence field at the nearest grid point in step 4. In the CIC approach, the
strength of a particle is distributed to the surrounding grid points in proportion to
the distances between the particle and the grid points in step 1, and the influence
field at the surrounding grid points contribute to the influence at the particle in
proportion to the distances between the particle and the grid points. In mathe-
matical notation, the interpolation of the strength of a particle p at a mesh point
g can be written as

p(ry) = e,W(ry, r,)

and the interpolation of the influence field at a particle p from a grid point ¢ can

be written as
E(r,) = E(rq)W(rp, T,)

In one dimension,

1 ifjr, —r,] < 0.5k

Wrep(r, —1o) = { 0 otherwise

d % = rol/h if [r, — 1] < b
l1—ir,~-r if|r,—-r,| <
Were(rp, —rg) = { 0 b oth:rwis;
In two dimensions,

1 i |rp = rg| < [rp — x| (¢ # q)
Wiep(r, —1,) = { 0 oth:rwis; P

and

(he — lxp - Iql)(hu - |yp - yql)/hrhv if I;;] - ‘Tq, T hrh
an - <
Were(rp~—r1,) = Yo — Yq y

0 otherwise

Solving Poisson’s equation in step 2 is usually the most time consuming step in
computation time in the Particle-Mesh scheme. There exist several fast algorithms
that have the complexity of O(M log M), of which the Fast Fourier Transform
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(FFT) method is the simplest and is described below for the two-dimensional
periodic boundary condition. If the discretized Poisson’s equation is

Pir10 — 2050 + di1y " Pia+1r = 2051 + ;41
h2 hg

= —47p;y

where the left-hand side approximates the second-order derivative in Equation (4.4),
then by taking the two-dimensional FFT on both sides it is found

&m"[hg(eizrm/h{. + e-izrmlM.) + h:(eizrn/M, + e—izm/M,,) _ Z(h: + h:)]

= —41rh:h:ﬁ,,,,.
or
. "'21rh§h:.omn

h2 cos(2rm /M. ) + h2 cos(2rn/M,) — (h2 + h2)

.
¢mn =

where émﬂ and ppn, are the Fourier transform of Pmn and pon, respectively, Taking
the inverse FFT of the both sides of the above equation produces ¢; (j = 0, 1,
oy Mz, 1 =10, 1, .., M,), which are the solution of the Poisson's equation on the
mesh,

A Particle-Mesh scheme is specified in one of the following ways:

PMscheme scheme_name(Vectork low, Vectork it high,
int n;, BC bC);

PMscheme scheme_name(Vectork low, Vectork it high,
int n;, int n,, BC bc);

PMscheme scheme_name(Vector& low, Vector& it high,
int n,, int n., int nz, BC bc);

Where n,, ny, and nj are the number of grid points along the first, the second, and
the third dimension, respectively. The default boundary condition is Periodic
when bc is not specified. The member functions of the Particle-Mesh Scheme
include

® void DensityAssignment (), which assigns strength density to the grid points.
¢ void PotentialCalculation(), which solves the Poisson’s equation,
® void InfluenceField(), which calculates the influence field on the mesh,

® void Interpolation(Laplacek), which interpolates the influence field at
the particle,

¢ and void Calculation(), which involves the above functions one after an-
other to calculate the influence on a particle at each time step.

Each function can be replaced by a new definition without the change of other
functions.
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CHAPTER 5

Initialization and Visualization

From the user’s point of view, a particle simulation using the Boltzmann pro-
gramming system primarily entails input and output, or initialization and visu-
alization. Very much like doing an experiment, a user selects and prepares the
correct particles and schemes, arranges them according to the simulation require-
ments, and then starts the simulation and waits for the result. The user is provided
a number of initialization and visualization tools to help setting up the experiment
and measuring various outputs of the simulation. It is also possible to the user to
write his/her own tools with the use of more primative functions provided by the
Boltzmann Programming system.

5.1 Initialization

A user can initialize his/her simulation in a number of ways. The most prima- -
tive approach is to assign values to the attributes of particles one at a time, usually
in a loop statement. The advantage of that approach is its flexibility in setting
up all kinds of initial conditions, but the disadvantage is that the calculation of
the attribute values can be very involved. Another approach builds, on top of the
primative functions, routines that automatically assign values to particles accord-
ing to macroscopic properties of them, such as the temperature and the energy.
Principles of statistical physics often determine the values to be assigned to the
particles [36]. Common arrangements in the following subsections are made as
initialization routines.

5.1.1 Maxwellian Distribution for Velocity

According to Maxwellian distribution, the probability density of particles in
equilibrium having velocity v = (u,, Vy, U;) 18

( m
27kT

where T is the temperature and k the Boltzmann constant. It can be used to
assign velocities to a set of particles in equilibrium based on the temperature, with
the use of a Maxwellian random variable to generate values for each component of
the velocities. The routine to generate Maxwellian distribution to a set of particles
is defined as

)3/2e—m(uz+u;+03)/2kT (5.1)

void MaxwellianDistribution(Particle# particles,



double m, double T, int N)

Maxwellian var(m, BoltzmannConstant=*T);
for (int i= 0; i< N; i++)
svitch(dim(particles(i])) {
case 1: Velocity(particles[i], Vector(var())});
break;
case 2: Velocity(particles[i], Vector(var(),var()));
break;
case 3: Velocity(particles[i], Vector(var(),var(),
var()));
break;

}

A routine that combines MaxvellianDistribution, mass assignment, and Load
1s defined as

void MaxwellianLoad(Schemek scheme, Particle« particles,
double m, double T, int N)
{

HaxwellianDistribution(particleu, m, T, N);

for (int i= 0; i< N; i++)
Mass(particles[i], m);

Load(scheme, particles, N);

}
5.1.2 Position Displacement of Small Oscillations

For small oscillations about some equilibrium positions, the probability density
of particles having displacement r = (z,¥,2) from the equilibrium positions is

2
wrn 3/2 -w’m(ug-l-uz-l-oz)/!kT 5.2
(21rkT) ¢ (5:2)
where w is the oscillation frequency. It is useful in setting the initial positions
of particles oscillating about some equilibrium positions such as crystal lattices.
Comparing the above distribution with Maxwellian distribution, it is seen that a
Maxwellian random variable can also be used to generate the displacement, with
w?m replacing m in the definition of the random variable, as in
void Oscillating(Particle'l particles, double m, double T,
double omega, int N)
{

Maxvellian var(omegasomegasm, BoltzmannConstant*T);



for (int i= 0; i< N; i++)

switch(dim(particles[i])) {

case 1: Location(particles[i],
Location(particles[i] )+Vector(var()));
break;

case 2: Location(particles[i],
Location(particles[i] )+Vector(var() ,wvar()));
break;

case 3: Location(particles[i],
Location(particles[i])+
Vector(var(),var(),var()));
break;

}

A routine that combines Oscillating and MaxwellianLoad for oscillating parti-
cles at at some temperature is defined as

void Oscillatingload(Schemek scheme, Particlex particles,
double m, double T, double omega, int N)
{

Oscillating(particles, m, T, omega, N);
Maxwellian{.oad(scheme, particles, m, T, omega, N);

}

5.1.3 Particles Under the Influence of Gravity

The distribution of particles under the influence of gravity satisfies Boltzmann's

formula
n(h) = n(0)e="m9h/kT (5.3)

where g is the magnitude of the gravitational acceleration, A the height of space
from any reference point in the opposite direction of the gravitational acceleration,
and n(k) the number density of particles at height 4. If what is wanted is to assign
positions to some fixed number of particles at the height from a to b according to
Boltzmann’s distribution, it can be doge by generating a random number y with an
exponential distribution at the range from 0 to oo, discarding y when ¥ > b—a,and
letting A = y + a. The following routine has the last space dimension distributed
according to Boltzmann’s formula and the rest of space dimensions distributed
uniformly:

void Gravity(Particle# particles, double m, double T,
Vectork low, Vectork high, int N)
{

Exponential y(GAcceleration*m/(BoltzmannConstant *T));

39



Uniform u(0, 1);
double h;
for (int i= 0; i< N; i++) {
vhile ((h=y()) > (high[dimension(high)~1]-
lovw[dimension(low)~1]));
switch(dim(particles(i])) {
case 1: Location(particles[i], Vector(h+low{0]));
break;
case 2: Location(particles[i], Vector(low[0]+
u(*(high[0]-10ow(0]), low[1]+h));
break:
case 3: Location(particles[i], Vector(low[0]+
u()*(high[0]-1ow[0]),
low[1)+u()*(high[1]-1ow[1]), low[2]+h));
break;

}

A routine that combines Gravity, MaxwellianLoad, and assignment of gravity
force function for initializing Classical particles under the influence of gravity and
at some temperature is defined as

void GravityLoad(Scheme& scheme, Particlex particles,
double m, double T, int N)
{

Gravity(particles, m, T, LoverBound(schenme),
UpperBound (scheme), N);

for (int i= 0; i< N; i++)
Externalparticles{il, gravity);

MaxwellianLoad(scheme, particles, m, T, N);

}

where gravity is a function constant defined as

Vector& gravity(Particlek p)
{
switch(dim(p)) {
case 1: return Vector(-Mass(p)+*GAcceleration);
case 2: return Vector(0, -Mass(p)*GAcceleration);
case 3: return Vector(0, 0, -Mass (p) *GAcceleration);

}
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5.2 Visualization

Visualization of simulation processes is similar to looking through a microscope
or a telescope at a real system. More than that, simulation visualization has the
flexibility of displaying various outputs and measurements that may be difficult
or even impossible to see in the real situation. Visualization in the Boltzmann
programming system is facilitated by visualization windows and drawing functions
defined on the windows. For frequently-used diagnoses, visualization of a simu-
lation is simply the work of clicking the right buttons. For unusual ones, visual-
ization can be easily constructed from high-level drawing functions that require
no understanding of the underlying graphics primatives. Visualization windows,
drawing functions, and some diagnosis functions are the subject of the following
subsections.

5.2.1 Visualization Windows

Simulation results are displayed in visualization windows. A visualization win-
dow can be as simple as a “drawing board” on which drawing functions can write
points and lines. Or, it can provide functions such as diagnosis selection, tracking,
replaying, and scrolling. In Boltzmann, visualization windows are objects, allow- -
ing an unlimited number of windows to be supported. An example of visualization
windows, called Swindow, is described below.

A Swindow is defined by declaring

Swindow window_name(Vector z-dimension, Vector y-dimension) ;

where z-dimension and y-dimension are vectors of two elements giving the lower
bound and the upper bound of the window in the horizontal and the vertical
directions, respectively. The lower and upper bounds are given the unit of space in
the simulation, not the unit of the size of the physical screen. This makes it easy
to determine what the lower and upper bounds should be in order to visualize a
specific region of a simulation.

When activated, a Swindow looks like the one in Figure 5.1, where the big blank
space is the drawing board and the buttons are for the functions that come with
the window. The POPUP button is for opening a menu window that allows the
selection of diagnosis functions and the modification of system parameters such as
the step size. Figure 5.2 displays a menu window. Clicking the DIAGNOSIS button
in the menu window opens a menu of diagnosis functions. A sample list contains
items such as Cartesian Space, Phase Space, and Power Spectrum. User-defined
diagnosis functions can be installed into the list by calling the function

InstallDraw(Swindow window, charx label, DrawFun func);
where DrawFun is defined as

typedef void (*DrawFun)(Swindow, Scheme) ;
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and func is the user-provided diagnosis function, Clicking the TRACK button
turns the tracking function of the window on or off, which determines if the results
of earlier time steps should be kept unerased. The DONE button closes the menu
window.

Returning to the Swindow, the PLAY button initiates the simulation and the
display of the results according to the diagnosis function chosen in the menu win-
dow. The right-most small window in the same row displays the time step at
which the results are being displayed. The STEP button advances the simulation
by one time step. The REWD button rewinds the simulation, by running the
same simulation with a negative time step. According to classical mechanics, a
Newtonian many-body problem is time-reversible, provided the computation error
is negligible. Therefore, the REWD button can be used as an error checker. If
the simulation can not go back to the original state, significant computation er-
rors have been introduced and caution is required. The STOP button stops the
simulation and the QUIT button terminates it.

5.2.2 Drawing Functions

To facilitate the programming of user-defined diagnosis functions, a number of
high-level drawing functions are provided that do not require an understanding of :
the underlying graphics primatives. The first drawing function is

void DrawParticle(Swindow window, Particle particle)

which draws a circle on the drawing board of window. The size and color of
the circle depends on the attributes of the particle Diameter(particle) and Co-
lor(particle). The size of the circle on the drawing board is in proportion to the
ratio of Diameter(particle) to the size of the window, When Diameter (particle)
1s positive, the circle is drew in the color designated by Color(particle). When
Diameter(particle) is negative, the circle is filled with the same color,

The second drawing function is

void DrawCircle(Swindow window, Vector origin, double diameter,
double color)

This is equivalent to DrawParticle with origin replacing Location(particle), di-
ameter replacing Diameter (particle), and color replacing Color(particle). It is
used to draw a circle, usually to represent a particle, when DrawParticle is inad-
equate. DrawCircleis more flexible than DrawParticle because origin, diameter,
and color can be chosen arbitrarily.

The last drawing function discussed here is

void DrawLine(Swindow window, Vector ri, Vector r,;,
double color)



which draws a line from the point at ry to the point at r, on the drawing board in
the color designated by color. These three drawing functions are the most basic
ones. An an example, the following program defines a function that displays the
particles loaded in a scheme in their (z,v:) phase space:

void phase(Swindow& window, Schemeg scheme)

double x, y;
for (int k= 0; k < Num(scheme); k++) {
x = Location(scheme[k])[0];
Yy = Velocity(scheme[k])[0];
DrawCircle(window, Vector(x, y),
Diameter(scheme[k]), Color(scheme(k]));

}

It can be installed into the diagnosis list of window by calling

InstallDraw(window, "X-Phase", phase);

5.2.3 Diagnoses

Usually, it is the diagnoses that make simulation attractive. One of the major
advantages in organizing particles into hierarchy is that many diagnosis functions
can be made independent of specific applications, in a way similar to measuring
instrument in real experiments where many instruments are of general purpose. [t
makes visualization, in many cases, as simple as clicking a button, by providing a
list of general-purpose diagnosis functions with visualization windows. In addition,
the users are allowed to construct and install their own functions as discussed
before. Some general purpose diagnosis functions are discussed below.

5.2.3.1 Temperature

Temperature is a macroscopic quantity defined for a system of particles in ther-
mal equilibrium. When a system of particles is not in equilibrium, temperature can
be defined for subsystems of the particles that are in equilibrium. The temperature
T of a system of particles in equilibrium can be found from

m

T=?<ﬁ>
where < v? > is the mean square x-component of velocities of the particles and
is the Boltzmann constant [36]. If the velocities of the particles have more than

one component, 1t is also true that
m

T=T<v:>
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k
They can be used to verify if the particles are in equilibrium, for the temperature
must be the same no matter whether it is calculated from the x-component, the
y-component, or the z-component when the particles are in equilibrium. For a
system of particles not in equilibrium, the temperature of local subsystems of the
particles can be found in the same way.

T=—-<vl>

5.2.3.2 Total Energy

The total energy of a system of particles consists of three parts: kinetic energy of
the particles, potential energy due to the interaction of the particles, and potential
energy of the particles in an external field. The kinetic energy can be calculated
easily as in

1Y,
K== i}
3 E mv!
where N is the number of particles. However, the potential energies are not so
easy to calculate, since they depend on the kinds of interaction.and the external
field. For Coulomb particles, the potential energy is '

Yo
U=3" ei59i + ¢i)
=1
where ¢; is the potential of the field produced by the particles and ¢’ is the potential
of the external field, at the location of particle ¢, and e; is the strength of particle
i.

5.2.3.3 Drag Force on Particles

Force on a particle can be in any direction and the motion of a particle can be
complex. Very often, however, there may be a tendency of a particle to move in a
certain direction caused by a uniform drag force on the particle. Here, the drag is
a statistical concept to illustrate the tendency for a particle to move in a certain
direction. From Newton’s law

F=m—

dt
the drag can be described by the change of velocities of a group of “similar”
particles. Particles are considered similar if they have approximately the same
initial velocity. A plot of the mean velocity at different time step would illustrate
the effect of a drag force.
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5.2.3.4 Velocity Diffusion of Particles

Because of collisions, particles diffuse from each other in velocity. That is, a
group of similar particles may have a large spread in velocity after a few time steps.
The rate of diffusion can be measured by the mean-square spread in the velocity
as a function of time of similar particles (having about the same initial velocity).
The mean-square spread is defined to be

<AV > = < [v(t)- < v(t) > >

where the averaging operator <> is over the group of similar particles.

5.2.3.5 Power Spectrum Analysis

A mass of particles can support waves. The wave properties of a system of
particles can be studied by power spectrum analysis. For a function h(z), the
Fourier transform of that function is defined to be

H(f) = ] " h(z)e™ 174y
If h(z) is a function of time, the Fourier transform is a function of frequency. If
h(z) is a function of space, then the Fourier transform s a function of wavenumber.
The power spectrum density (PSD) of function A(t) is defined to be

PSDW(f) = lH(AP+IH(-F, 0< f< oo

which indicates the power of the signal in the frequency or wavenumber spectrum.

In the visualization window, a button is provided to estimate the power spectral
density of the velocities of the particles across the space. The particles must
be uniformly distributed in the space for the estimation to be meaningful. The
estimation indicates the wave components that are supported by the particles. A
power spectrum estimator using two segments of data from two consecutive time
steps and Parzen data windowing to get a smooth estimation [46] is implemented.
An example of the power spectrum output is shown in Figure 5.3.
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Figure 5.3: A power spectrum output

48



CHAPTER 6
Applications

6.1 Two Coupled Pendulums

This is to simulate two pendulums coupled by a spring, as shown in Figure 6.1.
Each pendulum undergoes oscillatory motion under the influence of gravity and
the coupling force from the spring. Since the arm holds the pendulum in a circular
orbit, the motion of a pendulum is one-dimensional and can be described by the
angle § formed by the vertical line and the arm of the pendulum. The pendulums
then behave like particles with the equations of motion

Ii%?t_gi = (ri —rip) x [mig — £(1 - -f—)(r; —ry)], (i= 1,2)

where I; = m,l? is the moment of inertia of the pendulums, n=r-rs,l, ¢
the original length of the spring, and « the spring constant. The first term on
the right-hand side is the torque produced by gravity, which is independent of the
other pendulum. The second term on the right-hand side is the torque caused by
the spring force which is a function of the separation of the two pendulums. Hence,
a pendulum can be specified in a way a Newton particle is specified, as in

class Pendulum: INHERIT(Newton,
Vector pivot;
double mass;
double length;
Pendulum(Vector& theta, Vectora v, double m, double 1,

Figure 6.1: Two coupled pendulums
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Vectork r): Newton(theta, v, m*lx*l)
{mass = m; length = 1; pivot = r;}

)3

Pendulum pi(Vector(4,), Vector(él), my, b, rw);
Pendulum p2(Vector(4,), Vector(8;), ma, I, ry);

Internal(pi, inforce);
Internal(p2, inforce);
External(pt, exforce);
External(p2, exforce);

where inforce is the inter-particle force function defined as

Vector inforce(Pendulum& a, Pendulumk b)

{

Vector r = Vector(x(b), y(b)) - Vector(x(a), y(a));
double d = magnitude(r);

r *= -gx(1-£/d);
return cross(Vector(x(b), y(b))-b.pivot, 1);

}

and exforce is the external force function defined as

Vector exforce(Pendulumk a)
{
Vector vg(0, -a.mass*g);
return cross(Vector(x(a), y(a))-a.pivot, vg);

}

Functions x and y return the z and y coordinates of a pendulum, respectively.
They are defined as

double x(Pendulumk p) {return p.pivot [0]+p.length*
sin(Location(p) [0]);}

double y(Pendulumk p) {return p.pivot[1] -p.length=*
cos(Location(p) [0]);}

The switch to Cartesian coordinate from Spherical coordinate was necessary be-
cause Spherical coordinate had not been implemented yet.

After the pendulums have been specified, the next step is to specify a Scheme
object and to load the pendulums into the scheme. Then, running the scheme with
a visualization window would start the stmulation, as shown in
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PPscheme scheme(LowerBound, UpperBound) ;

Loas(scheme, &p1, 1);
Loas(scheme, &p2, 1);
RunSwindow(scheme, step_size, number_of_steps) ;

The complete program is listed in Appendix A.1. Figure 6.2 is a picture of the
traces of the pendulums at time step 100.

6.2 Wave Propagation in a Rod

Wave propagation on an one-dimensional medium can be described by

¢ 0%
e =552 (6.1)
and the initial condition
b7}
8(2,0) = u(2) , =4(z,0) = v(a) (62)

Effecting a Fourier transform and solving an ordinary differential equation leads
to

TP o(¢) .

B16.1) = a(e) cos(et) + 2 sinfes) (6.3)
where q:‘r({ ,t) is the Fourier transform of #(z,t) along z. Now, let us see how the
wave propagation is described by a particle model. Consider that the medium is
composed of particles of lumped mass m, separated by a distance I, and connected
by springs with spring constant x (Figure 6.3). Then, the force on a particle of
index p is

-

_"(¢p — $p_1) — K(Pp — Ppt+1)

where @, is the displacement of particle P from its equilibrium position. From
Newton’s law,

£
m d::p = —r{$p — dp_1) — K(Dp — dpy1)
Let w3 = k/m, then
{;ﬁp = W (Pp-1 = 2¢p + dp41) (6.4)

Taking the discrete Fourier transform along p and solving an ordinary differential
equation, it is found that

-

- Vk

Pult) = s cosllun sin(mk/2N)] + 5

sin[2we sin(%vk—)t] (6.3)
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Figure 6.3: A particle model of a metal rod

52



where 2N is the number of particles used in the model and Cak(t) is the sample
points of #(£,) at interval r /NI. When £ is relatively small compared with N /,
then

- " ﬂ'k ’l}k ‘ﬂ'k
t) ~ 2wg—t —_— g —
$x(t) = 1y cos( Py )+ 2otk 2N sm(2w02Nt) (6.6)

Choose £ = kx /Nl in Equation (6.3) and compare it with Equation (6.6), it is seen
r k
k— = 2wo—
N = 2oy
or
=
=T
Therefore, if wy = ¢/, or
K _ E 2
the discrete particles connected by springs quite faithfully simulate the wave prop-
agation in a continuous medium described by Equation (6.1), provided that the

wave number ¢ is smaller than (N/x)(r/N {) = 1/1 or the wavelength is larger than
[. If the media is a metal rod, it is known that

approximately, where Y is Young’s modulus and p is the mass density of the rod.

From Equation (6.7), we have
Y

K t—
m  pl
A natural choice of x and m is then

m=pl,n=—l—

If the rod has a cross section A, choose

m=AIp,n=%}:

which is the case that the rod is divided into chunks of length ! and each chunk
is considered as a lumped particle, and the tension at the boundary between two
chunks serve as the spring force

AY
- T¢($ ) t)
The programming of the simulation in Boltzmann is similar to that of the
pendulum problem, except that interactions are only among neighboring particles.
The complete program is listed in Appendix A.2. A phase-space snapshot of the

metal rod at time step 100 is given in Figure 6.4,
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6.3 Radiation Displacement of Atoms

We now consider the simulation of the displacement of atoms in a metal under
radiation [11]. A metal is modeled by a lattice of atoms and the interactions among
the atoms. In our example, the interaction between two atoms is represented by
the potential function of the separation of the atoms:

#r) = e[(2)7 ~ 22y, (6.8)

which is called Lennard-Jones Potential; rq is the atomic separation at equilibrium
and ¢ is the depth of the potential well.

The development of the simulation program starts with the selection of the
particle class and the scheme class. Since the force between two atoms is short.
ranged and decreases rapidly as the separation becomes large, the PPscheme class
is selected because it allows the specification of a cut-off distance. Here, a piece of
copper is defined in two dimensions and the cut-off distance of inter-particle force
1s set to be 3ry, as in

const RO = 2.551 angstroms;

Vector low(0, 0), high(100 angstroms, 100 angstroms);
PPscheme copper(low, high, 3*R0);

The atoms are defined to be Newton particles with Lennard-Jones force,

Vector force(Newtonk, Newtonk) ;

Particle atoms[N];

for (i= 0; i< N; i++)
Internal(atoms[il, force);

where N is the number of atoms used in the simulation and the force is defined by

const DEPTH = 0.1 electronvolts;

Vector force(Particlek p, Particles q)
{
Vector u = Location(q) - Location(p);
double r = magnitude(u);
double a = RO/r;
a = aka*a;
a *= a;
u *= 12#DEPTH*ax(a-1)/(r*r);
return u;
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Since the simulated atoms represent only a tiny fraction of the metal, a boundary
condition has to be imposed. It can be incorporated in the simulation by specifying
certain external force on the boundary particles. A simple approximation of the
boundary condition is given by an external spring force, defined as

Vector external (Newtonk p)

{
Vector f = Location(p) - original (&p~atoms];
f »= -kappa;
return f;

}

where original is a vector array storing the initial positions of the particles. The
complete program is listed in Appendix A.3. A snapshot of the metal at time step
100 is given in Figure 6.5, where the size of the circles represents the magnitude
of velocity and thus the kinetic energy of the atoms.

6.4 Particle Simulation of Plasma

Plasma are hot gasses of ionized particles. The behavior of the particles obeys .
Maxwell’s equations, which in theory are the complete particle model of plasma,
Given the vast number of particles in a plasma, however, even the most powerful
computers fall short of the computational requirement, except in cases where only
a small region of the plasma is studied. Some kind of approximation is always
needed regardless whether the simulation is done on a supercomputer or on a
workstation computer or simply a personal computer.

A widely-used approximation in particle simulation uses the distribution den-
sity function f(r,v,t) of the particles, where

dn = f(r,v,t)drdv

is the number of particles in the infinitesimal area of dimension dr and v centered
at r and v in the phase space {(r,v)} at time t. Boltzmann’s transport equation
gives

af _ of F of of
%V Tm v = (5
or
dif _ aof
d—t_(-a_t)‘: (6-9)

where df /dt is the rate of change of the density function along the path of particles
defined by Newton’s law

(6.10)

drfdt = v
{dv/dt = F/m

56



T e e JCar L& )

PORLP

Figure 6.5: Radiation displacement of atoms
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Equation (6.9) and (6.10) are continuous functions describing the change of f (r,v,t).
If the phase space is discretized into finite elements and the particles in every ele-
ment are treated as super-particles. Then a reduced particle model of the plasma
is produced. Given the generality of the above derivation, the approach applies
equally well to the construction of many other applications. It illustrates the reduc-
tionist approach often seen in particle simulation where a statistical description,
which is generated from a microscopic particle model of the system, is reduced back
to a particle model of manageable size that can be solved by available computers.

Returning to the plasma simulation, if only the high frequency components of
the plasma and a small space scale is the focus of the simulation, then the force
function is adequately described by the electrostatic force, and the particles fall
into Coulomb Particle class. The definition of the particles can be simply

Coulomb particles[N];

followed by the assignment of mass, initial position and velocity or by the Max-
wellian distribution according to the temperature of the plasma, as illustrated
below for a one-dimensional simulation.

Uniform rand(0, L);

Maxwellian maxw(Temp, Mass);

for (i= 0; i< N; i++) {
Position(particles(i], Vector(rand()));
Velocity(particles[i], Vector(maxw()));
Mass(particles[i], Mass);

where Uniform and Maxwellian are two random variable classes defined in
Chapter 2. The program segment defines NV particles randomly distributed in the
space [0, L] at the temperature Temp.

In our simulation, two hot streams of electrons are shot in opposite directiors
into a stream of positively charged ions uniformly distributed in space. Their
initial velocities are determined according to the Maxwellian distribution at a
temperature of 16,000°K. The complete program is listed in Appendix A.4. A
phase-space snapshot at time step 100 is given in Figure 6.6 which illustrates the
vortices formed in the phase space and the instability predicted by theory.

6.5 Vortex Simulation of Fluid Flow

As we have already discussed, vortices can be used to describe fluid flow. The
idea is to “induce” a flow field by placing vortices accordingly, although there is
10 cause-and-effect relation between the flow field and the vortices; vortex is only
a mathematical concept, i.e., the curl of the velocity field at a point in the space.
In this example, an inviscid flow passing around an infinitely long circular cylinder
whose axis is perpendicular to the direction of the flow is simulated (Figure 6.7).
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Two vortices of opposite sign are placed at large distance above and below
the cylinder to create the horizontal flow from left to right. The cylinder can
be simulated by placing image vortices in the region occupied by the cylinder to
create a non-flow boundary [47], that is, the normal component of the velocity at
the boundary of the cylinder is zero. Since vortices also move with the flow, one
way to produce a steady flow is to nullify the integration step of the vortices, as
shown in

class DeadVortex: INHERIT(Vortex,
int integrate(double t, int i) returm 0;

);
or simply
class DeadVortex: DEACTIVATE(Vortex);

both of which are equivalent. A number of test particles are deposited to follow
the flow. The complete program is listed in Appendix A.5. Figure 6.7 shows the
traces of a number of test particles.
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Figure 6.7: Vortex simulation of fluid flow
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CHAPTER 7

Performance Evaluation

In this chapter, we study the performance of the Boltzmann programming
system in term of its memory requirement and computation efficiency. It should
be pointed out that the performance study is based on the current implementation,
and therefore the results are not absolute.

7.1 Memory Requirement

Table 7.1 is a comparison of the memory requirements of some data types

and particle classes. It gives a rough idea how much memory is required for a

simulation. The table doesn’t list the memory requirements for schemes and other

. classes because, unlike particles, they are not used in a large number of copies in

a single simulation. For the Vector Class and all particle classes, a range is given

instead of a fixed number. The actual number of bytes required depends on the -

dimension of the problem. For example, a vector of three dimensions occupies 20

bytes, while an uninitialized vector takes only 8 bytes. The lower numbers in the

ranges reflect static memory allocation and the numbers larger than them are due
to dynamic memory allocation.

7.2 “Garbage” Collection

Vector operations create many intermediate vectors. Because memory for vec-
tors is dynamically allocated, it is possible for large amount of memory allocated
for intermediate vectors to become unaccessible. Those unusable memories are
called “garbage”. It had happened many times that a simulation run out of mem-
ory before a garbage-collection mechanism is installed, A simple garbage collector
that records the addresses of memories for intermediate vectors at every time step
and releases the memories at the next time step has worked fine.

7.3 Computation Efficiency

Programming in a high-level programming system or language often brings
some overhead in computation time, despite the fact that modern compilers and
architectures dramatically bring down the overhead. It is a matter that how much
computation time has to be sacrificed to achieve the ease of programming and
other benefits offered by the high-level programming system or language. When
a program can be run in a “reasonable” time, the benefits of programming in a
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data type / class | number of bytes
integer 4
float 4
double 8
Vector 8-20
Particle 56 — 92
Coulomb 56 — 92
Electrostatic 64 - 100
Fluid 56 - 92
Vortex 72 -120

Table 7.1: Memory requirements

high-level language can not be surpassed by insignificant computation time saved
by programming iz a low-level language. When every FLOP (foating-point oper-
ations) is needed to solve a problem, however, we are left with no choice but to
employ every “greedy” method that get the job done, and anything else has to

give way to computation efficiency. :

The Boltzmann programming system introduces computation overhead mainly
from three sources: the general-purpose nature of the pProgramming system in
particle simulation, indirect function calls, and dypamic memory management.
Unlike hand-coding an application in a low-level language, a programming system
has to allow uncertainty about possible applications such as the dimensionality of
a problem and what integration algorithms are used. Some of the uncertainties
are handled by storing parameters in objects and others are handled by indirect
function calls. Fortunately, most of overheads are eliminated at the compilation
stage and have no effect on the run-time speed. For those that do smuggle into
the run-time, modern computer architectures and optimizing compilers minimize
their damage to computation efficiency.

To measure the overhead of Boltzmann in computation time, a three-body
problem is implemented in the Boltzmann programming system and the regular
C language separately. The problem is to simulate three massive objects under
the influence of gravitational forces. The program in Boltzmann is listed in Ap-
pendix A.6 and the one in C is listed in Appendix A.7. The story of timing the
two simulations is informative and hence is presented here. Both simulations were
run 1000 time steps. At the first run, the Boltzmann version takes 5.3 seconds
CPU time while the C version takes only 0.6 second CPU time. Compiling both
programs with optimization, the Boltzmann version runs 3.6 seconds and the C
version runs 0.4 second. By examining the Boltzmann version, it is found that the
fourth-order Runge-Kutta integration takes about 72% of the computation time.
That is because the integration step is expressed in such vector operations that
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task Boltzmann (sec.) | C (sec. )
integration 0.4 0.2
force calculation 0.4 0.2
force summation 0.3
function calls 0.1
others 0.2
TOTAL 1.4 0.4

Table 7.2: Comparison of time consumptions

ezample number of particles | real-time
coupled pendulums 2 13.757
wave propagation 100 16.53”
atomic displacement 250 1’307
plasma 4000 2’147
fluid flow 126 31.23”

Table 7.3: Real-time spent in the examples

constantly create and delete intermediate vectors at each time step which draw
the slower dynamic memory manager into the integration cycle. After rewriting
the integration in a way that does not create intermediate vectors, the Boltzmann
version simulation takes now only 1.4 seconds. Although it is still about 3 times
slower than the C version, it demonstrates the kind of improvement that can be
achieved by fine-tuning the programming system instead of the user’s program.
Now, the integration step takes 0.4 second, or 28% of the total computation time.
About 0.7 second, or 50%, of the computation time goes to the force calculation.
The rest 0.3 second, or 21% is due to function calls and other overheads. Out of
the 1.4 second total computation time, vector arithmetic consumes 0.2 second, or
14%, respectively, and vector assignments consume 0.8 second, or 57%. Therefore,
any improvement in the vector operations will dramatically speed up the compu-
tation. A comparison of time consumptions by the Boltzmann program and the C
program is listed in Table 7.2.

Another way to look at the computation efficiency is to measure the real-time
the examples in Chapter 6 take. Run with the visualization on a Sun Sparcstation.
the five examples take the times shown in Table 7.3 to complete 100 time steps.
From the figures in the table, it can be concluded that the Boltzmann programming
system 1s reasonably fast.



CHAPTER 8

Conclusion

As we have seen, the object-oriented particle simulation methodology provides
a novel approach to physical system simulations, differing from the traditional func-
tion evaluation approach. It provides a unifying modeling and simulation frame-
work for a variety of simulation applications with the use of particle methods. Its
emphasis on modularity resembles the real-world scenario of particles and particle
interactions, and therefore, allows easy composition of simulation programs from
predefined software modules. Its hierarchical organization utilizes the connection
among particles and schemes to facilitate software reusability. In this chapter, the
contributions from the object-oriented particle simulation methodology and the
Boltzmann programming system are summarized, followed by what can be done
in the future to improve them. The final section contains reflections upon the
implications of this research.

8.1 The Contributions

The object-oriented particle simulation methodology and the Boltzmann pro-
gramming system have the following contributions:

1. Although particle methods have been used here and there to simulate physi-
cal systems, the OOPS methodology offers a systematic approach to particle
simulations that encourages the programming of simulations in an object-
oriented style. By doing so, it allows fast composition of particle simula-
tion programs. Its emphasis on object orientation, modularity, and software
reusability makes particle simulation programming more manageable and less
vulnerable to programming errors. More specifically, the contributions of the
OOPS methodology include:

(a) The separation of local computations (particles) from global computa-
tions (schemes) and the establishment of an object-oriented program-
ming framework for particle simulations.

(b) The separation of functionalities in particles and schemes so that any
of the functionalities can be replaced by new definitions (replaceable
components).

(c) The identification of particles with Green’s functions so that a variety
of phenomena can be simulated in particle methods.

(d) The classification of particles in a hierarchy that is conceptually clean
and robust and best facilitates software reusability.
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2. The Boltzmann programming system realizes the OOPS methodology on
the C++ platform, offering a complete high-level programming environment
from initialization to visualization for particle simulation. Specifically, the
Boltzmann Programming system is unique in the following aspects:

(a) Boltzmann supports vector arithmetic.

(b) In Boltzmann, almost every concept is represented by a class of ob-
jects. Examples of objects include vectors, random variables, particles,
schemes, boundaries, and windows. The initialization, control, and vi-
sualization of simulations are carried out on the level of particles and
schemes.

(c) Visualization of simulation results is conducted in a visualization win-
dow, which facilitates friendly human-machine interactions.

(d) A set of macro definitions for particle derivation is provided to hide the
syntactic details of the underlying programming language C++.

(e} A set of macro definitions is provided to support automatic unit con-
version.

8.2 Further Improvement

It is expected that more and more simulations will be done in particle methods.
The Boltzmann programming system can be further improved to accommodate
more sophisticated requirements and to achieve better performance, for example,
in the following areas:

1. More coordinate systems; the current version of Boltzmann supports only
the Cartesian coordinate system. There is no reason it cannot support other
coordinate system such as Spherical and Cylindrical coordinates.

2. Higher dimensionality; the current version supports only one-dimensional
and two-dimensional simulation. The extension to three dimensions is straight-
forward, except at the visualization stage where 3D visualization is required.

3. More physics; the current version supports only the classical physics. It is not
clear yet how well quantum physics can be represented by particle models.

4. More particle and scheme classes; more particle classes can be added to
support more varieties of particle simulations and more scheme classes can
be added to support more computational methods.

5. More abstract data types; beside particles and schemes, the current version
has two data types designed for scientific computing in general and particle
simulation in specific: vectors and random variables. Other data types that
may be considered useful include matrices, tensors, and four-vectors.
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6. More diagnosis functions: many useful diagnosis functions can be installed.

7. More visualization windows; the Swindow presented in Chapter 5 is only an
example. Other arrangements of drawing boards and buttons work just as
well. Notably, at least one window should allow running the simulatijon in
background and saving the results in files that can be visualized at a later
time.

8. Better user-interface; ideally, a user should be able to compose a particle
simulation by dragging icons and clicking buttons on the screen, or at least
by typing some simple commands, instead of having to write a C program.

9. Efficient implementation and parallel processing; as illustrated in Section 7.3,
there is plenty of room for performance improvement. It is one of the
strongest points for the OOPS approach that improvement in the imple-
mentation of the programming system requires no modification of the users’
programs. It is also true for parallel processing. As an example, the parallel
implementation of the Scheme class should not concern the end users except
it offers a different execution speed. Because of that, the Boltzmann pro-
gramming system is highly portable and its implementation is transparent )
to the users, '

10. High-order logic; the current C++ language that supports Boltzmann is
only a first-order language. Although it allows classes to be defined on top of
other classes, they have to be done statically at compilation time. High-order
logic should allow class derivation and function composition dynamically at
run time. In higher-order languages, classes and functions may not be very
different. The current Boltzmann programming system does most of its class
derivations by macro definitions. Higher-order logic certainly adds more
flexibilities to the implementation of Boltzmann.

8.3 Implications

The success of the object-oriented particle simulation methodology would help
to create a new paradigm in physical system simulations, in which simulations are
constructed from predefined software components, and a software industry that
manufactures off-the-shelf software modules for simulations. One of the challenges
to that end lies in the requirement that the software industry has to agree upon
the interfaces among different software modules, and hopefully this dissertation has
contributed some valuable experience. Another challenge is to cast the large num-
ber of existing numerical techniques and algorithms into the new object-oriented
paradigm in such a way that the details of the algorithms are not more important
to the users than the internal physics of IC chips to hardware system designers, as
the Boltzmann programming system has demonstrated in the construction of the
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particles and the schemes. It requires a substantjal understanding of the physics of
the problem domain and the mathematics of the numerical methods and algorithms
from the software industry.

It is expected that, in the future, both scientists and high school students can
order their simulation “parts” and construct simulations on their own computers.
By doing experiments on computers, they can gain valuable insight about the
subjects they study, supplementing their theoretical abstraction and hands-on real-
world experimentation.
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APPENDIX A

Example Programs

A.1 Two Coupled Pendulums

*#include <Boltzmann/PPscheme.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/Macro.h>
#include <Boltzmann/Swindow.h>
#include <Boltzmann/Integrator.h>

const double m0 = 1;
const double 10 = 1;
const double g = 10;
const double L = 10;
const double kappa = 0.8;
const double delta = 4;

class Pendulum: INHERIT(Newton,
Vector pivot;
double mass;
double length;
Pendulum(Vectork theta, Vectork v, double m, double 1,
Vectork r): Newton(theta, v, m#*1l%1)
{mass = m; length = 1; pivot = r;}

)

double x(Pendulumk p)

{ return p-pivot[0]+p.length*sin(Location(p) [0]); }
double y(Pendulumk p)

{ return P-pivot[1]-p.length*cos(Location(p) [0]); }

main()
{
Swindow window(Vector(0, L), Vector(0, L));
PPscheme space(Vector(0), Vector(L));
Pendulum p1(Vector(0.3#PI), Vector(0), m0, 10, Vector(3, 5)):
Pendulum p2(Vector(0), Vector(0), m0, 10, Vector(7, 5));



Vector exforce(Pendulumk) ;
Vector force(Pendulumk, Pendulumk) ;
void draw(Swindows, Schemek) ;

Diameter(pi, 0.6);
Color(p1, Green);
External (p1, exforce);
Internal (pi, force);

Diameter(p2, 0.6);
Color(p2, Yellow);
External(p2, exforce);
Internal(p2, force);

Load(space, &p1, 1):

Load(space, &p2, 1);
InstallDraw(window, "2D", draw);
Run(vindow, space, 0.1);

}
Vector exforce(Pendulumk b)
{
double f = -b.mass*g*b.length*sin(Location(b)[0]);
return Vector(f);
}
Vector force(Pendulumg a, Pendulumk b)
{
Vector f = Vector(x(b), y(b))-Vector(x(a), y(a));
double d = magnitude(f);
f *= (d-delta)/d;
f *= -kappa;
return cross(Vector(x(b), y(b))-b.pivot, f);
}

void draw(Swindowk sw, Scheme& scheme)

{

Pendulum *p;

for (int i= 0; i< Num(scheme); i++) {
P = (Pendulum *) &scheme(i];



Load(rod, ps, N);
MakeConnection(red, 0, N-1, 1);

RunSwindow(rod, t);

}

Vector force(Newtonk a, Newtonk b)

{
static double kappa = A*Y/1;

Vector r = Location(b)-Location(a);

if (x[0] > 0) r -= Vector(l);
else if (r[0] < 0) r += Vector(l);
r *= -kappa;

return r;

A.3 Radiation Displacement of Atoms

#include <Boltzmann/PPscheme.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/Swindow.h>
#include <Boltzmann/Unit.h>
#include <Boltzmann/Macro.h>
#include <Boltzmann/Integrator.h>
#include <Boltzmann/Function.h>

#define centimeter 1/1.804*1e8
#define second 1/3.273*1e15
#define gram 1/5.275%1e26

const double DEPTH
const double RO
const double kappa
const int N

const int M

0.1 electronvolts;

2.551 angstronms;

0.2 *electronvolt/(angstrom*angstrom);
250;

2000;

class LFparticle: LF(Newton);
class Atoms: INHERIT(LFparticle,



DrawPoint(sw, Vector(x(sp), y(*pl}),
Diameter(scheme[il), Color(scheme[il]));

A.2 Wave Propagation in a Rod

#include <Boltzmann/PPscheme.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/Function.h>
#include <Boltzmann/Swindow.h>
#include <Boltzmann/Integrator.h>

const double A = 1;
const double 1 = 0.05;
const double rho = 8,96e3;
const double Y = 12e10;
const int N = 100;
const double L = 10;

class RKparticle: RK4(Newton);

main()

{
PPscheme rod(Vector(0), Vector(L));
RKparticle ps[N];
Vector force(Newtonk, Newtonk);

double m = A*l*rho;
double t = 1e-5;
int i;

for (i= 0; i< N; i++) {
Location(ps[i], Vector(2+i»1));
Velocity(pa[il, Vector(0));
Mass(ps[i], m);
Diameter(ps[i], 0.2);
Color(ps[i], Pink);
Internal(ps(i], force):
}
Location(ps(0], Location(ps[0])+Vector(0.01));
Deactivate(ps[N-1]);



// simulation in a Swindow
RunSwindow(copper, 0.2);

}

Vector force(Atoms& p, Atomsk q)
{

Vector u = Location(q);

u -= Location(p);
double r = magnitude(u);
double a = RO/r;

a = akasa;

a *= a;
u *= 12«DEPTH*a*(a-1)/(r*r);
return u;

}

Vector external(Atoms& p)

{
Vector f = Location(p);
f -= rO[&p-base];
f *= -kappa;
return f;

}

A.4 Particle Simulation of Plasma

#include <Boltzmann/PMscheme.h>
#include <Boltzmann/Coulomb.h>
#include <Boltzmann/RanVar.h>

#include <Boltzmann/Swindow.h>

conat double aCHARGE = 4,.8e-10;
const double Me = 0.91e-27;
const double M = 1.67e-24;
const double T = 16e3;

const double KB = 1,38054¢-16;
const int Np = 2000;

const double L = 1e6;

const int Ng = 128;

const int Ns = 10;



void update(double t) {d = S*magnitude(v) angstroms;}
);

Vector ro{N];
Atoms *base;

main()
{
Vector force(Atomsk, Atomsk) ;
Vector external(Atomsa):
Vector low(0, 0), high(100 angstroms, 100 angstroms);
int i, t;

PPscheme copper(low, high, 3+#R0);
Atoms atoms([N];

// initialization

for (i= 0; i< N; i++) {
Mass(atoms[i], M); :
Velocity(atoms[il, Vector(0, 0));
Internal(atoms[i], force);

}

t = BlockLoad(copper, atoms, RO, 25, 10, N);

Velocity(atoms[60], Vector(0.4, -0.45));

Color(atoms[60], Pink);

// boundary condition; external force
double x0 = high[0], y0 = high[1], x1 = low[0], y1 = low[1];
double R = 0.6#R0;
base = atoms;
for (i= 0; i< t; i++) {
r0[i] = Location(atoms[i]);
if (ro(ill0] < x0) x0 = ro[i][0];
if (rofil[1] < yo) yo = rofi][1];
if (rofil[0] > x1) x1 = ro[i][0];
if (ro[il[1] > y1) y1 = ro[i][1];

)

}
for (i= 0; i< t; i++) {
if (ro[ilf0]-x0 < R |} ro[il[1]-y0 < R
Il x1-ro(i1[0] < R |] y1-ro{il[1] < R)
External (atoms[i], external);

Hh

-1
-1



InstallDraw(vindow, "Phase", phase) ;

Run(window, field, t);
}

void phase(Swindowk window, Scheme& scheme)
// display in the phase space

{
double x, y;
int k, index;
for (k= 0; k< Num(scheme); k++) {
X = Location(scheme[k])[0];
y = Velocity(scheme[k]) [0];
index = Color(scheme[k]);
DrawPoint(window, Vector(x, y),
Diameter(scheme[k]), index);
}
}

A.5 Vortex Simulation of Fluid Flow

#include <Boltzmann/Vortex.h>
#include <Boltzmann/PPscheme.h>
#include <Boltzmann/RanVar.h>
#include <Boltzmann/Swindow.h>
#include <Boltzmann/Macro.h>

const double L = 4;
const int M = §;
const int N = 20;
const int § = 2.
const int R = 1;

class DeadVortex: DEACTIVATE(Vortex);

main()
{
int i, j;
double x, y, z;
double h = float(L)/N;
PPscheme field(Vector(-L, -L), Vector(L, L));
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main()
{
PMscheme field(Vector(0), Vector(L), Ng);
Coulomb es[2#Np];
Uniform rand(0, L);
Maxwellian max1(T, Me), pax2(T, M);
Ripple ripp(0, L, 6*PI/L, 0, 0.2, 1);
double vT = sqrt(KB+T/Me);
double wp = sqrt(4*PI*Np/(L*He))*Na*eCHARGE, t = 0.25/wp;

// electron stream 1

for (int i= 0; i< Np/2; i++) {
Location(es[i]l, Vector(ripp()));
Velocity(es[i], Vector (S5+vT+max1()));
Charge(es[i], -1%Ns*eCHARGE);
Mass(es[i], Ns*Me);
Diameter(es[i], 1ed4);
Color(es[i], Yellow);

}

// electron stream 2

for (i= int(Np/2); i< Np; i++) {
Location(es[i], Vector{(rand()));
Velocity(es([i], Vector(-5*vT+maxi()));
Charge(es[i], -1*Ns*eCHARGE) ;
Mass(es[i], Ns*Me);
Diameter(es[i], 1e4);
Color(es(i], Green);

}

// positively charged ions

for (i= Np; i< 2#Np; i++) {
Location(es[i], Vector(rand()));
Velocity(es(il, Vector(max2()));
Charge(es[i], Ns*eCHARGE);
Mass(es[i], Ns*M);
Diameter(es[i], 1e4);
Color(es[i], Pink);

}

Load(field, es, 2#Np);

// customized window
Swindow window(Vector(0, 1e6), Vector(-1e8, 1e8));
void phase(Swindow&, Schemek) ;



APPENDIX B
Boltzmann 1.0: A User’s Manual

B.1 Introduction

Boltzmann is an object-oriented particle simulation (OOPS) programming sys-
tem. It can be used to simulate many-body problems and distributed-parameter
systems that can be reduced to many-body problems. It consists of a library of
particle classes, a library of scheme classes, high-level initialization, control, and
visualization functions, and visualization windows. Particle classes are building
block templates for simulations using particle methods. Schemes are “solution
engines” that are able to carry out simulations when they are given a number of
particles. High-level functions are “tools” to prepare simulations, and visualization
windows facilitate friendly user-computer interactions. Boltzmann is implemented
C++, an object-oriented extension to the C programming language. Although
knowledge of C++ is helpful, a user is not required to know C++ in order to use
Boltzmann. He should know how to program in C. Boltzmann has a C-like syntax,
plus some pre-defined data types and functions. Boltzmann 1.0 can run on any
computer that supports C++ Release 2.0 and X11 Release 3 or later releases.

B.2 The OOPS Framework

The relationship between particles and schemes can be illustrated by a pro-
gramming framework (Figure B.1). In this framework, the structures of particles
decide the structures of schemes. In turn, schemes supervise particles in simu-
lations. Particle are responsible for local data and computations, while schemes
are responsible for global data and computations. The same scheme can often
supervise different classes of particles and the same particle can often work under
different schemes.

Scheme

Particle

Figure B.1: A programming framework
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// test particles
Euler test[M*N];
for (i= 0; i< M; i++) {
Y = -0.54L+i*float(L)/(M-1);
for (j= 0; j< N; j++) {
x = -2.8+L+j*float(2*L)/N;
Location(test[i*N+j], Vector(x, ¥));
Diameter(test[i*N+jl, h/10);
Color(test[i*N+j], Green);

}

// vortices to induce the flow
DeadVortex vortices(s];
Location(vortices (0], Vector(0, -10*L));
Vorticity(vortices[0], Vector(-50.0));
Location(vortices[1], Vector(o, 10=L));
Vorticity(vortices[1], Vector(50.0));

// image vortices for the cylinder

DeadVortex images[2#S];

Vector r, r0 = Vector(O, 0);

for (i= 0; i< §; i++) {
r = Location(vortices[i});
2 = magnitude(r);
Location(images[i], R/ (z*z)*r+r0);
Vorticity(images[i], -Vorticity(vortices[i]));
Size(images[i], h);

Location(images{S+i], r0);
Vorticity(images{S+i], Vorticity(vortices[il));
Size(images[i], h);

}

Diameter(images[S], 2*R);

Load(field, test, MsN);
Load(field, vortices, S);
Load(field, images, 2#3);
RunSwindow(field, 0.2);
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Vector vector_name(z, y, 2);

which create vectors of one, two, and three dimensions. Vectors that are defined
without coordinates, such as

Vector vector_name;
Vector vector.namel[N];

are treated as zero vectors of either one, two, or three dimensions before they are
assigned to other vectors. Vector constants can be specified as

Vector(z);
Vector(z, vy);
Vector(z, y, 2);

Standard operations on vectors are supported. Operators in the C language
are over-loaded with vector operations so that vector arithmetic can be expressed
in the same way as float-point arithmetic. Vector operations in the Boltzmann
programming system include '

¢ int dimension(Vectork), which returns the vector dimensions;

® double magnitude(Vectork), which returns the magnitude of the vector;
¢ Vector + Vector, vector addition;

® Vector - Vector, vector subtraction;

¢ Vector * Vector, component-by-component vector multiplication;

® Vector / Vector, component-by-component vector division;

¢ double dot(Vector&, Vectort), the dot product of two vectors;

® double cross(Vectork, Vectork), the cross product of two vectors. If
the two vectors are one-dimensional, the cross product is a zero vector be-
cause the two vectors are in the same or opposite directions. If the two
vectors are three-dimensional, the cross product is also a three-dimensional
vector. When the two vectors are two-dimensional, the cross product is a one-
dimensional vector, taking the direction perpendicular to the plane formed
by the two vectors;

¢ Vector + double, the addition of a number to every component of a vector.
It is commutative;



Step 1: Define particles

Step 2: Choose a scheme

Step 3: Load the particles into the scheme

Step 4: Run the scheme

Figure B.2: Basic steps of OOPS programming

Particles and schemes are organized in hierarchies. A particle class or a scheme
class may contain several subclasses. Each subclass differs from its parent class in
certain functions. A subclass derives or inherits all jts functions from its parent
class, except wherever a new definition overrides the old one. All the high-level -
functions applicable to a class also apply to its subclasses.

Programming in Boltzmann is the composition of software objects. First, a
class of particles are derived from a particle template in the particle library to de-
scribe entities in the simulated system. A scheme is then selected which is capable
of supervising the particles. A simulation js conducted by loading the particles
into the scheme and running the scheme in a visualization window (Figure B.2).

The following sections discuss data types and functions in Boltzmann 1.0. Vec-
tor arithmetic is widely used in Boltzmann, and therefore, a vector data type
and vector operations are introduced in Section B.3, followed by random variables
in Section B.4 and unit conversion in Section B.5. Section B.6 and B.7 discuss
the particle classes and the scheme classes, respectively. In Section B.8, particle
derivation is discussed. In Section B.9, initialization functions are discussed, fol-
lowed by visualization windows and visualization functions in Section B.10 and
B.11, respectively. Section B.12 gives a programming example in the Boltzmann
programming system.

B.3 Vector Arithmetic
Vectors are specified in one of the following ways:
Vector vector_name(z);

Vector vector_name(z, y);



B.4.2 Normal Random Variables

Normal (Gaussian) random variables have the distribution

1
plz) = . 2ﬂ_e‘("“)’”” (—o0 <z < +00) (B.1)

where 4 is the mean value and ¢ the variance. A Normal random variable can be
defined in the following ways:

Normal variable_name(double 4, double o);

Normal wvariable_name(double #, double o, RNG *gen);

B.4.3 Maxwellian Random Variables

Maxwellian distribution

p(z) = \/2:’:1..8"'"”/2” (=00 < z < +00) (B.2)

1a a special case of Normal distribution with # =0and o =/kT/m. It is often :
used to set the initial velocities of particles in equilibrium. A Maxwellian random
variable can be as following:

Maxwellian wvariable_name(double T, double m);
Maxvellian variable_name(double T, double m, RNG *gen) ;

where T is the temperature in Kelvin degree and m is the mass of the particles.

B.4.4 Exponential Random Variables

Exponential random variables have distribution
p(z) = Xe™ (0 <z < ) (B.3)

where ) is any positive constant. It occurs frequently as the distribution of waiting
times between independent random events, such as the time a particle survives
without a collision in an ideal gas. An Exponential random variable is defined in
one of the two choices:

Exponential variable_name(double ));

Exponential varigble.name(double A, RNG *gen);



¢ Vector - double, the subtraction of a number to every component of a
vector;

¢ Vector * double, the multiplication of a number to every component of a
vector. It is commutative;

® Vector / double, the division of a number into every component of a vector;
¢ - Vector, same as Vector * (-1);

® 1 / Vector, the inversion of every component of a vector;

e double - Vector, same as (- Vector) + double;

double / Vector,same as (1 /Vector) = double;

As an example,

cross(Vector(1,2), Vector(3,4)) = Vector(-2)

B.4 Random Variables

Random variables are another class of mathematical entities that are imple-
mented as objects. A random variable, when evaluated, will return a random
number in accordance with its probability density function (distribution). In Boltz-
mann, the evaluation of a random variable z is denoted by z(). All the random
variables are under the class Random, which is defined in the GNU C++ library.
The following subsections discuss the Uniform, Normal, Maxwellian, and Expo-
nential random variable classes.

B.4.1 Uniform Random Variables

A Uniform random variable can be specified in one of the two chojces:
Uniform variable.name(double low, double high) ;
Uniform variable_name(double low, double high, RNG #*gen);

where low and high are the lower and upper bounds of the random numbers gen-
erated by the variable, and gen is a “seed” generator for the random variable as
discussed in the GNU C++ library manual. When the first specification is used,
a default seed generator is employed which is often adequate.
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then it is enough to redefine cgs in term of ly, my, and to:

#define centimeter 1/1.804%1e8
#define gram 1/5.275+1e26
#define second 1/3.273%1ei5

In that case, one electronvolt would be

leVs = 1 x electronvolt

= 1x1.60219 x 1072 x ¢rg

= 1X1.60219 x 107" x dyne x centimeter

= 1x1.60219 x 107" x gram x centimeter
/second® x centimeter

= 1x1.60219 x 10™'% x 1/5.275 x 10%
x10%° x 1/1.804 x 108/(1/3.273 x 101%)2
x1/1.804 x 10°

= 1.0 [mo(lo/to)zl

B.8 A Particle Hierarchy

Particles are the most important objects in the Boltzmann programming sys-
tem. The characteristics of particles, plus their initial conditions and the bound-
ary conditions, completely determine the characteristics of a simulated system. A
number of particle classes are developed to provide various particle templates at
different levels of abstraction. They are organized in a hierarchy to facilitate soft-
ware reusability. Each particle class has a name, a set of attributes, and a set of
functions. The class name distinguishs the class from other classes. The attributes
contain parameters relevant to the class of particles and their state variables. The
functions support the functionalities of the particle class. Figure B.3is a hierarchy
of some particle classes. Each class is discussed below.

B.6.1 The Particle Class

The Particle class is the topmost class in the hierarchy. It provides a consistent

framework for all particle classes. The Particle class has at least the following four
member functions:

® void interrnal (Particlek p), which calculates the interaction between this
particle and particle p.

¢ void external(), which calculates the external influence on the particle.

¢ int integrate(double t, int step), which does one step of integration
and returns the number of the next step. It returns zero when all steps are
completed.,



B.5 Unit Conversion

Scientific computing can be performed in many different unit systems. The
most common ones include the meter /kilogram /second (mks) unit system and
the centimeter/gram/second (cgs) unit system, but other units are also employed
frequently. The selection of appropriate unit system may have a direct impact
on the ease of programming and the accuracy and efficiency of the simulation.
Sometimes, it is desirable to express a problem in one unit system and to compute
in another. To accommodate the variety of different unit systems, a set of macro
definitions is provided to convert various unit system to a default one, Moreover,
the default unit can be changed by the users.

The set of macro definitions is contained in the Unit.h file. The default unit
is chosen to be cgs, for mks is often found too large for particle simulation. Other
units are expressed in term of ¢¢s unit, such as

#define centimeter 1
#define centimeters *centimet er

#define gram 1 #define grams *gram
#define second 1 #define seconds *second
#define esu 1 #define esus *esy

#define dyne gram#centimeter/sqr(second)
#define dynes *dyne

#define erg dyne*centimeter #define ergs *erg

#define meter 100*centimeter #define meters *meter
#define kilogram 1000*gram #define kilograms *kilogram
#define coulomb 3e9*esu #define coulombs *coulomb
#define nevton 1eS*dyne #define newtons *newton
#define joule le7+erg #define joules *joule

#define angstrom te-8+¢centimeter #define angstroms *angstrom
#define electronvolt 1.60219e-12%erg

#define electronvolts *electronvolt

#define eV electronvolt #define eVs electronvolts

To change the default unit system, it is sufficient to express the c¢gs units in term
of the new default unit system. For example, if the unit length is defined to be

o =1.804 x 10~%cm |

the unit mass
mp = 5.275 x 10"259 .

and the unit time
to = 3.275 x 10" P sec ,
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Moreover, the same set of functions can be used to assign or change an attribute of
a particle by providing two parameters, instead of one, where the first parameter
is the particle and the second one is the new attribute. For example,

Location(a, Vector(z, y));

places particle a at the position (z, ). In addition, the internal and externa]
influence functions can be changed by the following two OOPS functions:

¢ void Internal(Particlek, IntF influence), which changes the internal
influence function,

¢ and void External(Particle&, ExtF influence), which changes the ex-
ternal influence function,

where IntF and ExtF are defined as
¢ typedef Vector (*IntF)(Particlek, Particles);

¢ typedef Vector (*ExtF)(Particlet):

B.8.2 Classical Particle Class (Newton)

Classical particles are described by two state variables; the position vector r
and the velocity vector v where v = dr/dt. An equation of motion, which is
Newton’s law

d’r

Fr) =F/m (B.4)

is associated with every particle. Classical Particle class is also called Newton
Particle class. It is the choice of the force function F that provides the rich variety
of particle simulations that can be done with the two state variables r and v
and Newton’s law (B.4). The position r and the velocity v are vectors of either
one, two, or three dimensions that are specified in the definition of the particle.
In addition, a classical particle contains attributes concerning its correspondence
with the outside world, such as its color and size when it is displayed. Not every
attribute of a particle has to be specified each time the particle is defined. For
some attributes, default values are employed when they are not specified.

Classical particles can be defined in the following way, in addition to the ways
general particles are defined:

Newton particle.name(mass, position, velocity, internal_influence) ;

which specifies a Classical particle with its mass, position, velocity, and inter-
particle interaction. The following OOPS functions return attributes about a Clas-
sical particle, in addition to the OOPS functions that can be applied to general
particles:
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N,

Classical Fluid
{Newton) (Euler)
i |
Laplace Vortex
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Figure B.3: A particle hierarchy
¢ void update(double t), which does the rest updates before the particle is .
advanced into the next time step. ‘
The Particle class are defined in one of the following ways:
¢ Particle particle_name;
¢ Particle particle_array name[size] ;
¢ Particle(internalinfluence) particle_name;
¢ Particle(internalinfluence) particle_array_name[size] ;

The former two define a particle and an array of particles, respectively. The later
two define the particle(s) with an internal influence function that specifies the
interaction between any two such particles. When the influence function is not
specified, a default zero influence function is used,

The following QOPS functions return attributes about a particle:

® Vectork Location(Particle&), which returns the position vector of the
particle,

¢ int Color(Particlek), which returns the color code of the particle at dis-
play,

¢ and float Diameter(Particle) returns the diameter of the particle at
display,
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A OOPS function that is defined with Laplace Particle class but not Classical
Particle class is

double Strength(Laplacek);

which returns the strength of the particle. Laplace Particle class is a subclass of
Classical Particle class.

B.6.4 Coulomb Particle Class

Coulomb particles interact with one another in electrostatic forces. Only one
function has been added to the class in accordance with tradition:

double Charge(Coulombk);

which returns the charge of the charged particle. Coulomb Particle class is a
subclass of Laplace Particle class.

B.6.5 Kepler Particle Class

Kepler particles interact with one another in gravitational forces. The strength
of a Kepler particle is the product of the sqaure-root of the gravitational constant
and the mass of the particle. Kepler Particle class is a subclass of Laplace Particle -
class.

B.8.6 Fluid Particle Class (Euler)

Fluid equations are often macroscopic field equations derived from averaging
microscopic particle descriptions over a space that is large when compared with the
interparticle separation and a time that is long when compared with the collision
time of the microscopic particles. It is often possible to simulate fluids by particles
of field nature that represent properties of the space. Unlike the classical particles,
the particles are often driven by the velocity field instead of the force field. The
class of particles that create velocity field is called Fluid Particle Class, or Euler
Class. The description of fluid with the use of Euler particles is also called Eulerian
description. Fluid Particle Class has one required state variable, the position r.
among its attributes. The equations of motion contain, at least,

%:: =v (B.7)
where v is the velocity field at the position of the discussed fluid particle. By
employing a priori fluid particles, many phenomena of fluid flows can be simulated.

Euler particles can be defined in the following way, in addition to the ways

general particles are defined:
Euler particle_name(position, influence_function) ;

The same set of OOPS functions that can be applied to Particle class can also be
applied to Fluid Particle class.
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® Vectork Velocity(Newtonk), which returns the velocity vector of the par-
ticle,

® double Mass(Newtonk), which returns the mass,

Similarly, the same set of functions can be used to assign or change an attribute of
a particle by providing two parameters, instead of one, where the first parameter
is the particle and the second one is the new attribute.

The equations of motion for a classical particle are Newton’s law (B.4), or

n+l _ _n tnt1
{ T =" 4 0 vdt (B.5)

Vil = y" 4 o (B /m)dt

where F is generally a function of the positions and velocities of this and other
particles. There exist many numerical algorithms that approximate the solution
of the equations of motion, and they can be found in the literature on initial-value
problems,

A variety of “experiments” can be set up by the right combination of above
functions. For instance, dissipation in wave propagation can be simulated by giving
an external force proportional to the velocity of the particles; a fixed end of a metal
rod can be simulated by a massive particle at the end or a particle with an empty
integration step.

B.6.3 Laplace Particle Class

Forces that are derived from Green’s function for Laplace operator have the

form
er

TP

(B.6)

where e is a constant attribute of the particles. They are often seen in the real
world, such as the electrostatic force and the gravitational force. In the case of
electrostatic force, e is equal to the charge and, in the case of gravitational force,
€ is equal to the mass multiplied by VG (G is the gravitational constant). The
constant e is called the strength of the particle.

The specification of the inter-particle influence function of a Laplace particle
is reduced to the specification of the strength. Although a Laplace particle can be
defined as a Classical particle, it is more advantageous to define the particle as a
Laplace particle with the specification of the strength of the particle. Internally, the
influence function can be recovered if the particle has been loaded into a scheme
that does not recognize Laplace Particle class. Beside its simpler specification,
the main advantage of Laplace Particle class over Classical Particle class is the
ability to run with faster schemes that take the advantage of the specific influence
function. Examples of the faster schemes include the particle-mesh scheme and
the fast multipole scheme.
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B.8.8 Inviscid Vortex Class

For inviscid vortices, the equations of motion are Equation (B.7) and

%‘:— = (w-V)v (B.13)

Inviscid vortices can be defined as
Inviascid vortez(Vectork r, Vectort w);

Inviscid Vortex class is a subclass of Vortex class.

B.6.9 The Viscous Vortex Class

Viscous vortices have one more attribute than the inviscid vortices, the viscosity
v. The equations of motion are Equation (B.7) and (B.12). The viscosity term in
(B.12) can be accounted for by simulating the diffusion of vorticity by a random
walk, which will be part of the equations of motion. Viscous vortices can be defined
as

Viscous vortez(Vector& r, Vectork w, double v);
Additional OOPS functions that can be applied to viscous vortices include:
¢ double Viscosity(Viscous&), which returns the viscosity of the vortex,

e and void Viscosity(Viscousk, double v), which assigns viscosity v to
the vortex.

B.7 A Scheme Hierarchy

Schemes are particle simulation methods represented as objects. They specify
the computational algorithms to be used in a simulation with the use of particles.
Their responsibilities include particle-particle interaction evaluation and boundary
imposition, among other things. They are organized in a hierarchy to facilitate
software reusability. A scheme is always more general than its subschemes, that
is, if a-scheme can be applied to a class of particle classes, then the parent scheme
can also be applied to the same particle class. Figure B.4 is a hierarchy of scheme
classes, each of which is discussed below.

B.7.1 The Scheme Class

The Scheme class serves as the basis for all schemes. A scheme always defines
its dimension, a computation space in which particles interact with one another,
a particle stack that is used to contain particles, and a list of boundaries and
boundary conditions. A stack is different from an array, as new particles can be
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B.8.7 Incompressible Vortex Class

As a subclass of Fluid Particle Class, Incompressible Vortex Class is a good
example of how a fluid particle is constructed. Vortices have an attribute, the
vorticity w, where

w=Vxv (B.8)

From the incompressibility (the mass density p is constant), the velocity field is
divergence-free, i.e.,

V.v=0¢0 (B.9)
It is known that there exists a vector potential 1y such that
v=Vxy (B.10)
and
Vi = —w (B.11)

By solving Equation (B.10) and (B.11), it is seen that the velocity field can be
recovered from the vorticity of the vortices. That is to say that Green's function
for (B.11), together with (B.10), defines the Incompressible Vortex class. From
the velocity field at each vortex, the position of the vortex at the next time step -
can be calculated. Unlike the charge attribute in Coulomb particles, however, the
vorticity of vortices does not remain unchanged in general. It is the governing
equation of the fluid that determines the new value of the vorticity of a vortex at
the next time step. Very often, the governing equation for incompressible flow is
the Navier-Stokes equation expressed in vorticity form:

%:(w-V)v+uV2w (B.12)
where

dv Ow

Et— = -a—t + (V . V)w

is the rate of vorticity change along the flow lines, and v is the kinematic viscosity
of the fluid. According to the value of the viscosity v, vortices are further classified
into inviscid vortices, where v = 0, and viscous vortices.

Additional OOPS functions that can be applied to vortices include:

e Vactork Vort icity(Vortex#), which returns the vorticity of the vortex,

¢ and void Vorticity(Vortexk, Vectork w), which assigns vorticity w to
the vortex.

A vortex can be defined as

Vortex name(Vector& r, Vector& w);
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¢ void Calculation() calculates the influence on every particle stored in the
scheme.

¢ void Advance(double t) advances all the particles one time step of size t.

B.7.2 The Particle-Particle (PP) Scheme

The PP Scheme is a subclass of the Scheme class. Whereas the Scheme class
does not specify how the influence on every particle is calculated, the Particle-
Particle Scheme calculates the influence by summing up all influence contributions
from other particles. It is, in general, a O(N?) scheme in computation time, where
N is the number of particles. For certain types of influences, however, the Particle-
Particle Scheme can facilitate special arrangements that reduce the computation
time, usually to the order of N. Two special arrangements are for the calculation
of short-range influences and of influences existing only between fixed pairs of
particles.

For short-range interactions, the PP Scheme allows the specification of a cut-off
distance, beyond which the influence of a particle is assumed to be negligible. More-
over, certain applications require influence calculation only between fixed pairs of
particles. It is then necessary to specify where influences exist s6 that the scheme :
does not create extra influences and consumes less computation time. The Connec-
tion Class is defined to designate a partial specification of the particle pairs where
influences exist. An instance of the Connection Class, or connection, is denoted by

(1:7:k)
which represents the set of particle pairs

{(G i+ k), (i + ki + 2K), ..,

G+ (=] - ki + 122 k)
For example,
(0:5:2) = {(0,2),(2,4)}
where there exist influences between particle 0 and particle 2 and between particle 2
and particle 4. A union of connections gives a full specification of all particle pairs

where influences exist.
A PP scheme is specified in the following way:

PPscheme scheme_name(Vectork low, Vector& high, BC be,
double d);

where d gives the cut-off distance of the short-range influence. The default cut-off
distance, when d is not given, is infinity. To add a connection to a PP scheme, the
function AddConnection is used:

void AddConnection(PPscheme&, int i, int j, int k);
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Figure B.4: A scheme hierarchy

added and are added to the top of the stack. Boundaries surround special regions of
the computation space such that when particles are entering or leaving the region,
boundary conditions are enforced. )

A scheme in the Scheme class is specified in the following way:

Scheme scheme_name(Vector& low, Vectors high, BC bc);

where low and high are the lower bound and the upper bound of the computation
space, respectively, and be¢ is the boundary condition for the space, which can
be one of the enumeration constants Open, Bounded, Periodic, Dirichlet, and
Neumann. The default boundary condition is Bounded when bc is not given. For a
one-dimensional scheme, the lower and upper bounds are vectors of one dimension.
For a two-dimensional scheme, they are vectors of two dimensions. The following
functions return information about a scheme:

® int Num(Scheme) returns the number of particles loaded in the scheme,
¢ int Dim(Scheme) returns the dimensionality of the scheme,

¢ Vector& UpperBound(Scheme) returns the upper bound of the space of the
scheme,

¢ Vectork LowerBound(Scheme) returns the lower bound of the space of the
scheme,

¢ and Particlek Scheme[int i] returns the ith particle in the particle stack
of the scheme.

The following member functions define the behavior of the Scheme Class:
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existing function, among others. Particle derivation can be considered as a collec-
tion of second-order functions that take particle classes as their domain. C++, the
implementing language underlying the Boltzmann Programming system, provides
static class derivation/inheritance that can be used to support particle derivation.
The syntax for class derivation in C++, however, requires some understanding of
the C++ language, which should be minimized according to one of the principles in
the design of Boltzmann. To this end, a number of macro definitions are provided
to hide certain syntactic details that are not important to the users. At times, it
1s desired that C4+ language provide dynamic class derivation which would allow
more freedom in particle derivation.
The following macro functions return a subclass of a particle class:

¢ INHERIT(parent_class, new_definitions), which returns a subclass of the par-
ent class with the addition of some new definitions. The new definitions can
be any variable definitions or functjon definitions in the C language. Note:
each definition in new.definitions must end with ;.

* EULER(parent_particle), which returns a subclass with Euler’s method as its
integration function.

® LF(parent_particle), the leap-frog method as the intergation function.

¢ RK2(parent.particle): the 2nd-order Runge-Kutta method as the integration
function.

® RK4(parent_particle): the 4th-order Runge-Kutta method as the integration
function.

® DEACTIVATE(parent_particle): empty integration function.
A subclass is defined in the following way:
class name: macro_functions;

For example, a subclass of Newton Class with the integration function replaced by
the 4th-order Runge-Kutta method is defined as

¢lass name: INHERIT(Newton .
Vector r0, v0, £0, vi;
int integrate(double t, int step) {
switch (step) {
case 1: 10 =r; vO =vy; f0 = f;
L +x 0.5%t*v; v += 0. 5et/m*f;
return 1i;
case 2: vl = yw; £f0 += 2*f;
I = r0+0.5%t*v; v = v0+0.5%t/m*f;
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B.7.3 The Particle-Mesh (PM) Scheme

The PM Scheme represents a computational method that evaluates the inter-
actions among particles by solving a field equation for the potential on a mesh
over the space and interpolating the influence on a particle from the potentials at
the surrounding grid points. This is a scheme with a computational complexity of
O(N + Mlog M), where M is the number of grid points on the mesh.

A PM scheme is specified in one of the following ways:

PMscheme scheme_name(Vectorg low, Vectork it high,
int n,, BC bec);

PMscheme scheme_name(Vectork low, Vectors it high,
int ny, int ny, BC b¢);

PMscheme scheme_name(Vectork low, Vectort it high,
int n;, int ny, int n,;, BC be) ;

Where ny, n,, and n; are the number of grid points along the first, the second, and
the third dimension, respectively (PMscheme in three dimensions is not available
in Boltzmann 1.0). The default boundary condition is Periodic when be is not -
specified. The member functions of the PM Scheme class include

¢ void DensityAssignment (), which assigns strength density to the grid points,
¢ void PotentialCalculation(), which solves the Poisson’s equation,
® void InfluenceField(), which calculates the influence field on the mesh,

¢ void Interpolation(Laplace), which interpolates the influence field at
the particle,

¢ and void Calculation(), which involves the above functions one after an-
other to calculate the influence on a particle at each time step.

Each function can be replaced by a new definition without the change of other
functions.

B.8 Particle Derivation

Although a great effort has been made to provide particle classes for a variety
of applications, it is impossible and unwise to prepare a particle class for every
kind of particles that may be used in particle simulations. Particle derivation is
an important mechanism to make the particle hierarchy extensible. Specialization
of high-level abstract particles is done through particle derivation. It contains fa-
cilities to add a variable, to add a new function, or to change the definition of an
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of the velocities. The function to generate Maxwellian distribution to a set of
particles is

void HuwellianDistribution(Particle* particles,
double m, double T, int N);

B.9.3 Oscillating Particles

For small oscillations about some equilibrium positions, the probability density
of particles having displacement r = (z,y, z) from the equilibrium positions is

2
w'm 3/1 ,—w?m(vZ +o3 403) /24T
(o) e ' (B.15)
where w is the oscillation frequency. It is useful in setting the initial positions
of particles oscillating about some equilibrium positions such as crystal lattices.
The function that creates small displacements to particles from their equilibrium
positions is

void Oscillating(Particles particles,
double m, double T, double omega, int N);

B.9.4 Particles Under the Influence of Gravity

The distribution of particles under the influence of gravity satisfies Boltzmann's
formula
n(h) = n(0)e~moh/*T (B.16)

where g is the magnitude of the gravitational acceleration, h the height of space
from any reference point in the opposite direction of the gravitational acceleration,
and n(h) the number density of particles at height A. If what is wanted is to assign
positions to some fixed number of particles at the height from a to b according to
Boltzmann’s distribution, it can be done by generating a random number y with an
exponential distribution at the range from 0 to 0o, discarding y when y > b~aq, and
letting A = y + a. The following function has the last space dimension distributed
according to Boltzmann’s formula and the rest of space dimensions distributed

uniformly:

void Gravity(Particle* particles,
double m, double T, Vectork low, Vector: high, int N);

B.10 Visualization Windows

Simulation results are displayed in visualization windows. A visualization win-
dow can be as simple as a “drawing board” on which drawing functions can write
points and lines, or it can provide functions such as diagnosis selection, tracking,
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return 1;

case 3: vl 4= y; 0 += 2+f;
T = r0+tay; v = vO+t/m*f;
return {;

case 4: r = r0+t/6x(vO+2aviey);
v = vO+t/(6*m) > (£f0+£) ;

Teturn 0;
default:
return 0;
}
}
);
or simply

class name: RK4(Newton) :

B.9 Initialization Functions

A user can initialize a simulation in a number of ways. The most primative -
approach is to assign values to the attributes of particles one at a time, usually
in a loop statement. The advantage of that approach is its flexibility in setting
up all kinds of initial conditions, but the disadvantage is that the calculation of
the attribute values can be very involved. Another approach builds, on top of
the primative functions, initialization functions that automatically assign values
to particles according to macroscopic properties of them, such as the temperature
and the energy. Boltzmann 1.0 supports the following initialization functions:

B.9.1 Random Load

This function loads particles in a scheme at locations decided by a random
variable;

RandomLoad(Schemek, Particles particles, Random&, int N);

B.9.2 Hot Particles

According to Maxwellian distribution, the probability density of particles at
thermal equilibrium having velocity v = (Vz, vy, v,) is

(2 r:T )3/28—-m(u3+v§+03)/2k1‘ (B.14)
T

where T is the temperature and k the Boltzmann constant. It can be used to assign
velocities to a set of particles at equilibrium on the basis of the temperature, with
the use of a Maxwellian random variable to generate values for each component
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replaying, and scrolling. In Boltzmann, visualization windows: are objects, allow-

ing an unlimited number of windows to be supported. An example of visualization

windows, called Swindow, is supported in Boltzmann 1.0 and is described below.
A Swindow is defined by declaring

Swindow window.name(Vector z-dimension, Vector y-dimension) ;

where z-dimension and y-dimension are vectors of two elements giving the lower
bound and the upper bound of the window in the horizontal and the vertical
directions, respectively. The lower and upper bounds are given the unit of space in
the simulation, not the unit of the size of the physical screen. This makes it easy
to determine what the lower and upper bounds should be in order to visualize a
specific region of a simulation.

When activated, a Swindow looks like the one in Figure B.5, where the big
blank space is the drawing board and the buttons are for the functions that come
with the window. The POPUP button js for opening a menu window that allows
the selection of diagnosis functions and the modification of system parameters such
as the step size. Figure B.6 displays a menu window. Clicking the DIAGNOSIS
button in the menu window opens a menu of diagnosis functions. A sample list
contains items such as Cartesian Space, Phase Space, and Power' Spectrum. User-
defined diagnosis functions can be installed into the list by calling the function

InstallDraw(Swindow window, char* label, DrawFun func);
where DrawFun is defined as
typedef void (*DrawFun) (Swindow, Scheme) ;

and func is the user-provided diagnosis function. Clicking the TRACK button
turns the tracking function of the window on or off, which determines if the results
of earlier time steps should be kept unerased. The DONE button closes the menu
window.

Returning to the Swindow, the PLAY button initiates the simulation and the
display of the results according to the diagnosis function chosen in the menu win-
dow. The right-most small window in the same row displays the time step at
which the results are being displayed. The STEP button advances the simulation
by one time step. The REWD button rewinds the simulation, by running the
same simulation with a negative time step. According to classical mechanics, a
Newtonian many-body problem is time-reversible, provided the computation error
is negligible. Therefore, the REWD button can be used as an error checker. If
the simulation can not go back to the original state, significant computation er-
rors have been introduced and caution is required. The STOP button stops the
simulation and the QUIT button terminates jt.

A number of high-level drawing functions can write on a Swindow that do not
require an understanding of the underlying graphics primatives. The first drawing
function is
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void DrawParticle(Swindow window, Particle particle)

which draws a circle on the drawing board of window. The size and color of the
circle depends on the attributes of the particle Diameter (particle) and Color( par-
ticle). The size of the circle on the drawing board is in proportion to the ratio
of Diameter(particle) to the size of the window. When Diameter(particle) is
positive, the circle is drew in the color designated by Color(particle). When Dia-
meter(particle) is negative, the circle is filled with the same color. The second
drawing function is

void DrawCircle(Swindow window, Vector origin, double diameter,
double color)

This is equivalent to DrawParticle with origin replacing Location(particle), di-
ameter replacing Diameter(particle), and color replacing Color(particle). It is
used to draw a circle, usually to represent a particle, when DrawParticle is inad-
equate. DrawCircle is more flexible than DrawParticle because origin, diameter,
and color can be chosen arbitrarily. The third drawing function discussed here is

void DrawLine(Swindow window, Vector r,, Vector Ty,
double color)

which draws a line from the point at r; to the point at r, on the drawing board in
the color designated by color.

B.11 Visualization Functions

Visualization functions, also called diagnosis functions, display simulation re-
sults in various forms to facilitate easy comprehension of them. Boltzmann 1.0
supports the following visualization functions, which are provided as buttons on
Swindows.

B.11.1 Cartesian Space Visualization

This function displays, at every time step, particles at their relative locations
in real space in Cartesian coordinate system. The shape and color of the particles
are determined by their corresponding attributes in the particles. Boltzmann 1.0
displays only the first two dimensions if a simulation is in three dimensions. Later
version will support 3D visualization.

B.11.2 Phase Space Visualization

This function displays, at every time step, particles at their relative locations in
phase space in Cartesian coordinate system. The phase space is defined to be the
space expanded by the real space and the velocity space. Boltzmann 1.0 displays
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#include <Boltzmann/Unit.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/PPscheme.h>

const RO = 2.551 angstroms;

Vector low(0, 0), high(100 angstroms, 100 angstroms);
PPscheme copper(low, high, 3#R0);

where Unit.h, Newton.h, and PPscheme.h are header files for Boltzmann definition
of the units, Newton class, and the Particle-Particle Scheme class. A header file
that includes all other header files is Boltzmann.h.

The atoms are defined to be Newton particles with Lennard-Jones force,

Vector force(Newtonk, Newtonk);

Particle atoms(N];

for (i= 0; i< N; i++)
Internal(atoms[i], force);

where N is the number of atoms used in the simulation and force is defined by

const DEPTH = 0.1 electronvolts;

Vector force(Newtonk p, Newtonk q)

{

Vector u = Location(q) - Location(p);
double r = magnitude(u);

double a = RO/r;

a = a¥a*a;

a s a;

u *= 12+DEPTH*a*(a-1)/(r»r);:

return u;

}

Since the simulated atoms represent only a tiny fraction of the metal, a boundary
condition has to be imposed. It can be incorporated in the simulation by specifying
certain external force on the boundary particles. A simple approximation of the
boundary condition is given by an external spring force, defined as

Vector external (Newtonk p)

{

Vector f = Location(p) - original[&p-atoms];
f *= -kappa;
return f;
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only the first dimension of the phase space (one real dimension and one velocity
dimension) if a simulation is in more thag one dimension. It supports re-scaling
in the velocity dimension.

B.11.3 Power Spectrum Analysis

A mass of particles can support waves. The wave properties of a system of
particles can be studied by power spectrum analysis. For a function h(z), the
Fourier transform of that function s defined to be

Hf) = [ ': h(z)e*™ %4z

If (z) is a function of time, the Fourier transform is a function of frequency. If
h(z) is a function of space, then the Fourjer transform is a function of wavenumber.
The power spectrum density (PSD) of function h(t) is defined to be

PSDh(f)=H(F)*+ |H(-F)*, 0< f< oo

which indicates the power of the signal in the frequency or wavenumber spectrum.

In Boltzmann 1.0, the signal to be power spectrum analyzed is fixed to be .
the velocity of the particles along the first dimension. The particles must also
be uniformly distributed in one dimension in the space for the estimation to be
meaningful. The power spectrum estimation uses two segments of data from two
consecutive time steps and Parzen data windowing to get a smooth estimation.
Later version of Boltzmann will support the power spectrum analysis of arbitrary
signals.

B.12 A Programming Example

As a programming example, the simulation of the displacement of atoms in
metals under radiation is discussed. A metal is modeled by a lattice of atoms and
the interactions among the atoms. In our example, the interaction between two
atoms is represented by the potential function of the separation of the atoms:

#(r) = el(2)'2 - 2(2)7], (BAT)

r r
which is called Lennard-Jones potential: rq is the atomic separation at equilibrium
and ¢ is the depth of the potential well.

The development of the simulation program starts with the selection of the
particle class and the scheme class. Since the force between two atoms is short-
ranged and decreases rapidly as the separation becomes large, the PPscheme class
is selected because it allows the specification of a cut-off distance. Here, a piece of
copper is defined in two dimensions and the cut-off distance of inter-particle force
is set to be 3rg, as in
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Velocity(atoms[i], Vector(0, 0));
Internal(atoms[i], force);
}
t = BlockLoad(copper, atoms, RO, 25, 10, N);
Velocity(atoms[60], Vector(0.4, -0.45));
Color(atoms[60], Pink);

// boundary condition; external force
double x0 = high[0], yo = high(1], x1 = low{0], y1 = low[1];
double R = 0.6*R0O;
base = atoms;
for (i= 0; i< t; i++) {
rO[i] = Location(atoms[i]l);
if (ro[iJ[0] < x0) x0 = ro[i][0];
if (ro[i)[1] < y0) yo = ro[i][1];
if (ro(ilfo] > x1) x1 = ro{i][0];
if (r0fil[1] > y1) y1 = ro(il[1];

Hh

}
for (i= 0; i< t; i++) {
if (r0{i][0]-x0 < R || ro[il[1]-y0 < R
Il x1-r0[i1{0] < R || y1-r0[i][1] < R)
External(atoms[i], external);

Hh

}

// simulation in a Swindow

RunSwindow(copper, 0.2):
}

Vector force(Atomsk p, Atomsk q)
{

Vector u = Location(q);

u -= Location(p);

double r = magnitude(u);
double a = RO/r;

a = axa*a;

a k= a.;

u *= 12«DEPTH*ax(a-1)/(r*r);
return u;

}

Vector external(Atomsk p)
{
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where original is a vector array storing the initial positions of the particles. The
complete program is listed below.

#include <Boltzmann/PPscheme.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/Swindow.h>
#include <Boltzmann/Unit.h>
#include <Boltzmann/Macro.h>
#include <Boltzmann/Integrator.h>
#include <Boltzmann/Function.h>

#define centimeter 1/1.804%1e8
#define second 1/3.273#1e15
#define gram 1/5.275%1e26

const double DEPTH = 0.1 electronvolts;

const double RO = 2.551 angstroms;

const double kappa = 0.2 *electronvolt/(angstrom*angstrom);
const int N = 250;

const int M 2000;

class LFparticle: LF(Newton);
class Atoms: INHERIT(LFparticle,
void update(double t) {d = 8*magnitude(v) angstroms;}

);

Vector rO[N];
Atoms *base;

main()
{
Vector force(Atoms&, Atomsd);
Vector external (Atomsk);
Vector low(0, 0), high(100 angstroms, 100 angstroms);
int i, t;

PPscheme copper(low, high, 3+R0);
Atoms atoms[N];

// initialization

for (i= 0; i< N; i++) {
Mass(atoms[i], M);
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Figure B.7: Radiation displacement of atoms
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Vector f = Location(p);

f -= ro[gp-base];
f *= -kappa;
return f;

To compile the program, the following command is issued:
bzm progream.c
where bzn is an alias for
g++ -0 \!* -1Boltzmann -1g++ ~1m -1Xw -1Xt -1X11

A snapshot of the metal at time step 100 is given in Figure B.7, where the size of
the circles represents the magnitude of velocity and thus the kinetic energy of the
atoms.
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VectorArray() {point = 0;}

VectorArray(int, int dim);

VectorArray(int, int, int dim);

VectorArray(int, int, int, int dim);

“VectorArray() {}

Vector& operator{](int i) {return point[i];}

Vector& operator() (int i) {return point[i];}

Vectork operator()(int i, int j) {return arrayv[il (j); }

Vectork operator()(int i, int j, int k)
{return arrayv[i](j, k);}

¥

////////////////////////////////////////////////////////

inline ScalarArray :: ScalarArray(int ni)

{
int i;
// delete point;
point = new float([ni];
for (i= 0; i< ni1; i++)
point(i] = 0;
}
inline ScalarArray :: ScalarArray(int n1, int n2)
{
int i;
arrayv = new ScalarArray[ni];
for (i= 0; i< n1; i++)
arrayv(i].ScalarArray(n2);
}

inline ScalarArray :: ScalarArray(int n1, int a2, int n3)

{
int i;
arrayv = nev ScalarArray{ni];

for (i= 0; i< n1; i++)
arrayv(i].ScalarArray(n2, n3);

inline VectorArray :: VectorArray(int n1, int dim)
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APPENDIX C

Boltzmann Definition Files

C.1 Array.h

#ifndef _array_h
#pragma once
#define _array_h 1.

#include <Boltzmann/Vector.h>

class ScalarArray {
friend class PMscheme;
protected:
union {
float *point;
ScalarArray *arrayv;
};
public:
ScalarArray() {point = 0;}
ScalarArray(int);
ScalarArray(int, int);
ScalarArray(int, int, int);
“ScalarArray() {delete point;}
float® operator(](int i) {return point[i];}
float& operator()(int i) {return point[i];}
float& operator()(int i, int j) {return arrayv(i](j); }
float& operator()(int i, int j, int k)
{return arrayv[il(j, k);}
¥

class VectorArray {
protected:
union {
Vector *point;
VectorArray *arrayv;
¥
public:
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#include <Boltzmann/Scheme.h>
#include <Boltzmann/PPscheme.h>
#include <Boltzmann/PMscheme.h>

#include <Boltzmann/Vector.h>
*¥include <Boltzmann/RanVar.h>
#include <Boltzmann/Unit.h>
#include <Boltzmann/Constant.h>
#include <Boltzmann/Macro.h>
#include <Boltzmann/Integrator.h>
#include <Boltzmann/Function.h>
#include <Boltzmann/Swindow.h>

#endif

C.3 Boundary.h

#ifndef _boundary_h
#pragma once
#define -boundary_h 1

#include <Boltzmann/Particle.h>
enum BC {Open, Bounded, Elastic, Periodic, Dirichlet, Neumann};

class Boundary {
friend class Scheme;
friend Boundary* Next(Boundary* p) {return p~>next;}
protected:
int dim;
Vector low, high;
Boundary *next;
public:
Boundary(double x0, double x1)
{dim = 1; low.Vector(x0); high.Vector(x1); next = 0;}
Boundary(double x0, double x1, double y0, double yi)
{dim = 2; low.Vector(xo0, y0); high.Vector(xi, y1);
next = 0;}
Boundary(Vectort 1ow0, Vector& high0)
{dim = dimension(low0); low = low0; high = highO;
next = 0;}
“Boundary() {}

114



int i;

Point = new Vector([ni];
for (i= 0; i< n1; i++)
peint[i].Vector(dim);
}

inline VectorArray :: VectorArray(int ni, int n2, int dim)

{

int i;

arrayv = new VectorArray([ni];
for (i= 0; i< ni; i+s)
arrayv[i].VectorArray(n2, dim);

inline VectorArray :: VectorArray(int n1, int n2, int n3, int dim)

{

int i;

arrayv = nev VectorArray[ni];
for (i= 0; i< n1; i++)
arrayv[i].VectorArray(n2, n3, dim);

}

#endif

C.2 Boltzmann.h

#ifndef _boltzmann_h
#pragma once
#define _boltzmann_h 1

#include <Boltzmann/Particle.h>
#include <Boltzmann/Newton.h>
#include <Boltzmann/Laplace.h>
#include <Boltzmann/Coulomb.h>
¥include <Boltzmann/Kepler.h>
#include <Boltzmann/Euler.h>
#include <Boltzmann/Vortex.h>
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};

Coulomb(): Laplace() {charge = 0;}

Coulomb(Vectork r0, Vectork v0, double m, double q)
‘Laplace(r0, v0, m) { charge = q; }

“Coulomb() {}

int isCoulomb(Particlek p) {return p.classID() == COULOMB;}

virtual void internal(Particled e) {
Vector ff = eforce(CONVERT (e, Coulomb));
e.influence() += ff; f -= ff;

}

virtual double strength() {return charge;}

virtual Vector eforce(Coulombs e);

virtual int size() {return sizeof (*this);}

// this is necessary to get the right size of the particle

virtual CLASS_ID classID() {return COULOMB; }

inline Vector Coulomb: :eforce(Coulombs e)

{

double d;
Vector u = e.r;

u -= r;

d = magnitude(u);

switch (dimension(u)) {

case 1:
u *= charge*e.charge/d;
return y;

case 2:
u *= charge*e.charge/(d+d);
return u;

case 3:
u *= charge*e.charge/(d*d+d);
return u;

#endif

C.6 Euler.h

#ifndef _euler_h
#pragma once
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int InTheBoundary(Vectork):
void Bounce(Particle&, BC);
};

#endif

C.4 Constant.h

#ifndef _constant_h
#pragma once
#define _constant_h 1

#include <Boltzmann/Unit.h>

const double SpeedOfLight
const double ElectronCharge
const double ElectronMass
const double ProtonMass

2.998e10 * centimeter/second;
4.8e-10 esus;

0.911e~27 grams;

1.6725e-24 granms;

const double GConstant =
6.67e-11 * newton*metersmeter/(kilogramskilogram) ;
const double GAcceleration =

9.806650e2 * centimeter/(second*second) ;
const double BoltzmannConstant = 1.38054e-16 ergs;

#¥endif

C.5 Coulomb.h

#ifndef _coulomb_h
#pragma once
#define _coulomb_h 1

#include <Boltzmann/Laplace.h>
#include <Boltzmann/Macro.h>

class Coulomb: public Laplace {
friend doublek Charge(Coulombk p) {return p-charge;}
friend void Charge(Coulombk p, double q) {p.charge = q;}
protected:
double charge = 0;
public:
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// 4th-Order Runge-Kutta

#define RK4(base) public base { \
protected: \

Vector r0, v0, £0, vi; \
public: \

virtual int integrate(double t, int i) { \

switch (i) { \
case 1: 10 =r; vO = v; £f0 = f; \
V *x 0.5%t; 1 4m y; £ &= 0.5%t/m; \

= v0; v += f; return 1; \
PVl =y, f xm 2; £0 4= f; v %= 0.5*t; \
=10; r += v; fe= 0.26xt/m; \
= v0; v += f; return 1; \
Vi 4= v, f = 2; £0 4= £; v *= ¢; \
=10; r += v; f *= 0 5+t/m; \
= v0; v += £; return 1; \
P vloam 2] vl 4= v0; vl 4= v; vl %= t/6; \
=r0; r+=vi; f += £0; £ x= £/(6%m); \

v =v0; v +=f; return 0; \
default: return 0; \
A

case

case

case

A b dH Wad H O <

A

virtual int size() {return sizeof(*this);} \

}
// 2nd-Order Runge-Kutta

#define RK2(base) public base { \
protected: \
Vector r0, voO; \
public: \
virtual int integrate(double t, int i) { \
switch (i) { \
case 1: r0 = r; v0 = v; vO *= 0.5%t; r += v0; \
VO = v; f *= 0.5#t/m; v += f; return 1; \
Case 2: r = v; r *= t; r += r0; \
v=1of, v*=t/m; v += v0; return 0; \
default: return 0; \
A

virtual int size() {return sizeof(*this):} \
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#define _euler_h 1
#include <Boltzmann/Particle.h>

class Euler: public Particle {
public:
Euler() {}
Euler(Vectort r0) {r = r0:}
“Euler() {}
int isEuler(Particlek P) {return p.classID() == EULER;}
virtual int integrate(double t, int 8) {
if (s> 1) return 0;
r += t*f; return 0;
}
virtual int size() {return sizeof (*this);)}
// this is necessary to get the right size of the particle
virtual CLASS_ID classID() {return EULER;}
};

typedef Euler Fluid;

#endif

C.7 Integrator.h

#ifndef _integrator_h
#pragma once
#define _integrator_h 1

#include <Boltzmann/Vector.h>
// Euler

#define EULER(base) public base { \
public: \
virtual int integrate(double t, int i) { \
if (i > 1) return 0; \
Vector u = v; \
U*= t; r+=u; f s=» t/n; v 4= £ return 0; \

A

virtual int size() {return sizeof (*this);} \



double d;
Vector u = e.r;

u -= r;
d = magnitude(u);
svitch (dimension(u)) {

case 1:
u *= GravitationalConstant*m*e.m/d;
return u;
case 2:
u *= GravitationalConstant*m*e.m/(d*d);
return u;
case 3:
u *= GravitationalConstant+m*e.m/(d*d#d) ;
return u;
}
}
#endif

C.9 Laplace.h

#ifndef _laplace_h
#pragma once
#define _laplace_h 1

#include <Boltzmann/Newton.h>

class Laplace: public Newton {
friend class PMschenme;
double Strength(Laplacek p) {return p.strength();}
public:
isLaplace(Particlek p) {return p.classID() == LAPLACE;}
virtual double strength({) {return 0;}
virtual int size() {return sizeof(*this);}
// this is necessary to get the right size of the particle
virtual CLASS_ID classID() {return LAPLACE;}

};

#endif

120



// Leap-Frog

#define LF(base) public base { \
public: \
virtual int integrate(double t, int i) { \
if (i > 1) return 0; \
fext/m vexof; fmvy; £ amt;ramg; \
return 0; \

A

virtual int size() {returm sizeof (*this);} \
}
#endif

C.8 Kepler.h

#ifndef _kepler_h
¥pragma once
#define _kepler_h 1

#include <Boltzmann/Laplace.h>
#include <Boltzmann/Macro.h>
#include <Boltzmann/Constant.h>

class Kepler: public Laplace {
public:
int isKepler(Particlek p) {return p.classID() == KEPLER;}
virtual void internal(Particlek e) {
Vector ff =» gforce(CONVERT (e, Kepler));
e.influence() += ff; f -= ff:
}
virtual Vector gforce(Keplerk e);
virtual double strength()
{return sqrt(GravitationalConstant)*m;}
virtual int size() {return sizeof(*this);}
// this is necessary to get the right size of the particle
virtual CLASS_ID classID() {return KEPLER;}

};

inline Vector Kepler::gforce(Keplerk e)

{
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extern void add_pane(Widget, menu_struct*, XContext, int);

#endif

C.11 Macro.h

#¥ifndef _macro_h
#pragma once
#¥define _macro_h {

#define REAL double
#define TYPE(class, result) result class::
#define SQR(x) ((x)*(x))
#define INHERIT(base, fun) public base { \
public: \

fun \

virtual int size() {returnm sizeof (*this);} \

}
#define CONVERT(base, subclass) (*((subclass *) &base))

inline int MOD(int x, int y)
{ if(x >= 0) return x%y; else return MOD(y+x, y); }

#define DEACTIVATE(base) public base { \
public: \

virtual int integrate(double t, int i) {return 0;} \
virtual int size() {return sizeof (*this);} \

#endif

C.12 Newton.h

#ifndef _newton_h
#pragma once
#define _newton_h 1

#include <Boltzmann/Particle.h>
#include <Boltzmann/Macro.h>

class Newton: public Particle {
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C.10 Libxs.h

#ifndef _libsx_h
#pragma once
#define _libxs_h 1

extern “C" {

#include "X11/Intrinsic.h"
¥include <X11/StringDefs.h>
#include <X11/Shell.h>
#include <Xw/Xw.h>
#include <Xw/Form.h>
#include <Xw/RCManager.h>
#include <Xw/SText.h>
#include <Xw/TextEdit.h>
#include <Xw/WorkSpace.h>
#include <Xw/PButton.h>
#include <Xw/BBoard.h>
#include <Xw/MenuBtn.h>
#include <Xw/Cascade.h>
#include <Xw/PopupMgr.h>
}

extern "C" void exit(int);

#define FONTHEIGHT(f) \
((£f)->max_bounds.ascent + (f)->max_bounds.descent)

typedef struct {

char name(20] ;

void (*switcher)();
caddr_t func;
caddr_t data;

} menu_struct;

extern void get_dimension(Widget w, Dimension *width,
Dimension *height);

extern void get_GC(Widget w, GC *gc);

extern void get_ EraseGC(Widget w, GC *xgc);

extern void get_Pirmap(Widget w, Pixmap *pix);

extern Widget Create_one_line_text_widget(char*, Widget, Arg*, int);
extern Widget create_menu_pane(Widget, chars*);
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NEWTON, LAPLACE, COULOMB, KEPLER,
EULER, VORTEX, INVISCID, VISCOUS
};

class Particle {
friend class Scheme;
friend class ParticlePtrArray;
friend Vector& Location(Particlek p) {return p.-r;}
friend Vector% Velocity(Particlek p) {return p.v;}
friend float Diameter(Particlek p) {return p.d;}
friend int Color(Particlek p) {return p.color;}
friend void Location(Particlek P, Vectork r) {p.r = r;}
friend void Velocity(Particlek p, Vectork v) {p.v=yv;}
friend void Diameter(Particle& p, float diam) {p.d4 = diam;}
friend void Color(Particlek p, int index) {p.color = index;}
friend void Internal(Particled P, Vector (*force)())
{p.inforce = (IntF) force;}
friend void External (Particle& p, Vector (*force)())
{p.exforce = (ExtF) force;} ‘
protected:
Vector r, v, f;
fleat d = 0;
unsigned int coler = 0;
IntF inforce = Q;
ExtF exforce = 0;
Particle *next; // is only used in class ParticlePtrArray
public:
Particle() {inforce = 0; exforce = 0; next = 0; }
Particle(Vectork r0, Vector& v0, IntF force=0)
{r'=10; v = v0; inforce = force; exforce = 0; next = 0;}
“Particle() {}
int isParticle(Particlek p) {return p.classID() == PARTICLE;}
virtual void internal(Particlek p) {
if (inforce) p.f += (*inforce) (*this, p);
if (p.inforce) f += (*(p.inforce))(p, *this);
}
virtual void external()
{ if (exforce) f += (*exforce)(*this): }
virtual void reset() {f = 0;}
virtual int integrate(double t, int s) {
if (8 > 1) return 0; v *= t; r += v; return 0;
}
virtual void output{ostreamk os) {
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friend doublek Mass(Newtonk p) {return p.m;}
friend void Mass(Newtonk p, double mass) {p.m = mass;}

protected:

double m = §;

public:

};

Newton(): Particle() {}
Newton(Vectork r0, Vectork v0, double mass, IntF force=()
: Particle(r0, v0, force) {m = mass;}
“Newton() {}
int isNewton(Particlek p) {return p.classID() == NEWTON;}
virtual void internal(Particled p) {
Vector ff;
if (inforce) ff = (*inforce) (*this, CONVERT (p,Newton) ) ;
P-influence() += ff; f -= ff;
}
virtual int integrate(double t, int s) {
if (s > 1) return 0;
f*=t/m; vim f; fny; f = t; r += f; return 0:
} // leap-frog ‘
virtual int size() {return sizeof (*this);}
virtual CLASS_ID classID() {return NEWTON;}

typedef Newton Classical;

#endif

C.13 Particle.h

#ifndef _particle_h
#pragma once
#define _particle_h 1

#¥include <Boltzmann/Vector.h>
#include <stream.h>

class Particle;
typedef Vector (+IntF)(Particlek, Particle&);
typedef Vector (*ExtF)(Particlek);

enum CLASS_ID {

PARTICLE,
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};

inline Particle& ParticleBag::operator(](int i)
{
int t = Q;
ParticleArray *p = cluster:
while (p != 0) {
if (i-t < p->arraySize) return (*p) [i-t];
t += p->arraySize;
P = p~>next;

}

#endif

C.14 PMscheme.h

#ifndef _pm_scheme_h
#pragma once
#define _pm_scheme_h 1

#include <Boltzmann/Scheme.h>
#include <Boltzmann/Laplace.h>
#include <Boltzmann/Array.h>

class PMscheme: public Scheme {
protected:
void NGPassignment(Laplacek, ScalarArrayk);
void CICassignment(Laplacek, ScalarArrayk);
void NGPinterpolation(Laplacet, VectorArrayk) ;
void CICinterpolation(Laplaces, VectorArrayk);
protected:
int len[3];
Vector h;
ScalarArray phi, rhe;
VectorArray beta;
public:
PMscheme(): Scheme() {}

PMscheme(Vectork low, Vectork high, int n1, BC b=Periodic);
PMscheme(Vectorg low, Vectork high, int ni, int n2,

BC b=Periodic);

PMscheme(Vector& low, Vectork high, int ni, int n2, int n3
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08 << r << v << "\n": }

virtual veid update(double t) {3}

IntF intf() {return inforce;}

ExtF extf() {return exforce;}

Vectork influence() {return £:}

virtual int size() {return sizeof (*this);}

virtual CLASS_ID classID() {return PARTICLE;}
};

inline ostreamk operator<<(ostreams ©s, Particlek p)
{p.output(os); return os;}
inline Vector& 1fLocation(Particlex p, double t)
{ return Location(p)-o.S*t*Velocity(p); }
inline void 1lfInit(Particle& p, double t) {
// Locatien(p, Location(p)+0.S*t*Velocity(p));
),

//////////////////////////////////////////////////////

class ParticleArray {
friend class ParticleBag;
unsigned particleSize, arraySize;
void *array;
ParticleArray *next:
public:
ParticleArray()
{arraySize = 0; particleSize = 1;
array = 0; next = 0;}
ParticleArray(int n, Particle *p)
{arraySize = n; array = p;
particleSize = p->size(); next = 0;}
“ParticleArray() {}
int np() {return arraySize;}
Particlek operator(] (int i)
{return *((Particle ») (array+isparticleSize));}

};

class ParticleBag {
ParticleArray *cluster;
public:
ParticleBag() {cluster = 0;}
putIn(ParticleArray *pa) {pa->next = cluster; cluster = pa;}
Particle& operator(](int i);
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};

int Dim(} {returm dim;}
void Reset() {
int i, k; // switch (dim)
if (dim == 1) k = size[0];
else if (dim == 2) k = size[0]*size[1];
for (i= 0; i< k; i++) cell[i] = 0;
}
void Assign(Particle *p);
void Calculation();
void Calculation(Particle *p, int i, int i);

////////////////////////////////////////////////////////

class PPscheme;
class Connection {

friend class PPacheme;

protected:
unsigned int first;
unsigned int last;
unsigned int interval;
Connection *next;
public:

};

Connection() {next = 0;}
Connection(int i, int j, int k)

{first = i; last = ji interval = k; next = 0:}
“Connection() {}

g,

class PPscheme: public Scheme {
protected:

Connection *conn = Q;
ParticlePtrArray grid;

public:

PPscheme(Vectork low0, Vectork high0, BC b=Open)
: Scheme(low0, higho, b) {}

PPscheme(Vectork low0, Vectork highO, double r,
BC b=0pen);

"PPscheme() {delete conn;}

void MakeConnection{int i, int j, int k = 1) {
Connection *p = new Connection(i, j,» k);
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BC b=Periodic);
“PMscheme() {}
virtual void DensityAssignment();
virtual void PotentialCalculation();
virtual void InfluenceField();
virtual void Interpolation(Laplace& e) {
CICinterpolation(e, beta);
e.influence() *= e.strength();

}
void Calculation();
};
#endif

C.15 PPscheme.h

#ifndef _pp_scheme_h
#pragma once
#define _pp_scheme_h 1

#include "Scheme.h"

LITHITITEIIII 001 10100100110000000100121711107
typedef Particle *ParticlePtr;

class ParticlePtrArray {
int dim;
double low[3)];
double step[3];
unsigned int size[3];
ParticlePtr *cell;
void DualPartListForce{Particle *p, Particle *q);
public:
ParticlePtrArray() {dim = 0;}
ParticlePtrArray(double x1, double hi, int ni)
{ dim = 1; low[0] = x1; step[0] = h1; size[0] = ni;
cell = new ParticlePtr(ni]; }
ParticlePtrArray(double x1, double hi, int ni,
double x2, double h2, int n2)
{ dim = 2; 1low[0] = x1; step[0] = h1; size[0] = ni;
low[1]) = x2; step(1] = h2; size[1] = n?;
cell = new ParticlePtr(ni*n2]; }
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virtual double operator()();
};

inline Uniform::Uniform(double low, double high, RNG *gen):(gen)
{

if (gen == 0) pGenerator = &_gen;

plow = (low < high) ? low : high;

PHigh = (low < high) ? high : low;

delta = pHigh - pLow;

inline double Uniform::low() { return pLow; }

inline double Uniform::low(double x) {
double tmp = pLow;
pLow = x;
delta = pHigh - pLow;
return tmp;

inline double Uniform::high() { return pHigh; }

inline double Uniform::high(double x) {
double tmp = pHigh;
pHigh = x;
delta = pHigh - pLow;
return tmp;

}
inline double Uniform::operator() ()
{
return( plLow + delta * pGenerator -> asDouble() );
}

//11111111/1/] Normal Random Variable ///////1//11/11/

class Normal: public Random {
char haveCachedNormal;
double cachedNormal;

protected:

double pMean;
double pVariance;
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p->next = conn;
conn = p;
}
void Calculation();
protected:
virtual void FixedForceCal()

};

overload MakeConnection;

inline void HakeConnection(PPschemet scheme, int i, int j» int k)

{ scheme.MakeConnection(i, j

» K); )

inline void MakeConnection(PPschemek scheme, int i, int j)
{ scheme.MakeConnection(i, j); }

#endif

C.16 RanVar.h

#ifndef _randomvar_h
#pragma once
#define _randomvar_h 1

#include <Random.h>
#include <MLCG.h>
#include <stream.h>

/11/111171171/// Uniform Random Variable HIH111000100011117111

static MLCG _gen(0, 1);

class Uniform: public Random {
double pLow;
double pHigh;
double delta;

public:

Uniform(double low, double high, RNG *gen = 0);

double low();

double low(double x);
double high();

double high(double x);
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public:
Maxwellian(double temp, double mass, RNG *gen = 0):
virtual double operator()();

};

inline Maxwellian::Haxwellian(double temp, double mass, RNG *gen)
: (gen)
{
if (gen == 0) pGenerator = k_gen;
T = temp;
m = mass;
haveCachedMaxwellian = 0;
}

//1/1/7//1/ Ripple Random Variable g,

class Ripple: public Random {
protected:
double alp, bet, muB, nuC, aa, bb;

public:
Ripple(double alpha, double beta, double mu, double nu,
double a, double b, RNG *gen = 0);
virtual double operator()();

};

inline Ripple::Ripple(double a, double b, double alpha, double beta,
double mu, double nu, RNG *gen = 0) : (gen)
{
if (mu*a+nu < 1 || musb+nu < 1) {
cerr << "illegimate distribution function\n";
exit(1);
}
if (gen == 0) pGenerator = &_gen;
alp = alpha;
bet = beta;
muB = my;
nuC = nu;
aa = a;
bb = b;
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double pStdDev;

public:
Normal(double xmean, double xvariance, RNG *gen = 0);
double mean();
double mean(double x);
double variance();
double variance(double x);
virtual double operator()();

};

inline Normal::Normal(double xmean, double xvariance, RNG *gen)
: (gen)
{
if (gen == 0) pGenerator = &_gen;
PMean = xmean;
pVariance = xvariance;
pStdDev = sqrt(pVariance);
haveCachedNormal = 0;

inline double Normal::mean() { return pPMean; };
inline double Normal::mean(double x) {

double t=pMean; pMean = x;

return t;

}

inline double Normal::variance() { return pVariance; }
inline double Normal::variance(double x) {

double t=pVariance; pVariance = x;

pStdDev = sqrt(pVariance);

return t;

};
//11111111/ Maxwellian Random Variable HHI1I117110711011111117
class Maxwellian: public Random {

char haveCachedMaxwellian;
double cachedMaxwellian;

protected:

double T;
double m;
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{ for (int i= 0; i< n; i++) 8.Advance(t); }

#endif

C.18 Unit.h

#ifndef _unit_h
#pragma once
#define _unit_h 1

// default unit: cgs

#define centimeter 1
#define centimeters *centimeter
#define gram 1

#define grams *gram

#define second 1

#define seconds *second
#define esu 1

#define esus *esu

#define dyne gramscentimeter/(second*second)
#define dynes *dyne

#define erg dyne*centimeter
#define ergs »erg

// mks

#define meter 100*centimeter
8define meters *meter
¥define kilogram 1000*gram
¥define kilograms *kilogram
#define coulomb 3e9*esy
#define coulombs *coulomb
#define newton 1eS*dyne
#define newtons *newton
#define joule 1e7*erg
#define joules *joule

// others
#define angstrom 1e-8#centimeter

#define angstroms *angstrom
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#endif

C.17 Scheme.h

#ifndef _scheme_h
#pragma once
#define _scheme_h 1

#include <Boltzmann/Boundary.h>
#include <Boltzmann/Particle.h>

class Scheme {
friend void Install(Scheme& s, Boundary? rg) {s.Install(rg);}
friend void Load(Schemed scheme, Particle* P8, int number) {
scheme.np += number;
scheme.particles.putIn(new ParticleArray(number, ps));}
friend int Num(Schemek s) {return s.np;}
friend int Dim(Scheme& s) {return 8.dim;}
friend Vector& UpperBound(Scheme2 s) {return s.high;}
friend Vector& LowerBound(Scheme& 8) {return s.low;}
public: :
// dim: dimension of the Space; np:number of particles;
int dim, =np;
Vector low, high;
ParticleBag particles;
protected:
BC boundary;
Boundary *region = 0;
public:
Scheme() {dim = 0; np = 0; region = 0; boundary = Open;}
Scheme(Vectork low0, Vectork high0O, BC b=Open);
“Scheme() {}
Particlek operator([](int k) {return particles[k];}
virtual void Calculation();
virtual void Advance(double t);
void Install(Boundary& rg) {rg.next = region; region = &rg;}
protected:
virtual void InternalForceCal();

};

inline void Advance(Scheme& s, double t) { s.Advance(t); }
inline void Run(Scheme& s, double t, int n)
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Vectork operator-(Vectork);
Vectork operator*(Vectork);
Vectork operator+(double);
Vector& operator*(double);
Vector& operator-() {return (*this)*(-1);}
Vector% operator+=(Vectork);
Vectorf operator-=(Vectort);
Vector% operator/=(Vectork);
Vector® operator+=(double x)
{for (int i= 0; i< dim; i++) vec[i] += x; return *this;}
Vectorg operator-=(double x)
{for (int i= 0; i< dim; i++) vec{i] -= x; return *this;}
Vector& operator*=(double x)
{for (int i= 0; i< dim; i++) vec[i] *= x; return *this;}
Vectork operator/=(double x)
{for (int i= 0; i< dim; i++) vec[i] /= x; return *this;}
Vector& operator=(Vectork);
Vector& operator=(double);
float& operator[](int i) {return vec[i];}
print();
};

inline Vectork operator+(double x, Vectort r) {return r+x;}
inline Vector& operator-(double x, Vectork r) {return -r+x;}
inline Vector& operator*(double x, Vectork r) {return T*X;}
inline Vector& operator-(Vector® r, double x) {return r+(-x);}
inline Vector® operator/(Vectork r, double x) {returm r*(1/x);}
inline double magnitude(Vectort r) {return sqrt(dot(r, r));}

class Memory {
Vector *vec;
Memory *next;
public:
Memory(Vector* p, Memory *m) {vec = p; next = m;}
“Memory() {if (next != 0) delete next; delete vec;}
};

extern Memory *garbage;
inline void DeleteGarbage() {delete garbage; garbage = 0;}

#endif
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#define electronvolt 1.60219e~12%erg
#define electronvolts *electronvolt
#define eV electronvolt

¥define eVs electronvolts

#define calorie 4.186*joule

#define calories *calorie

#endift

C.19 Vector.h

#ifndef _vector_h
#pragma once
#define _vector_h 1

extern "C" {

¥include <math.h>

#include <sys/file.h> ‘
// this line is added to override conflict definition for flock

}

#include <stream.h>

class Vector {
friend ostreamk operator<<(ostreamk os, Vectord v);
friend int& dimension(Vectork v) {return v.dim;}
friend double dot(Vectork, Vectork);
friend Vectors cross(Vectork, Vectors);
protected:
unsigned int dim;
float *vec;
public:
Vector() {dim = 0; vec = 0;}
Vector(double x) {dim = 1; vec = new float[dim]; vec[0] = x:}
Vector(double x, double y)
{dim = 2; vec = new float[dim]; vec[0] = x; vec[1] = ¥y}
Vector(double x, double y, double z) {dim = 3;
vec = nev float[dim]; vec[0] = x; vec[1] = y; vec(2] = z;}
“Vector() {delete vec;}
Vector(const Vectork);
void Setup(int);
Vector® operator+(Vectork);
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if (dimension(omega) == 0) return Vector();

Vector u = Location(a); u -= r;

switch (dimension(r)) {

case 1: cerr << "ERROR: no 1D Vorticity\n";
exit(1);

case 2:
x = magnitude(u); t = 1/(2*PI*x);
if (x < delta)

return omega[0]+t/deltasVector(-u[1], u[0]);

else

return omega[0]«t/x*Vector(-ul1], u[0]);

break;
case 3:

cerr << “Sorry: 3D has not been implemented yet\n";

exit(1);

typedef Vortex Inviscid;

#endif

C.21 Swindow.h

#ifndef _swindow_h
#pragma once
#define _swindow_h 1

#include <Boltzmann/Libxs.h>
#include <Boltzmann/Scheme.h>

#define MAXCOLOR 50
#define MAXPOINTS 500

enum COLOR {

White, Black, Blue, Navy, LightBlue, SeaGreen,
Green, Yellow, Brown, Orange, Pink, Red

};

class Swindow;
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C.20 Vortex.h

#ifndef _vortex_h
#pragma once
#define _vortex_h 1

#include <Boltzmann/Euler.h>
#include <Boltzmann/Macro.h>

class Vortex: public Euler {
friend class VPscheme;
friend Vectort Vorticity(Vortex& v) {return v.omega;}
friend double& Size(Vortext a) {return a.delta;}
friend void Vorticity(Vortex& v, Vectork w) {v.omega = w;}
friend void Size(Vortexk a, double d) {a.delta = 4;}
protected:
Vector omega;
double delta = 1e-3;
public:
Vortex(): Euler() {}
Vortex(Vectord r0, Vectork ¥, double size=1e-3)
:Euler(r0) {omega = w; delta = size;}
“Vortex() {};
int isVortex(Particlek p) {return p.classID() == VORTEX;}
virtual void internal (Particle& e) {
if (dimension(omega) != 0)
e.influence() += velocity(CONVERT(e, Euler));
if (isVortex(e)) {
Vortex *p = (Vortex *) %e;
if (dimension(Vorticity(*p)) = ()
f += p->velocity(*this);
}
}
virtual Vector velocity(Eulerk);
virtual int size() {return sizeof (*this);}
// this is necessary to get the right size of the particle
virtual CLASS_ID classID{) {return VORTEX; }

+;
inline Vector Vortex::velocity(Euler& a)

{
double x, t;
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“Swindow() {}
void Init(Widget);
void Activate(Schemet, double);
void Draw(Schemek);
void DrawPoint(Vector&, float = 0, int = 0);
void DrawLine(Vectors, Vectork, int = 0);
void SetBound(Vectork x, Vectork y)
{xdin = x; ydip = y:}

void SetXBound(Vectors x) {xdim = x;}
void SetYBound(Vectork y) {ydim = y;:}
void SetStop() {stop_flag = 1;}
void SetQuit() {quit_flag = 1;}
void ResetStop() {stop_flag = 0;}
int IfStop() {return stop_flag;}
int IfQuit() {return quit_flag;}
void InstallDraw(chars, DrawFun) ;
void Timing(int);
void Cartesian(Schemet) ;
void PhaseSpace(Schemes);
void Spectrum(Schemek);

};

overload DrawPoint;
overload DrawLine;

inline void InstallDraw(Swindovwd window, chars label, DrawFun fun)
{ window.InstallDraw(label, fun):; }
inline void DrawPoint (Swindowk wvindow, Vectork r, float d, int color)
{ vindow.DrawPoint(r, d, color); }
inline void DrawPoint(Swindowk window, Vectorz r)
{ window.DrawPoint(r); }
inline void DravwLine(Swindow& window, Vector& ri, Vectord r2,
int color) { virdow.DravLine(rt, r2, coler); }
inline void DrawLine(Swindow& vindow, Vector® r1, Vector r2)
{ window.DrawLine(r1, r2); }
inline void SetBound(Swindowk vindow, Vector& x, Vectorg y)
{ windov.SetBound(x, y); }
inline void SetXBound{Swindow# vindow, Vectort x)
{ vindow.SetXBound(x); }
inline void SetYBound(Swindow& vindow, Vectork y)
{ vindow.SetYBourd(y); }
extern void RunSwindow(Schemek, double);
inline void Run(Swindowk vindow, Schemek scheme, double t)
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typedef void (#DrawFun)(Swindows, Schenet) ;
typedef void (Swindow::*DrawHenu)(Schemet);

typedef struct {
GC gc;
GC xorgc;
Pixmap pix;
Scheme *ptr;
Swindow *window;
DrawFun drawfun;
DravMenu draw;
int clean_window = 1;
double t;

} scheme_struct;

struct {
XArc data[MAXCULDR][HAXPUINTS];
int npoints[MAXCOLOR] ;

} points;

class Swindow {

friend void InstallColor(Swindowd ¥, char** colors, int n)

{ w.colorlist = colors; w.n_colors = n; }

protected:

menu_struct drawlist[10];

unsigned int n_menus = 0;

char **colorlist;

unsigned int n_colors = 0;

unsigned int ncolors;

unsigned int stop_flag = 0;

unsigned int quit_flag = 0;

Widget toplevel, canvas, clock;

Widget play, step, rewd, stop, quit, popup;

Vector xdim, ydim;

Vector xdim0, ydim0;

unsigned long colors[100]:;
public:

scheme_struct data;

Pixmap empty;

Dimension canvas_width, canvas_height;
public:

Swindow() {}

Swindow(Vector&, Vectort);
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{ window.Act ivate(scheme, t); }

#endif
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