Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

COOPERATIVE QUERY ANSWERING VIA TYPE

ABSTRACTION HIERARCHY

Wesley W. Chu October 1990
Qiming Chen CSD-900032
Rei-Chi Lee

Cooperative Query Answering via Type Abstraction Hierarchy
Wesley W. Chu, Qiming Chen and Rei-Chi Lee

Department of Computer Science
University of California, Los Angeles
Los Angeles, California

ABSTRACT

Cooperative query answering consists of analyzing the intent of the query and providing
generalized, neighborhood or associated information relevant to the query. The key issues to ac-
complish cooperative query answering consist of supporting different knowledge representations
at different abstract levels and providing inference between these levels. In this paper the Type
Abstraction Hierarchy is proposed which is characterized by dealing with subtyping from sub-
sumption, composition, and also abstraction views. Based on the type abstraction feature pro-
vided by this model, an inference technique for cooperative query answering is developed. Such
an inference is performed by abstracting and refining the goal to generalize and specialize the
query scope and to derive relevant answers with different generality, coverage and approxima-
tion, or to link related subjects at certain levels, by using different representations of knowledge
given at different levels. A prototype system has been implemented at UCLA that demonstrates
the use of this approach for certain decision making and problem solving applications such as
conceptual query processing, neighborhood inference, and subject association.

This research is supported by DARPA contract F29601-87-C-0072 and ONR contract N00014-88-K0434.,

1. Introduction

Traditional query processing provides exact answers to queries. It usually requires that
users fully understand the database structure and content to issue a query. Due to the complexity
of the database applications, incorrect queries are frequently issued and the users often receive
no answers. Cooperative query answering is a process of analyzing the intent of the query and
providing generalized, approximate, or associated information that is relevant to the query. In a
cooperative query answering environment, queries can be imprecisely specified and accessing
data is not limited to a single answer but can obtain relevant information of a wider scope, or
¢ven approximate information when the exact answer is not available. Thus, a cooperative query
answering system may respond to a query by providing

(a) neighborhood information,
(b) general information,
(c) associative information.

In order to facilitate cooperative query answering, it is necessary to associate one concept
to another by taking into account the related factors. In fact, association is one of the essential
intelligent mechanisms used to make decisions or solve problems. Indeed this notion has been
studied in various semantic data modeling approaches [SMI77] [HAM78] [BROS1] [SU83]
[AL90]. The semantic links provided by those data models can considerably relax users from
making their own programs to handle the relationships between database objects.

Equally important to association is the knowledge level where the association is
represented. Since many complex data intensive problems do not have clean representations at
lower knowledge levels, we often need to describe semantic links at certain higher knowledge
levels in terms of more abstract object representations.

The use of maps is an evident example. A geographic object, such as "Los Angeles” city,
has different representations on differently scaled maps. On a small scaled map it is shown just
as a circle symbol, but on 2 larger scaled map it is represented as a graph. Different scaled maps
are representations of geographic knowledge at different abstract levels. To solve a problem it is
usually necessary to move the attention between these levels. For example, if we planto goto a
place in San Francisco from a place in Los Angeles, we shall first move to a higher topological
level. We would find the Freeway 101 as the connection between Los Angeles and San Fran-

cisco, since the knowledge “Freeway 101 connects Los Angeles and San Francisco” is
represented at such a level, On the contrary, it is not reasonable to replace this knowledge by a
large number of lower level rules listing all the particular places in Los Angeles and San Fran-
cisco that can be connected by the Freeway 101.

The above example shows the fact that associations between related conceprs are easily
represented and traced at certain higher knowledge levels. We can easily find more examples
indicating this fact. For instance, "system problem"” can be viewed as the abstract representation
of a number of problems such as "disk writing problem", "printing problem” and so on, it is
efficient to give the rule at such an abstract level for relating "system problem” with "system
manager”, such as

"If there is a system problem then call the system manager"
rather than stating a number of specialized rules as

"If there is a disk writing problem" then call the "system manager”.
"If there is a printing problem™ then call the "system manager".

As described thus far, there are two key issues in providing cooperative query answering
: the semantic associations and the multi-level knowledge representation. The first issue has
been addressed in semantic data modeling, type hierarchy, object-orientation, ..., etc. However,
the second issue was rarely addressed previously. Although the notion of subsumption-based
type hierarchy allows objects of a class to be treated as the members of its super class at a higher
knowledge level, besides changing the type name it does not facilitate different instance values
to accommodate the knowledge representations at different knowledge levels. In fact, this issue
was generally omitted by previous semantic data modeling approaches and object-oriented data-
base approaches. This motivates us to develop the type abstraction hierarchy to furnish multi-
level knowledge representation.

In this paper we shall first develop the notion of Type Abstraction, and propose the
Type Abstraction Hierarchy to integrate the subsumption-based, composition-based, and
abstraction-based type hierarchy notion for supporting the multi-level knowledge representa-
tions. Next, using the type abstraction hierarchy, we shall present an inference technique that is

based on query rewrite to allow reasoning between different knowledge levels thus enabling us

to provide cooperative query answering in a systematic way. Finally we shall give examples to
demonstrate the proposed methodology for cooperative query answering.

2. The Notion of Type Abstraction

Type hierarchy generally means that there exists a partial order for the set of types where
a type at a higher position in the partial order is said to be more generalized than a type at a
lower position in the partial order, and the latter is said to be more specialized than the former.
However, the term generalization and specialization may be interpreted from the subsumption,
composition and abstraction views.

Subsumption View of Type Hierarchy

The original view to type hierarchy taken by the object-oriented paradigm is subsumption
[AKS86]. This view is theoretically associated with many-sorted logic, where classes of different
types are considered as different sorts, and the universe of discourse is regarded as comprising a
relational structure in which the objects are regarded as being of various sorts. Figure 1 shows a
sort lattice. We can call the most specific sort as BOTTOM which is usually interpreted as the
empty sort, and call the most general sort as TOP which is usually interpreted as containing
"everything” in the discourse.

schedule

flight_schedule bus_schedule train_schedule

=

schedule

Figure 1 An Example of Type Subsumption Hierarchy.

When a sort §, is more general than another sort §,, the position of §, is higher than the
position of S, in the sort lattice. In this case, §, is referred to as a super-sort of §,, and §, is re-
ferred to as a sub-sort of §y, and the relationship between $, and § is denoted as §2<°8,. The «°
relationship is a partial order, that is, < is reflexive, transitive and antisymmetric, thus forming a

partial order.

Because of the synonym of sort names and type symbols, the notion of concept sub-
sumption indeed captures the semantic relationship among rypes. However, due to its lack of re-
vealing structural differences and constraints among objects, subsumption cannot be used for ex-
pressing the structural relationships among objects of various types.

Composition View of Type Hierarchy

The handling of complex objects in object-oriented databases introduces the composition
relationship among types, where a type is composed of other more primitive types. We should
distinguish the multilevel type configuration from the type hierarchy mentioned above. Howev-
er, type hierarchy can also be considered from composition point of view, in the sense that a
generalized type has the structure commonly contained in the specialized types.

This view can also be formalized by the lattice theory under the structural sub-type re-
lationship as described below. The concept that the super-type structure is a generalization of
the corresponding sub-type structure, and the sub-type structure is a specialization of the super-
type structure means that the super-type structure is somehow "contained” in its sub-type struc-
tures. For example, tuple types (name, phone#, school) and {name, phone#, company) are sub-
type structures of (name, phone#). If we assign a type name EMPLOYEE to the former and
PERSON to the latter, we can clearly see that EMPLOYEE is a sub-type of PERSON.

Considering atomic, tuple and set type structures, when we say type T, is the sub-type
structure of T,, we mean one of the following:

a) T, and T; are the same atomic types.
For example, type COLOR is a sub-type structure of itself.
b) Ty and T, are fuples and every component of T, is the sub-type structure of the
corresponding component of T, on the same attribute.
For example, (Name, Sex, School, Grade) is a sub-type structure of (Name, Sex).
c) T and T, are sets and the member type of T, is a sub-type structure of the member
type of T.
For example, {(Name, Sex, School, Grade)} is a sub-type structure of {(Name,
Sex)}.

Note that we are not discussing from the usual PART_OF relationship point of view, but
the generalization notion. In fact, the structural sub-type relationship is just the inverse of the
structural sub-object relationship described in [BANCS6]. Under the structural sub-type relation-
ship, a super-type has a simpler structure than its sub-type. However, under the structural sub-
object relationship, a super object has a more complex structure than its sub-objects. The set of
all type structures under the structural sub-type relationship forms a partial order lattice, which is
the dual-lattice of the lattice formed under sub-object relationship. We denote the fact that T is a
sub-type structure of T* as T <* T° as shown by the example illustrated in Figure 2.

{nams, phones) more generalized

/\ “

(name, phoned, school) (name, phones#, company)

/\

(hams, phone#, company, project) (name, phones, company, branch)

Y

meore specialized

Figure2 An Example of Type Composition Hierarchy.

The notion of composition of types thus captures the structural relationships among
types. In fact, the common structure of a type over its sub-types is the intersection of the struc-
tures of its sub-types under the <* relationship. This notion is also not semantically rich enough
for representing a complete semantic link between various types. On one hand, it cannot
represent the semantics of the concept subsumption. For example, given the following two
types:

communication(name, address).

phone(name, phone#).
from the subsumption point of view, "communication” is the super-type of “phone”. Structurally
they are not compatible since they contain different component types (i.e., attributes names: "ad-
dress” and "phone#").

On the other hand, it does not distinguish types that are structurally equivalent but con-
ceptually different. For example, consider the following two types:

student(id, name, sex).

dog(id, name, sex).
These two types contain the same structure (id, name, sex), but represent two different concepts.

Abstraction View of Type Hierarchy

Let us now consider the abstraction view of type hierarchy, where a super-class is con-
sidered to convey a more abstract representation than its sub-classes, namely, the domain of the
super type T is abstract over the domain of the sub-type T. We denote such a fact as T <* T'.
Under this notion, an object may be viewed either as an instance of a type T with a correspond-
ing representation or as the instance of a more general type T’ with a more abstract representa-
tion conformed by type T’. The sense of abstraction concerns not only the type intension, but
also the instance extension, that is, the same piece of information can be represented differently
at different knowledge representation levels. This view is generally absent in the current notion
of type hierarchy.

Under this view, an instance may have different representations at different abstraction
levels. For example, let us consider two atomic types "area” and "airport", where the former is
the super-type of the latter. To indicate the location of BURBANK airport, we can either use the
instance of type "airport" expressed as

airport{BURBANK)
at the relatively lower knowledge level, or alternatively use the instance of type "area" expressed
as

area(Los_Angeles)
at the relatively lower knowledge level. In other words, there exist mappings between the in-
stance values from a sub-class domain and the corresponding abstract instance values from its
super-class domain. For example, the following mapping exists between type “airport” and type
"area" in the above example:

airport: BURBANK - area:Los_Angeles

as shown in Figure 3.

WASHINGTON_DC

LOS_ANGELES

abstraction

@
LONG_BEACH

NATIONAL
[]

BURBANK ® BALTIMORE
DULLAS

airport

Figure 3 An Example of Type Abstraction.

Figure 4 shows another example where the instances of type "fare” for traveling by air-
plane, bus or train can have more abstract representations at a higher level as the instances of
types "flight_cost”, "bus_cost" and "train_cost" respectively. Going one level further, under type
“cost" they can have even general representations.

cheap reasonable expansive

bus_cost

Figure 4 A Muitilevel Type Abstraction Example,

This feature characterizes the notion of type abstraction very well. The knowledge about
different object representations at different levels is essential for transferring inference between
different knowledge levels.

of type "CC_JOURNEY", "CC_FLIGHT" and "DELTA_FLIGHT" are formally stated as fol-

lows :

CC_JOURNEY {cc :_journey(departure_area, arrival_area, duration, cost)].

CC_FLIGHT (cc_flight(departure_area, arrival_area, departure_period, arrival _period, hours, flight_cost)).

DELTA_FLIGHT{ DELTA_flight(flight#, departure_airport, arrival_airport, departure_time, arrival_time, hours,
fare)}.

CC_FLIGET

I

{orTa_rrzcaq | A ruzaer (| ww ruiear | | sawra_rx_rrany] |arEYROmND_Bud [zrazzsmys_sod

Figure 5 A Type Abstraction Hierarchy,

Now let us demonstrate step by step the generalized subtyping relationship between type
"DELTA_FLIGHT" and "CC_FLIGHT".

Since

deparwre_airport <" departure_area,
amrival_airport <" arrival_area,
departure_time <" departure_period,
arrival_time <" arrival_period,
hours <° hours,

fare <" flight_cost,

We have

-11-

3. Type Abstraction Hierarchy : The Integrated View of Type Hierarchy

The introduction of the type abstraction together with the type subsumption and type
composition, form an integrated view of type hierarchy. In our proposed notion of Integrated
Type Hierarchy, to capture the notion of subsumption, type names are used to conceptually sub-
sume various sorts of objects, where Unique Name Assumption (UNA) on types is adopted. To
capture the notion of composition, the structural sub-type relationship is adopted. To capture the
notion of abstraction, different representations of an object at different knowledge levels is con-
sidered. Denoting the integrated subtyping relationship as <, for types T and T, the expression
T <T’ means :

the domain of T’ is abstract over the domain of T (i.e. T <" T’), or under the special case,
the domain of T’ subsumes the domain of T (i.e. T <° T’), and
the type structure of 7 is contained in the type structure of T (ie. T <*T).

It can be seen that subsumption is a special case of abstraction. Thus we shall refer to the
type hierarchy underlain by the above integrated subtyping relationship as type abstraction
hierarchy.

More formally we can consider a type as an atomic type, Or as a tuple-type T:(7T,,..., T.),
where T\,..., T, are types, or as a sei-type, T:(S}, where § is a type. The domain of type T is
denoted as dom (T). Then based on the type abstraction notion, a type T is a sub-type of a type T°,
denoted as T < T, is defined recursively as:
a) For atomic types T and T', T < T’ iff there exists a mapping
abst : dom(T) --> dom(T").

b) For tuple-types T:(T,,..,7,) and T*:(Ty’,..,Tm’) where n > m,
T<T'iffvie {1,..m} T, <T,".

c) Forset-typesT:{S}and T’:{§’}, T <T’iff S <§".

For a given class, based on different views there may be multiple type hierarchies,
As an example, Figure 5 shows a type abstraction hierarchy where class
"CC_JOURNEY" (CC stands for Cost-to-Cost) is partitioned into three sub-classes:

"CC_FLIGHT", "CC_TRAIN" and "CC_BUS" whose elements are of types "cc_flight",
"cc_train” and "cc_bus". These types are further refined to more specialized types. The schemes

-10-

departure_airport < departure_area,
arrival_airport < arrival_area,
departure_time < departure_period,
arrival_time < arrival_period,
hours < hours,

fare < flight_cost,

and then

DELTA _flight(flight#, departure_airport, arrival_airport, departure_time, arrival_time, hours, fare) <
cc_flight(departure_area, arrival_area, departure_period, arrival_period, hours, flight_cost).

which implies
DELTA_FLIGHT{
DELTA_flight(flight#, departure_airport, arrival_airport, departure_time, arrival_time, hours, fare)) <

CC_FLIGHT{
cc_flight(departure_area, arrival_area, departure _period, arrival_period, hours, Aight_cost)}.

Figure 6 gives an example showing an instance of type "DELTA_flight" which is a more
abstract representation at the level of "cc_flight".

CC_flight(Los_Angeles, Washington_DC, moming, afternoon, 5, medium)

? CC_FLIGHT

‘ DELTA_FLIGHT

DELTA_flight(321, BURBANK, BALTIMORE, 10am, 6pm, 5, $450)

Figure 6 Abstract Representation of An instance.

-12-

Although the subsumption based type hierarchy is a special case of the abstraction based
type hierarchy, the latter is suitable for providing links among those objects which have the same
representation at a higher knowledge level. Figure 7 gives a comparison between Abstraction
and Subsumption based Type Hierarchies.

CC_FLIGRT

. @ W rch
1oam Boue NW_fight(123, LAXMATIONAL, 11am, 7pm. 5, $400)
DELTA_FLIGE
@ OELTA figh(3a¢ BURBANK, BALTIMOR . 8pm, 5, $450)

sumsuxption-based type hierarchy

AA_flight{753, LAX, DUL.

CC_fight{Los_Angeies,

ington_DC, moming, shemoon, 5, medium)

AA_fight(753. LAX, DU NAFIONAL, 1tam, Tpm, 5. $400)

Ohm, 8pm, 5, $450)

i ﬂ l DELTA_FLIG
DELTA._fighe;3a¥, BURBANK, BALTIMOR!

abstraction-based type hisrarchy

Figure 7 A Comparison between Abstraction and Subsumption based Type Hierarchies

To summarize, we have combined three relationships in our integrated type hierarchy :
subsumption, composition and abstraction. The introduction of type abstraction offers the
feature of enlarging or shrinking variable scopes by moving up or down along the type abstrac-
tion hierarchy. It is easy to understand that any concept described at a higher level has larger
coverage than at a lower level. A class "CC_FLIGHT" only covers the cost-to-cost flight infor-
mation, its super-class "CC_JOURNEY" not only covers the information about flight, but also
covers the information about bus and train. Variables that appear at different levels may thus
have different coverages. This feature is very useful for cooperative query answering as will be
discussed in the next section.

-13-

4. Type Abstraction Based Goal Reformulation

One of the important characteristics of type abstraction hierarchy is that inference can be
performed at and between different abstraction levels. An important requirement of the decision
making and problem solving process is the ability to communicate and associate between
different knowledge levels for deriving conclusions. The transferring between different
knowledge levels is achieved by query generalization and specialization rewriting. Processing
queries at different knowledge levels consists of converting object types, attribute names, and
domain values involved in the query between different knowledge levels. These are all based on
the mechanisms of type rewrite and term rewrite. By term we mean both instances and variables
of types. There are two kinds of rewrites for types and terms: generalization rewrite and spe-
cialization rewrite.

The type generalization rewrite converts a type T to its super-type T°, where T is a more
abstract representation and has wider coverage than T on the type abstraction hierarchy.

The term generalization rewrite is to convert a term ¢, to a more abstract term . Assum-
ing the existence of a distinct set of values for each type and the relations between values of
atomic types, we can define the term rewrite based on type rewrite and the relations of values
between different knowledge abstraction levels. The rewrite operation is based on two functions:
gen and sp which represent the mappings between the values of atomic types and their subtypes.
For example, the mappings

Los_Angeles = gen(BURBANK)
BURBANK = sp(Los_Angeles)

show the relations between the area of the particular airport.
The notions of type specialization rewrite and term specialization rewrite can also be
defined similarly. For a type abstraction hierarchy, the specialization rewrite from an abstract

type or term may yield a set of refined types or terms, which provides refined information for

searching the cooperative query answers.

-14-

Query rewrite is a technique for providing cooperative query answering which consists of
two processes: Query Abstraction and Query Refinement. These processes are based on the
above-mentioned type and term rewrite mechanisms. In order to implement query abstraction
and refinement, we need to maintain the basic knowledge such as the information about the type
abstraction hierarchy and the mappings between different representations of each pair of super-
type and sub-type.

The Query Abstraction Process converts a query Q to a more abstract query representa-
tion Q’. The process consists of the following steps :

1. Find the appropriate super-type object through type generalization rewrite.

2. Convert the attributes to the corresponding types and vice versa (since attributes
associated with the same type may be separately named). This may be necessary
for objects at any level.

3. Transform attributes referred to in the query to those of the super-type object
through type generalization rewrite.

4, Transform conditions referred to in the query to those related to the super-type
object through both type generalization rewrite and term generalization rewrite.

The Query Refinement Process converts a query () to more specific query representations
Q1, Q2, ..., Qn according to the type abstraction hierarchy. The process consists of the following
steps :

Find the set of sub-type objects through type specialization rewrites.
Provide conversions between the atiributes and the corresponding types.

3. Based on each sub-type, use type specialization rewrite to transform attributes re-
ferred to in the query to those in the sub-type object.

4. Based on each sub-type, use both type specialization rewrite and term specializa-
tion rewrite to ransform conditions referred to in the query to those related to the
sub-type object.

The query modification, either upward or downward, is invoked recursively depending
on the requirement and knowledge availability.

-15-

S. Applications for Supporting Cooperative Query Answering

The type abstraction hierarchy can be used to SUpport cooperative query answering in a
systematic way, as will be shown in the following examples.

(a) Supporting Neighborhood Query Answering

Neighborhood inference is a type of uncertain data inference (or inexact reasoning)
which may not provide the exact answers expected by the user, but still contains information
which may be helpful for the user. For example, based on the type abstraction hierarchy given in
Figure 5, if a user tries to reserve a DELTA airline flight from LAX airport in the Los Angeles
area to NATIONAL airport in the Washington area but it is unavailable, alternative similar
flights of DELTA airlines or other airlines may be given.

Neighborhood inference requires the transition of reasoning up and down to reach the
neighboring objects. Given a query Q, the general processing steps are

1. search the exact type of objects required by the query Q. If failed, then

2. move upward along the type abstraction hierarchy and rewrite the query to a more
general one (generalization rewrite), i.e. Q — Q. Then,

3. move downward along the hierarchy and rewrite the query to a more specific
query (specialization rewrite), i.e., Q' - Q".

Three kinds of tables are utilized for assisting neighborhood inference. They are the
type_hierarchy table describing the subtyping relationship among types, the attribute_type table
giving the relationship between attribute names and type names which allows attributes drawn
from a same type to be differently named, and the abstract mapping tables showing the map-
pings of instances each pair of super-type and sub-type, or the corresponding instance values
between a super-type and a range of sub-type (e.g. "morning” corresponds to "7am to !lam").
These tables describe knowledge representations at different knowledge levels, which are stored
and managed in the database. Certain query language constructs additional to SQL are intro-
duced, such as WITHIN used to indicate set membership, and BETWEEN used to indicate a
range with an upper bound and a lower bound.

-16-

For the above example, the neighborhood inference system first undergoes a generaliza-
tion process from type DELTA _flight to its super type cc_flight (Cost-to-Cost Flight), followed
by a specialization process from type cc_flight to its subtype AA_flight, NW_flight as well as
DELTA_flight itself, to convey to the user wider ranged options, as shown in Figure 8. If all the
subtypes of cc_flight are not available, a further generalization will be made to go up one more
level to type ec_journey (Cost-to Cost Journey) and then some specialization step 1§ performed
to go down to cc_train and cc_bus, and to its subtypes, if any.

SELECT * FROM DELTA_flight
WHERE departure_airport = "LAX" AND arrival_airport = "NATIONAL" AND
departure_time BETWEEN <9am, 10am>

If the above query has no answer, the system can make the following efforts to respond to the
query:

1. Generalization Rewrite : This step is to move upward along the type hierarchy to reach
ce_flight. Due to the generalization rewrite process, the departure_airport "LAX" is re-
placed by the more abstract value "Los_Angeles” on departure_area, the arrival_airport
"NATIONAL" is replaced by the more abstract value "Washington_DC" on arrival_area,
and the range of departure_time from 9am to 10am is generalized to the departure_period
of "morning”. Therefore, the query is generalized to

SELECT * FROM cc_flight
WHERE departure_area = "Los_Angeles" AND arrival_area = "Washington_ DC" AND
departure_period = "morning"

2. Specialization Rewrite : This step is to move downward along the type hierarchy to get
the neighborhood objects of types AA_flight, NW_flight as well as DELTA_flight with
the query specialized to the following, since all these meet the general conditions.

SELECT * FROM DELTA _flight

WHERE departure_airport WITHIN {"LAX", "BURBANK", "LONG_BEACH"} AND
arrival_airport WITHIN {"NATIONAL", "BALTIMORE", "DULLAS"} AND
departure_time BETWEEN <7am, 11am>

SELECT * FROM AA_flight

WHERE departure_airport WITHIN {"LAX", "BURBANK", "LONG_BEACH"} AND
arrival_airport WITHIN {"NATIONAL", "BALTIMORE", "DULLAS"} AND

-17.

departure_time BETWEEN <7am, 11am>

SELECT * FROM NW _flight

WHERE departure_airport WITHIN {"LAX", "BURBANK", "LONG_BEACH"} AND
arrival_airport WITHIN {"NATIONAL", "BALTIMORE", "DULLAS"} AND
departure_time BETWEEN <7am, 11am>

SELECT * FROM cc_flight

WHERE departure_area = "Los Angeles® AND
srrival area = "Washington DC“ AND
departure_period = *morning®

CC_FLIGHT

reesesannnasnnrney
DELTA FLIGHT { AA_FLIGHT :

SELECT * FROM DELTA _flight SELECT * FROM NW_flight

WHERE departure_alrport = "LAXY AND WHERE departure alrport WITHIN
arrival _alrport = "NATIONAL®™ AND {"LAX®, "BURBANK®, "“LONG_BEACH")} AND
departurs_time BETWEEN <9am, lCam> arrival _airport WITHIN

{"NATIONAL®, "BALTIMORE®, "DULLAS™} AND
departyre_time BETWEEN <7am, llam>

Figure 8. Transiting a Query to the Neighborhood Objects
(b) Supporting Conceptual Query Answering

Very often a user has some question in mind but does not know exactly how to formulate
a query. For example, if a user wants to get information about traveling from Los Angeles to
Washington D.C., but is unfamiliar with particular airlines, buses or trains, he does not even
need to focus on any particular transportation facilities, since information about any facility may
be helpful.

The proposed type abstraction mechanism is also suitable for answering conceptual
queries. Often a user does not know the best way to express a query. With this approach, the user
may ask a question in a more general way. As shown in Figure 9, to get the information about
traveling from Los Angeles to Washington D.C. at a reasonable cost, the following conceptual
query can be asked :

18-

SELECT * FROM cc_journey
WHERE departure_area = "Los_Angeles® AND arrival_area = "Washington_DC" AND
cost = "reasonable”

With the abstract type hierarchy, such a query can be automatically refined to the following
more detailed queries:

SELECT * FROM cc_{flight
WHERE departure_area = "Los_Angeles” AND arrival_area = "Washington DC" AND
flight_cost = "low"

SELECT * FROM cc_train
WHERE departure_area = "Los_Angeles" AND arrival_area = "Washington_DC" AND
train_cost WITHIN {"high", "medium"}

SELECT * FROM cc_bus
WHERE departure_area = "Los_Angeles" AND arrival_area = "Washington_DC" AND
bus_cost = "high"

Note that in the detailed queries, cc_journey is “refined" to cc_flight, cc_bus and cc_train.
Then these three queries can be further refined 1 level down, as

SELECT * FROM DELTA _flight

WHERE departure_airport WITHIN {"LAX", "BURBANK", "LONG_BEACH"} AND
arrival_airport WITHIN {"NATIONAL", "BALTIMORE", " DULLAS"} AND
fare BETWEEN <300, 400>

SELECT * FROM santa_fe_train

WHERE departure_station WITHIN {"LA", "LONG_BEACH"} AND
arrival_station WITHIN ("DC", "FAIRFAX"} AND
fare BETWEEN <300, 400>

SELECT * FROM greybound_bus
WHERE departure_station WITHIN {"LA", "HOLLYWOOD", "LONG_BEACH"} AND
arrival_station WITHIN {"DC_DOWNTOWN", "ROCHVILLE", "FAIRFAX"} AND

fare BETWEEN <251, 300>

and so on.

-19.

SELECT * FROM cc louzney

WHERE departyre_area = <Loa Angelea™ AND
drrival_aTea = *Washiigron DC" AND
COfL = Trepasonable” -

SELECT * FROM cc flight SELECT * FROM cc tratn H .
WHERE departure_irea = "Los Angeles™ AND WHERE departure area = "Log Ange laa™ AND MHERS dapy o Ce_bua
= : _ . _ - WHE de . - "L "
g'rr*.ulvuru - Huhinqtanrcc AND arrival araa = "Washingtan _JC" AND HERE “'ffﬁ:fr:z:f': ~u“:IFM°:l:E- ::g
Zilgbt cost = “low" Lrain cost WITHIN i'hth',-'mdlum'l aron_3

bue_codt = "high-

CC_FLIGHT CC_TRAIN CC BOS

[\

. . |
TN R S LR s vy S memgpeven [emeraome_sudimarimys sos

[yt Taeend
SELECT * FROM DELTA flight SELECT * FROM santa fe train .
WHERE departure airfort WITHIN WHERE départure stafion WITKIN iﬁé“nird.pﬁfﬂxf’:ﬁ'?fS‘H‘;‘%m
[*LAX™. "BURBANK®, *LONG_BEACH®) AND ("LA", *LONG_BEACH®) AND '"LA_OCWNTOWN™, "HOLLYWGOD", ~LONG BEACH-) AND
arrival airpert WITHIN arrival stacTon WITHIN ArriVal station WITAIN o)
{"NATIORAL® . "BALTIMORE®, "DULLAS") AND ("DC", TFAIRFAX*} AND [70C_DORNTOWN®. ~ROCHVILLE". "FAIAFAX"| AND
fare BETWEEN <$300, $400% fara BETWEEN <5300, 5400» Esre BETWEEN <5251, §3005)

Figure 9 Refining a Conceptual Query

Thus a cooperative query answering system can provide users with the capability of pro-
cessing conceptual queries. Based on the hierarchy of knowledge, a conceptual query can be
processed to derive a set of more specific queries which can then be answered by the convention-
al query processing system.

(c) Supporting Associative Query Answering

Problem solving usually requires the association of various subjects. In general associa-
tion between related types of objects can be expressed by rules, therefore we can view these
rules as links between these types. However, to express rules at a higher conceptual level is
more clear and efficient than at a lower level. Furthermore, those links may be located at any
abstract level, and in many cases the links between types are not located within a single type
hierarchy but span multiple type hierarchies. The proposed type abstraction notion can be used

-20-

to represent and handle associations between related subjects.

As a simple example shown in Figure 10, a remote_retrieval problem "lost_data" has no
direct links to the researchers or programmers in the related fields. Instead, some general associ-
ation rules can be given. At a higher level, the rule :

If system_fault is “distributed_database_malfunction"”,
then call System_Development tech_staff whose area is "distributed_system".

can be used to associate sys_fault and tech_staff. At a lower level, the rule :

If distribution_error is "distribute_I/O_error”,
then call the programmer whose job is "network_programming”,

to associate distribution_error and programmer. It is this fact that to give such general rules
is more reasonable than to give a number of lower level and tedious rules,

Association supported by the proposed type abstraction hierarchy has three typical
processes :

(a) abstracting the problem,
(b) leaping related type hierarchy, and
(¢) refining the solution.

The abstraction process is via type generalization rewrite and term generalization rewrite.
In the above example, to reach the level where association "maintenance” can be referred, it goes
from remote_retrieval to distribution_error, and then to sys_fault, accompanied with the at-
tribute value rewritten from "lost_data" to "distributed_I/O_error", and then to
"distributed_database _malfunction".

Related type hierarchies are linked via rules. The issue is that such a link only exists at a
certain level. That is, the rules only use object representations given at a certain level. In this ex-
ample, at the sys_fault level, the inference leaps to the node of another hierarchy tech_staff
based on the rule given above, where the condition "sys_fault is
distributed_database_malfunction" is turned to "area is distmbuted_system".

21-

The refinement process is via type specialization rewrite and term specialization rewrite.
In this example, the refinement process leads to the solution “researchers whose field is database
or network”, or "programmers whose job is network_programming”,

These processes are carried out automatically by the system. The user only states a re-
quest such as

ASSOCIATE maintenance WITH remote_retrieval
WHERE fault = "lost_data"

Application System_Development

rules for association "malntenance"
if system_fault is "distributed_database_malfunction”
then cail System_Development tech_staff whose area is “distributed_system"

maintenance N
sys_fault association | tech_staff

distributed _database_

area = "distributed_systemn”
maifunction

abstraction refinement

debug

distribution_ | ————3550ciation
error

distributed_I/C_error
- researcher programmer
0 fink fi " . ‘ob = " ing"”
ield = "database Job = "netweork_programming
remote._ | .- " "
retrieval : field = "network

lost_data
rules for assoclation “debug"

if distribution_error is "distributed_I/Q_error”
then call the programmer whose job is “network_programming"

Figure 10. An Example for Associative Query Answering

This example indicates that the notion of association is concemned about the leap
between concepts, and also the levels of abstraction. The association between these levels is

the better way to capture concepts, since certain knowledge can only be found at certain concep-
tual levels.

222.

In general, to support cooperative query processing through subject association, our Sys-
tem first moves up, if necessary, to reach a certain knowledge level where the association is
defined. Then, via the association link and rules, it can transfer to another type hierarchy, and
then refine the associated objects.

It can be seen that by using the type abstraction hierarchy, the rules may be specified at a
higher knowledge level in terms of the object instances represented at that level. Considering
the rule used in the above example

If system_fault is "disu'ibuted“_database_malfunction",
then call System_Development tech_staff whose area is "distributed_system".

Note that the instance "distributed_database_malfunction" referred in this rule is more abstract
than the more detailed instances such as "lost_data", "transmission_error", "disconnection”,
...et¢. Thus using this rule is more general and convenient than using a number of rules referring
"lost_data", "transmission_error", "disconnection”, ...etc. As a result, the number of rules in the
knowledge base system can be considerably reduced and thus the inference processes can be
greatly simplified. Organizing knowledge based on the type abstraction hierarchy provides a sys-
tematic way to perform inference. Furthermore, such knowledge can be organized and managed
by the database system.

-23-

6. Comparison with Related Work

The concept of abstraction has received much attention. Accompanying this popularity is
an extensive use of the term in many different contexts, representing varying but related notions.
The proposed notion of type abstraction is characterized by mulri-level object representations,
namely, describing the same object differently at different knowledge levels. As a result, reason-
ing can be performed between different knowledge levels to derive information with various de-
grees of abstraction and coverage. Below we shall compare this notion with the conventional no-
tions on group, structure and function abstractions. Particularly, we shall point out the
differences between our approach and the semantic data model and object-oriented databases.

The mechanism of classification allows objects to be grouped on the basis of the common
properties they share, so that these properties can be specified "abstractly" over all the members
of the group, rather than against each particular individual [(HAM78] [BROS81] [SMI77]. Mul-
tilevel classification groups objects by unioning the classes of disjunctive types. Following up is
the notion of type subsumption underlying the generalization hierarchy of object types [SU83]
[BRO84] [BRO86]. The corresponding is_a relationship sorts object types by their names. For
an individual object, the notion of classification depicts the group range it falls into, and the no-
tion of generalization allows the rename of its type 1o a supertype and the inheritance of property
from that supertype. However, the different representations of it at different abstract levels are
not handled by these notions.

Structure abstraction is usually expressed by the notions of aggregation [SMI77] and
complex object [ZANI85] [BAN87) [CHENSS]. For example, a car can be viewed as the aggre-
gation of wheels, engine, body, ...etc, by simply mentioning "car" all those components are
suppressed. However, this kind of structural abstraction only forms one aspect of knowledge
abstraction, and is very different from the type abstraction notion discussed in this paper.
Although in some special cases the name of an aggregate type might have abstract sense over its
components (e.g. using "situation” as the abstract expression of "weather situation”, "traffic si-
tuation”, "road condition"), in general composition does not depict a representative abstraction

of an object over its components.

-24.-

Another related concept is the well known notion of Abstract Data Type (ADT)
[GOG75] [GUT77). ADT aims at the function abstraction of data structures and the algebraic
validation of software development. The sense of “abstraction” of ADT comes from the principle
of reducing the amount of complexity or detail that must be considered at any one time
(GUT?78]. However, an implementation of an ADT 1s an assignment of meaning to the values
and operations in terms of the values and operations of another data type or set of data types, and
this notion emphasizes the functional abstraction of the overall behavior of the components of an
object, rather than its representative abstraction. In knowledge engineering, it is this fact that to
describe the relationship between different representations of an object directly by experience-
based plausible facts is often more practical than by algebraic axioms, and the handling of such
facts can be reasonably supported by databases.

Many of the above notions are represented in the object-oriented paradigm which has
gained much popularity in the design and implementation of database systems in recent years
[GOLDS81] [WOELS6] [KIM89]. The philosophy of object-orientation is to localize but not iso-
late the handling of different types of objects through certain basic mechanisms such as encapsu-
lation and inheritance. Under the notion of encapsulation, objects are classified so that their
common behaviors can be specified. The behavior of an individual object is encapsulated in the
operations called methods defined within the class, which is not visible from outside of the ob-
ject. Under the notion of inheritance, classes are linked by the /S-A relationship according to
their generality. If class A /S-A class B then A can inherit properties from B, This furthers the
property sharing and information hiding capabilities gained by grouping objects into classes.
These notions are jointly expressed by the specification of class hierarchy, or type hierarchy.
However, the existing notion of type hierarchy is still weak in supporting rmulti-level object
representations, that is, describing the same object differently at different knowledge levels. This
omission can be explained as follows :

1. In the basic object-oriented paradigm, type hierarchy is only considered from a subsump-
tion (IS-A) point of view. In the complex object modeling approach, type hierarchy is
considered from a composition (part_of) point of view [BANCS6]) [BEE86] [TSU86)
[ABI87] [CHENS89]. The representative abstraction of an object viewed from different
knowledge levels is not covered by these notions.

2. The current object-oriented databases deal with information sited at two general layers :
the meta-layer (intension) and the instance layer (extension). This fact is inherently im-
plied by the mechanism of method inheritance. If a class of objects inherits a function

-25.

from a super-class, then it means objects in these two classes are actually at the same in-
stance layer. For example, consider the age of a person, say 17, which is countable by a
certain function. However, knowledge abstraction can represent an abstract concept of
age, say young, at a higher layer and the concept does not have to be countable by the
same function. For knowledge abstraction, there is no theoretical limitation on the
number of layers for knowledge (or concept) representation. There may be another
higher meta layer above a meta-layer. The knowledge represented at different layers
may be convertible, rather than directly inheritable. Thus limiting object representation
to only two layers, intension layer and extension layer, though applicable for handling
data, is not sufficient for handling semantic knowledge.

Finally we would like to compare our approach to some rule based semantic association
approach such as [CUP89). It is true that using rules can provide various links between objects.
However, without a clean organization principle, the database and knowledge base tend to be-
come two separated parts of a system and the inference using both data and rules becomes
inefficient. The proposed type abstraction hierarchy couples data extension and data intensional
knowledge. Particularly, the mappings between different representations of objects at different
abstract levels are themselves useful knowledge for cooperative query answering and can be
stored and managed by database systems. Our proposed methodology provides support to
cooperative query answering by the model based, systematic methodology rather than using ad-
hoc rule-based reasoning,

-26-

7. Conclusions

The type abstraction hierarchy, query rewrite, and subject association are useful tools for
supporting cooperaﬁve query answering in knowledge-based data processing environments. The
proposed type abstraction hierarchy integrates the notions of subsumption, composition and
abstraction and thus offers an integrated view of the type hierarchy with multi-level knowledge
abstraction. Based on such type abstraction hierarchy, the query rewrite and subject association
can be used to provide reasoning among different knowledge levels to derive cooperative
answers and should play an important role in decision making and problem solving systems.

Data/knowledge base application requires complex tasks performed through the intelli-
gent cooperation of multiple knowledge sources and agents based on the knowledge represented
at various abstract levels. Since the object representative hierarchy can be reasonably handled by
databases, and the type abstraction hierarchy can be coupled with knowledge processing, our
proposed methodology is well suitable for such applications. We have implemented a prototype
cooperative database system at UCLA by using this methodology. Our preliminary experimen-
tal results reveals that this approach provides a systematic and efficient way for cooperative

query answering.

References

[ABIS7] S. Abiteboul, S. Grumbach, "Une Approche Logique de la Manipulation d’objets Complexes", 3e
Journees BD3, Port Camargue, 1987.

[AKS6] H. Ait-Kaci, "Type Subsumption as a Model of Computation”, in "Expert Database Systems", Kers-
burg ed. 1986.

(AL90] A. Alashqur, S. Su and H. Lam, "A Rule-based Language for Deductive Object-Oriented Databases”,
Proc. of the 6th International Conference on Data Engineering, 1990,

[BANC86] F. Bancilhon and S. Khoshafian, "A Calculus for Complex Objects”, Proc. PODS'86.

[BAN87] J. Banerjee et al. "Data Model Issues for Object-Oriented Applications”, ACM Trans. on Office Infor-
mation Systems, 1987.

{BEES6] C. Beeri et.al, "Sets and Negation in a Logic Database Language LDL1", MCC Rep,1986.

[BROS8I1] M. Brodie, "On Modeling Behavioral Semantics of Databases”, Proc. of VLDB'81, 1981.

227,

[BRO84]

[BROS&6]

{CHENES]

[CHENS89]

[CUP89]

([GOGT5]

[GUT77]

[GUT78]

(HAM78]

[KIME9]

(SMI77]

[SU83)

{TSU86]

[ZANI8S)

M. Brodie, J. Mylopoulos, J. Shmidt eds, "On Conceptual Modeling”, Springer-Verlag, NY, 1984,

M. Brodie, J. Mylopoulos eds, "On Knowledge Base Management Systems”, Springer-Verlag, NY,
1986.

Q. Chen and G, Gardarin, "An Implementation Model for Reasoning with Complex Objects”, Proc. of
ACM-SIGMOD 88, USA, 1988.

Q. Chen & Wesley Chy, "A High Order Logic Programming Language (HILOG) for NON-1NF
Deductive Databases,” Proc. of 1st International Conference on Deductive and Object-Oriented Data-
bases, 1989, Japan. (also in "Deductive and Object-Oriented Databases," Elsevier Science Publishers
B.V., 1989).

F. Cuppens and R. Demolombe, "Cooperative Answering: A Methodology to Provide Intelligent Ac-
cess to Databases”, Proc. of the 2nd international conference on expert database systems, 1989.

J. Goguen et al, "Abstract Data Types as Initial Algebras and Correctness of Data Representations™,
Proc. Conf. on Computer Graphics, Pattemn Recognition and Data Structure.

J. Guttag, "Abstract Data Types and the Development of Data Structures”, CACM 20(6), 1977.

J. Guuag, E. Horowitz and D. Musser, "Abstract Data Types and Software Validation”, CACM
21(21), 1978.

M. Hammer and D. Mcleod, "The Semantic Database Model”, ACM Trans. Database Systems, 6(3),
1981.

W. Kim, "A Model of Queries for Object-Oriented Databases”, Proc. of VLDB’89, 1989.

J. Smith & D.C.P. Smith, "Database Abstraction : Aggregation and Generalization”, ACM trans. Da-
tabase Systems 2(2), 1977.

S. Su, "SAM*: A Semantic Association Model for Corporate and Scientific-Statistical Databases”, In-
formation Sciences 29, 1983.

S. Tsur and C. Zaniolo, "LDL: A Logic Based Data Language”, Proc. VLDB 12, 1986.

C. Zaniolo, "The Representation and Deductive Retrieval of Complex Objecis”, Proc. VLDB 11,
1985.

-28.-

