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Abstract

This dissertation presents a method, based on applicative languages, for the specification,
analysis, synthesis and implementation of hardware algorithms. Using the same language to
represent the algorithm from specification to mask generation provides a consistent and co-
herent framework. Designers are provided with an environment in which they can efficiently
explore alternative designs for their algorithms throughout the synthesis process. It is pos-
sible to specify the algorithm at arbitrary levels of abstraction and have the system rapidly
evaluate certain parameters {e.g., speed, area) so that designers can make informed decisions
during the synthesis process. Semantics-preserving transformations convert a specification to
an implementation that is guaranteed to be correct. Evaluations of designs with respect to
performance parameters are performed at any desired level of abstraction. A visual display of
the algorithm throughout the design process provides designers with feedback on the spatial
implications of their design decisions. Using an applicative language during design helps to
prove the correctness of refinement and abstraction. Symbolic evaluation of the algorithm with
representative symbolic inputs is used to generate a planar topological layout of the algorithm.
Sequential circuits are incorporated into this applicative framework using space/time transfor-
mations. An interface to a back-end system is used to generate mask layouts from topological
descriptions.
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Chapter 1

Introduction

A discipline for complexity management is the key to the effective design of any large scale
computer system, be it hardware or software (1, 2]. The design complexity in a large scale
computer system comes from two major sources. The first is the large number of primitives
involved. In the case of hardware, they could be transistors or chips. In the case of software,
they could be lines of source code. However, a large number of primitives does not necessarily
make for complexity. For example, a memory chip has a large number of transistors but is not
necessarily complex.

A second source of complexity is the irregularity of connections or couplings between prim-
itives. Traditional software design has been made simpler because the underlying model of
computation has been a single sequential machine. In addition to handling concurrency, hard-
ware design deals with the mapping of a design into a physical medium. This mapping has
to be performed in the presence of constraints on power, space and time. The primarily two-
dimensional nature of integrated circuits and the need to have direct physical connections
between interacting modules makes the synthesis process even harder. These issues make the
process of designing large scale hardware more difficult than that of software. However, lessons
learned in software engineering can be applied to the hardware design process to address some
of these problems.

This research concentrates on problems arising out of the process of designing hardware.
A method, based on applicative languages, is proposed for the specification, evaluation and
synthesis of hardware algorithms. Using the same language throughout the synthesis process
leads to a coherent framework for design. Properties of applicative languages make them
attractive for handling the complexity of large-scale design. The mathematical foundations of
these languages enable the development of an algebra of programs that can be utilized both
in the synthesis process and in proving properties about the designs.



The complexity of designing Very Large Scale Integration (VLSI) circuits can only be
managed by the application of Computer-Aided Design (CAD) tools at all levels of the design
process. In order to be effective, these tools must be flexible enough to be tailored to any specific
design. Generally, VLSI CAD tools may be distinguished as being of either or both of two
types: bottom-up composition tools or top-down synthesis tools. For bottom-up composition
tools, the user either exactly specifies the placement of modules and the interconnections
between them, or relinquishes control over the layout to the tool’s algorithm. Examples of
composition tools are graphic layout editors (e.g., Magic [3]) and placement and routing tools
(e.g., PI [4, 3]). Top-down synthesis tools are capable of generating layouts from high-level
specifications. Examples include various register-transfer silicon compilers that have been
proposed and built [6, 7, 8].

Generally, these tools only provide an estimate of the area or delays of the circuit at the
end of the synthesis process. That is, designers do not know the effects of their decisions on the
performance until the design is complete. This makes the design process more batch-oriented
rather than interactive. It also makes it difficult to explore alternative implementations and
to evaluate objectively the alternatives with respect to user-specified criteria.

Small designs can be comprehended easily by a designer. As the size of designs grows larger
it becomes more important to be able to formally prove properties about the design. Ideally,
it should be possible to prove that the implementation meets the specification, but this is not
always feasible. A formal basis for the representation of the design provides a means to reason
about the representation.

In order to prove that the implementations match the specifications, the specifications
themselves have to be generated in a suitable specification language. There are many kinds of
specifications required in VLSI design. At highest level, the functional behavior of the algorithm
is of interest. At lower levels it is the interfaces between modules and the interconnections
between modules that are important. At the lowest level, it is the spatial positioning of
modules and the geometry of their layout and interconnections that are important. At all
these levels the timing of the design has also to be specified. At the higher levels the timing
is abstract (e.g., sequencing), but at lower levels the specification of timing is more concrete
(e.g., propagation and inertial delay).

Though most specifications tend to be described in textual languages, VLSI design, espe-
cially at the lower levels, is oriented towards layout on silicon and hence spatial in nature.
The design process would be aided if a visual representation of the specifications and the
implementations were provided at all levels of abstraction.

In the following sections, each of these issues is taken up in turn. Various problems are
exposed and their solutions discussed.



1.1 Complexity Management

This section explores some methods that are useful in managing complexity in VLSI design.

1.1.1 Abstraction

Using a computer language for description makes any description more precise since these
languages have specific semantics. In addition, using a language description for an intuitive
process aids in the documentation of that process by providing a written description of what
the designer envisions. Some languages (e.g., Ada') also provide the ability to separate the
interface of a function from the body of the function. This capability allows the concerns of
describing the interface to be treated separately from the concerns of designing the body. All
languages provide some form of abstraction. An ebstraction is a simplified description, of a
system that emphasizes some of the system’s details or properties while suppressing others. A
good abstraction is one that emphasizes details that are significant to the reader or user and
suppresses details that are, at least for the moment, immaterial or diversionary [9]. One useful
example of abstraction that is commonly found in computer languages is functional abstraction
where a particular process, used with different parameters, is abstracted with respect to those
parameters, to form a function. Timing or type abstraction are examples of other kinds of
useful abstractions.

The process of designing Integrated Circuits (ICs) can be described by the Gajski-Kuhn
Y-chart [10] (figure 1.1) where each axis signifies one representation of the circuit. The rep-
resentations towards the center of the chart are less abstract than the ones towards the outer
edges. The synthesis process starts at the most abstract behavioral representation and ends
at the most concrete geometric representation. The actual path followed is dependent on the
particular synthesis method employed. Thus we see that in the VLSI domain there are three
main classes of abstractions—structural, behavioral and geometric.

Structural Abstraction

Structural abstractions deal with the composition and interconnection of modules at one level
of abstraction to construct a module at a presumably higher level of abstraction. Language
designers have taken different approaches to the problem of describing such relationships.
One approach is “connection-oriented” in the sense that it explicitly specifies which terminal
is to be connected to which other terminal. This is equivalent to using a net-list to describe

1Ada is a trademark of the US Department of Defense (Ada Joint Program Office).
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Figure 1.2: XOR gate implementation

the connections. Hardware design and description languages like SILAGE [11] and ELLA? [12]
use such an approach. For example, an exclusive OR gate implementation shown in figure 1.2
could be described by the ELLA program in figure 1.3 (taken from [13]). The MAKE statement
specifies the component modules of the current module and the JOIN statement specifies which
connections are made. For example,

(i1, ip2) -> al

means that the output of i1 and the input terminal ip2 are to be connected to the two inputs
respectively of the module al.

Concurrent Prolog [14, 15] uses a similar approach but it names each connection and thus
does not explicitly specify the endpoints of each connection. For example, the ELLA example
in figure 1.3 could be written in Concurrent Prolog as shown in figure 1.4. The basic model
of Concurrent Prolog is that of processes communicating through ports and thus this is a
good match to the requirement of describing interconnected modules. This approach allows
arbitrary connections to be specified between terminals. Though this makes the approach very
powerful, it is not structured and can lead to situations that are difficult to analyze. However,
CIRCAL [16, 17} provides a formal basis for describing interconnections between modules and
a mechanism for structural abstraction by abstracting away internal ports and connections.

Another approach specifies connectivity implicitly. Functions correspond to modules. Pa-
rameters correspond to input ports and result values to output ports. The call graph of the

2ELLA is a trademark of the UK Secretary of State for Defense.



FN XOR = (bool: ipl ip2) -> bool:
BEGIN
MAKE AND: al a2,
INV: i1 i2,
OR: ol.
JOIN ipl -> it,
ip2 -> i2,
(i1, ip2) -> ai,
(ip1, i2) -> a2,
(a1, a2) -> ol.
OUTPUT o1l
END.

Figure 1.3: Explicit ELLA description of XOR

X0R(ipl, ip2, ol) :-
INV(ip1, X),
INV(ip2, Y),
AND(X, ip2, P),
AND(ip1, Y, Q),
OR(P, Q, opl).

Figure 1.4: Concurrent Prolog description of XOR



FN XOR = (bool: ip1l ip2) -> bool:
OR( AND(INV(ip1), ip2),
AND(ip1, INV(ip2)) ).

Figure 1.5: Implicit ELLA description of XOR

functions corresponds to the structural hierarchy of the modules. The naming of parameters
corresponds to the interconnections between the modules. Languages like uFP [18] and v FP
(described in [19] and this dissertation) follow this approach. SILAGE and ELLA support both
approaches. For example, an implicit version of the ELLA description of the XOR gate in
figure 1.2 i1s shown in figure 1.5. Though this approach makes it easy to analyze the behav-
tor of the resulting connections, it is less powerful than the connection-oriented method. For
example, it is not possible to describe cross-coupled NAND gates in this manner.

Languages like VHDL® [20] and Standard ML (SML) [21, 22] allow the designer to separate
the concerns regarding the specification and checking of interface descriptions and the design
of the body of the functions. In such languages the module hierarchy can perform the role
of the structural hierarchy. For example, in VHDL, the interface description of the XOR. gate
could be described as shown in figure 1.6 and the body of an implementation corresponding to
figure 1.2 is shown in figure 1.7.

Replication of cells to form regular structures is provided for in all the languages mentioned
above. VHDL provides the generate statement, ELLA provides the replicator construct and pFP
and v FP use the insert form.

The constructs provided by vFP for structural abstraction are mentioned in chapter 2
which also gives an overview of the vFP system. The use of these constructs is shown in
chapter 6 and a comparison with gFP’s structural constructs is taken up in chapter 7.

Behavioral Abstraction

Behavioral abstraction groups behaviors together to form other behaviors at a higher level
of abstraction. Behavior can be separated into the functional aspects (i.e., what function is
performed by this module) and the timing aspects. In some cases, this separation can not be
made cleanly since the function performed by the module might well depend on the timing of
submodules.

3VHDL is a trademark of the US Department of Defense.



entity XOR_GATE

-- ports
(ip1,ip2: in BIT ~-- inputs
opl: out BIT) is -- output

-- parameter and default
generic
(DELAY: time := 32mns);

-~ assertions that all bodies must satisfy
assertion
DELAY > 10mns;
opl’FANOUT <= max_fanout;
end XOR_GATE;

Figure 1.6: VHDL interface description of XOR gate

Functional abstraction is provided by all programming languages. However, only some of
them allow easy composition of behaviors in a way that is guaranteed not to introduce unwanted
interactions. This issue is taken up in more detail in section 1.1.2. FP is one language that
provides for easy composition and the XOR gate example of figure 1.2 can be described as
shown in figure 1.8. It shows how to combine the behaviors of AND gates, OR gates and
mverters to result in the behavior of an XOR gate. Though pure CIRCAL only provides a
mechanism for structural abstraction, an extension called TYPED CIRCAL [23] also allows
data abstraction to be treated in a formal framework.

Another important benefit of behavioral abstraction is the ability to evaluate, simulate,
verify or manipulate a cell at different levels of abstraction. For example, a transistor could be
described as a rather detailed SPICE [24] model to evaluate its low level timing behavior. Then,
transistors could be grouped together to construct a NAND gate. Once the characteristics of
the NAND gate have been determined using the characteristics of its component transistors,
it is no longer necessary to retain all the lower-level information about the transistors. It is
possible to now use the NAND gate as a higher-level logical entity with a functional behavior in
terms of boolean algebra (or, at least, discrete logic levels corresponding to booleans) and with
a timing behavior in terms of a propagation delay. A simulator capable of using descriptions
at various levels of abstraction simultaneously is described in [25].



architectural body GATE_DESC_OF_XOR of XOR_GATE is

component AND_GATE (A,B: in BIT; OUT: out BIT);
component INV_GATE (A: in BIT; 0UT: out BIT);
component OR_GATE (A,B: in BIT; OUT: out BIT);
signal X,Y,P,: BIT; -- internal signals

begin

ii:
i2:
al:
az:
ol:

INV_GATE (ip1, X);
INV_GATE (ip2, Y);
AND_GATE (X, ip2, P);
AND_GATE (ipl, Y, Q);
OR_GATE (P, Q, opl);

end GATE_DESC_OF_XOR;

Figure 1.7: VHDL body for XOR gate

or °[ and °[ inv 91, 2 1,
and °[ &, inv @ 2] ]

Figure 1.8: FP description of an XOR gate



Timing in VLSI design needs to be specified in many ways. At the highest levels of ab-
straction, all that is required is the specification of sequencing information. That is, only
the dependencies between computations need to be specified. As the algorithm is mapped to
specific hardware, more concrete timing is specified, especially in a synchronous system. In
particular, each computation will typically be mapped to a specific element of a time sequence
in such a way that the original precedence constraints are satisfied. At still lower levels, each
element of the time sequence is mapped to a particular point on a concrete time scale. This
implies that the absolute delays associated with each computation have to be specified. These
can be specified as inertial, transport or propagation delays.

There are many different models of time that are used by various languages. These models
can either be asynchronous or synchronous. VHDL, for instance, uses a synchronous model of
time that is similar to that used in CONLAN [26], with a macro and micro time scale. The
micro time scale is measured in discrete units and is used to represent real time. The macro
time scale denotes the unit delay of the cell and is not measurable. A macro time step can
contaln any number of micro time steps, and the number of micro time steps contained in each
macro time step need not be the same. This allows the designer to simultaneously model the
timing behavior at two levels of abstraction.

Interval Temporal Logic (ITL) [27, 28] allows the specification of digital circuits with a
discrete sequential model of time. ITL is an extension of temporal logic, itself an extension
of predicate logic, to handle dynamic behavior. Time is split up into discrete intervals and
changes in values of signals are allowed only at interval boundaries. I'TL makes no assumptions
on the lengths of these intervals. In particular, they all do not need to be the same length.
Thus, in addition to the normal process of data abstraction, it is also possible to specify timing
at different levels of abstraction. ITL does not provide any way to specify time in actual units.

TYPED CIRCAL [23] introduces timing abstraction into pure CIRCAL. This allows the
representation of a hierarchy of clocks where n clock ticks of a particular clock can be replaced
by one clock tick of a less frequent and more abstract clock. Pezzé [23] shows how to use time
conversion to convert a representation from one clock to another. In TYPED CIRCAL timing
abstraction is dependent on data abstraction and both may need to be performed to verify that
a particular implementation meets its specification. The time synthesis procedure described in
section 6.4 follows a similar approach which results in hierarchically nested clocks.

Concurrent Prolog [15] describes processes communicating via streams connected to ports.
At each level of abstraction, a circuit block is represented as a predicate and the wires con-
necting them are represented as the parameters of that predicate. Each parameter is treated
as an infinite stream which represents the stream of values on that wire. Synchronization is
performed by declaring some uses of a parameter as read-only. In this case, expressions using
the read-only parameter will block until the value of the parameter has been instantiated. It is

10



not possible to directly specify timing in Concurrent Prolog. However, a clock can be modeled
as an infinite sequence of ascending natural numbers. This stream has to be explicitly fed to
every circuit that uses it. Each circuit can then synchronize itself with this stream by using it
as a read-only parameter. In this sense, it can be said that Concurrent Prolog uses a sequential
model of time. This is only true if such a “clock” stream is used. Otherwise, the language is
relational and has no inherent notion of time.

The Graph Model of Behavior (GMB) [29] is an extension of Petri Nets [30] and is partic-
ularly useful to model concurrent asynchronous events. This model is event driven and does
not have any inherent notion of synchronous behavior. All that it can specify is the precedence
between events. However, synchronous behavior can be modeled, just as in Concurrent Prolog,
by making the clock explicit and feeding it to each circuit that requires it.

Chapter 2 describes v FP constructs that can be used for behavioral abstraction. Examples
of their use are provided in chapter 6 which also shows how to introduce sequential behavior

into v FP.

Interaction between Structure and Behavior

Each system has different ways of describing structure and behavior. Some systems such as
VHDL use different constructs in the same language to describe the structure and behavior.
For example, the architectural body construct is used to describe the structure, and the
behavioral body construct is used to describe the behavior.

Design systems such as the Systems ARchitect’s Apprentice (SARA) [29] provide a separate
language to describe the structure of the design and a different language to describe the be-
havior. The SARA system also provides a mechanism to map the behavior to the structure. In
fact, it 1s possible to map different behaviors to the same structure. This is similar to VHDL’s
mapping of different behavioral bodies to the entity interface description.

It has been suggested [2| that a structured design methodology for VLSI should have a
one-to-one mapping between behavior and structure in order to manage the complexity. v FP
and pFP take this approach. The notions of structural and behavioral specification are tightly
integrated in these systems. During the design process, a particular description can be treated
either as behavioral or structural depending on what the designer wants to emphasize at that
time. For example, the description in figure 1.8 can be taken to mean that the behavior of an
XOR gate can be specified in terms of the behavior of AND gates, OR gates, and inverters as
shown in the figure; or it can mean that an XOR pgate can be constructed structurally out of
AND gates, OR gates and inverters as shown in the figure. In vF P, the interpretation chosen
is dependent on whether the module is tagged as a primitive at this level of abstraction. If it is
tagged as a primitive, then its internals are treated as strictly behavioral by the system. If not,

11



behavioral body XOR_BEHAVIOR of XOR_GATE is
begin

opl <= ipl xor ip2 after 3b5ns;
end XOR_BEHAVIOR;

Figure 1.9: Behavioral description of XOR gate in VHDL

architectural body XOR_STRUCTURE of XOR_GATE is
component NAND_GATE (A,B: in BIT; C: out BIT);
signal X,Y,Z: BIT; -- internal signals

begin
ni: NAND_GATE (ipl, ip2, X);
n2: NAND_GATE (ipi, X, Y);
n3: NAND_GATE (X, ip2, Z);
n4: NAND_GATE (Y, Z, opl);

end XOR_STRUCTURE;

Figure 1.10: Alternate structural implementation of XOR gate in VHDL

then the internals are treated as a structural combination of modules. Chapter 4 demonstrates
this with an example.

However, structure and behavior are independent and conceptually orthogonal and it is
possible to change the structural hierarchy without changing the behavioral hierarchy. For
example, figure 1.7 and figure 1.10 show two different structural implementations of the XOR
gate whose behavior is specified in figure 1.9 and which meet the interface specifications of
figure 1.6. In the case that the structural and behavioral hierarchies are distinct a mapping
between the two has to be provided [31, 32|. It is not clear which approach is better in all
situations. When the design complexity is high, experience shows that the payoffs of using the
former approach compensates for the attendant loss in flexibility.

Geometry Abstraction

The third domain of abstraction in VLST is that of geometry. At the lowest levels geometry
consists of overlapping rectangles of different colors representing the different layers on a silicon
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chip. At the next higher level, the rectangles can be combined in particular fashions to form
transistors or other circuit elements. Circuit elements are combined together to form cells.
Reusable cells (e.g., gates, adders, ALUs) can be placed in a library for use by designers. Such
cells are treated as fixed size rectangles containing geometry with ports on the edges. These
ports have a fixed location with respect to the cell and are in a particular silicon layer. In some
systems, it is possible to stretch cells either in the vertical or horizontal direction along specific
cross-sections. In those cases, the rectangles that are cut by the cross-sections are extended
as necessary to effect the stretching of the cell. This is done in order to match the pitch of
adjacent cells so that the interconnections between them can be achieved via abutment rather
than routing. A designer can now use this as a piece of rectangular geometry without being
concerned about the geometry contained inside. For example, there is no need to re-verify that
design rules are satisfied inside the cell when the cell is used in conjunction with other cells in
a design. Depending on the design, it may still be necessary to check for design rule violations
at the edges and at the ports. A procedure for analyzing a hierarchical geometric description
and filtering out only the parts that need to be checked is described by Whitney [33]. Cells
may be combined with other cells and connecting rectangles to form other higher-level cells of
geometry.

The consistency checking task is eased if a separated hierarchy [34] is used. A separated
hierarchy is one in which the representation-dependent information is only present in leaf cells.
All the other cells are composition cells. Composition rules must be established to determine
how to implement a composition cell within the given representation. In such a system, only
the leaf cells and the composition rules need be checked instead of all the geometry. Rowson,
in [35], describes a rigorously defined and efficient composition rule.

An applicative framework can be used in different environments by just changing the set
of primitives used and possibly the combining forms. Henderson [36] describes an applicative
system for describing geometry and for combining pieces of geometry in different ways. The uFP
systemn uses this system as a back-end for generating layouts suitable for VLSI implementation.

1.1.2 Composition

Another way to manage complexity is to provide a formal way of combining smaller pieces into
larger ones. Most systems provide for ad hoc combining of modules. However, these methods do
not guarantee any properties of the combination and hence it is difficult for the designer to treat
the combination as a module without a thorough analysis of the components. For example, it
is not possible to arbitrarily combine VHDL entities without analysis because they may refer
to global constructs. If the global constructs used independently by the constituents conflict
in some way, the designer will be faced with unwanted interactions between the constituents.
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These interactions cannot be checked for by just examining the interfaces of the modules being
combined, but the behavioral body of each will have to be analyzed completely before a claim
of non-interference can be made. The use of packages alleviates but does not eliminate this
problem.

In contrast, it is possible to combine a ¥ FP description of a module with any other vFP
description and to be guaranteed that they will not interfere with each other because systems
like vFP are free of side-effects. In addition, proven laws about »FP combining forms may be
used to reason about the behavior of the combined whole if the behavior of the constituent parts
is known. Systems proposed by Cardelli [37] and Milne [38, 17] demonstrate mathematical
formalisms for describing networks of interconnected modules. They also provide methods
for formally reasoning about combinations of interconnected modules that form higher-level
modules.

In general, modules can be connected in any ad hoc manner as long as the port constraints
are satisfied. For example, it is syntactically valid to connect modules together as long as an
input port on one module is connected to an output port of another. However, in many cases,
designers use certain regular or structured combinations or idioms. For example, cell-iterative
or parallel arrays are often used in regular design. Languages like vFP, uFP and AHPL [39]
provide convenient combining forms to be used in such situations. More than providing conve-
nience, the structured nature of these connections allows v FP to prove theorems that can be
used to deduce properties of the combination given the properties of the cell. Chapter 2 docu-
ments the combining forms available in #»FP. Some of the more useful forms are diagrammed in
Chapter 6. Section 7.6 shows how the behavior of the composition of two sequential machines
can be derived from the behavior of the individual machines.

1.1.3 Design Framework

Complexity can be managed effectively if all the various levels of the design process are carried
out within a coherent design framework. A design framework can help in the integration of
tools. There are two approaches to providing coherence. One way is to use the same language
to describe the design at all levels of abstraction. This approach has the advantage that the
designer has to learn only one language. Additionally, it provides coherence by using the same
language throughout the design process. vFP uses this paradigm. Chapter 8 describes the
components of the v FP system.

The other approach is to use different languages to represent the design at each level of
abstraction. The advantage of this approach is that each language can be tailored for that
level of abstraction. The semantic gap, between the concepts used by the designer at that
level and the constructs supplied by the language, can be reduced by an appropriate choice of
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constructs. In addition, the framework usually provides a common data representation that
is used by each tool to communicate with other tools. The set of OCT tools [40] from the
University of California at Berkeley is one example of such a framework.

1.2 Tools

Design tools often are overly specific in their domain of applicability. Often they are constructed
that way because they are application-specific. It is much better to make a general design tool
that can be tailored to the application area. The basic framework can then be shared among
various application-specific tools. Another way to increase the domain of applicability of a tool
it to make it extensible. Most tools are not and this make them frustrating to the user. The
problem is that the tools are fine as long as the problems being addressed are what had been
envisioned by the designer. Often enough, however, users are faced with problems that are
just slightly different than what had been envisioned by the tool designer. In this situation,
most tools prove to be inflexible and unusable. The solution is to provide tools which exist in
a framework that can be easily extended by the user to cover the cases the existing tools do
not.

One approach to extensibility is to use an embedded language. One of the earliest VLSI
tools was LAP [41] which embedded drawing commands in SIMULA [42]. Thus, with very
little effort, it was possible to create a VLSI layout system with the full power of SIMULA.
The DPL/Daedalus [43] system takes a similar, but more sophisticated approach by embedding
a description and constraint system in LISP [44]. Macpitts [6] and its commercial descendent
MetaSyn [45], are also embedded in LISP but have typed variables and allow user extensions.
The vFP system is user-extensible and tailorable. Users can extend the primitive function set
to suit their requirements. In addition, the »FP framework is applicable to different domains
by just changing the primitive function set and combining forms as required. Chapter 2
describes the primitives and functional forms of the v FP system.

The most common instances of application-specific languages and systems are those de-
veloped for Digital Signal Processing (DSP). The FIRST silicon compiler {46] was a system
that was developed to generate bit-serial implementations of DSP algorithms. The language
SILAGE [11] used in the LagerIV [47] and CATHEDRAL [48] systems, and LUSTRE [49] have
been developed to describe and synthesize regular DSP algorithms.
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1.3 Exploring Alternative Designs

The systems mentioned above do not provide any estimate of the area occupied or the delays
experienced by the circuits synthesized. It is only at the end of the synthesis process that
these performance criteria are available. This means that designers have to wait until the end
of the synthesis before recognizing the effect of their design decisions on the performance of
the circuit being designed. Therefore, it becomes difficult for the designer to rapidly evaluate
alternative design strategies for the particular application. It is possible to provide designers
with estimates of various performance parameters at all stages of the design process and at all
levels of abstraction. Obviously, at the higher levels of abstraction, these estimates will be less
accurate because the exact details of the particular implementation strategy will not be known.
However, these estimates are useful in order to provide the designer with enough information
to make go/no-go decisions with the particular approach. For example, after describing the
algorithm at a high level, the system may estimate that it will take two orders of magnitude
more area than is available. Clearly, the designer can benefit from such information and can
take early remedial action and try out other approaches.

This method of design allows the designer to perform rapid prototyping of alternative
implementations at all levels of abstraction, leading to a design that is more suitable under
the given design requirements. ¥FP provides such a system and evaluation mechanisms. Not
only must there be a way to evaluate performance criteria at all levels of abstraction, but this
evaluation must be fast and must not involve prohibitive overheads. If the evaluation takes
too much time, users will tend not to use the features.

During the formulation of design alternatives, the designer has to be sure that each of
the alternatives actually implements the same specification. One way of guaranteeing this is
to take a transformational approach as in [50]. In this system, transformations are applied
to the original specification to generate the various alternatives. These transformations are
guaranteed to maintain the semantics of the specification. Chapter 4 demonstrates how this is
approach is used in #FP to evaluate alternate designs.

1.4 Reasoning about Designs

Most of the design systems available today have representations of the design that are not
amenable to easy verification. The problem consists of proving that two descriptions are
equivalent in some sense. Usually the two descriptions are at different levels of abstraction.
One 1s a description of a specification and one is the description of a particular implementation
of that specification. Often the criterion for equivalence is that the input-output behavior
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of the two descriptions is the same. That is, for the same inputs, both the descriptions will
produce the same outputs. Sometimes the descriptions may be at the same level of abstraction
but may represent different views of the same design. In this case, the equivalence criterion is
usually to show that one aspect of the descriptions (say, the control flow) is the same in both
descriptions. Chapter 5 shows how vFP transformations can be used to prove equivalences
between different views during the design process.

In order to be able to prove such equivalences, the semantics of the descriptions must be
provided. These semantics can then be reasoned about. There are two ways of conducting
this reasoning. One way is to use the semantics of the descriptions to obtain the denotation
of each. Formal methods can then be used to show that the two denotations are equivalent.
This is the approach taken in {37, 17, 23]. The other approach is to use transformations to
transform one description to another. If these transformations have previously been shown to
maintain the equivalence property, whatever it may be, then the two descriptions can be shown
to be equivalent. ITL, uFP, and vFP use this approach. The Yorktown Silicon Compiler
[61] also makes use of transformations at specific stages in the silicon compilation process.
The advantage of using this method is that the proof is carried out in the same domain
as the descriptions and there is no need to involve another domain (that of denoctations)
in order to prove properties about the descriptions. The disadvantage is that the kind of
properties that can be proved are restricted to the set of transformations provided. This can be
alleviated by admitting new transformations into the system, but if these new transformations
cannot be deduced from already existing ones, then it will usually be necessary to prove
the new transformations by appealing to another domain. Chapter 6 gives various examples
of transformations used for synthesis in ¥FP. As an extended example of the use of such
transformations, section 7.6 demonstrates the use of transformations to derive the proof of a
theorem about combinations of sequential machines.

1.5 Specifications

In order to prove equivalence between a specification and implementation, it is necessary to
construct a specification first. This specification is written in a specification language. An
implementation at one level can be thought of as a specification for the next lower level. It is
therefore necessary to have specifications at all levels of abstraction. Any specification should
be minimal. That is, it should specify only those properties that are relevant at that level and
no more. At the highest (algorithmic) level of specification, it is particularly important that the
minimum amount of sequencing be specified. This implies that there are no extra sequencing
constraints in the specification other than those necessary for the proper operation of the
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system. An applicative language like vFP or uFP fits these constraints well because the only
sequencing that is specified is that the input data must be available before the computation
can start. The Church-Rosser property of applicative languages [52, 53] allows even more
flexibility in sequencing. The Church-Rosser property states that the order of evaluation of its
sub-expressions does not change the meaning of the whole expression. Therefore, the order of
evaluation of sub-expressions is not constrained.

Structural specifications consist of specifying modules that encapsulate behavior. Behavior
is only visible to the outside world via ports. Modules may be combined by connecting their
ports together. In order to facilitate this composition, it would be useful if the ports could be
typed or otherwise possess attributes. With that information, it is possible for a composition
system to check that the ports being connected are compatible. The simplest example of such
checking is the type-checking performed between a called function and the arguments passed
to it. In order to be flexible, typing and checking should be polymorphic. Languages like SML
[54] provide such static type-checking. »FP currently uses run-time type-checking and so type
errors are only detected at run-time. However, this is not inherent in the language and the
addition of a type system is suggested as future work.

At lower levels of abstraction the spatial positioning between components is important. It
can be specified in different ways. One is by just specifying topology. That is, which ports
on certain modules are connected to which ports on other modules. In addition to this con-
nectivity information, some relative placement information can also be specified. This consists
of specifying which modules are on which side of a certain module. Further positioning in-
formation can be specified by specifying geometry. That is, actual locations, either absolute
or relative to some other point, are specified. The vFP system is capable of specifying and
displaying relative placement information. Schlag, in [55], shows how this information is ex-
tracted from the specification. Chapter 6 shows the specification of structure and behavior
m »FP. Chapter 3 explores the use of applicative languages, and »FP in particular, in the
specification of algorithms at the highest levels.

1.6 Visual Feedback

VLSI design is a graphical process—especially at the lower levels which deal with the geometry
of the layers in silicon. Most of the lower level layout tools are visual, but higher level tools like
silicon compilers are often textual. Intermediate tools like floor planners tend to be graphical
or both graphical and textual. What is needed is to have visual feedback at all levels of
abstraction, for the same reasons as it is good to have performance feedback at all levels of
abstraction. For instance, suppose there is a description of the algorithm at a high level that
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Figure 1.11: Blocks with routing outside
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F’ F F F

Figure 1.12: Blocks with route-throughs

implied a lot of routing around a block to get to another block. If designers could see the
layout or routing implications of their high level decisions, they would be able to modify their
approach to take this into consideration. For example, in the previous case, the designer could
consider using cells that routed the extra wires through the cells of the first block rather than
around it. Figure 1.11 shows how the layout would look like with the routing around the cell.
Figure 1.12 shows that the routing area has been saved by having the wires pass through the
cell F'. F'is a cell that is the same as F except that it additionally routes its input to another
output. A simple transformation is used to prove the equivalence of the two representations.

A graphical language is very useful at the geometry and layout planning levels of the design
since most of the information at those levels is pictorial in nature. Hence there is a better
match between the objects used for description and the objects being designed—the semantic
gap 1s small. These languages also provide a better human-machine interface at these levels.
Textual languages are better at specifying algorithmic behavior and therefore more useful at
higher abstraction levels. They also provide an easier interface between different tools since
the interface can be plain text.

Both kinds of languages also have their deficiencies. Visual languages are limited in what
they can easily specify and are often forced to revert to a textual mode to specify complex func-
tions. Since visual systems are required to show the current picture, structuring or abstraction
information is either not allowed to be specified or it is hidden from the user. Often different
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parts of a picture are supposed to bear a spatial relationship to each other. However, unless
this relationship is explicitly specified (usually textually) somewhere, as parts of the picture are
moved, these relationships might change. Pictures specified via exact or computed locations
are difficult to specify in a visual editor. Though iteration can be represented (textually) via
ellipses; recursion, loops and conditionals are difficult to represent in a visual framework.

On the other hand, it is often difficult to visualize the graphical structure implied by
a textual description. This necessitates a tedious run-display-edit cycle to get the required
layout. Another problem is that exact positional values are always required, even when the
user does not care about the exact placement. Positioning visual elements to provide an
aesthetically pleasing picture are difficult to produce via textual languages.

‘The solution to this dichotomy, of course, is to provide a system that integrates both textual
and graphical modes for manipulating and describing the design. Much work has been carried
out in this area. The Tpack module generation system [56] takes the approach of using graphical
editors to create small pieces of geometry called tiles and using a procedural language to lay out
and connect these tiles. DPL [57] and Sam [58] show the user both the graphical and textual
view of the design being constructed and allow the independent editing of each. If the graphical
view is edited, the textual view changes appropriately and vice versa. Tweedle [59] deals with
general graphics and takes a similar approach but extends it by allowing the textual language
to be procedural and incremental. A less desirable though still useful approach is taken by
Henderson’s functional geometry system {36} in which the graphical display is generated from a
textual description. Any editing has to be carried out on the textual description. The graphics
cannot be directly edited. This is essentially the same approach taken in the yFP and vFP
systems. All of the layouts in this dissertation are generated directly from vFP descriptions.

1.7 Overview

This research describes a method based on applicative languages [60] for the specification,
evaluation and synthesis of hardware algorithms. Though this dissertation explores the role of
applicative languages can play throughout the design spectrum-—{from specification down to
implementation—it mainly concentrates on the synthesis of space and time domain hardware
implementations of algorithms. This method is supported by a set of tools that is being
developed at the University of California at Los Angeles. The goal of this effort is to provide
designers with an environment in which they can rapidly explore various alternative designs
for their algorithms. Thus, it is possible to specify the algorithm at any arbitrary level of
abstraction and have the system rapidly evaluate performance parameters (e.g., speed, area)
so that designers can make informed decisions during the synthesis process. The advantage
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of using an applicative language is that it ties together the specification of the algorithm, the
synthesis of the circuit and the evaluation of the implementation.

vFP, the system described here, is based on using a strict?, applicative-order® functional
language to represent combinational and sequential behavior. Others have explored incorporat-
ing applicative languages into VLSI design and have shown them to be viable. Lahti [61] used
an applicative language to describe various combinational hardware structures. Johnson [62]
utilized a non-strict, normal-order® applicative language to describe and synthesize sequential
digital circuits. Cardelli and Plotkin [63] take a formal approach to describing sequential cir-
cuits with an emphasis on verification. Meshkinpour [64] and Sheeran [65] extended Backus’ FP
language with operators to handle sequential circuits. ELLA [12], SILAGE [11], and LUSTRE
[49] are applicative design languages which have been used to describe sequential hardware
structures.

vFP uses a transformational approach to synthesis. A representation at one level of ab-
straction is converted into a representation at a lower level of abstraction using pre-defined
substitutions”. These substitutions have been previously proved to preserve the meaning of
the representation. Hence the final implementation is guaranteed to behave the same as the
specification. Others have used a transformational approach in the design of VLSI systolic
arrays [66, 67]. In these approaches delays are added and removed according to transformation
rules in such a way that the output function remains invariant. Transformation approaches
have to be supplied with an initial solution.

There are other methods [68] for the synthesis of circuits. Most use some form of a la-
beled graph with nodes as cells or functions, and edges as communication lines or precedence
relations [69, 70, 71, 51]. This graph is then mapped into an implementation by scheduling
and allocation. Allocation is mapping the data flow graph into hardware modules and data
paths between these modules [72, 73]. Scheduling is the mapping of the control nodes to
particular instances of time. Formal approaches of synthesizing behavioral descriptions into
implementations in space-time are shown in [74, 75].

This dissertation highlights the impact of applicative languages in the design process from
specification to implementation. Chapter 2 provides an introduction to the »FP system and
some of its features. vFP is a strict, applicative-order functional language. The role of ap-
plicative languages in the specification of algorithms is explored in the next chapter. Chapter 4

4A function is said to be strict if and only if its value is undefined when any of its arguments is undefined.

5In applicative-order evaluation the arguments to a function are evaluated before the function application
is performed.

In normal-order evaluation, the leftmost outermost reducible expression is evaluated first. Hence functional
applications are carried out before the arguments to the funciion are evaluated.

"Transformations that replace a function name by its definition will be called substitutions.
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discusses how applicative languages (and the vFP system in particular) are helpful in evaluat-
ing various alternative designs that may be constructed from the same specification. In order
to explore the effects of using an applicative language in abstraction and refinement during
design, vF P was proposed as the interpretation domain language for the Graph Model of Be-
havior (GMB) in the SARA system. Chapter 5 describes how v FP allows provable refinements
in the GMB and how it can be used to prove equivalences hetween different views of the same
representation.

The transformation of an algorithm in the abstract to an implementation in space-time is
described in chapter 6. The v FP synthesis process proceeds as follows. First the specification
is prepared. Then various high-level designs are carried out and evaluated with respect to per-
formance criteria. The design process continues using refinement until primitives are reached.
The design is evaluated at each stage to make sure it will meet the goals. At this point, the
layout of the circuit can begin. The first step is to lay out the algorithm in space (section 6.3).
If this meets the design goals, the synthesis is over. If this approach takes too much space, time
synthesis may be attempted. This is covered in section 6.4. When the synthesis is complete,
the internal representation is converted into a form acceptable to lower level layout tools for
final fabrication. This is the subject of section 6.6. Sheeran’s pFP [65] is the system that is
closest to the one proposed in this dissertation. Chapter 7 discusses the differences between
the two systems and points out the tradeoffs involved. The dissertation concludes with a de-
scription of the contributions of this work and suggestions for future explorations. Appendix A
provides a complete and precise definition of the »FP language. Appendix B clarifies some
aspects of GMB semantics.
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Chapter 2

The vFP System

This chapter gives an overview of the »FP language and the vFP system that includes lan-
guage processors and evaluators.

2.1 Brief Introduction to vFP

vFP extends the language FP [60] proposed by Backus with additional functional forms and
primitives. In contrast to uFP [65], which extends FP’s semantics to operate on streams, the
semantics of vFP are the same as those of FP when it is used to specify algorithms. A program
in vFP (as in FP) is an expression, corresponding to a function, that maps objects into objects.
Objects are either atomic (numbers or strings) or sequences of objects. The distinguished atom
L denotes an undefined value. By definition, any sequence which contains 1 as an element
is 1tself undefined and thus equal to 1. This is another way of saying that vF P, like FP, has
strict semantics. This means that if any argument to a function is undefined, the result of
evaluating the function is also undefined. Formally,

Vi f:l=L1. (2.1)

The strictness property allows functions to be defined as total functions over all inputs and
implies that L is in the domain of every function. Other applicative languages have non-
strict (sometimes also called lazy) semantics. There are advantages and disadvantages of each
approach. Having strict semantics is particularly helpful in a distributed environment because
if an error develops in any particular part of the program, it is guaranteed that the error will
propagate everywhere and eventually the whole program will terminate. On the other hand,
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arithmetic functions

+:(1,5) =6
*:(3,2) > 6
logical functions
andg : {1,0) — 0
nandg: {1,0) — 1
org: {0,0) -0
xorg: (1,1) =0
predicates
atom: (1,2) — false
=: (3,3) — true

selector functions
3:(2,{4,5),6,(8,{(9,10))) — 6
last: (1,4,6) — 6

Table 2.1: Primitive Functions

strict semantics prohibit the use of incomplete (and possibly infinite) data structures which
can be useful in some computations.

The primitive functions of vFP consist of arithmetic, logical, predicate and selector func-
tions, examples of which are shown in table 2.1. The cases involving an argument of 1. (equa-
tion 2.1) are omitted from the definitions for brevity. Examples of primitive structure mod-
ifying functions are shown in table 2.2.  Functional forms are used to combine primitive
functions into more complex functions. Some example functional forms are shown in table 2.3.
A complete description of the »FP primitives and forms is found in appendix A.

A major syntactic difference between #FP and Backus’ FP is that parameters to functions
may be named and then referred to in the function body with restrictions similar to those
specified in Backus’ extended definitions [76] for FP. As with Backus’ extended definitions, it is
understood that the parameter names do not refer to input objects, but rather to the functions
that create the particular input objects.
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trans :
apndl :
apndr :
distl:
distr:
iota:
pick:
null :
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——

2,3),(4,5,6)) — ((1,4),(2,5),(3,6))
2,3,4)) — (1,2,3,4)
2,3),4) — (1,2,3,4)
@, b, c)) — ({z,a),(z,b), (z,c))
b,c),w) — ((a,x),(b,l:),(c,:c))
—(1,2,...,n)
Iy, ,wn)) —zifk<n
— (z = {) = true;false)

Table 2.2: Structural Primitives

colripose

(fog):z

construct

[frg.h]: 2
applytoall

&f:(pg,

%k . x
rightinsert

constant

!f!(ﬂfl,...
&f: (2.

treeinsert

sequential

seq f : (z1,...

map

{f11f21"'1fn} :

(.171,...

- filg:x)
—{f:z,9:2,h:z)

o —={ipfigfir)

— ktkifrisnot L
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sZn) — {1 (22, . 20))

-.\xn) - f : (*f (:’Bla"'1$fn/2]>7

S (Tlns2 4155 Tn))

,Tn) — apndr © [seq f : (z1,...,Zn-2,1°y),2°y]
where y = [ : (zn_1, Tn)

ST

) = { Lz, faza, ...

Table 2.3: Functional Forms
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A vFP definition like
defun f ( x , y )

enddef
is exactly equivalent to the FP extended definition
xdef f °{x,y1]1-=...

There are two restrictions on which functions can be defined with parameters. The first
is that, as in Backus’ extended definition, the body of the function must be distributive with
respect to the parameters. Formally, a vFP expression E is distributive with respect to the
variables vy, vy, ..., v, if and only if

E(vy,ve,...,v.)°h = E(v1 ©h,v3%h,...,0,°h)
For example,

defun f (x , y )
[ g°x , r°y 1]
enddef

is distributive, but
defun ¢ ( x , y) [ p, ¢°x , 7%y ] enddef

and
defun A ( x ) & x enddef

are not. The second restriction, which is not present in Backus’ extended definition, is that
the parameter names must be simple and distinct. That is, a function like

defun £ ( x , x )
+ °fx, %3]
enddef

is not allowed. In other words, unlike Backus’ extended definitions, there is no pattern matching
allowed in the parameters. Under these restrictions, it is very easy to convert a definition with
parameters into one without parameters. The conversion process consists of replacing each
occurrence of a parameter in the body by the corresponding selector function. For example,
function f above could be converted to
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FullAdder =
[org© [org © [andg® [1,2],andg® [2,3]],andg® [1,3]],
xorg© [1,xorg© [2,31]]

Figure 2.1: A Full Adder in Backus’ FP

defun FullAdder(a,b,Cin)
[((a andg b) org (b andg Cin)) org (a andg Cin),
a xorg (b xorg Cin)]

enddef

Figure 2.2: A Full Adder in vFP

defun f
[ go1, ro2]
enddef.

The restrictions were chosen to simplify the implementation of the conversion process. There is
no reason (other than time) that the full Backus extended definition could not be implemented.
If the function being defined does not meet the restrictions, or if the function takes a variable
number of arguments, no parameters are specified in its definition. The absence of parameters
indicates that the “normal” FP definition should be used.

In addition to specifying parameters, the arithmetic, logical, and predicate functions may
be used either in a prefix or an infix manner. This improves the readability of hardware
specifications. For example, the definition of a FullAdder in Backus’ FP (figure 2.1) could
alternatively be written in »JFP as shown in figure 2.2.

In v FP, unless sequentialized via the use of the composition operator, all functions execute
in parallel and hence vFP descriptions are suited to describing parallel hardware algorithms.
These specifications are executable and hence can be tested by applying the function to an
argument and checking to see whether the expected result is obtained. Specifications can also
be executed symbolically, at which time it is possible to extract the topological structure of the
algorithm. This is done by using a symbolic interpreter instead of the normal value interpreter
and using symbolic inputs rather than value inputs. There is a direct relationship between the
structure of an algorithm written in »FP and the planar topology of its layout. For example,
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g (fix)
Figure 2.3: Composition of two functions

X
f g h
f:x g:x h:x

Figure 2.4: Construction of three functions
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figure 2.3 shows what the composition of two functions would look like topologically. Figure 2.4
shows what the topology of a construction of three functions looks like. It is assumed that the
inputs are at the top and the outputs at the bottorn—data flows down the page.

2.2 Value and Symbolic Evaluation

There are two modes in which a vFP program can be evaluated. The first is the “normal”
mode in which the program is applied to an argument and returns a value as its result. This
is called value evaluation. The second mode is called symbolic eveluation. In this mode, the
program is called with symbolic arguments instead of actual arguments and the result is a
symbolic value rather than an actual value. Another result of symbolically evaluating a vFP
expression is a computation flow graph. The edges of this graph are labeled with symbolic
values, and the nodes are labeled with the name of the function being applied.

As mentioned in chapter 4, any user-defined function can be tagged as primitive. As far as
the computation flow graph is concerned, the inner structure of the computation inside such
a node will not be kept. However, the system will symbolically evaluate the inner functions in
order to generate the correct symbolic output for that function.

Such a simple-minded generation of the computation flow graph will lead to many edges
that are unused. For example, a complete value may be generated, but only the first or last
element of the resulting sequence may be used in further computation. In order to remove such
unused edges, the initial computation flow graph is pruned by tracing back from the leaves of
the graph and recursively removing nodes and edges that are unused.

This is further explained in section 6.6 and complete details may be found in [55].

2.3 Attributes

As will be explained further in chapter 4, during symbolic evaluation, the system will keep track
of which tagged functions are executed at which point in the computation flow graph. The
overhead associated with collecting this information is very low. These statistics can then be
used to evaluate different algorithms and compare them with respect to whatever performance
characteristics the designer desires. Currently, the system only keeps track of information
relating to the algorithm itself. The location of the tagged functions in the computation graph
gives an idea of where the parallelism lies in the algorithm. It is also useful to pick out
algorithmic bottlenecks. The depth of the computation flow graph gives an estimate of the
time required by the algorithm. The number and type of functions executed can be used to
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get some idea of the space that might be occupied by an implementation of the algorithm.
The important point to notice is that these attributes are evaluated at any arbitrary level of
abstraction.

One of the benefits of using an applicative framework is the ease with which attribute
evaluation can be implemented in it. Consider the simple evaluation of a function.

y=f:=z

Here a function f is applied to an argument z and returns a result y. Instead of just operating
on a simple value, we might consider that the argument z has attributes a',a?,...a”. This
would result in

(ysyulayags-'-aya"> = (f : ‘Tafal : 'Ta]'.'fa;’ :$a21"'1fa" : ma“)

where, for each f, f,. denotes the function that, given the attribute z,:, computes the result
attribute y,:. Note that this can be introduced into a functional evaluation mechanism by
replacing f by

{f$fa‘,fa21"".'fﬂ“}

where {fi,..., fo} is the map functional form. A generic, user-definable attribute system based
on attribute grammars was partially developed during this research, but never completed. It
is suggested as future work.
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Chapter 3

Applicative Languages in the
Specification of Algorithms

Specification languages are used to specify what a particular algorithm does without specifying
how that is to be achieved. Applicative languages have many properties that make them at-
tractive as languages for specifying hardware or software algorithms. This chapter begins with
a discussion of features that are desirable in a specification language and shows how proper-
ties of applicative languages fulfill these requirements. Some problems with using applicative
languages for specification are discussed in conclusion.

3.1 Properties of Specification Languages

Specification languages are used at the highest level of abstraction to specify the essence of
the algorithm without unnecessarily constraining the implementation. This section describes
features that are desirable in a specification language.

Formality: It is most important that the specification language be a formal language so that
there is no ambiguity in the meaning of a specification written in the language. In
addition, if the language has a formal semantics, it is possible to devise programs that
could check a specification for consistency.

Constructibility: It always takes a lot of effort to convert a designer’s ideas into a formal
specification. The easier this task is made by the specification language, the better the
chance that the specification will match the intent of the designer.
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Comprehensibility: Just as the language should make it easy to go from intent to specifica-
tion, it should also make it easy for a reader to go from the specification to the concept.
In this context, the size and lucidity of the language are major factors.

Minimality: It is important that the language be able to express all the relevant properties
of the concept. It is also important that no extra (overhead) properties should be needed
to specify the concept. This is not always possible, but the closer a language can get to
this goal, the better. The smaller the number of concepts that are required to specify an
algorithm, the better. It should be mentioned that it is important to reduce the number
of lexical tokens in a specification and not just to have fewer symbols. Just reducing the
number of symbols may make a specification look smaller, but the cognitive load for the
reader to understand the specification will be higher.

Wide Range of Applicability: The greater the range of domains the language can be ap-
plied to, the better.

Extensibility: It will not be possible to come up with a language that covers a wide variety of
domains because of differing primitives and needs. One way of alleviating the situation
is for the language to provide a basic framework and to allow domain-specific extensions.

Executability: If a specification is executable and/or analyzable by machine, it makes it easier
for the specifiers to check the specification and make sure that it is indeed specifying what
they thought it was.

3.2 Properties of Applicative Languages

Applicative languages possess many properties that make them suitable for use as specification
languages. The most important is the fact that these languages do not have any side-effects.
Since there are no side-effects, it has been shown that these languages (in particular, FP [53])
possess the Church-Rosser property [77]. This means that the result of a computation, or
the meaning of a computation is unaltered by the order of evaluation of its sub-expressions.
Since the order of evaluation is not constrained, this implies that only the necessary (i.e.,
minimum) sequencing information for the algorithm is used in an applicative language. In
turn, this implies that the maximum parallelism inherent in the algorithm can be expressed.
The sequencing that is necessary is only that required by functional dependencies and no extra
control dependencies need to be introduced as would be necessary in an imperative language.
Many imperative languages are unsuitable for specifying loops with independent iterations
because they overly specify the sequencing between iterations.
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A related property of applicative languages is that they are referentially transparent. That
is, the result of a computation is independent of the context of the computation. Because of
this, the meaning of an expression is discernible just by looking at the lexical scope of the
expression. There is no way the evaluation of some other expression in some other location can
affect the result of evaluating this expression. This makes the specification comprehensible.
In contrast, imperative languages often have constructs like pointers and non-local variables
which makes them difficult to analyze lexically.

Of course, the specification is executable, thus making it easier for designers to confirm
that the specification faithfully implements their idea.

Applicative languages, and FP in particular, usually are small in size and have simple
and concise semantics that are easy to understand. In addition to aiding the lucidity of the
specification, the formal semantics and allows the easy construction of theorems to prove
properties about specifications written in these languages. The algebraic foundations of the
language allow one to write transforms that can be used to prove properties about programs
without leaving the domain of programs. These transforms can also be used for semi-automatic
synthesis of implementations from their specifications.

The non-procedural nature of these languages makes it easy to describe a specification that
is orthogonal to the implementation.

Applicative languages, and FP in particular, provide a framework of composition forms that
can be used to compose primitive functions to build other functions. The base set of primitive
functions can easily be tailored to suit the application without changing the framework. This
makes it easy to adapt the system to different problem domains. User-defined functions are
treated semantically the same as primitive functions and so it is easy for the user to extend
the set of primitives to better match the problem at hand.

3.3 Problems with Applicative Languages

There are some features of applicative languages that may hinder their use as specification
languages. The major problem is the lack of history-sensitivity. This is not usually a problem
with algorithms because most do not inherently involve any state information at the highest
specification level. However, when it is necessary to describe larger systems, or systems in
which state plays an important role, this shortcoming becomes burdensome. Since there is
no way to specify time explicitly, this formalism cannot describe real-time or other systems
requiring tlming constraints.

An alternative is to embed a purely applicative system within a system with state. The
computation is performed by the applicative part and the state is used only to provide history
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Figure 3.1: One-dimensional partition

sensitivity. The state-transitions of such a system are driven by the applicative sub-system.
Backus [60] refers to such a system as an Applicative State Transition System. A successor
to FP, FL [78], uses a similar scheme to provide input/output from within an applicative
framework.

In other specification languages, programs can be composed sequentially, in one dimension.
vFP, being a parallel language, allows composition to be performed both sequentially and
concurrently, in two dimensions. This makes it possible to encapsulate communication between
program threads into another program and thus abstract it out. Another benefit of this
approach is that non-planar communication, routing and connections can be hidden within
a function. This encapsulation can be used to make a non-planar computation-flow graph
planar. Schlag [55] uses this property to generate planar topology from v FP expressions. The
problem is that v FP forces the designer to use this two-dimensional composition even when it
might not be the most appropriate thing to do. Figure 3.1 shows the normal one-dimensional
partitioning of the two communicating processes. Figure 3.2 shows the corresponding partition
using vFP which encapsulates the communication between the processes inside one of the
partitions. A related problem is the inability of #FP to describe processes that have true
bi-directional data flow (e.g., systolic arrays with data flow in more than one direction).
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Figure 3.2: Two-dimensional partition
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3.4 Summary

Applicative languages have many features that make them attractive as high-level specifica-
tion languages for algorithms. However, the lack of history sensitivity hampers their use as
specification languages for real-time or state-oriented systems.
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Chapter 4

Applicative Languages in the
Performance Evaluation of Algorithms

Most design systems provide designers with performance measures of the synthesized system-—
but only upon completion of the synthesis. Hence it is difficult for designers to get feedback
about the performance (speed and area) early enough in the design cycle. vFP provides
designers with rapid feedback on the performance of their algorithm at all levels of abstraction.
This feedback is provided with a very low overhead.

4.1 The Evaluation of vFP Algorithms

It is possible to tag selected user-defined functions so that when a v FP specification is executed
an estimate of the performance of the algorithm can be provided. Tagging a function tells the
system that this is a function of interest at the current level of abstraction. In ¥ FP a function
1s tagged by turning on tracing for that function.

Jtrace on functionName

A tagged function is treated as a primitive by the system because the user has indicated that
the internal behavior of the function is not of interest at this time. As the execution proceeds,
the interpreter keeps track of the level at which a tagged function is executed.

The level of a tagged function is defined as one plus the maximum of the levels associated
with the atoms in its input object. The level of each atom is initially zero. Each time a tagged
function is encountered, its level is determined and is assigned to the atoms in its output object.
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Let the level of an object or a function be denoted by a superscript. For example, let the
level of a function f be I; and be denoted as f#. Let the result of applying the function f to
the argument (,z;,...2,} be y. Then

f7 (a2, ar) = g

and

If = ly = ma.X(l],lz,...ln) +1

If the output of f is a sequence, each element of the sequence is tagged with the same level /.

A similar formalism is used to represent attributes other than the level except that the
equation for computing the resultant attribute is different for each of the other attributes. For
example, in the case of area, the input areas are summed to form the area of the resultant cell.
In general, if each vFP value, z, has attributes ay, as, . .. ax, the combination of the value and
its associated attributes can be represented as the following sequence.

(@, 2™, 2%, ... %)
If there is a function f, such that

Y =f: (wlax%'--axn)
a new function, f*, which uses attributed values can be described as

y* = f*: ((ml,w‘f‘,...,:r;”‘)...,(:cn,zfll,...,mfl"))

where
=A%, .., f*} o trans

and each f* is a function that knows how to calculate the attribute a; of the result y* given
the input attributes z{*,...,z%.

The above formalism suggests that it is straightforward to modify the evaluation mech-
anism for vFP functions to incorporate the attributes into the framework. Moreover, this
modification is done in a functional manner and does not entail any modifications to the rest
of the system.

However, a slightly modified algorithm has to be used when a tagged function occurs
within another tagged function. In this case the level of the inner function is determined with
respect to the outer function resulting in a hierarchy of levels that can be represented as a
Dewey-decimal number. This is accomplished by assigning the level zero to each atom of the
outer function’s input object, and computing the level of tagged functions as before, until the
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computation of the outer function has been completed. The level of the outer function and
the atoms in its output object is determined as before and hence is independent of whether or
not any tagged function occurs within the outer function.

The implementation of this scheme is straightforward. The current level is stored in a
global variable. Each tagged function increments this variable just before exiting. Another
global indicates whether a tagged function is currently active. If a new tagged function begins
execution while this variable is true, the old value of the level is pushed on to a stack and
the level is reset to 0. Most functional forms do not change the value of the level. However,
the apply-to-all, map, tree-insert and construct forms save and restore the value of the level
variable in between invocations of their functional arguments.

For example, during the execution of

L/, g]

the current level is first saved. The function f is executed. During the execution of this function,
the level may be incremented depending on whether any tagged functions are evaluated. The
resulting level is saved in a temporary location and the original level is restored. The function
g is then evaluated. The final level is the maximum of the level after the execution of f and
g. The apply-to-all, map, and tree-insert use similar strategies. An earlier implementation of
this scheme is reported in [79] and an alternative implementation is reported in [80].

At the end of execution, the system will have gathered statistics about each tagged function.
The level of each instance of each tagged function is reported. Assume an ideal situation, in
which infinite resources (processing agents, communication paths and memory) are available
and that each tagged function has a unit delay. In this situation, the level of a function
Instance represents the point in time this function instance would be executed in an optimal
schedule. Thus, under the above idealistic assumptions, the maximum level in the circuit gives
the latency of the circuit in terms of unit delay. This can be used to predict the speed at which
the circuit would perform. The system also keeps track of the number of function instances
at each level. This information can be used to obtain an idea of where the parallelism in the
algorithm is.

The total number of tagged function instances can be accumulated to provide an estimate
of the area that would be occupied by the circuit. It should be noted that this area estimate
only contains the sum of the areas of the cells. It does not incorporate any additional routing
area that may be required. In addition, at a high level of abstraction, the estimated area is
determined from an implementation that is isomorphic to the behavior because the eventual
structure is not known at this point. Hence the estimate will only provide a rough measure
until the structure is further defined. A better estimate of the area is obtained by methods
mentioned in chapter 6.
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4.2 Time-Space Tradeoffs

This capability of having the system estimate performance parameters is useful in tradeoff
analyses. For example, consider the following function:

1 ifa=(b—1)mod8
z2=¢( 2 ifa=b

0 otherwise

schemeA and schemeB, below, are two algorithms for implementing the function. It is
assumed that a and b are three-bit unsigned integers and that z is a two-bit unsigned integer.
From the specification it can be seen that zp is 1 when a = (b— 1) mod 8 and z; is 1 when
a=Ah

schemeA checks the equality of two numbers by first sending each number to a decoder.
Only one output of each decoder will be a 1, corresponding the the value of the input. Thus, to
check for equality, the corresponding outputs of both decoders must be a 1. The “(b—1) mod 8”
is implemented by rotating the output of the decoder before feeding it to the AND gate tree.
Figure 4.1 shows a layout of schemeA.

schemeB takes a straightforward approach to implementing the specification. Equality is
determined by the use of comparators. The “(b — 1) mod 8” is implemented by using a two’s
complement adder, adding 7 to the value of b and ignoring the carry out from the adder.
Figure 4.2 shows a layout of schemeB.

Transformations can be used to prove that both schemeA and schemeB implement the
same specified function. If the boolean functions (andg, org, notg, and xorg) are tagged, the
results shown in tables 4.1 and 4.2 are obtained.
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level andg org notg
1 2 6
2 10
3 14
4 14
5 8
6 4
7 2
Totals 40 14 6

Table 4.1: Statistics for schemeA

# scheme A inputs : <<a> <b>> outputs : <zl z0>
defun schemeA

&(dorg®& andg© trans) ©dist1° {1, [id,rotr] ©2] °& decoder
enddef

# scheme B inputs : <<a> <b>> outputs : <z1 z0>

defun schemeB(a,b)

& compare ©distl® [a, [b, tl%adder ©[b, [%1, %1, %1111
enddef

defun compare notg© dorg®& xorgC trans enddef

defun adder
seq ( FullAdder ©apndr) ©apndr© [trans, %0 ]
enddef

The results in tables 4.1 and 4.2 show that schemeA uses a total of 60 gates, while schemeB
uses a total of 21 gates. However, it is to be noted that 11 of the 21 gates are xor gates which
would normally occupy a larger area. Given an estimate of the area occupied for each of the
gates, it is possible to have an estimate of the area occupied by each implementation. Since
schemeA has 7 levels while schemeB has 8, schemeA would be faster than schemeB under the
assumption that all the tagged functions had the same delay.
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level andg xorg org mnotg
1 2 6
2 1 2 1
3 1 2
4 1 1
) 1
6 1
7 1
8 1
Totals 3 11 5 2

Table 4.2: Statistics for schemeB

4.3 Summary

This chapter shows how the »FP system provides simple means to incorporate performance
estimates for descriptions at any arbitrary level of abstraction. It should be noted that these
measurements are on the algorithm itself rather than an implementation of the algorithm
because idealistic assumptions are used in calculating these measures. Thus, it is possible
to get information about the location and amount of parallelism in the algorithm. Using
this and other easily obtained information, it is possible to obtain an approximation for the
data bandwidth involved at various locations in the algorithm. This will have impact on the
interconnection requirements of the algorithm and the area utilization as mentioned above.
At this crude level, the area that is calculated does not include any routing area that may be
required. Power requirement estimates can be calculated by summing the power requirements
for the individual cells. The two most important features of this method of gathering measures
about the algorithm are that these measures can be generated at any level of abstraction and
that there is a very low overhead associated with the collection of this data. In a preliminary
implementation [79] the performance statistics gathering source code was 15% of the total
amount of source code for the system. The performance penalty varied depending on the level
of abstraction chosen. If none of the functions are tagged then the only extra cost at run-time
is the checking of a variable which is negligible. If all primitives are tagged, the run-time
overhead is around 20%.

In addition to the time and space estimates provided by the level mechanism, the system
can be extended to allow the specification and calculation of user-specified parameters for each
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tagged function and for the algorithm as a whole. Examples of user-specified attributes could
be power dissipation and communication requirements (e.g., fanout). As was shown earlier,
attribute evaluation fits nicely within an applicative framework. This system was only partially
implemented. A complete implementation is suggested as future work.
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Chapter 5

Applicative Languages in the Design
of Algorithms

This chapter demonstrates how an applicative language is useful in the process of designing
an algorithm or system. During the detailed designing of a system, it is common to build
a behavioral model of the system or algorithm being designed to help in its evaluation and
construction. Parts of this model are continually refined and abstracted until the designer
is satisfied that the model faithfully reflects the intended behavior. Though most current
modeling systems allow the designer to construct models at different levels of abstraction, no
help is provided in proving behavioral equivalence under abstraction or refinement. One way
to approach this problem would be to set up a system that would be able to take two models at
different abstraction levels and then prove them equivalent. An alternative approach, the one
taken here, is to provide refinement rules that guarantee that the refined model is behaviorally
identical to the unrefined model. Either of these approaches is difficult, in general, because of
the presence of side-effects in the descriptions. The use of an applicative language like vFP
in the modeling system provides the basis for proving behavioral equivalence under refinement
by avoiding side-effects.

Design systems often provide users with the ability to have different views of the same
design object. This allows designers to use the view that is most appropriate at the given
point in the design process. However, support for moving smoothly between these views is
often lacking. This chapter shows how »FP can be used to change the representation view
in a provable manner so that the designer is guaranteed that all the views represent the same
behavior. This is accomplished via the use of transformations between views.

Any number of different modeling systems can be used to create the models. This discussion
is restricted to models capable of expressing concurrent behavior. One such model is the Graph

47



Model of Behavior (GMB) [29]. It is an asynchronous model of behavior whose control flow
model is similar to Petri nets [30]. The GMB was chosen because it is a sufficiently general
model of computation, because it has many imperative features that could benefit from the
introduction of an applicative language, and because an implementation of it was available to
the author.

5.1 The Graph Model of Behavior

The Graph Model of Behavior [81, 82] is a model of computation that is suited for describing
concurrent asynchronous behavior. The GMB consists of three separate but related domains.
The control domain deals with sub-computations and the dependence between them. The data
domain describes the flow and storage of data. The interpretation domain specifies the data
transformations and control flow decisions made by a sub-computation. The token machine is
an abstract machine which interprets a GMB and thus gives it meaning.

5.1.1 The Control Domain

The control domain is similar to a Petri net and deals with the specification of processes and
the precedence between processes. The control domain is described by a directed hyper-graph!
consisting of control nodes which represent processing activity and control arcs which define a
partial order on control node initiation events. Tokens may be placed on control arcs. They
represent loci of control during the initialization and execution of the model. More than one
control arc may enter or leave a control node. In this case, a control logic is defined on the
input and output arcs of a node. The input control logic and the associated semantics specify
the conditions under which the control node will be initiated and the input tokens that will be
removed when the control node fires. At the termination of the control node tokens are placed
on output arcs in a combination that satisfies the output control logic of that control node.
Let the boolean variable a represent the condition when one or more tokens are present on the
control arc a. More formally,

_J true if there is at least one token on control arc a
~ | false otherwise

The control logic is any boolean combination of the boolean variables using the boolean and
and or operators. The boolean not operator is not allowed in the GMB and hence it is not

'A hyper-graph is one in which edges between vertices may have more than one head and more than one
tail.
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possible to model “inhibitor” arcs. An input logic expression can be described by the following
BNF [83] :
erpr = exTpr + expr

| exprx expr

| expr > expr

| expr
As far as enabling is concerned, the priority operator, “>” can be treated the same as the or
operator, “+”. If the input logic expression evaluates to true, then the corresponding control
node can be activated (fired). In particular,

a*xb

as an input logic expression means that if there is at least one token on the control arc a, and
there is at least one token on control arc b, the corresponding control node will be enabled. If
the notation, used in an input logic expression, is

a+b

then it means that the node will be enabled if there is at least one token on control arc a or
at least one token on control arc b, or there is at least one token each on both control arcs a
and b.

When a node fires, tokens will be removed from input control arcs according to the input
logic expression. However, the rules for doing so are slightly different than those for the
enabling of control nodes. For token removal,

__J true if one token is removed from control arc a
false otherwise

The input logic expression

ETpr, * expry
means that tokens should be removed from control arcs in such a way that expr, and exTpry
are true. An input logic expression of

expry + expry

implies that tokens should be removed from control arcs so as to make either eTpr] Or erpry
true. The choice between making ezpr; true and making ezpr, true should be made non-
deterministically. If the control arcs involved in the input logic expression are simple?, then a

2A simple control arc is one which has exactly one head and one tail.
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stronger statement can be made that either expry or expr, will be true, but not both. However,
in the case of complex® control arcs, this is not possible because removal of a token from an
arc may affect both exzpr; and exzpr,. If the input logic expression of an enabled control node
is

€TpPry > expra

then tokens should be removed from control arcs in such a fashion that expry is true. Only if
that is not possible, should tokens be removed such that expry is true.

If the control node is a single-server node, then the node cannot be re-activated while it
is currently active. If it is an infinite-server node then it can be re-activated concurrently, if
its input logic expression is satisfied while it is currently active. The single-server and infinite-
server models were first proposed by Vernon in [84].

5.1.2 The Data Domain

The data domain deals with the flow and storage of data in the model. Datasets represent
place holders for data values. Simple datasets only hold one value at a time. Writing a simple
dataset destroys its previous value. Reading a simple dataset leaves the current contents
unchanged. Dataset queuves are datasets that can hold multiple values at the same time.
Reading a dataset queue removes data from the dataset queue and writing to it appends data
to it. If a dataset queue is empty and a data processor reads from it, the read will succeed
(i.e., it is a non-blocking read), but the value returned is undefined (see page 43 of (84]). In
the current implementation, dataset queues can either be first-in-first-out (FIFO) or last-in-
first-out (LIFO). Data processors are data transformers. Data arcs are directed arcs between
data processors and datasets. They show access paths between processors and datasets. Data
processors can access datasets only via data arcs. Fach data processor is associated with a
set of control nodes. When any node in that set is active, the corresponding data processor is
activated. It then reads data values from a subset of its input data arcs, performs any data
transformations necessary and then writes out data values to a subset of its output arcs.

In [84] Vernon introduces the use of a controlled read and priority read data arcs. There
Is a one-to-one mapping between a control arc and a data set that is connected to one of tails
of the data arc. In this case the data arc has one head and multiple tails. The idea is that
there is an explicit and enforceable relation between actions in the data domain and in the
control domain. If a processor attempts to read data from the head of such a data arc, the data
from the appropriate data set is automatically provided. The data set chosen will be the one
corresponding to the control arc which caused the invocation of the control node. For example,

3A complex control arc is a control arc that is not simple.
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Figure 5.1: Controlled-Read Data Arcs

in figure 5.1, if there are tokens on both control arcs a and b, and if node n is a single-server
node, either the token from a or the token from b will be removed when n is fired. If the token
from a is removed, and processor p reads from data arc d, then it will get the value of data set
da. If the token from b was removed, d would get the value of db. If the input logic for n was

a>b

instead of
a+b

the situation would still remain the same except that if there were tokens on both arcs, the
token from arc a would be removed first and the corresponding data from da would be read.
Details on precise semantics of the GMB may be found in [84] and in appendix B.

5.1.3 The Interpretation Domain

The interpretation domain specifies the particular data transformation performed by each data
processor. In addition, it specifies how long each data processor (and hence the associated
control node) is active, and which control arcs receive tokens at node termination. The node
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delay and output token distribution are dynamically recomputed during each activation of a
control node. The values written out on the output data arcs are computed in the interpretation
domain. The output value can be written out to the data arc at any time in between the
initiation and termination of the node. It is possible to selectively read input values from
input data arcs as required. In the case of dataset queues, it is important to read from only
those data arcs that are necessary because once the value is read, it is lost from the dataset
queue. For this reason, a function called $trigger is available. It returns a list of the control
arcs which had the tokens that triggered the node. This information can be used to decide
which data arcs to read upon node initiation.

5.1.4 The Token Machine

The meaning of a GMB is specified by the token machine. It is an abstract interpreter that
controls the flow of tokens during the execution of a GMB. It handles the storage and movement
of data through the data graph and manages the communication between the interpretation
domain and the other domains. If there are two data processors that have write access to
the same dataset and they have overlapping execution times, the token machine will warn
of potential conflict, because the semantics of the GMB specify that a data processor may
write onto its output data arcs at any time between processor initiation and termination. One
useful property of the token machine is that it does not require global information to determine
which nodes can be activated. For this reason, it is possible to implement a distributed token
machine. The number and connectivity of control nodes, data processors, and data sets are
fixed and do not vary with time. Only the location and quantity of tokens on control arcs and
the values contained within data sets can be changed.

5.1.5 Control Flow Analysis

Control-flow analysis [85] is a process that analyses the control flow graph for certain properties
independent of the data and interpretation domains. Because of this, control-flow analysis may
point out anomalies that may not actually exist if the data graph and interpretation were taken
into account. The properties are determined by building a computation flow graph (CFG) for
the given control flow graph. Typical properties that are checked for are liveness, boundedness,
proper termination, deadlocks, and infinite states. Proper termination implies that every state
in the CFG can reach a proper terminal state. Deadlocks (non-proper terminal states), fraps
(cycles in the CFG that have no exit), and infinite states in the CFG destroy the proper
termination property of a CFG. Discussions of these properties and their implications are
found in [86, 84, 85].
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Since the construction of the computation flow graph is exponential in nature, a reduction
procedure is used to shrink the size of the control flow graph before attempting to generate the
computation flow graph. To aid this reduction, the analysis assumes that each control node
has infinite-server semantics. Vernon, in [84], has shown that doing this does not introduce
any new anomalies nor does it remove any anomalies that were already there. Thus, this
simplification is valid if the user is interested in locating the anomalies, but may give incorrect
results if control flow analysis is used to determine the actual computational paths in a control
graph. All the extensions mentioned previously are compatible with control flow analysis. This
means that their introduction does not destroy the ability of the analysis to detect the various
anomalies.

5.2 vFP as an Interpretation Domain Language for the
GMB

The SARA (System ARchitect’s Apprentice) system [29, 82] is a collection of tools for the
design, analysis, simulation, testing and synthesis of concurrent asynchronous systems. Cur-
rently, it uses the GMB as the primary means to describe the behavior of the system models,
Any sufficiently rich programming language can be used to specify the interpretation domain
in the GMB. In the past, PL/I and T [87] have been used, and Ada, ISP [88], and MPDL
[89] have been proposed for use. The following sections show how vFP may be successfully
integrated into the SARA system as an interpretation domain language for the GMB.

In addition to being able to calculate output values, any interpretation domain language
used with the GMB has to be able to support four other operations. It has to be able to read
values from input data arcs, write values to output data arcs, inform the system of the delay of
the node, and specify which output arcs receive tokens on node termination. Normally, every
vFP function takes one or more input arguments and outputs one result (which may be a
list). If »FP is used as an interpretation domain language, the inputs and outputs take on
specific meanings which are described in the next paragraph. The name of the v FP function
that specifies the interpretation of a data processor is to be the same as the name of the data
processor itself. The formal arguments specified for that function are a list of the input data
arcs to that processor. All input data arcs are read at node initiation and their values are
passed to the vFP function as its actual arguments.

The function’s result is a list of three elements. The first element of the list is an association
list of (data arc,value) pairs. This tells the token machine to write out the specified value to the
corresponding data arc at node termination. The second element is a list of control arcs. This
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defun p ( da )
if da > %5
then [{[%db, da-%1]1, [%eb], %10]
else [[[%db, %011. [%ccl, %11 fi
enddef

Figure 5.2: A GMB and its interpretation function

informs the token machine that tokens are to be placed on the specified control arcs on node
termination. The third element is the node delay and it tells the token machine how long this
node is supposed to be active. For example, figure 5.2 shows a GMB and the corresponding
interpretation function written in v FP.

There are two restrictions on the type of interpretations that can be specified with this
scheme. The first is that all the input data arcs are read at node initiation time. This is in
contrast to the current scheme, where just those data arcs specified in an $input command are
read. For simple datasets this does not make a difference, but this may adversely affect GMBs
using dataset queues. In most cases where dataset queues are involved, the queue is read on
each node initiation. Hence, for most practical cases, this restriction is unimportant. In the
case where the control node has either a priority operator or an er operator in its input logic
expression, it must use the appropriate controlled read or priority read data arcs. So, again,
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there is no need to explicitly name the data arc to be read. The requirement for reading every
data arc on node initiation, though it slightly reduces the flexibility, more than compensates by
providing consistency. The consistency allows stronger statements to be proved about which
data values will be used. In addition, automatically reading the corresponding data arc for
priority and controlled-read arcs removes a common source of errors.

The second restriction is in the scheduling of data arc writes. Under the current schemne,
values may be scheduled to be written to data arcs after any time that is less than or equal to
the processor delay. In the proposed scheme, all output to data arcs is scheduled to happen
upon processor termination. Again, this restriction is not applicable for most practical cases
because most output does occur at processor termination. In those cases where intermediate
output 1s required, a single data processor with intermediate output can easily be split up
into two sequential data processors with the intermediate output coming out from the first
one. Only those data processors which schedule non-overlapped writes can be converted in
this manner. Formally, assume an output value of o; is scheduled at time t11 for output at
time #13 on a data arc, and another output o, is scheduled at time l9; for output at time 59
on the same arc. Only if the following condition holds

tiy S tog = by <ty

can the data processor be converted into two sequential data processors.

5.3 Abstraction and Refinement in the GMB

Past research [90, 91] on the Graph Model of Behavior (GMB) has suggested that refinement
and abstraction can be carried out on GMB primitives such as control nodes or data processors.
This chapter concentrates exclusively on control nodes. Refinement, in this context, means
replacing a control node with a GMB consisting of more than one control node. This GMB
has the same behavior as the original control node, as far as the rest of the GMB is concerned,
but at a lower level of abstraction. In this case, “same behavior” means that if the same inputs
(control tokens and data set values) are provided to the control node and the refined GMB,
both will give the same output (control tokens and data set values). Initial state, if any, has to
be modeled by static variables in the interpretation domain of the control node. Abstraction, is
the opposite operation—that of taking a sub-GMB and abstracting it to a control node. Again,
the new control node should behave the same way as the abstracted sub-GMB. Abstraction
and refinement are useful processes in the design of general systems. Here they are used in the
context of the SARA design method [82]. Refinement and abstraction of a control node may
involve the refinement of other GMB primitives in order to maintain semantics, although this
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Figure 5.3: Sample GMB
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Figure 5.4: Refined GMB
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is not addressed here for the sake of simplicity. The control domain is emphasized because it is
the only domain used in control flow analysis. In addition, changing the data and interpretation
domains to maintain semantics, though not automatic, is straightforward. Figure 5.3 shows a
sample GMB and figure 5.4 shows the control graph of a refined GMB where the control node
N2 of the original GMB is refined into a control subgraph. The corresponding data graphs and
interpretations are not shown because only control abstraction is considered here. The GMB
1s a powerful model of computation which allows the designer a lot of freedom in specifying the
model. This unconstrained freedom makes it difficult to prove properties about the model that
include information in the data or interpretation domains. Qwing to this unstructuredness,
previous work has been unable to show how to prove conclusively that the control node and
the sub-GMB are equivalent with respect to external behavior. At best, test examples were
used to verify that the control node and the sub-GMB reacted in similar fashion to each of the
test cases.

In an attempt to deal with this problem, Ruggiero [91] and Campos [90] restrict the class
of sub-GMBs to single-entry-single-exit (SESX) sub-GMBs. Intuitively, a SESX GMB is a
GMB that has one distinguished input primitive and one distinguished output primitive. The
type of the input primitive is the same as that of the output primitive (for example, they
could both be control nodes). With this restriction, it is possible to perform a syntactic
refinement or abstraction. “Syntactic”, in this context, means, for example, that the SESX
sub-GMB in figure 5.4 replaces the node N2 of figure 5.3 in place without regard to any
meanings (or interpretations) associated with the node. Conversely, only SESX sub-GMBs can
be abstracted into single GMB primitives (control nodes, in our case). Ruggiero [91] shows that
if the original GMB was properly-terminating, and if the replacement sub-GMB is properly-
terminating, then the resultant GMB, after refinement, will also be properly-terminating. This
is an important result, because it allows us to infer properties of the refined GMB independent
of the interpretation domain. However, this result still does not say anything about whether
the two GMBs will, in fact, result in the same external behavior. This is because the behavior
of the nodes in the refined sub-GMB is not taken into account.

Even these restrictions are not strong enough in general because sequential specification
languages have been used in the interpretation domain of the GMB for the most part. The GMB
is a parallel model of computation, and if a sequential language is used in the interpretation
domain, there is a mismatch created during abstraction or refinement. In one case, it is
necessary to translate a program written in a sequential language to one in a parallel language.
This, as shown in [92], is a hard problem to tackle in the presence of side-effects. The problem
is that it is difficult to uncover the dependencies between statements or data values when the
algorithm is expressed in a conventional imperative language. The converse problem of taking a
program written in a parallel language and converting it to a program in a sequential language
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is easier. Even so, it is not possible to perform a straight-forward syntactic transformation.
A full semantic analysis has to be performed in order to transform the program. Normally,
this is the case because even though the language allows the description of parallelism, the
dependencies between statements are not syntactically obvious and have to be deciphered
using semantic analysis. For instance, if there is a multiple parallel assignment statement that
exchanges the values of two variables

a:=b |l b:=a;

then the translation has to figure out that there needs to be a temporary variable that is needed
to store an intermediate value, when this parallel program is translated into a sequential one.

Using a parallel language in the interpretation domain alleviates some of these problems
but creates other ones. This approach is taken by Krell [93] and Overman [89], though re-
finement or abstraction was not their emphasis. Krell concentrated on modeling Ada tasking
primitives with the GMB. In most of the cases he was able to model all the semantics of the
tasking primitives using only the control domain. In a few cases, he had to resort to using
the interpretation domain as well. Krell also showed how to translate some specific GMB
subgraphs into equivalent Ada programs. He leaves open the question of whether there are
any GMB constructs that are impossible to model in Ada. Using an interpretation domain
language capable of expressing parallelism (in this case, Ada) allows Krell to move represen-
tations of the algorithm that have been modeled in the interpretation domain into the control
domain. Overman [89] describes how to translate a GMB into concurrent state deltas* which
describes a parallel model of computation. In contrast to Ada, concurrent state deltas make
the dependencies between the state deltas explicit and hence it is possible to easily transform
concurrent programs in that representation into sequential ones.

In addition to the software engineering benefits of using a language without side-effects,
vFP allows us to prove that the refinements and abstractions that we are allowed to perform
do indeed maintain the behavior of the two GMBs. Obviously, any arbitrary control node
cannot be refined; nor can any arbitrary sub-GMB be abstracted. The class of GMBs on
which these procedures can be successfully applied is described at the end of section 5.2.

iConcurrent state deltas are a formalism for describing concurrent behavior. They consist of state deltas
that may be active concurrently. State deltas represent actions, and are specified by pre-conditions, that must
hold before a particular state delta will be activated, and post-conditions, that hold after the state delta has
completed. This is a simplified view of concurrent state deltas.
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5.4 Refinement via Transformations

The basis of the approach used to allow refinement in the GMB is to use an applicative language
(in this case, »FP) as an Interpretation Domain Language. Since vFP is referentially trans-
parent, there exists an algebra of »FP programs which allows us to have a set of transforms
that are guaranteed to maintain the meaning of the program. The main idea is to develop
a translation between »FP constructs and GMBs. These should be direct enough that their
correctness should be obvious. Using these translations, the interpretation of a control node
can be transformed to an equivalent GMB. Because the translations are meaning-preserving,
we can be sure that the resultant GMB behaves properly. Since vFP has inherently parallel
semantics, it is a good malch for some of the parallelism expressed by the GMB. Performing a
naive one-to-one translation from vFP will result in a correct GMB, but one which may have
less parallelism in it than would be desirable. Transformations can again be used to convert
that GMB to one that exhibits more parallelism but does not change the meaning of the GMB.
In the process of incorporating #»FP into the GMB, it was discovered that certain aspects of
the semantics of the GMB had been inadequately specified in the past. Appendix B remedies
that. All further discussions in this chapter assume the semantics specified in Appendix B.

5.5 Equivalences between vFP Constructs and GMBs

This section shows equivalences between some vFP constructs and GMBs. Only the equiv-
alences for the basic combining forms of »FP are shown since all other combining forms can
be modeled in terms of the basic ones. It also discusses under which conditions these equiva-
lences are valid and which #FP constructs have no GMB equivalences. For example, general
recursion is not possible in the GMB because it is a semi-static model of computation in the
sense that it is not possible to create new GMBs on the fly.

The easiest is the compose functional form. This takes two functions and composes them
together sequentially. Since composition in »FP is denoted in the same way as mathematical
composition, the ordering is backwards and the output of the second function specified is passed
as the input to the first function specified. For example, if we had the program segment

fog

the corresponding GMB would be that shown in figure 5.5.
The construct is a parallel functional form that composes two functions together in a
concurrent manner. The program segment corresponding to this is

[f, 8]
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Figure 5.5: Compose

Figure 5.6: Construct

and its GMB is shown in figure 5.6. Two additional control nodes called Fork and Join have
been introduced to handle the synchronization. The interpretation of the Fork node duplicates
its input on both of its output arcs. The interpretation of the Join control node reads off one
value from each of its input data-arcs and constructs a sequence out of them. This sequence is
then written onto its output arc. The order in which the items are constructed into a sequence
is important and dependent on the order specified in the original ¥ 7P program segment.

The conditional functional form concerns us next. The vF'P program segment correspond-
ing to the GMB in figure 5.7 is

if p then g else r fi

Again, we need an extra Fork control node to duplicate the input value. Its interpretation is
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Figure 5.7: Conditional

the same as mentioned previously. However, since we know that only one of g or r is going to
be executed, we need only make one copy for both of them. For the same reason, we do not
need a Join control node to provide any synchronization. The control node corresponding to
p will read a value from its input data-arc. If p applied to that value results in the boolean
value true, a token is placed on the control arc leading to the control node q. If the result is
false, then a control token is placed on the arc corresponding to the node r.

Unfortunately, it is not possible to represent general recursion in the GMB. The corre-
sponding »FP program segment to represent general recursion would be

defun f if p then gelser ©f O} fi enddef

The problem lies in the position of the function . This could be done if the GMB had facilities
to create GMBs at execution time, but since the GMB is a static model, this is not possible.
Thus, it is impossible to convert a general vF P recursive function to an equivalent GMB.

For the special case of a tail recursion, it is possible to construct a GMB that performs
the equivalent iteration. A tail recursion can be expressed in #FP by the following program
segment

defun f if p then ¢ else f ° A fi enddef
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Figure 5.9: Right Insert

The corresponding GMB is shown in figure 5.8. This GMB is similar to that of the conditional,
with a few additions. The first difference is that the Fork node can be triggered by either
the initial token coming in, or from the iterated token. However, there is no change in the
interpretation of the node since all the complexity is handled in the control domain. The other
difference is the additional control arc from the node q to the Fork node. This is necessary to
prevent this GMB from executing two different iterations of the loop at the same time. This
forces a serialization of successive iterations even if there are no data dependencies. If the
GMB had colored tokens, this restriction could be removed.

The right insert functional form in ¥ FP performs an iteration over a sequence of elements.
This is similar to the tail recursion just handled, except that the stopping criterion is the
exhaustion of the elements rather than some predicate on the input. The vFP program
segment is

v f

and the GMB corresponding to this is shown in figure 5.9. The data processor DP1I is the key
to this arrangement. It receives the complete input sequence and first picks off the last pair of
elements. If there 1s only one element in the sequence, this is just sent to DSQ3. Otherwise,
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the pair is sent off to DSQ4 for consumption by the data processor F. Until all the elements of
the sequence are consumed, the result from DSQ2 is composed with the currently last element
of the sequence and resent to DSQ4. After the sequence is exhausted, the output is sent to
DSQ3. The exact interpretation domain code for the processor DP1 is given below.

if =© [length, %1]
then
[[%da3, id]]
else
[[%da4, concat © [tl, t1°t1]]]
fi

This particular transformation does not result in a parallel GMB, but can be useful if the
designer needs to monitor each iteration. The transformation shown is for the right insert
functional form. The left insert is similar except that the sequence elements are supplied to f
sequentially from the beginning of the sequence rather than from the end of the sequence.

In the case when the function f to be inserted is associative, the designer has the option
of using the associative insert functional form. The semantics of this form allows the parallel
evaluation of the insert in a tree fashion. Hence, it is not necessary to sequentialize the iteration
and a parallel evaluation strategy can be used. However, unless the structure of the input {that
is, the number of elements in the input sequence) can be deduced prior to execution, this cannot
be transformed to a GMB owing to the static nature of the GMB. If it is possible to deduce
the length of the input sequence a priori, a GMB can be created that is similar to that created
for the construct form. This is shown in figure 5.10.

The apply-to-all functional form

& f

can similarly be expanded only if the structure of the input is known before execution. Basically
what the transform does is to take an apply-to-all and convert it into a construct with the
appropriate number of functions. The GMB for this form is shown in figure 5.11. The similarity
to the construct form shown in figure 5.6 should be obvious.

5.6 The GMB Refinement Procedure

Now that the correspondence between v FP forms and GMBs have been described, the refine-
ment procedure for GMBs can be demonstrated. Suppose that a GMB at a particular level of
abstraction is given and that the interpretation domain language is »FP. The control graph
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Figure 5.11: Apply-to-all
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Figure 5.12: Commutative Diagram for a Ripple-carry Adder

is to be modified to represent the model at a lower level of abstraction. Usually this is because
the designer wants to explicitly model, in the control domain, more of the concurrency present
in the model. Most often, this is done to permit control-flow analysis on the resultant GMB.
It should be noted at this point that this procedure does not give designers any net refinement
or abstraction. Rather, it allows them to conveniently choose what they want to model in the
control domain and what they want to model in the data domain. Moreover, it allows them to
change this view in a smooth manner as they go along. First, users should use the algebra of
vJFP programs to transform their interpretation domain to the level of abstraction they intend.
Since this is done using the algebra of vFP programs, the resultant interpretation domain pro-
gram is guaranteed to be equivalent to the original in behavior. Now that the interpretation is
at the lower level of abstraction the transformation rules shown in section 5.5 can be used to
transform the required subsets of the interpretation domain program into equivalent GMBs.
As mentioned above, this procedure does not result in net refinement. For example, con-
sider the problem of proving that a ripple-carry adder implements the addition function. The
solution consists of three steps. The first step is to prove that the ripple-carry adder works
on bit-vectors. The second is to show the mapping from natural numbers to bit-vectors. The
third 1s to show the reverse mapping from bit-vectors to natural numbers. This scheme is often
demonstrated using a commutative diagram as in figure 5.12. The proof for the ripple-carry
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adder can be carried out using the techniques described above. However, the above techniques
do not say anything about the mapping from naturals to booleans and vice-versa. In other
words, the techniques of this chapter refer to the refinement of the algorithm and are not
concerned with the refinement of the domain and range of the algorithm being refined. Chin
[94] proposes methods for performing such refinements using transformations. These methods
can be directly applied to the v FP framework.

5.7 The GMDB Abstraction Procedure

As has been mentioned before, abstraction is the opposite of refinement. The previous section
uses the transformations of section 5.5 to translate vFP expressions to equivalent GMBs.
Abstraction requires that these same transformations be applied in the reverse direction to
translate known sub-GMBs to the appropriate v FP constructs in the interpretation domain
of a control node. As will be noticed, all the transforms in section 5.5 produce properly-
terminating SESX GMBs. If users want to perform an abstraction on a particular GMB, they
first scan the GMB for graph patterns that match the GMBs mentioned in the transformations.
If such a pattern is found, then that sub-GMB can be replaced by an equivalent control node
whose interpretation is given by the corresponding vFP expression. Obviously, not all GMBs
can be abstracted in this manner. In particular, GMBs often contain control graphs that model
mutual exclusion. Unfortunately, general mutual exclusion cannot be directly translated into
vF'P expressions. However, for the special case when mutual exclusion is used to serialize
the execution of two or more processes (as shown in figure 5.13), it is possible to translate
that particular GMB to v FP by simply choosing one particular sequence of execution for the
concurrent processes.

5.8 Optimizations

Naive applications of the rules in section 5.5 will produce GMBs that are correct, but which may
be very inefficient. This section discusses some simple optimizations that can be performed to
alleviate some of the inefficiency. In this context, “inefficiency” means that there is unnecessary
serialization of computations that could possibly run concurrently. There are two classes of
optimizations that will be discussed. The first kind are those that are based on vFP laws
and thus can be performed on either the »FP program itself or on the resultant GMBs.
Since it 1s easier to manipulate the v FP program, it is suggested that these optimizations be
performed on that representation. The other class of optimizations are those that make use of
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Figure 3.13: Simple mutual exclusion of processes
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Figure 5.15: GMB corresponding to [f © g, f © k]

the semantics or other known properties of the GMB.
As an example of the first class of optimizations, consider the following v FP law.

&folg,h]=1[f °g,f °h]

The corresponding GMB for that law is shown in figures 5.14 and 5.15. If the user performed
a naive translation of the left hand side of the above equation, they might end up with a GMB
that is like the one shown in figure 5.14. As can be seen, there is an unnecessary serialization
(synchronization) performed by the Join node because it is immediately followed by a Fork
node. It would be preferable, in general, to use the GMB shown in figure 5.15 There are other
simple optimizations based on the v FP laws such as this one.

Very often, in »FP, it is necessary to use a succession of selectors to get at a particular
item of interest. An example would be

10403

This means that you first take the third element of the sequence, then extract the fourth
element of that, and then the first element of that. A naive translation, would lead to a GMB
as shown in figure 5.16. However, since the data arcs of GMBs have the capability of specifying
that only parts of the dataset (or dataset queue) should be accessed, a sequence of composed
selectors can be replaced by just one data arc as shown in figure 5.17.
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Figure 5.17: Selective data arc access
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Figure 5.18: Fork node using dataset queues

In many cases, dataset queues can be replaced by simple datasets if it can be determined
that there will only be at most element in the dataset queue at any time. There are two methods
of insuring that this condition holds. One is by analysis, and the other by introducing explicit
concurrency control mechanisms with extra control arcs and control tokens.

For example, if we know that the output dataset queues of a Fork controlled processor are
going to have at most one data element in each, we can replace the GMB in figure 5.18, by
the GMB shown in figure 5.19. Not only do we replace dataset queues by the simpler datasets,
but, since datasets can be read multiple times without having their contents destroyed like
dataset queues, it is possible to reduce the number of dataset queues when the same value is
fed to more than one other data processor.

In many cases, control flow analysis can be used to show that control arcs will have at most
one token on them. If these arcs are associated with dataset queues (as they will be for all the
transformations shown in section 5.5), then those dataset queues can be replaced by datasets.
Another way of insuring that at most one token will ever be on a control arc at any time is
to use an explicit acknowledgment scheme that will allow a node to output a token only when
the previous token (if any) has been removed by the succeeding node. This is accomplished by
adding extra control arcs as shown in figure 5.20.
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Figure 5.19: Fork node using datasets

Figure 5.20: Scheme to incorporate explicit acknowledgments

5.9 Summary

This chapter demonstrates different ways in which #FP can be used during the design process.
It first details the methods and conditions (section 5.2) under which »FP can be integrated
into the SARA design system as an interpretation domain language for the GMB. By itself,
this has two major benefits. The first benefit is that it provides the GMB with a concurrent
interpretation domain language. This language is formal and analyzable enough that it can
be used to prove properties about the data domain transformations it specifies. The second
benefit is that, to the extent that this dissertation demonstrates a method for synthesizing
vF'P expressions, it provides a path for the realization of GMBs in silicon.

The introduction of »FP as an interpretation domain language in the GMB permits a
procedure for formally proving refinement in the GMB during the process of design. Providing
designers with an equivalence between GMB templates and v FP expressions allows them to
move smoothly between the GMB’s different domains. They can thus choose the most appro-
priate domain to model the items of interest and still be able to transform the representation
into another domain later when their focus changes. The transformation can be carried out
mechanically without having to re-verify that the resultant GMB still maintains the origi-
nal semantics. These transformations also can be used in proving that refined GMB models
have behavior equivalent to the unrefined ones (section 5.6). The opposite process is used for
abstraction (section 5.7).
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Attempting to incorporate a small, formal language like vFP into a richer, unstructured
system like the GMB highlighted problem areas in both. On the GMB side, it showed that
there are still some aspects of the GMB semantics that are not sufficiently formal or well
understood. Appendix B clarifies some of these aspects. Also, the proposed methods for
refinement show that restricting the types of GMBs used can lead to more formal and hence
provable structures. On the v FP side, this research showed the limitations of an applicative
language in representing concepts like mutual exclusion and non-determinism.
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Chapter 6

Applicative Languages in the
Synthesis of Algorithms

Most approaches of performing high-level synthesis from behavior to structure [68] use some
kind of directed graph as an intermediate form to represent behavior. Sometimes, more than
one graph is used to model different aspects of the behavior. Synthesis consists of mapping
this graph into an implementation via function scheduling and resource allocation. Hardware
modules (e.g., functional units, registers, and memory) and communication paths (e.g., buses,
switches) between the modules are allocated to the nodes and edges of the data flow graph
respectively [95, 72, 96, 97, 98]. In order to implement the control structure, the nodes of the
control graph are mapped onto states of a control automaton or to instances in time. This is
called scheduling. Instead of scheduling the control graph only in time, researchers have also
looked at scheduling in space-time [74, 75]. This results in formal approaches that can be used
to reason about the behavior as a specification and as implementation.

vF P takes a transformational approach to synthesis. Transformations have been used for
the synthesis of combinational circuits before. vFP extends the domain of transformational
synthesis to sequential circuits using space/time duality.

Recall that the behavior and structure are described by the same expressions in vF7P.
Thus, the same expression that describes the behavior can be viewed in a structural manner,
resulting in the initial structural implementation. Starting from the initial solution, »FP
expressions are then transformed using pre-defined and proven substitutions to generate a
structural implementation that consists only of primitives. These primitives can be at any
level. In the current system, the primitives are gates. Therefore, the synthesis produces a
binary-level logic design.

Next, space synthesis is performed. This consists of generating planar topology via symbolic
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evaluation of the vFP expression. If direct implementation takes too much space, parts thereof
can be transformed via space/time transformations into equivalent sequential implementations.
This is called time synthesis. If this is satisfactory, the descriptions are converted to a form
acceptable to a back-end system that performs the layout.

6.1 Overview of the Synthesis Process

This section provides an overview of the synthesis process in vFP and specifies exactly which
vF'P constructs may be used at which point in the synthesis process.

6.1.1 Classification of vF7P Constructs

The set of all vFP constructs can be organized into three subsets. The first is the set of all
available #»FP functions and forms. The second subset is the subset that is implementable.
The third is the subset of the second that are actually used in the generated topological layout.

All vFP functions: This is the full set of vFP functions and functional forms described in
chapter 2. This set is as powerful in describing algorithms as FP. These functions can be
used to specify algorithms at the high level.

Implementable vFP functions: Not all vFP functions can be implemented because of the
method (symbolic evaluation) used in the system for extracting topology. Functions
whose output structure depends on input value (like iota and pick) cannot be used for
generating topological layouts. In addition, the description of the algorithm must be such
that the predicate of any conditional is evaluable in terms of structure only. Also, the
second and third arguments of a sw must have the same structure. All other functions
are implementable.

Layout Management Functions: Out of the set of implementable functions, the functional
forms are only used to guide the layout process and do not have any physical realization
themselves. They are only used to specify the connectivity between the modules corre-
sponding to their arguments. Only the set of functions that are implementable and are
not layout management functions {i.e., primitives) are used for the physical layout.

6.1.2 The Steps in Synthesis

The synthesis process consists of the following steps.
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. Specify the algorithm in terms of the behavior.

. Debug the specification using test data until you are convinced that the specification
represents your intent.

. Generate a top-level structural description. This is essentially a trivial step because, in
vFP, structure and behavior have the same description.

. Transform the description, using substitutions, to successively lower levels of abstrac-
tion until the modules used are those that are implementable. This means that all
un-implementable functions must be transformed out. For example, an iota could be
used at a high level to model a counter, but at lower levels, it must be transformed into
an implementation of a counter using other implementable primitives. Similarly, a pick
can be transformed into a series of sw’es. Visual and performance feedback is used to
guide this synthesis. This process may need iteration and modification of previous design
steps.

. Generate a direct space implementation topology. If this is satisfactory, then the topology
can be fed to the back-end for mask layout generation. If this topology occupies too much
space or if the implementation is supposed to work on sequential data, the designer must
go to the next step.

. Generate a time implementation of the algorithm using space/time transforms. Opti-
mizations to the resultant description can be performed to meet the design goals.

. Balance the delays in the circuit by moving all the inverse delays introduced in previous
steps out to the edges of the circuit.

. Generate a time-domain topology of the circuit.

. Send the generated topology to the back-end system for physical layout generation.

6.2 Specification and Design of Algorithms

Designers first specify the algorithm in »FP. They are free to choose whichever level is “best”
for their current purposes. At a lower level of abstraction, where the structure of a function
is to be considered, the definition given earlier (figure 2.2, page 28) would suffice to describe
the behavior. For example, at some higher level of abstraction, the structure of the Fullddder
may not be relevant. The FullAdder could be defined in terms of HalfAdders. The algebra of
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vFP programs may be used to reason about the algorithm. In addition, the specification may
be executed with sample data to debug the program.

defun Fullddder(a,b,Cin)
[1 org 2, 3] ©apndl®
[1, HalfAdder© [2,3]] ©
apndr © { HalfAdder © [a,b], Cin]
enddef

defun HalfAdder(a,b) [a andg b, a xorg bl enddef

Substitutions may be used to refine the program to whatever level of detail is required. In
this way it is possible to specify the algorithm at a level of abstraction that is high enough to
aid understanding and debugging and then refine it to the level necessary for implementation.
In the current implementation, the circuit is transformed down to the gate level, and, in
particular, until the only gates used in the circuits are those found in the cell library. There is
no inherent reason to stop at this level. The framework allows the designer to stop refinement
at either a lower (e.g., transistor) level or at a higher (e.g., macro-cell) level.

6.3 Space Domain Implementations of vFP Algorithms

A vFP algorithm can be mapped into a structure corresponding to a combinational network
by passing symbolic inputs to functions which in turn generate symbolic outputs. The unit of
information represented by a symbolic atom reflects objects at the level of abstraction. Thus, a
symbolic atom may represent a wire, a set of wires, a bit vector, or an integer, as required. An
acyclic computation graph with vFP primitives as nodes is obtained by tracing the application
of a function to a symbolic input. This computation graph can be transformed into a layout
in two steps.

1. The computation graph will contain many edges that go nowhere. This is because vFP is
a strict language and therefore may compute intermediate results that are not needed for
the computation of the final output. These dangling wires are removed using a pruning
algorithm that works by traversing the graph backwards from the edge of the graph.

2. After this pruning, a one-dimensional compaction is performed to get the wires and
modules as close together as possible.
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Figure 6.1: FullAdder with andg, org, xorg

Details of these techniques can be found in [55]. By tagging the appropriate functions (see
chapter 4), the layout may be generated at any desired hierarchical level. For example, fig-
ure 6.1 shows a layout of a FullAdder using and, or, and zor gates. This corresponds to
tagging each individual gate which is the default. Figure 6.2 shows the same FullAdder as
being composed of HalfAdders. This corresponds to tagging the HalfAdder and the or gate.

Structural iterations over the input of the circuit can be handled by the insert and apply-
to-all functional forms. Other types of structural recursions are allowed in ¥FP since the
conditional functional form is treated as a structurel form for the purposes of layout. Figure 6.3
gives an example of a function that would not be possible to describe if only structural iterations
were allowed. Depending on the value of the predicate of the conditional, either the consequent
or the alternate part will be evaluated symbolically for its structure but no structure will be
generated for the predicate part. A new primitive called sw (for switch) is provided in v FP
which corresponds to the conditional form in uFP. This primitive takes three arguments. If the
first is true then the output is the second argument; if it is false then the outpuf is the third
argument; else the result is 1. In addition, it is required that the structures of the second and
third arguments be the same.

A vFP description of a circuit can be generic in the sense that the description is independent
of the input dimensions of the circuit. For example, there needs to be only one description of
a decoder. This same description works for a decoder independent of the number of inputs.
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HA

OR

Cout Sum
Figure 6.2: FullAdder with HalfAdders

defun gand
if = ©[ length, %1]
then 1
else if = ©[ length, %2]
then end?2
else if even © length
then gand °& and2 © pair
else gand © apndl° [1, gand °& and?2 © pair©tl]
fififi
enddef

Figure 6.3: A generalized AND using structural recursion
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The 3-to-8 decoder shown in figure 6.4 is obtained by evaluating the description of the generic
decoder with a symbolic argument of size 3. Figure 6.5 shows how the generic iterative decoder
is formed by first applying 1-to-2 decoders (Dec1) to the inputs and then inserting the function
DecStage. DecStage takes an n-to-2" decoder and a new input to make a (n + 1)-to-2"+!
decoder.

defun Decoder !DecStage © &Dec! enddef
defun DecStage &andg© concat © &distl ©distr enddef

defun Dec! [notg,id] enddef

As mentioned in chapter 4, these implementations may be evaluated to get speed/area
estimates, but now, since routing is taken into account, a better estimate of area can be
provided.

Cell iterative networks are combinational circuits which are formed by interconnecting a
particular cell in a regular pattern. Although combinational circuits without feedback can be
described in vFP using the forms inherited from FP, some additional functional forms are
provided to give designers more control over exactly how cell iterative networks are to be laid
out. These networks are thus readily described in vFP by invoking the form (corresponding to
the interconnection pattern) on the function (corresponding to the cell). For example, figure 6.6
shows the seq functional form pictorially. Sometimes it is necessary to have two inputs to the
function F' at each stage and to have one of those inputs come in from the z direction and
the other from the y direction. This is accomplished by the seqxy functional form shown in
figure 6.7. Though both forms result in the same computation graph, their layout is different.

6.3.1 Restrictions

Though any function in »FP can be simulated with value inputs to debug or test it, not all
vJFP functions can be laid out. This is not because they are inadmissible in an applicative
framework, but rather because vFP has chosen to extract structure from the vFP algorithm
via the symbolic evaluation of the algorithm. Other methods for structure extraction (e.g.,
partial evaluation as used in p#FP) may be able to relax these restrictions.

The mapping from a vFP algorithm to a combinational network is allowed under the
following restrictions. Functions like iota or pick, whose output structure depends on its
input walue, cannot be laid out. This is because, during symbolic evaluation, iota will be
passed a symbolic argument and it needs a value in order to determine the number of elements
in (and hence the structure of) its output result. For the same reasons, the predicate part
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Figure 6.4: 3-to-8 Decoder
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Figure 6.6: The seq form
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Figure 6.7: The seqxy form
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of a conditional must be evaluable to a boolean. This implies that the predicate must be a
structural predicate (i.e., it must be evaluable using only structural information). For example,

! and °& null
or
= O[ length, %4 ]
are allowed predicates, whereas
=°[3, %]

is not. The last restriction is that the second and third arguments of the sw must have the
same structure.

6.4 Time Domain Implementations of vFP Algorithms

As was shown in section 6.3.1, virtually all #FP programs can be laid out. However, since
iterations are unfolded in space, the resulting layout might occupy more area than is available.
Also, the inputs to the circuit might be coming in serially along the same wire(s), rather than
in parallel on separate wires. In both these cases, it is convenient to implement the circuit {or
parts of it) as a sequential circuit rather than a combinational circuit. In #FP this is done by
replacing certain space-domain functional forms by their time-domain duals.

&f =D~ oPOSIO &Tf o SOPI
If =D 1017f0apndr©[SOPI tlr,last]
seqf = D~1%apndl® [1,POSI® t1] ©seq”?f © apndr © [SOPIC tlr,last]

In these equalities SOPI is a parallel-out-serial-in shift register, SOPI is a serial-out-parallel-in
shift register, and &%, "7 and seq” are the time-domain duals of the corresponding space-
domain functional forms introduced earlier. Figures 6.8 and 6.9 show the layout of the time
domain duals of the apply-to-all and right insert functional forms respectively. The 7 and
seq? forms use the first element of their input sequence as the initial value of the internal
register (REG). This makes it possible to specify the initial state of a sequential system in
vFP. D!is a phantom element that corresponds to an inverse time delay. It is used to
keep track of the number of clock pulses by which the output is going to be delayed. This
information is needed by the construct functional form to synchronize its components since the
semantics of the construct require that the outputs of its elements appear together. Generally
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Figure 6.8: Time domain apply-to-all
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SOPI

REG

Figure 6.9: Time domain right insert
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the D! elements are moved, via transformations, to the outputs of the circuit where they
serve to denote the delay.

When elements of a sequence are available serially in time along the same wire(s), it is nec-
essary to know when each element is valid. This is accomplished, during symbolic simulation,
by having each symbolic item carry the name of a clock with it. It is assumed that its value
will be stable before every tick of the named clock. The system will automatically widen the
intervals between clock ticks to ensure that this is true. Initially, all the inputs are associated
with the same clock. Each combinational element will assign to its output the clock associated
with its input. If there are n elements to the input sequence of a SOPI, then each of its output
elements will be clocked by the clock nCy; and conversely for a POSI. A clock named nCy
denotes a clock which has n clock ticks in between consecutive ticks of the clock named Cj.
Though the description of a SOPI or POSI is generic, the value of n (the number of elements
in the sequence) must be known at layout time.

As an example, consider a time-domain implementation of an inner-product algorithm

1+ OF %

The straightforward implementation of the algorithm, using the equations given above, would
result in the layout shown in figure 6.10. Since there are two D! elements in the layout, the
output will be delayed by two clock ticks from the input.

However, using the identities

D10 POSI © f 0 SOPI
fop

apndr © [D~1 © POSI © &%f © SOPI © t1r, f © last]
Dlof

Tl

SOPI° D1 o POSI = id
apndr © [tlr, last] = id

POSI© D1 0 SOPI
[t1lr, last]| © apndr

the program may be transformed into the following
D101l 4 0apndro[&T + ©SOPIO tlr,* © last]

whose layout is shown in figure 6.11. The single D~! element denotes that the output is delayed
only one clock tick from the input.

Note, however that there is an extra multiplier used only once at initialization. Domain
knowledge can be used here to eliminate this multiplier. Since 0 is the identity for addition,

I+ O x= ! + Of % o[ apndr© [ id, %0, %0] ]
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It is easy to show that
[ fotlr, g©last] %apndr®( p, ¢1 =[f%p, g%¢ ]
The above equations and the fact that
* 9L %0, %01 = %0
can be used to further improve the inner product algorithm into
D-101T 4 0apndr© (&7 * ©SOPI° tlr, %0

which does not require an extra multiplier. This exercise is a very good example of the benefit of
incorporating initial conditions into the framework. The ability to reason about and manipulate
the initial value of the register allowed us to optimize out the mulitiplier.

6.4.1 Restrictions and Extensions

This implementation accepts all its inputs simultaneously and eventually gives its result. 1t will
only work for input sequences of one particular length, since only fixed size SOPIs can be laid
out. However, if each element of the input sequence was input serially to the implementation,
a corresponding POSI could be introduced at the input and then used to transform out the
SOPI that exists in the current implementation. This would make the implementation generic
in the sense that it would be able to handle arbitrary length sequences as its inputs.

Applying space/time transformations to a purely combinational circuit introduces D1
elements into the description. Obviously, these cannot be implemented. Therefore they have
to be transformed out to the edges of the circuit where they represent the latency of the circuit.
Care must be taken to make sure that the delays in each arm of a construct are balanced (i.e.,
each arm of the construct must have the same delay).

6.5 Formalizing Sequential Systems in vFP

Section 6.4 shows how space-domain implementations may be replaced by their time-domain
duals using space/time transformations. This section establishes a formal basis for talking
about time in an applicative framework and provides a method for proving the correctness of
the transformations in section 6.4. An example demonstrates how such a proof may be carried
out. Other useful identities are listed.
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6.5.1 Formal Domains

Assume that each vFP object is tagged with an index. This index is taken from the set of
all Dewey-decimal numbers. To be more formal, the index set, Z, is the the set of all finite
sequences of natural numbers.

I=J{{do,d1,...,dn) |0<i<nAd €N}
neN

Assume that 7 € T is a typical index.
¢ = (do,d1,...,dn), d € N
Then, we can also represent 7 as the Dewey decimal number
i =do.dy...dy

The tag of a vFP object is represented by a subscript on the left hand side of the object. As
a short-hand, if all the elements of a sequence are tagged by the same index, then the sequence
itself is tagged by that index and the indices are removed from the individual elements.

g(ﬂ?n, Caay .’L‘g) = <,;.’L'n, e ,,’CL‘Q)

These indices will be used to specify temporal sequencing among v F P objects. The indices
have a natural alphabetic sort defined on them. This ordering specifies the temporal ordering
of the objects that the indices tag.

t < 1.7 VieI; jeEN
1.y<tk VieI jykeN; 1<k
In particular, note that
t < .0
All objects in FP can be deemed to be tagged by just 0. This is the base case. If a particular

vFP object O, is tagged with an index i, and another object O is tagged with ¢ and ¢; < i
then it means that O; will be evaluated before O;. To be more precise

< iy —> time(,-l 01) < time(,'zOg)
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6.5.2 Time Primitives and Axioms

Let the following be defined as axioms:

SOPIn/k . -,'(.Xn, . .,X[)

) (i.n+kX?-; vy i.an-,- ves 7:'.0X0)
POSL/k ¢ {imt26 X7, -5 imskXny - -y ikX0)

= i+1(Xn7---X0v)
D:i; X = ijnX
t € T
sn € N

SOPIL, ) is a function that converts a space sequence to a time sequence. In the case where
k = 0, the function is represented by just SOPI. In this situation, each element of the space
sequernce is available at the same spatial Jocation but at increasing moments in time. If k& # 0
then it means that the time sequence is padded with k arbitrary elements, X7, at the end. It
should be noted that SOPL, . is only valid when applied to a sequence and results in a sequence
in which the index of each element of the sequence is incremented by another Dewey-decimal
level.

In a similar fashion, POSL, /i is a converter from time to space. When k = 0, an unadorned
POSI is used. The space sequence will be available after all the elements of the time sequence
have arrived and so the outer Dewey-decimal index is incremented. In the case when k # 0,
though it will accept n + k elements, only the first n of them are used for the output. In
addition, the first input element is skewed by a delay of k.

The delay operator, D, defined above is used to define the inverse delay operator, DL
In addition, note that both D and D~ work on single elements or sequences. Obviously, an
inverse delay cannot be implemented, but it will be useful in transformations and will provide
a notion of the latency of the implemented circuit.

D (X,,...,Xo) = (D:Xn,...,D:XO)
D = po...,D
—,——/
k times
pHtop-t = D
p*F = pilo . D!
ktivrr;es

‘Dal : (Xn,...,Xg)) <D—l :Xn,...,D_l :Xo)

il

6.5.3 Example Proof
Given the axioms above and the definition

&Tf  {nXns. o s0X0) = (f : Xuy-oos0f : Xo) = (aYas. -+ 50Y0)
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we prove the following space-time transformation for the apply-to-all functional form. &7 is
the time-domain equivalent of the space-domain “&” form.

&& f = D1 08S0PI°o D~ o SOPI° &T f o POSI © POSI

The proof makes reference to figure 6.12. Let the input (point 1 in figure 6.12) be
{{(Xnmse ooy Xno)se ooy (Xoms -+, Xo,0)}
After the first SOPI (point 2) it gets transformed to
G Xnmy oo s Xng)s v ri0{Xomy -« -y Xo0,0))
After the second SOPI (point 3) it is
{linmXnms -+ 1in0Xn0)s-- > (io.mXoms - »i.00X00))
After the function &7 f (point 4) it becomes
{{inmYnms-+rrin0Y¥no)s---si.0mYoms---,i00Y00))
After the first POSI (point 5) the result is
(int1{Ynms- s Yoo)y- oy i041(Yoms - - -» Yoo))
After the first D! (point 6) it is
(in(Yamy oy Yo -y i0{Yom,---, Yoo)}
Passing it through the second POSI (point 7) results in
i+1{(Yams -, Yap)s oo (Yom, .- -, Yop))
Finally, after the second D! (point 8) it is
{(Yomy - Yaody ooy (Yoms -+, Yoo))

which is the same result as passing the original sequence through && f.
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6.5.4 Identities

Some other identities that can be proved similarly are

id = D 1oPOSI°SOPI (6.1)
= SOPI°D-10POSI (6.2)
= POSI°SOPI° D! (6.3)
DopD! (6.4)

Let fr be a function that delays its output by &,

pirkY = fr ;X
Then, we can show that

POSIOD*0&Tf 0SOPI = POSL, ©&" f ©SOPL,/x (6.5)

The proof is straightforward. First, consider the RHS. Let a generic input sequence be
A Xa, ..., Xo)

Passing this sequence through SOPI/; yields

{intk X7y oo yinXny ..o, i0X0)

by the definition of SOPL, ;. fr converts this sequence to

(int2kY?, ooy imtkYny oy ikY0)

By the definition of POSL, 4, this results in

i+1(Xna--'aX0)

which is the same result that would be produced by the LHS on the same input sequence.
This theorem is useful because it allows us to absorb D~'s into SOPI/POSI pairs and thus
eliminate them from the circuit. In theory, this transformation could be applied only in the
case when it was proven that the function f; delayed its output by k. However, in practice,
since the user is not allowed to introduce arbitrary SOPIs or POSIs in the program, it will

always be the case. An earlier method of converting space sequences to time sequences was
reported by Meshkinpour in [99, 64].
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6.6 Interface to Layout Tools

The preceding sections have shown how combinational and sequential circuits are generated
from v FP descriptions. This section describes one method of converting the topology derived
in section 6.3 to descriptions acceptable to layout tools. Wu, in [100], describes a different
approach to interfacing the topological description to the VIVID [101, 102] layout system. The
symbolic grid paradigm of VIVID is a good match to the topological information provided
by the vFP system. This section describes another approach, using the same information,
but interfacing to the LagerIV [47, 103] silicon assembly system. The tool of interest in the
LagerlV system is the flint layout generator [103]. flint takes a net-list description of the
connectivity of a circuit and then places and routes the connections automatically. It also has
capabilities for allowing human interaction to improve the placement of cells and routing of
nets. The connectivity information is provided in a language called SDL (Structure Description
Language) and the placement and routing information is specified in a language called FDL
(Floorplan Description Language). In the absence of a FDL description, flint is capable
of generating a placement, but this placement ofien leaves a lot to be desired. With the
topological information available from a vFP description it is possible to provide placement
information to flint that improves its placement efficiency.

6.6.1 Cross-sections

The topological information derived from a #FP description consists of a list of cross-sections.
Each cross-section consists of a list of cross-section elements. This section provides an overview
of the format using an example. The complete description is provided in [55].

A cross-section is a horizontal slice of a topological description. Each cross-section element
can be one of three types:

-

1. A free wire is a symbol other than $, *, +, or

2. A crossing of the form
(* w * ul u2 ... un)

where the wire w is a horizontal track that crosses vertical wires. At least one of the u’s
must be a + or a ~. + denotes an upper connection to the horizontal track, and ~ denotes
a lower connection to the track. u’s that are not ~ or + denote wires that feed through
the cross section. For example,
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Figure 6.13: A crossing cross-section element

(*xa*b " c+"~d" " et

represents the crossing shown in figure 6.13.

3. A cell of the form
($ level $ ht uid label wd $ i1 i2 ... in § o1 02 ... op)

where level is one of £ (first), i (intermediate}), or 1 (last) cross-sections of a cell. level
could also be b in the case where the cross-section includes the whole cell. ht, uid, label,
and wd are the height, unique identifier, label, and width of the cell respectively. The i’s
and o’s are the ordered inputs and outputs of the cell.

Figure 6.14, adapted from [55], shows the layout of an XNOR gate generated from the
following »FP expression

defun znor

notg °nandg © & nandg

°© [[1,2],(2,3]] ° [1i,nandg,2]
enddef

and whose cross-sectional representation is given in figure 6.15.
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Figure 6.14: Layout of a XNOR gate
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((GO0051 G00052)
(GO0051 (* GOO052 * + ~ ~))
((x GOOO5B1 * + ~ ~) GO0052 GO0052)
(GO0051 GO0051 GO0052 G00052)
(G00051 ($ F 2 GO0062 NAND 3 $ GOOO51 GO0052 § GOOOG3 §)
G00052)
(G00051 ($ L 2 GOO062 NAND 3 $ GOOOS51 GOO052 $ GOO0053 $)
G00052)
(GO0051 (* GOOO53 * + ~ ~) G00052)
(GO0051 GOOO53 GO0O5S3 G00052)
(($ F 2 GOOO60 NAND 3 $ G00051 GO0053 $ G00054 $)
($ F 2 GO0O061 NAND 3 $ G00053 G00052 $ GOO00S5 $))
(($ L 2 GOOOEO NAND 3 $ GO0051 GO0053 $ G00054 $)
($ L 2 GOOOB1 NAND 3 ¢ GOO0053 G0O00S52 $ GOOO55 $))
(G00054 GOOOS55)

({($ F 2 GO0059 NAND 3 $ G00054 GOO055 $ GOOO56 $))
({($ L 2 GOOO59 NAND 3 $ G00054 GOO055 $ GOOO056 $))
(G00056)

(($ B 1 600058 NOT 2 $ GO0OO56 $ GOOOS7 $))
(G00057))

Figure 6.15: Cross-sections of a XNOR gate
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6.6.2 Generating the Connectivity Information

It is now easy to extract the netlists from the cross-sectional representation. The method is
to look at only the cross-section elements that refer either to £ or b levels (i.e., the inputs
to cells). For each such element, add the inputs and outputs of this cell to the appropriate
netlists. For example, consider line 5 of figure 6.15 corresponding to the fifth cross-section of
figure 6.14. Traversing this cross-section shows that the NAND gate labeled G00062 has G0O0051
and GO0052 as inputs and GO0053 as an output. Hence, (G00062 IN1), (G00062 IN2), and
(G00062 OUT1) are added to the netlists for G0Q051, G00052, and GO0053 respectively. The
power and ground connections for each cell also have to be provided. In addition, it is a simple
matter to deduce the inputs and outputs of the composed circuit by using the first and last
cross-section respectively. The SDL file generated using this algorithm is shown in figure 6.16.

There is one detail that needs to be taken care of. In many instances, there will be cells
that have feed-through wires in them. The most common example is that of a one-bit decoder
shown in figure 6.17, whose v FP description is

defun onedec [id,notgl enddef

In such cases, because of symbolic evaluation, the label of an output of the cell will be the same
as one of the input labels. The correctness of the netlist extraction algorithm mentioned above
depends on the input and output labels of a cell being distinct. This problem can be avoided
by making sure that such a case does not arise. The simplest way of achieving this is to force
the system into generating a new label for each output by passing each output through an
AND gate whose second input is set to true shown in figure 6.18 and whose vFP description
is shown below.

defun onedec & andone® [id,notgl enddef
defun andone andg® [id,%1] enddef

Since only the onedec is tagged, the symbolic interpreter will only generate topology for it and
will not generate any for andone. In the case of SOPI’s and POSI’s, the andone has to be on
the inputs and not on the outputs.

6.6.3 Generating the Placement Information

Generating the placement information required by flint is only slightly more complex than
generating the SDL file. Each cross-section is first collapsed into a list of cells and channels.
Because of the information already in the cross-section element, it is easy to figure out in which

100



(parent-cell "xnor" )
(layout-generator Flintil)
(subcells ( NOT GO0058 ) ( NAND GO0O59 )
( NAND GOO0061 ) ( NAND GO0060 ) ( NAND GO0062 ))

(net GO0056 (NETTYPE SIGNAL)

(net G00055 (NETTYPE SIGNAL)

(net GO0054 (NETTYPE SIGNAL)

(net GOQO053 (NETTYPE SIGNAL)
(GO0061 IN1)))

(net G00057 (NETTYPE SIGNAL) ( (parent OUT1) (GO0058 OUT1)))

(net G00052 (NETTYPE SIGNAL) ( (parent IN2) (G00062 IN2)
(G00061 IN2)))

(net GO0051 (NETTYPE SIGNAL) ( (parent IN1) (GO0062 IN1)
(G0O0060 IN1)))

(G00059 OUT1) (GOOO58 IN1)))
(G00061 0UT1) (GOOO59 IN2)))
(Go0060 OUT1) (GO0059 IN1)))
(G00062 OUT1) (GO0060 IN2)

TN ST ST

(net Vdd! (NETTYPE SUPPLY) ( (parent Vdd!) (G00058 vdd!)
(600059 Vvdd!) (G00061 vdd!) (GO0060 vdd!) (GO0062 Vdd!)))

(net GND! (NETTYPE SUPPLY) ( (parent GND!) (G00058 GND!)
(G00059 GND!) (G00061 GND!) (G00060 GND!) (GO0O062 GND!)))

(terminal OUT1 (TERM_EDGE BOTTOM) (TERMTYPE SIGNAL))

(terminal IN2 (TERM_EDGE TOP) (TERMTYPE SIGNAL))

(terminal IN1 (TERM_EDGE TOP) (TERMTYPE SIGNAL))

{terminal Vdd! (TERMTYPE SUPPLY))

(terminal GND! (TERMTYPE GROUND))

(end-sdl)

Figure 6.16: SDL of XNOR gate
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Figure 6.17: One-bit decoder with feed-through

AND

NOT

Figure 6.18: Modified one-bit decoder

AND
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cross-section a cell starts and in which one it ends. Since this information is not directly avail-
able for channels, it is derived by examining adjacent cross-sections. First, the corresponding
cells of adjacent cross-sections are lined up. Consider two consecutive cells that match. If there
is a channel between them in both cross-sections then that channel is a continuing channel. If
there were no channels between them in the previous cross-section, but there is a channel in
the current cross-section, then it is the start of a new channel. If there were a channel between
them in the previous cross-section, but there is no channel between them in the current cross-
section, then the old channel has ended. Now that it is determined where the channels start
and end, another pass through all the cross-sections can be used to generate the adjacency
information required by FDL. In practice, these three passes can be merged into one.

6.7 Generating a Layout

Once the connectivity and placement is specified, the LagerlV tool £lint is used to perform
the final placement and routing of the connections. At the end of this stage, a file suitable for
Magic [3] is produced. If everything is satisfactory at this stage, the mask layout information
is produced in Caltech Intermediate Form (CIF) [104]. The CIF layout for the XNOR gate is
shown in figure 6.19. Its correspondence to the topology in figure 6.14 should be obvious.

6.8 An Example: A Conditional-Sum Adder

A conditional-sum adder [105] is a fast adder that reduces carry propagation delays by simul-
taneously generating conditional sums corresponding to both input carry values. When the
distant carries have been determined, they are used to select either one of the two conditional
sums resulting in the true sum. This treatment is adapted from [100] which should be consulted
for details.

The conditional-sum adder takes an input of the form

((.’L‘n_l, e ,(Bg), (yn.—ly - ,yg),(,‘_1>

and returns a result
(Crn Sn—1s:+, 30)

The addition is performed in three steps:

1. Arrange the input into bit pairs.

2. Generate conditional sums.
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Figure 6.19: XNOR gate CIF Layout
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3. Iterate over the conditional sums to get the true sums.

defun csa
combine © genSums © selup
enddef

The function setup takes an input of the form

((mn—h cen ,3«‘0), (yn—l, .- .,yg),c_l)

and re-arranges it to form the output

(((xn—layn—l) s (:B], yl))(%, yO,C—l»

defun setup ( a b c )
[ t1r©®1, apndr®[ last©®1, 2]] ©[ trans®[ a , b ], <]
enddef

The function genSums generates the conditional sums and carries for each of the bit pairs.
A true sum and carry is generated for the the least significant bit pair. The format of its

output 1s:
({{ens snon){cns saa))s- - {{eny s0)))
¢' (s'} is a conditional carry (sum) assuming the carry-in is s.

defun genSums
apndr © { & provSumGen , [ FA ] }
enddef

FA is a full adder, and provSumGen is a function that generates the conditional sums and
conditional carries for a bit pair. The input is

(»’Ci,yi)

and the output is

((c}+11 3})3 (C?+1 ? S?))

defun provSumGen
[ [ org, znorg 1 , HA ]
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znorg is an XNOR gate and HA is a half adder.
The function combine takes a list of conditional sums/carries and iteratively combines them
into a true sum.

defun combine
if = ©[ length, %1 1]
then id
else combine © group fi
enddef

The function group pairs off a collection of conditional sums from the least-significant bit
and combines them together. The input is of the form

(((Crlw 3111—1)1 (62132,—1))1 ey ((cls 50)))

and the output is
(((0711!3;—1!3:11—2% (C?n S?a,-la 3?;.—2))3 cey ((cl% 30)>)

The details of group’s implementation are not shown here. The interested reader is referred
to [100].

The topological description of a conditional-sum adder is shown in figure 6.20 and the
corresponding CIF is shown in figure 6.21. This adder could not be generated without hierarchy
because doing so resulted in more cells than could be handled by the layout tools. Hence the
adder was hierarchically composed out of 2-to-1 multiplexors, a full adder and the cell called
C'HA that corresponds to the function provSumGen.

The topological layout of the CHA cell is shown in figure 6.22, and the CIF generated is
shown in figure 6.23.

The exercise of generating the layout for the conditional-sum adder brought out a problem
with the interface to the layout system. In vFP, functions are generic and can describe cells
of different bit-lengths. In this particular example, a generic multiplexor was used. To get the
layout 1n figure 6.20 the v FP function corresponding to the multiplexor was tagged. However,
in the resultant topology there are two 2-bit multiplexors and one 3-bit multiplexor. vFP
considers both of them to be of the same type but the layout system considers them to be
of two different types. This mismatch was resolved by having the vFP system check the
number of inputs to each instance of a generic multiplexor and have it generate a request for
the appropriately-sized layout cell. However, having the system perform the check implies
that it has to have knowledge of the cells which are generic. If the layout system provides the
capability of describing parameterizable cells, an alternative would be to have the v F'P system
generate instances of the parameterized cell with the appropriate size parameter.
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Figure 6.20: Topology of 4-bit Conditional-Sum Adder with carry-out
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Figure 6.21: 4-bit Conditional-Sum Adder Layout
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Figure 6.22: Topological Layout of provSumGen
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6.9 Summary

There are two methods for high-level synthesis of structure from behavioral descriptions. One
method is to develop a computation graph from the behavioral specification and to map the
computation nodes to physical hardware (the process of allocation) and to states of a control
automaton (the process of scheduling). The other is to use semantics-preserving substitutions
to convert a specification at the high level down to one only consisting of primitives whose
implementation is known. v FP takes the latter approach.

In the v FP synthesis method, substitutions are used to transform a high-level behavioral
description down to an equivalent description that only uses the primitives that are available
for implementation. Currently this process is guided manually. It is the designer that decides
which transformations to apply and the order in which to apply them. After applying the
transformations there should be no constructs (like iota) whose output structure depends on its
input value. In addition, all conditional predicates must be evaluable with only the knowledge
of the structure of the input. Under these conditions, the vFP expression is symbolically
evaluated and the resultant computation flow graph (actually a tree) is laid out. This is called
space synthesis.

If this fully expanded circuit takes up too much space on the chip, the designer can choose
parts of the circuit to be transformed from a space-domain layout to a time-domain layout.
These transformations make use of space-time duality to guarantee that applying these trans-
formations will not change the semantics of the description. This is called time synthesis. After
all the required sub-circuits have been converted to their time-domain implementations, the
delays in the circuit have to be balanced, by moving the D! elements to either the inputs
or outputs of the circuit. Other optimizing transformations may also be applied at this step.
At this point the only D~! elements will be at the input or output of the circuit where they
denote the latency of the circuit. The circuit description is now ready to be shipped out to
a convenient back-end system for the generation of the layout, routing of input/output pads,
and power routing. Currently, the interface is to the LagerIV system. Though a layout can
be produced automatically, it may be rather inefficient. Lager]V allows human intervention to
improve the quality of the layout.
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Chapter 7

Comparison with pFP

pFP [18] and v FP [19] are two, independently developed systems that use variants of Backus’
FP [60] to specify algorithms and then synthesize circuits directly from those descriptions.
Both these systems are similar in that they make use of the correspondence between programs
written in FP and the connectivity of the primitives that make up the program. For the most
part, they are equivalently powerful in that they are able to describe the same class of circuits.
However, they differ in their handling of sequential circuits and generation of layout. To gain a
better understanding of the strengths and weaknesses of each, this chapter attempts to define
precisely the fundamental differences between the two systems.

7.1 Handling Sequential Circuits

(#FP extends the semantics of FP to stream semantics. That is, instead of each yFP function
operating on a single argument as in FP, uFP extends the semantics of the functions to operate
on a infinite sequence (stream) of input arguments.

f (in pFP) = & (in FP)

vFP considers an algorithm independently of its implementation. Most valid vF'P pro-
grams, however, have a straightforward implementation in space. That is, all sequences in
the algorithm are laid out spatially so that each element of the sequence occupies a different
spatial location in the implementation. Under conditions mentioned in section 6.3.1, sequences
laid out spatially, can be transformed, using time-space duality, into sequences in time. In this
case, successive elements of the sequence occupy the same spatial location, but arrive at that
location at different instances of time.
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uFP works only on infinite streams—finite streams cannot be handled. On the other hand,
vFP works on finite streams, but infinite streams can be incorporated by first assuming that
the input sequence is finite and then removing the sequentializing and parallelizing constructs
(SOPI and POSI) from the beginning and end respectively (see section 6.4.1).

7.2 Handling Initial State

On page 9 in [18] it is assumed that the initial state of the “latch” that holds the state is “don’t
care”.

if f:({z1,?),{z2,81),...) = {01, 51), (02, 52), (03, 83), .- -)

then uf:{x1,22,23,...) = {01,02,03,...)

This is also corroborated by equation VIII on page 16 of [18]. This would imply that xFP is
only capable of describing circuits that are “self-starting”*.

However, on page 87 Sheeran says

... the user must provide the initial state ... because the shape of the state of a
it cannot always be deduced from the context ...

This initial state is provided by the user during the evaluation of the uFP program and does
not constitute a part of the program. In addition to providing the “shape of the state of a u”,
the value of the initial state is used to calculate the result of a uFP program (see figure 6.4 on
page 91 of [18]). This specification of the initial state by the user allows uFP to describe circuits
that are not self-starting. On the other hand, in »F P, the initial state of every state register
is explicitly specified as one of the elements of the input sequence. In the case of the left insert
and left seq, it is the first element of the sequence. In the case of the right insert and right
seq, it is the last element. The cost of incorporating initial state into the description can be
seen in the proof in section 7.6.3. The corresponding proof in uFP is significantly shorter.

7.3 Extracting Layout

The pFP system takes a uFP program and then replaces all instances of the insert and apply-
to-all forms by composes and constructs. To do this, it makes use of the shape and value of the

LA self-starting circuit is one that can be forced into a predetermined state by using a finite sequence of
inputs, independent of the initial state.
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Figure 7.1: Pseudo-bidirectional data fiow

input and initial states provided by the user. At the end of this phase, it has transformed the
pFP program into a simple data-flow graph of the computation with storage at the p nodes.
This graph is then laid out using the functional geometry [36] system.

On the other hand, »FP uses symbolic interpretation of the program to extract topology
of the circuit (see section 6.3 and [55]). This is then pruned and passed through a compactor
to get the layout.

7.4 Conditionals

In vFP, there are two types of conditionals. The first is if-then-else-fi. This is used to
implement structural recursion. For a circuit containing this type of conditional to be laid out,
the condition must be evaluable using only the structure of the argument. This form does
not result in any actual layout, but is used to control what is laid out. The other type of
conditional is the sw and corresponds to a multiplexor in terms of layout.

uFP always expands conditionals into what v FP calls sw’s (see page 88, and to a lesser
extent equation V on page 16 of [18]). This restricts the ability of the system to use structural
recursion to describe complex circuits. A later extension [106] to 4FP removes this restriction.

7.5 Bidirectional Flow

On page 44 of [18] Sheeran describes a horizontal composition form called “<” that allows
bidirectional communication between modules. In the general case, as shown in equation XIII
on page 44 of [18], this could lead to a “deadlock on instability in calculating the output”.
However, in all given examples, even though the module may look as if it is performing bidi-
rectional communication, the data flow is unidirectional as shown in figure 7.1 below. A later
extension [106] to uFP removes this restriction.
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Figure 7.2: Composition of two sequential machines

7.6 Combining Sequential Machines

In uFP there is an identity that relates the combination of two sequential machines. The
machines are connected in such a way that the output of the first is connected to the input of
the second. In uFP , the identity can be stated as:

ulf gl © plh,g] =
plfoheoll,202],102], [ge[h°[l,2°2],102],;5°[1,2°2]]] (7.1)

This section develops the corresponding identity for vFP. The formal proof of this identity
(section 7.6.3) is an excellent example of how transformations can be used to prove that two
descriptions in »F P have the same input-output behavior.

7.6.1 The Combinational Theorem

First consider the space implementation of a seq. Figure 7.2 shows how two sequential ma-
chines can be combined with the output of the first connected to the input of the second.

As can be seen in figure 7.2, the two functions seqa and seqb are laid out so that the
output of seqa is fed to the inputs of seqb. However, the dotted lines show that we can
consider the combined function to be a seq of the function inside each dotted box.

Considering the same layout in these two different ways gives us the identity we will be
proving.

Theorem 7.1
seq([[1°P, 1°Q], 2°Q]) = apndl©® [[1°X, 1°Y], t1°Y]

vhere X = seqa ©apndr© [tlr, 1°last]
Y = seqb©apndr® [t1°X, 2°1last]
P=a °[t, 1°2]
Q=0b °[2°P, 2°2]
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Figure 7.3: A single stage of the combined machine

7.6.2 Informal Proof

First consider each stage of the combined seq as shown in figure 7.3. It consists of a function
of two inputs, the second of which is a pair. The output is a pair, the first element of which is
itself a pair.

Consider the output of the function a. a takes the first element and the first element of the
second element as its inputs and gives a pair as output. This is represented by the intermediate
function P.

Now consider the output provided by the function b. Its inputs come from the second
element of P’s output and from the second element of the second element of the original input.
This is represented by the intermediate function €.

Now we can see that the first element of the output of the whole function is a pair, the first
element of which is the first element of P’s output and the second element is the first element
of @’s output. The second element of the whole function is simply the second element of @’s
output.

This is the left hand side of theorem 7.1.

Now for the right hand side. Consider X to be the function computed by the first seq
only. Its input consists of just its initial state, which is the first element of the last element,
appended on the right of the rest of the input argument (see figure 7.4}).
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Similarly, let the function computed by the second seq be Y. Y’s input is the second

element of the last element of the input appended to the right of the tail of X’s output (see
figure 7.5).

Now, we can see that the total function is formed by prepending the tail of ¥’s ocutput

with the pair consisting of the first element of X’s output and the first element of ¥’s output.
This is the right hand side of theorem 7.1.

7.6.3 Formal Proof

The formal proof uses the recursive definition of the seq functional form.

f if arglength = 2 (7.2)

concat©[fO[1,1°2],t2°2]9[l,seq f°+tl1] if arglength > 2
seq f =
1 otherwise

For proving the base case, assume that the input argument consists of just two elements.
In that case,

seaf =/ (7.3)
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We will also use the following identities

tlr
t1l
last

apndr ° [[f], 9]

[1]
[2]

2

[f, 9]

o~ s
NN

-] O U
N N St S

which are true for the case of an input with two arguments. The following identities can be
easily proven to be true for suitable arguments. For example, (7.11) and (7.12) assume that f

returns a two-element sequence.

1° concat © [f, g]

1% apndr © [tlr,] © last]
10201, /]

t1 9 concat ©[f,¢]
1°apndr© (t19 f,g]

To prove the base case of an input with two elements, we first show that

10f

1

10f
apndl©[2° f,g]
20 f

X=Pand Y =@

Lemma 7.1

z=PF
Proof:
X = seqa ©apndr©[tlr, 10 last|
= seqa %apndr©[{l],1°2]
= seqa °[1,192]
=a 9[1,192]
=P
Lemma 7.2
Y=@

Proof:
Y = seqb ©apndr?®[tl9 X, 2°1last|
= seqb ©apndr®[[2° X], 1°2]
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(7.8)
(7.9)
(7.10)
(7.11)
(7.12)

defn of X
by (7.4), (7.6)
by (7.7)

by (7.3)
defn of P

defn of Y
by (7.5), (7.6)



=seqb °[29X,1°2] by (7.7)
=b °[2°9X,1°2] by (7.3)
=Q defn of @

We can now use the previous two lemmas to prove theorem 7.1 for the base case.

Proof:
apndl © [[1°9X,1°Y],tl° Y]

=apndl © [[1°P,1°Q], t1° Q] by lemmas 7.1, 7.2
=apndl © [[1°P,1°Q],[2°Q]] by (7.5)
=[[1°P,1°Q],2°Q] defn of apndl
=seq([[1°P,1°@},2°Q)) by (7.2)

Now we are ready to handle the inductive case. First, however, we need to prove some
lemmas.

Lemma 7.3
t1 © apndr © [tlr,] © last] = apndr © [t1r,1© last]°tl

This is easy to prove for the case where the input is more than two elements and is left as
an exercise,

Lemma 7.4
t1°apndr©[tl© X,20°last] = apndr©[t1° X,2°1last|°tl

This, too, is an easy exercise to prove for the case when the input has more than two
elements.

Lemma 7.5

19g°[1,1°X0°¢1]=1°X

Proof:
1°X =1 °seqa ©apndr®[tlr,] ©last] defn of X
=19%concat®[a®[1,1°92],£1°2] 9[l,seqa®tl]
© apndr © [tlr,] © last] by (7.2)
=10%a 0[1,1°92] °[1, seqa ©tl]
© apndr© [tlr,1 © last] by (7.8)
=19%a 9[1,1°2] °[1, seqa °t1°apndr®[tlr,]° last]] by (7.9)

=19a0[1,102] ©
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[1, seqa © apndr © [tlr,1 © last] O t1] by lemma 7.3
=1 %a °[1,1 °seqa ©apndr® [tlr,1° last] ©tl] by (7.10)
—10°a 91,10 X 041 defn of X

Lemma 7.6

1°9Y =1°5°[2049[1,1°9 X °0t1},1° ¥ 0t1]

Proof:
1Y =19%seqb ®apndr®[t1° X, 20 last| defn of Y

=1 C%concat®[b©°[1,1°2],t1°2] ©[l,seqb ©tl]

©apndr©[tl10 X, 201last| by (7.2)
=1°b ©[1,1°2] ©[1, seqb ©tl]

© apndr © [t1° X,2° last] by (7.8)
=10b 0[1,102] ©[20° X, seqb °tl

© apndr®[t1° X, 2° last]] by (7.12)
=1°b ©[2°X,1%seqb

©apndr®[tl1© X, 2°last] ©tl1] by lemma 7.4
=109b 0203 °[[,1°X °tl],1°Y °t1] defn of Y, lemma 7.5

Lemma 7.7
[leX,10Y]=[1°P,1°Q]°[1,[1°X,1°Y]°t]]

Proof:
[foeP,1°Q] °[1,[]1°X,1°Y]°t]]
=[1%a ©[1,1°2],1°b°[2°a9[1,1°2],20°2]

0[1,[1°X, 19 Y]0tl] defn of P, Q)
=[lo°a°[1,1°X ot1],

19b°[2°2a0f1,1°9 X ©1],1° ¥ ©+t1]] by expansion
=[1°9X,19Y] by lemmas 7.5, 7.6

Lemma 7.8
apndl 20 @°[1,[1°X,1°Y]otl,tl° Y otl]=1t1l°Y
Proof:

t1°Y =t19%seqb ®apndr®[tl1° X, 20 last] defn of Y
=1t1%concat®[b®[1,1°2],t1°2] °[1,seqb ©tl]
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© apndr©{tl1° X, 2°last] by (7.2)
=apndl®[2°b°[1,102],t1°2] °[1, seqb ©tl]

©apndr©[tl° X, 20 last] by (7.11)
= apnd1°[2°9b°[1,1°92], t1°2]
0[2° X, seqb ©9t1%apndr®[t1° X, 2°last]] by (7.12)
= apndl1©[2°b9[1,122], t1°2)
0[2° X, seqb ©apndr®[t1© X, 201last]®tl] by lemma 7.4
= apnd1®[2°b°[1,1©2],t1°2]°[2°0 X, Y °¢1] defn of Y
= apndl®[2°b°[20 X, 19V 2t1], t1° Y ©¢1} by expansion
Now we gather all the lemmas together to show the final result.
Proof:
LHS = concat®[[[1°P,1°@],2° Q] °[1,10°2],t1°2]
©[1,apndl@[[1°X,1° Y], t1° Y] 0tl] by theorem 7.1, (7.2)
= concat O [[[1°P,1°Q],2°@Q] °[1,[1°X,1°Y] °¢t1],
t10 Y o+tl1] by expansion
=apndl®[[1°P,1°Q] °[1,[1° X, 10 ¥]ot1],
apndl1©°[2°Q ©°f1,[1°9X,1°Y]°+tl], t1° Y ©t1]] by expansion
=apndl®[[l° X,1° Y], t1l° Y] by lemmas 7.7, 7.8
= RHS

7.7 Summary

This chapter points out the differences between yFP and vFP-—two similar systems for syn-
thesizing VLSI circuits from applicative expressions. The major difference between them is the
way they handle sequential circuits. ¢FP handles sequential circuits by extending FP semantics
to infinite streams. Thus pFP is more suited to describing and synthesizing circuits like sys-
tolic arrays that work on infinite streams of data, and has difficulty dealing with finite length
sequences. On the other hand, »FP incorporates sequential circuits by using space/time du-
ality on fixed length sequences and is thus better suited to synthesizing algorithms that use
sequences of fixed length.

A successor to pFP called RUBY [107, 106] uses relations on infinite streams instead of
functions which provides greater clarity and symmetry to the descriptions. The uFP restrictions
on structural recursions and bi-directional flow are lifted in RUBY.

Another difference between v FP and uFP is the way in which they handle initial conditions.
In pFP the initial conditions are specified separately from the circuit description. In vFP the
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initial conditions are part of the input and are used by the description. Both uFP and vFP
have a law which shows how to transform a sequential composition of two state machines into
one higher-level state machine. The proof of the vFP law is provided in this chapter. It
serves as an extended example of the use of transformations in proving properties about the
representation. However, the vFP proof is much larger than the corresponding pFP proof.
The difference in size can be traced to the fact that vFP incorporates the initial conditions
into the description whereas uFP does not. It is not clear whether benefits of dealing explicitly
with the initial conditions in the description are worth the added complexity of the proofs.

122



Chapter 8

Conclusions

The objective of this research was to develop a formal high-level language approach to specifica-
tion, simulation, performance evaluation, floor planning, and chip layout for VLSI systems. A
high-level applicative language (vFP) and programming style was the basis of the approach. A
prototype system was built that can be used for describing algorithms, providing performance
estimates, and generating topological layouts at all levels of abstraction. An interface to a
back-end VLSI layout system is provided for the generation of mask layouts.

This dissertation covers a part of the design space (see figure 1.1 for the complete spectrum).
The highest behavioral abstraction level covered is that dealing with algorithms and their
specification. Algorithmic descriptions are then converted into structural designs at the level
of interconnected modules. These modules are further refined until the modules represent
realizable primitives at the binary level. Topological floor plans are generated from this network
of gates and fed to a back-end system for the physical layout level generation of layout masks.

8.1 Design Framework

The major contribution of this work is in providing a coherent framework, based on an applica-
tive language, for the specification, analysis, design, synthesis and layout of VLSI algorithms.
The fact that there is one coherent framework, makes the design of tools operating on the
representation easier. Additionally, users only need to learn one language to be able to use
the system at all the different levels. The disadvantage is that the same language may not be
ideally suited to all the levels. In this particular case, our experience shows that vFP is more
useful at a higher level of abstraction and tends to be less so at levels lower than the gate level.

One of the benefits of using vFP is that by appropriately choosing the set of primitive
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functions, the user can stop the refinement procedure at any convenient level of abstraction.
For instance, this dissertation describes a method whose level of realization is that of custom
VLSI. There is no reason why a designer could not stop at the gate or macro-cell level if the
intended implementation backend was to be gate-arrays.

An important aspect of the v FP framework is the ability to study the design representation
at any arbitrary level of abstraction. Designs can be evaluated with respect to performance
and visual feedback provided at all abstraction levels. This feedback, the visual and the
performance measures, is extremely beneficial in allowing designers to take appropriate action
all throughout the design process.

8.2 The vFP Tools

Various design tools were developed as part of this research. Figure 8.1 shows the overall
data-flow in the »FP design system. Programs can be written in either of two forms. The tFP
interpreter accepts programs written in the »F P syntax described herein, the bFP interpreter
accepts programs written in the Berkeley FP [79] syntax. The tFP interpreter, written in T
[87], performs syntax checks and converts the program into an intermediate form that is an
annotated T expression. This intermediate form is a prefix parse tree of the original vFP
program. The conv program converts a program written in Berkeley FP to the intermediate
form. The quick-layout program symbolically interprets this intermediate form to generate
the topological cross-sections described in section 6.6 and [55]. This description is placed in
a file with a .d extension. The .d file is converted to TEX via xplot. The netlist program
converts the .d description to input compatible with the LagerIV system and thence to CIF.
conv, quick-layout, and xplot were written by Martine Schlag [55]. The translation to
VIVID was done by Winthrop Wu [100].

8.3 Sequential Behavior via Space/Time Duality

One of the major problems in applicative languages is the treatment of state in an otherwise
state-less system. A major contribution of this work is to provide an alternative approach to
introducing sequential (state-oriented) behavior into an applicative framework (section 6.4).
The formal basis for this is discussed in section 6.5. Sequential behavior has been introduced
into v FP without giving up the power of transformations or referential transparency which are
useful properties of applicative languages. Previous approaches to this problem have either used
lazy functional languages [62} or have extended the semantics of a strict functional language to
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include streams [18]. This dissertation has taken the approach of applying the duality between
space and time to sequences in »FP and using transformations to convert between time and
space implementations of functional forms.

There are tradeoffs in this means of introducing sequential behavior (see chapter 7). vFP is
better at describing systems that work on fixed length sequences, but has problems describing
systems (like systolic arrays) that work on infinite streams. »JP incorporates initialization
of state registers into the algorithmic description instead of specifying initialization separately
from the behavior. Experience has shown that though this formalizes the initialization process
and allows it to be analyzed in the same way as the rest of the behavior, it complicates proofs by
a significant amount. More experience is required before a judgment can be made on whether
this is a useful tradeoff.

8.4 Synthesis via Transformations

v FP synthesizes circuits via successively applying semantics-preserving substitutions to a high-
level description until the description only contains primitive constructs with known implemen-
tations. Though the idea of using transformations for synthesis is not new [108, 109, 110, 94,
111], this dissertation extends the idea to the domain of sequential circuits.

8.4.1 Space Synthesis

There are two stages in the vFP synthesis process. The first stage is space synthesis which
consists of symbolically evaluating the vFP description and generating a computation graph.
This graph is then pruned, compacted and laid out using techniques described in section 6.6
and [55]. This synthesis method expands out all iterations, recursions and conditionals spa-
tially. Each instance of a primitive function is represented by an instance of the corresponding
primitive cell at some spatial location. Not all computable functions can be synthesized in this
way. First, the functions must be representable in »FP. This means that, for instance, mutual
exclusion and infinite streams cannot be represented. Second, functions like iota whose output
structure depends on input value are not allowed. Third, the predicate of every conditional
must be evaluable with only the knowledge of the structure of its input. The last two restric-
tions are a direct consequence of using symbolic evaluation to extract structure from a vFP
expression. Using other methods for structure extraction may relax those restrictions.
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8.4.2 Time Synthesis

The second synthesis stage is performed if the layout obtained from the space synthesis is
too large. In that case, parts of the circuit can be transformed, using transformations shown
in section 6.4, from their space-domain implementations to their time-domain equivalents.
This process may introduce inverse delay elements into the circuit. Since these cannot be
implemented, they have to be transformed out to the output of the circuit where they denote
the latency of the circuit. Normally, »FP can only represent circuits that use finite sequences.
However, in the special case where it is possible io convert a circuit into one that only has a
SOPI at the inputs and only a POSI at the outputs, it is possible to remove those elements
and be left with a circuit that operates on an infinite stream.

8.4.3 Generating Layouts

Given a planar topology derived from the symbolic evaluation of »FP expressions, section 6.6
provides a method for generating connectivity and placement information that can be supplied
to a back-end system for generating layout masks. Layouts of various examples have been
generated to demonstrate the validity of the approach. This method is flexible enough to
be easily adapted to the different formats required by different back-ends. Two kinds of
representative netlists have been generated.

8.5 Transformations for Proving Equivalence

Another contribution of this dissertation is in providing a better understanding of, and tools for,
refinement in the design process. In particular, this work has shown how it is possible to aid the
process of formally proving that a particular design is a refinement of another. In this context,
chapter 5 demonstrates how it is possible to transform a design between the control, data,
and interpretation domains within the constraints of a particular design paradigm. Therefore,
pFP facilitates the process of refinement and the process of moving between different views of
the same design object.

Transformations are used throughout the dissertation to prove equivalence between two
expressions. Not all the derivations are shown. Section 7.6.3 contains the proof of a theorem
in vFP corresponding to a uFP theorem proved in [18]. This proof also serves as an extended
example of the use of transformations in proving equivalences.
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8.6 Formalizing Aspects of GMB Semantics

The effort of incorporating v F P into a design system with a radically different design paradigm
produced two subsidiary contributions. Since vFP is a formally defined system, its introduc-
tion into a less formally defined system lead to the questioning and clarification of the semantics
provided by the design system. The results are described in appendix B. Since the design sys-
tem provided useful features that were substantially different from the »FP paradigm of design
it highlighted the limitations of a purely applicative design system.

The concrete contributions are in formalizing the semantics of token removal (section B.3)
in the Graph Model of Behavior. Multiple token removal (section B.6) in the presence of the
priority operator is also handled. In addition, a formal translation (section B.4) from logic
expressions to partially ordered sets is provided. These posets are used as the basis for the
token removal semantics. This translation provides two benefits: formalizing the meaning of
what a particular logic expression means, and providing a basis for developing an algebra of
logic expressions.

8.7 Applicative Specification Languages
The usefulness of applicative languages for algorithm specification is demonstrated in chapter 3.

It also shows how vFP can provide abstraction in the specification by using two-dimensional
composition that can be used to encapsulate communication between processes.
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Chapter 9
Future Work

Though the vFP system provides a research framework for VLSI synthesis, there are some
aspects that could benefit from further explorations. In addition, some of the research described
here opens up other avenues of fruitful research. Some of these are open research issues whereas
others were not completed only because they were not central to this dissertation. The issues
are divided into two parts. Those that deal with the synthesis of hardware algorithms and
those that deal with the Graph Model of Behavior.

9.1 Issues in Synthesis

This section discusses the issues in the synthesis of hardware algorithms that are raised by this
dissertation. The open research topics are presented first.

9.1.1 Transformations

During the process of building this system many transformations were defined and used. How-
ever, there are many more useful ones that have already been proposed and many that are
surely waiting to be discovered. The first task would be to collect all such transformations
together in one place and to generate further transformations.

Currently transformations are classified into three broad groups: structural, tradeoff, and
domain-specific. Structural transformations are those that only depend on FP and are usually
used to rearrange the structure of a »JFP expression. For example,

&folg,hl=(f°g,f°h]
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The most obvious tradeoff transformations are the time/space transforms. For example,
&f =D 1o POSI° &Tf o SOPI

The domain-specific transformations are those that are specific to the current problem
domain. It the case of »FP, this is boolean logic. An example of this type of transformation
would be deMorgan’s Law.

notg © andg = org © &notg

These are only three obvious classes. The next step would be to take all the transformations
gathered previously and classify them. It is very likely that there could be other useful classes
of transforms.

9.1.2 Expert System for Synthesis

The current system provides a framework for synthesis. It does not provide any “smarts” for
the actual synthesis process. Currently, the system does not provide a way to automatically
synthesize a circuit from an algorithmic description. Though there are transformations avail-
able, the selection of the transformations and the order of applying them is left up to the
designer.

Given a useful and extensible set of transformations, it should be possible to develop an
expert-system that would decide which transformations should be applied to transform a spec-
ification to an implementation to meet design constraints. The challenges in such a system
would lie in coming up with a scheme that could perform adequate resource allocation and
performance prediction to result in layouts that are comparable to those designed by hand.
This could be modeled on the way human designers work when they are trained to perform
within a transformation-based system.

It would be interesting to speculate whether and how »FP could be used to incorporate
synthesis methods developed in other areas. Work has already been done to automate the use
of transformations in the synthesis process [108, 109, 110, 94, 111, 112, 73], and it can all be
incorporated into the v FP framework. Another approach would be to take the the work done
on space-time scheduling, allocation and synthesis {74, 75, 72, 7, 113, 96] and adapt it to the
vFP paradigm. Algorithms used for scheduling and allocation of computation graphs without
feedback should map into vFP in a straightforward manner. Graphs with feedback may need
to be converted to a different form before they could be applied to the vFP framework.
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9.1.3 Automated High-Level Test-Case Generation

Conventional test-case generation generates test-cases based on functional blocks at the lowest
level of abstraction (usually gates). At this point, all the higher-level information of what these
gates do has been lost. In v FP, however, all the functional information is available at all the
hierarchical levels. It should be possible to use this information to generate better and fewer
test-cases to exercise the circuit.

A promising approach would be to use inverse functions to determine what inputs to the
circuit will produce the desired inputs to modules inside the circuit. Inverse functions will have
to be provided for all primitive functions and some way found to provide inverses for combining
forms. Work done in using AHPL for test case generation [114] could be useful in this context.
In order to be able to test the circuit module by module, it will have to incorporate some kind
of scan-in scan-out registers [113].

9.1.4 Extensions

There are two major limitations of the »FP approach as described in this dissertation. The
first is the total absence of side-effects and the second is that it is not possible to describe
circuits whose output structure depends on input value. Other applicative languages for VLSI
design like ELLA and SILAGE have recently introduced both these imperative features into an
otherwise-applicative system [12]. It would be interesting to see whether such features could
be introduced into the vFP system without compromising its benefits.

A possible path for incorporating side-effects into »FP would be to encapsulate the side-
effecting constructs so that they interact with the rest of the system in a very controlled manner.
Allowing circuits (like while loops) whose output structure depends on input value might be
impossible given the current method of generating topology via symbolic interpretation. This
is because the input to this construct will be symbolic and hence the output will have an
indeterminate symbolic structure. One possible approach to addressing this problem is to
devise a system that uses a combination of symbolic and actual values so that actual values
could be used in certain cases and symbolic values otherwise. This hybrid would provide the
advantages of both the methods.

The rest of the issues in this section are not fundamental, but are documented here for
completeness.
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9.1.5 Typing, Scoping, and Extended Definitions

Currently, the names of vFP functions are global in scope. This makes it difficult to use v FP
for developing large systems—especially when there is more than one programmer involved.
This is because of naming conflicts that may arise. It would be a simple extension to incorporate
lexical scoping and/or local definitions into »FP functions. A simple translator could make up
unique names for each function to gnarantee no name conflicts and then translate this extended
vFP to the current vFP.

vFP, as it stands currently, is type-less. Introducing polymorphic types into vFP would
allow earlier and better error checking. It would also allow a much closer compatibility to the
AXES [116, 117] specification language and enhance »FP’s use as a specification language.

The syntax currently used to specify parameters to functions in #FP was a compromise
between ease of implementability and flexibility. It should be possible to implement the ex-
tended definition mechanism proposed in [76]. The ability to specify pattern matches in the
arguments, in particular, would greatly enhance the readability of programs.

9.1.6 User-specified Attributes

As was mentioned in chapter 4, the v FP system currently only evaluates a fixed set of prop-
erties of the algorithm. It would have been useful to have an extensible system so that users
could define their own attributes for the base cells and their own algorithms for combining their
attributes. An implementation using an attribute grammar pre-processor was unsuccessfully
attempted.

Currently, the evaluation system assumes unit delay for each tagged function. Extending
this capability to be able to specify arbitrary fixed delays would be useful.

Chapter 4 shows how the evaluation of attributes is performed in an applicative manner
within the framework. It is hoped that the ease of incorporating extensions in this framework
will encourage users to develop other measures to be evaluated.

9.1.7 General Placement of Inputs/Outputs

Currently the inputs to a circuit are always assumed to enter from the top and the outputs
always leave from the bottom. There is no inherent reason why this should be so. It should
be possible to describe and use circuits with inputs and outputs on any side.



9.1.8 Different Sequential Structures

The present system has time-domain equivalents of only the three most useful functional forms
(insert, apply-to-all, and sequential). There is no reason why this could not be extended to
other functional forms or to some primitives.

9.1.9 Different Timing Regimes

The formal timing behavior described in section 6.5 is but one way of implementing sequences
in time. This example was chosen as an existence proof that it could be done. However, there
is no need to be restricted to it. There may be other timing regimes with different properties
that are of greater use in different situations.

9.2 Issues in the GMB

This section addresses issues pertaining to the GMB that were raised by the research completed
for this dissertation.

9.2.1 Improving Control Flow Analysis

Currently, control flow analysis of the GMB is carried out using information only from the
control domain. Thus, some of the anomalies reported by control flow analysis do not actually
exist. A designer has then to go through each reported anomaly and prove that it either is real
or not. In many cases, given enough information about the data or interpretation domains, it
is possible to automatically determine when a suspected anomaly is real or not.

However, the current interpretation domain does not allow this capability because it is not
amenable to analysis. Since vFP has simple formal semantics and is easy to analyze, using
vFP as an interpretation domain language would allow the control flow analysis to profit from
knowledge about the interpretation domain.

9.2.2 An Algebra for Logic Expressions

The conditions under which a GMB control node will fire are specified via the use of input logic
expressions. Qutput logic expressions specify which control arcs will receive tokens after the
control node terminates. Section B.4 shows how input logic expressions can be translated to
posets. This provides a method to determine the equality of two logic expressions. Formally,
two logic expressions are equivalent if their associated posets are equivalent. This admits the
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development of an algebra over logic expressions. Though logic expressions look very much
like boolean expressions, boolean logic does not work on them. For example,

a*x (a+b)

can be reduced to a in boolean logic, but can only be reduced to 2 + (a * b) in the case of
logic expressions. In addition, laws like

(a<b)+{(b<aj)=a+hb

can be derived for logic expressions that have no analog in boolean logic.

9.2.3 Impact on Reduction

The formalism for translating input logic expressions to posets currently gives meaning to some
peculiar logic expressions, for example,

(a<b) * (b<a)

where it is not not obvious that they should have any meaning at all. A reasonable meaning
and justification can be created for such an expression, but it is not clear that a user would
ever write such an expression and an alternative would be to declare such expressions as being
semantically in error. However, such expressions may be generated automatically during the
process of reduction. It is for this reason that they were included as valid at this point. If,
however, it is determined that such expressions will not be generated during reduction, there
may be compelling reasons to declare them as invalid. In general, the impact of this formalism
on reduction merits further study.
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Appendix A

vFP Semantics

A complete description of the »FP language is provided here.

A.1 Objects

The set of vFP objects (2)is the same as those in FP. It consists of atoms and sequences

(oy. .., Tx)

where
Vi, 0<i<k, z;€Q

Atoms uniquely determine the set of valid objects and consist of numbers and quoted ascii
strings (“abed”). There are three predefined atoms, T and F, that correspond to the logical
values true and false, and the undefined atom L. Bottom denotes the value returned as the
result of an undefined operation, e.g., division by zero. The empty sequence, () is also an atom.
The following are examples of valid v FP objects:

L 31415 1234567
ab “CD” (1,(2,3))
0 T Aa()

If any element of a sequence is undefined, by definition, the sequence itself is undefined. Hence
(...,4,..0=1

This property is the “bottom-preserving property” mentioned in [60].
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A.2 Application

There is only one operation in »F P, application, denoted by the colon (“:”). Given a function
o and an object z, o : z is an application and its meaning is the object that results from

applying ¢ to z (i.e. evaluating o(z)). o is the operator and z is the operand. The following
are examples of applications:

=15 t1:(1,2,3) = (2,3)
(a b yd) = a 2:{a,bc,d) = b

A.3 Functions

All functions map objects into objects. #FP functions are strict.

c: 1l = L;VYoeF
{..,1,..0 = L

A modification of McCarthy’s conditional expression [44] is used to describe the semantics
of vFP functions and combining forms.

Pt == €1; ...; Ppn =% €n} €n41

This means that the expression e; is evaluated if p; is true. If not, then e; is evaluated if
P2 is true. And, so on. If none of the predicates p; is true, then evaluate e,41. If any of the
predicates p; evaluate to L, the result of the whole expression is L.

A.3.1 Selector Functions

For a nonzero integer, p

iz =
= {xy,..., 26} AN O < pu <k =z,
T ={T1,..., %k} N —k < p<0=>2,11;
L
id:ax = =
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z = () == ();
z={z1,....,26) AN k2>1=> a4
1
first:xz =
z= () =>();
z={x1,...,2) A k21=> ay;
L
tl:xz =
z = {z1) == ();
Tz ={T1,..., Tk} A k22=>(T2,...,Tx);
1
tlr:z =
z = {(z1) = ();
T={T1,..., Tk} N k2 2=>(21,...,Tp-1)}

L

A.3.2 Structure Modifying Functions

distl:z =
z={y, ()) = (s
T = (ya <21,...,2k)) = ((y,21),.
1

distr:z =

149
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z = {(),y) => ()i
T = ((y1,---,yk),z) = ((yl’z)a""<yk1z));

apndl:z =
= (y, () = {¥);
=y, (21, -, 2k)) => (¥, 21,22, - -, Zk);
1
apndr:z =
z = {{),z) = (2);
T = ((yh ,yk),Z) = (yhy%-- s Uk 2)
1
trans:z =

where
Ti = Tty Tim) N Y = Y1gr-- ¥y 1SSk 1<j<m

reverse .

Hi

rotl: x

il

z=( =
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rotr: zx

concat:zr

z = {z1) => (z1);

z = {&g,...
L
z =)=

JEE) AN k22 =0 (zg,. .., Tk, T);

O

z ={z1) = (21);

z = {z;,...

4

T = ((11311,...

1$k) Ak 2 2 = (xks Z1y. ’-1$k—21mk—1);

y 1Y e (Tondy ey Tmp)) A Rymun,p>0

— (2:11,...,.7011;,3321,...,$2n,...$m1,...,$mp);

L

Concatenate removes all occurrences of the null sequence:

concat : {(1,3),(},(2,4),(},5)) = (1,3,2,4,5)

A.3.3

pair:zx

split:z

= {xy,...,3k

Ak>0 A kiseven

<(IL‘1, Egfy (wk 1’3:1'3))

)
)

T = {21,...,2%) A L>0/\ k is odd
)

1

<($113'2 y- ( ))5

z = (¢1) = ((21), O

z=(21,...,25) AN k>1
= ({21, Z[e/21)s (EE/21 415+ - - s TE))S

1

Predicate (Test) Functions

atom: 2
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T € atoms = true;
x# 1 = false;
4

eql:zx =
r=(y,z) N y=z2=>true
= {y,z) N y#z=>false;

Less than (<), greater than (>), greater than or equal (2), less than or equal (<), not
equal (neql) are defined similarly. “=" is a synonym for eql.

null:z
z = () = true;
r#1 = false
L

A.3.4 Logical Conjunctions

and: (z,y) =
z =true A y € {true,false} = y;
T = false A y € {true,false} = false;
4
or: {z,y) =
r = false A y € {true,false} = y;
r =true A y € {true,false} = true;
1
not:z =



T = true = false;
r = false — true;
L

xor: (r,y) =
z,y € {true,false} A z =y = false;
z,y € {true,false} A z # y = true;
L

A.3.5 Arithmetic Functions

+:x =
T = (y,z) Ay, z are numbers = y + z;
L

-tz =
¢ = (y,z) A y,z are numbers = y — z;
4

1z =
x ={y,z) A y,z are numbers = y X z;
4

[z =

z = {y,z) A y,z are numbers = y + z;
4

A.3.6 Circuit (Gate-Level) Primitives

andg: (z,y) =
e=1Aye{0,l} =y
x=0Aye{0,1} = 0;
L

org: {(z,y) =

=0 A yei{ll} =y
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r=1Aye{tl}=1
1

xorg: (z,y) =
z,y € {0,1} A z=y=0;
z,y € {0,1} A 23#y==1;
1

nandg: (z,y) =
r=1Aye{0,1} =7,
r=0Aye{0,1} =1,
4

norg: {z,y) =
z=0Aye{0,l} =1
r=1Aye€{0,1} =0
1

notg:z =

z=1= 0
z=0=1;
L

A.3.7 Mathematical Library Routines

il

sin:zx
z is a number = sin(z);
A

1]

asin:z
zis a number A |z |[< 1 == sin"!(z);
L
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i

cos I x

T is a number = cos(z);

i
acos:xr =
z is a number A |z |< 1 = cos™!(z);
1
exp:z =
z is a number — €%;
L
log:z =
x is a positive number = lnx;
L
mod : {z,y) =
z,y are numbers => z —y X ng :
RN
sqrt: (z,y) =

T is a positive number = /z;
L

A.3.8 Miscellaneous Functions

length:z =
&= (T1,...,2k) => k;
T = () = ();
L
sw: (p,z,y) =

p = true A z,y have the same form = z;
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p = false A z,y have the same form = y;
L

A.4 Combining Forms

A combining form takes functions as parameters and returns a new function that is a combi-
nation of its functional parameters. Combining forms manipulate functions, while functions
operators manipulate values.

For two functions ¢ and ¢, the form ¢ © 3 denotes their composition:

() :z = ¢ : (¢ : x), Ve e
The constant function takes an object parameter:
Rz y =(y =1 = L;z), Ve,ye}
The function %L always returns L.

In the following description of the combining forms, we assume that ¢, &, o, g;, 7, 7; are
functions and that z, z;, v, y:, z; are objects.

A.4.1 Compose

(c°7t):z = o:(T:x)
A.4.2 Construct
[o1,..c,onl iz = {o1:i2,...,00: 1)
A.4.3 Apply-to-All
&Lo:z =
z = () == ()
z=(21,....25) => {0 1 21,0 : T2,...,0 : Tk)

4
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A.4.4 Conditional

if{thencelse i 1z =
P X)) =true == o x;
1 x) = false = 7 : a;

(
(

=~ ™

A.4.5 Constant

%r:y =
y=1 =31,z Vo € Q

This function returns its object parameter as its result.
A.4.6 Right Insert

lo:ax =
r={) = ey:u;
T ={1) = 21,
T=A{ry,...,2%) N k22 = o:(z,lo: (x2,...,2k));
4L

For example,

'+ :{4,5,6) = 15
+:( = 0
x: () =

Currently, identity functions are defined for + (0), — (0), * (1), /(1), andg(1), org(0),
xorg(0). All other functions default to bottom(.L).
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A.4.7 Left Insert

linsoc:z2 =
z={) = es:ua;
= {21) = a;
= {Ty,...,2x} A k>2
= o {linso : (21,...,Tk-1), Tk);
4

A.4.8 Associative Insert

If the function being inserted is associative, the associative insert form can be used. This form
groups elements in pairs and performs a bottom-up traversal of the insert tree.

|losz =
z={() = ey
z = (z1) = 2q;
z=(T1,...,¢6) AN k22
=> |0 &oOpair:
L

A.4.9 Tree Insert

Alternately, the tree insert form could be used for inserting an associative function. The tree
insert splits the tree into two halves and recursively descends each sub-tree.

ho:x =
r={) = es:a
r={z) = 21;
r={zy,...,26) AN k22
= 0 (ha:{Ti,...,T[n/2]), WO 1 {(L[nj2]41y -+ » Th));
L
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A.4.10 Right Seq

seqo :

z={) => ez
z = (z1) = {z1);

T = (21,22) = 0 {T1,Z2);

T = (T, 02k) A k>2 = {y1,...,¥k);
1
where
(Z,yss---,yk) = Seqd:(ﬂfg,...,ﬂ:k)
(yi,y2) = 0:{xy,2)
A.4.11 Left Seq
seqLo:2 =
= () =>es:ua;
T = (CE]_) = (IK]),
T = <$1,£L‘2> = (5[31,332),
27=<.’L'1,....,$k> Ak>2 =>(y1, ,yk).',
L
where
(Y1y++ 2 Yr—2,21) = seqLo: {(z1,...,Tk-1)
(yk-layk> =0a: (Zk—lscc?)
A.4.12 Map
{o1,...,0k} 1 =
= {T1,...,%k) => (01 &1,...,0% : L)
1
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A.5 Time Domain Primitives

The functions SOPI, POSI, D!, are all functions which are semantically equivalent to the
vFP function id, but correspond to specific constructs in the layout. There are time-domain
equivalents to the Apply-to-All, Right Insert, Left Insert, Right Seq and Left Seq combining
forms. These are denoted respectively by, tapall, tlins, tseq, tseql.. They are equivalent in
terms of meaning to their space-domain counterparts, but they are laid out differently.

A.6 User Defined Functions

An FP definition is entered as follows:

defun functionName ( arguments )
...enddef

where functionName is an ascii string consisting of letters, numbers and the underline symbol.
The arguments, which must be simple names may be omitted. In that case, the parentheses
around the arguments is also omitted. For example, the functions

defun factorial ( n )
if zero? ©n then %1
else x° [ n, factorial®- °[ n , %1]1)
enddef

defun zero?
= 0 [id, %0 ]
enddef

form a recursive definition of the factorial function.
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Appendix B

Clarifications on Some Aspects of

GMB Semantics

B.1 Introduction

Vernon, in [84], formally defines the Graph Model of Behavior (GMB). However, there are
a few aspects of the semantics that would benefit from further clarifications. This appendix
deals with some of these aspects.

It is assumed that the reader is familiar with the GMB and has at least an overview
knowledge of the issues discussed in [84]. As far as possible, this document uses the same
symbols as in [84].

B.2 Semantics of Control Node Enabling

Normally, the enabling conditions for a control node are specified by an input logic expression.
Formally, it is better to use a marking function that represents a precondition on the firing of
the node. This is discussed in section 2.2 of [84], where the marking function L- is defined.
Formally,

L-:N -2
where N = {n} is the set of control nodes
A = {a} 1is the set of control arcs

Note that this is a simplification of the specification given by Vernon in that it is assumed
that only one token at a time will ever be removed from an arc. Section B.6 shows how this
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Figure B.1: Sample Control Graph

formalism is extended to handle the case when multiple tokens on an arc are required for
enabling a node. Also note that [84] describes the range of L- to be 2* even though examples
indicate that 22" is what was intended.

The above definition says that given n € N, L-(n) returns a set of sets. Each element of the
set is a set of control arcs that must have at least one token on each of the constituent control
arcs for the node n to be enabled for firing. For example, in figure B.1,

L-(n) = {{a} {a}}
L-(ng) = {{a3,04},{a3,05}}

Node n, is enabled if there is a token on arc a; or on arc a;. Node nj is enabled if there are
tokens on arcs a3 and a4 or on arcs a3 and as.

Section 3.6.1 of [84] mentions that the priority operator defines a partial order on the range
set of L-. This is expanded on in section 3.8 of [84]. To make the partial order explicit, I- is
redefined to be

L-:N— L'x <



where A
I’ = D(R(L-)) = domain of L-’s range = 22

< = R(R(L-)) = rangeofl-'srange = (2 x24)

There is no change to the algorithm of the token machine, presented in section 2.3 of [84],
to determine whether a control node can be fired or not, except that instead of L-, the first
element of L-, I/, must be used.

B.3 Semantics of Control Token Removal

Step 2.c.i in section 2.3 of currently states:

If L-(n,) is satisfied, randomly select a marking in L-(n,) which is satisfied, and
remove the specified number of tokens for each arc in the set.

This is sufficient in the absence of the priority operator. After the introduction of the priority
operator, section 3.6.1 of [84] mentions that the token removal algorithm presented in section 2.3
of [84] should be modified so that

...input tokens are removed in priority order, rather than non-deterministic
order. ..

If each element, L'n,, of L' were totally ordered with a relation <, €<, the algorithm for

selecting the appropriate element of L', would be obvious. However, because <,,, is a partial
order, the algorithm is not obvious and this section presents an algorithm for determining the
order in which the elements of L’,, will be checked for determining which tokens are to be
removed. This algorithm should be viewed as a replacement for step 2.c.i in section 2.3 of [84].

® n, is the control node that is being investigated.

o Let L-(n,) = (L5, $np)-

Rpt —=Tp

¢ X and Y are temporary variables.
1. Set X = (X', X"} «~ L-(n,). That is, X' « L'y, and X" «<,,.

2. Repeat the following steps until X’ is §.
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7
Figure B.2: Initial state of X

(a) Set Y = Ry(L'n,, <n, )"

(b) If at least one element of Y is satisfied by the current token distribution, non-
deterministically choose one of them and exit the algorithm. If none of the elements
of Y is satisfied by the current token distribution then set X « (X' — Y, X" ~
(X"/Y)}2. Repeat.

3. Since X' is @, n, cannot be currently fired.

For example, assume that the poset® of markings for a particular control node is shown by
the Hasse diagram in figure B.2. The nodes of the graph represent individual markings and
the arcs represent the ordering. If a node, connected by an arc to another node, is above that
node, it means that the first node (marking) has priority over the second marking. Initially,

IR {P, <) is the set of all the mazimal members of P with respect to the partial order <. An element y € P

is a maximal member of P with respect to a partial order < iffornoz € Pisy < z.
2R/S is the restriction of a relation R to the set S and can be defined as R/S = RN (S x D(R)) where

D(R) is the domain of the relation R, and § C D(R).
3A poset is a set with a partial order relation defined on it.
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Figure B.3: Next state of X
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Figure B.4: Final state of X
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X is the whole poset, and Y is the set of nodes labeled 1,2, and 3. The algorithm first checks
whether the markings corresponding to 1,2, or 3 are satisfied. If so, it non-deterministically
chooses any one and is done. If none are satisfied, the nodes in Y are removed from X along
with the arcs that they are connected to. The results are shown in figure B.3. Now Y consists
of the nodes marked 4,5, and 6. Again, if any of the markings in Y are satisfied, one is chosen
non-deterministically. If none of the markings are satisfied, then the nodes in Y are removed
resulting in figure B.4. At this stage, there is only one marking, 7, left, and if it is not satisfied,
then X is set to (0, 9) and the algorithm stops.

This algorithm insures that markings with higher priorities are examined before markings
with lower priorities. In addition, the maximal markings are examined in non-deterministic
order.
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B.4 Translation of Input Logic Expressions to Mark-
ings

Though L-, the input marking poset function, is useful for describing the input logic enabling
and token removal semantics, it is not very convenient for practical use by users. Users of the
GMB use input logic expressions to specily L- indirectly. However, the mapping between an
input logic expression and L- has never before been explicated in the GMB literature leading
to confusion as to the precise meaning of a particular input logic expression. The source code
of the implemented GMB simulator has been the final arbiter of the semantics of a particular
logic expression. This section hopes to clarify the situation by providing a formal translation
between the input logic expression of a control node and the poset returned by L- for that
node.

Another benefit of this formalism is to provide a mechanism for proving equivalences be-
tween two logic expressions. This can be used to formulate an algebra of logic expressions. For
example, it can be shown that

a*(a+bd)=a+b

or
(a>b)+(b>a)=a+b

As can be seen from the above examples, this is not the same as boolean algebra. Using
boolean algebra would have resulted in @ and a & b as the right hand sides of the respective
equations mentioned above.

An input logic expression can be described by the following BNI:

expr = expr + expr
| expr*expr
| ezxpr > ezpr

| simpleEzpr

The syntax-directed translation of an input logic expression to the corresponding poset is
specified by providing the translation for each of the BNF rules. Consider, first, the BNF rule

expr = simpleLzpr (B.1)
where simple Expr is the name of a control arc. The corresponding poset is

({{simpleEzpr}}, {{{stmpleExpr}, {simpleExpr})}) (B.2)
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In other words, the set consists of one element, which is a set just containing the control arc.
The relation only contains the reflexive relation from simple Expr to itself.
Next, consider the BNF rule

eXPr = eXpr] + expra
Let the poset corresponding to expr; be
Xy = (H,50)
and the poset corresponding to expry be
Xy = (P2, <9)
Then the poset corresponding to expry + exprs is specified by
—
(PAUP, <1 U <)

where o
U ...is the poset union (see section B.T) operator

In other words, having the “or” operator in an input logic expression results in taking the

union of each of the elements of the sub-expressions. However, in general, the union of two

posets will not be a poset. Hence, after forming the union and its transitive closure, all edges

of the resultant graph taking part in a cycle are removed. This is accomplished by taking

the set difference with the set corresponding to the symmetric sub-relation. It can be shown

(section B.7) that the resulting relation (called the punion, or poset union) is a partial order.
For the priority operator, the poset corresponding to the expression

expry < €Tpre
can be constructed from its constituents as
— —r -
(PLUPR, < U < UX)

where
X = {(35,31> I T e R"(PZZ? ..<_2) A ¥ € R-{»(-PDSI)}

N_(P, <) is the set of all minimal members* of P relative to the partial order <. This operation
can be graphically illustrated by the use of Hasse diagrams as shown in figures B.5, B.6 and B.7.
As can be seen, combining two sub-expressions with the priority operator consists of combining
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Figure B.5: Hasse diagram of X,
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Figure B.6: Hasse diagram of X,
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@ 0]
8 9 10
Figure B.7: Hasse diagram of X; < X
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their respective posets in such a way that all members of the higher priority poset are ordered
higher than the elements of the lower priority poset. Once again, the symmetric sub-relation
has to be removed in order to make the resulting relation a partial order.

The poset corresponding to the expression

exPry * eTpry

can be given by

(AW P, X7)

where ‘
S1WwS,={pUqg | p€ S Agqge S}
and
R* = RPURTY... is the reflexive transitive closure of R
§ = 51U,

X = {{(z,y) |2,y € S18 52 A
(2" x 29N (S =S5 #£0 A
(2¥ x 2°) N (S — §9) = §}

The operator W is very similar to the cartesian product of two sets. The difference is that
the cartesian product operator takes elements of two sets and makes ordered pairs out of them,
whereas the & operator takes the union of the two elements. The idea is that two elements x
and y in S; ¥ S; will be related if there is a p C « and a ¢ € y such that (p,q) isin <; U <s.
At the same time, there must not be any p C x and ¢ C y such that (¢, p) is in <; U <2. Note
that the relation X is irreflexive and anti-symmetric, and hence

(P @ Py, X™)
is a poset. As an example, consider the input logic expression
(a>b)*(c>d)

The poset corresponding to the sub-expression ¢ > b is shown in figure B.8. The poset
corresponding to the sub-expression ¢ > d is shown in figure B.9. And, the poset corresponding
to the final logic expression {a > b) * (¢ > d) is shown in figure B.10.

4An element y € P is called a minimal member of P relative to a partial order < ifformoz € Pisz <y.
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{a}

{b}

Figure B.8: Poset corresponding to a > b

{c}

{d}

Figure B.9: Poset corresponding to ¢ > d

{ac}

{a,d} {b,d}

{b,d}

Figure B.10: Poset corresponding to (a > b) * (¢ > d)
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B.5 Semantics of Controlled-Read and Priority-Read
Data Arcs

Section 3.3 of [84] introduces the “Controlled-Read” data arc and section 3.7 introduces the
“Priority-Read” data arc (see section 5.1.2 on page 50 for an explanation). However, some
aspects of the semantics in those sections are unspecified. This makes it difficult to generalize
the concept to the case which deal with complex input logic expressions. This section attempts
to more precisely define the functions, domains, and ranges used in [84].

Following [84], let DataSet be a function that maps a data arc to a set of datasets. Formally,

DataSet : {d} — 299H

where d € D is the set of data arcs
Q is the set of datasets
H is the set of sockets
Similarly, let i0Control be a function that maps a data arc to a set of control arcs. Formally,

ioControl : {d} — 2*

In [84)], the functions DataSet and i0Control return sets that are completely ordered. There
is an implicit one-to-one mapping between corresponding elements of the sets returned by these
functions. That is, the first element of the set returned by i0oControl is implicitly mapped to
the first element of the set returned by DataSet for the same data arc argument. A different
approach is taken here. Instead of requiring that these functions return completely ordered
sets with an implicit map between the elements of the sets, a new function, A, is introduced.
N is a function that, given a data arc, returns a one-to-one correspondence between datasets
connected to that data arc and control arcs. Formally,

N:D—-((QUH)— A)

Since A(d), d € D, is a one-to-one correspondence, its inverse also exists and can be used to
associate a dataset, connected to the data arc d, with a given control arc.

For a data arc, d, that is either Controlled-Read or Priority-Read, the the number of source
datasets must equal the number of ioControl control arcs. This is because the A(d) is a
one-to-one correspondence. Thus,

lioControl(d)| = |DataSet(d)|
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Following [84], M_ is a function that maps a data processor to a set of control nodes that
can activate it. Consider a particular Controlled-Read or Priority-Read data arc, d and a
control node, n, associated with the data processor associated with d. It is required that each
mapping in the input logic expression of n shall contain only one of the control arcs contained
in ioControl(d). Without this restriction it would be impossible for the token machine to
decide which dataset value to provide the data processor when it performs a read operation
on the data arc d. Another restriction is that data processors that have Controlled-Read or
Priority-Read data arcs connected to them can have only one control node associated with
themselves. In other words, ProcessorSet(d) returns a singleton set.

d € D
p € ProcessorSet(d)
|ProcessorSet(d)] = 1
n € M_(p)
IM_(p)] = 1
L-(n) = (L'n,<a)

51,8, € DataSet(d) = Az € L', such that
(NV(d))(S1) € = A (N(d))(S2) € 2

B.6 Incorporating Multiple Token Removal

So far, it has been assumed that if a control arc is mentioned in the input logic mapping there
must be at least one control token on that arc. Additionally, if that mapping is selected for
token removal, then only one token will be removed from that arc. As promised in section B.2,
this section extends the formalism described above to the case where multiple tokens may be
removed on firing of a control node and multiple tokens may be required for the enabling of a
control node.

As far as the mapping function, L-, is concerned, the change is very trivial. Instead of
A being the set of control arcs, it should now be treated as a set of ordered pairs. The first
element of the pair is from the set of control arcs as usual, and the second element of the pair
is from the set of natural numbers, N. Thus, L- can be redefined as:

L-:N—=L'x <
where

L, _ 22AXN
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AxN _ ,AxN
S — 22 x 20X

The following caveat needs to be added to this formulation. An element of the form
{(a,0); a €A

does not mean that there should be 0 or more tokens on the arc a, but instead that the arc a
is not considered in this mapping. An alternative solution could be to use the set N — {0} (or
I+, the set of positive integers) instead of N.

Let (a,n) mean that n tokens are to be removed from control arc a. Then, the input logic
expression

(a,n} + (a,m)

means that the control node will fire if there are at least n tokens on arc a, and when it fires,
either n tokens will be removed, or if the number of tokens on the arc is currently greater than
or equal to m, then, non-deterministically, either n or m tokens will be removed.
The input logic expression
{a,n} > (a,m)

means the same as for the “+” case if n > m, except that if the number of tokens on the arc
is greater than or equal to m, then exactly n tokens will be removed.
The input logic expression
(a,n) < (a,m)

means the same as for the “+” case if n > m, except that if the number of tokens on the arc
is greater than or equal to m, then exactly m tokens will be removed.
The input logic expression
(a,n) * {(a,m)

and n > m, means that the node will fire if there are at least m tokens on the arc a. When 1t
fires, exactly m tokens will be removed from the arc.

If the substitution m = n = 1 is made in the above expressions, the semantics described
above match the current GMB semantics. In particular, a * a means that exactly one {not two)
token will be removed from the arc a.

With this understanding, the previous procedures for translating between input logic ex-
pressions and the partially ordered marking set can be reconsidered. The procedures for the
simple expression, the “or™ and the “priority” case remain the same. However, the procedure
for the “and” needs to be modified as follows. Replace all occurrences of & with II, where II
is defined as:

S5;8,={pUqg|pe€ S Aqe Sz}
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This is the same as W except that U is replaced by U, and U is defined as:
S1U Ss = {(p,q) | {p,n) € S1 A {p,m) € S2 A ¢ =maz(m,n)}
under the assumption that
(p,0) € § <= (p.x) € S,V #0

Note that Ll is very similar to the union operator on sets except that it works on sets containing
ordered pairs. Additionally, for elements in both sets having the same first element, the
mazimum of the second elements is the second element of the result.

B.7 Punion Theorem

In general, the union of two partial orders will not be a partial order. This 1s because even
though the two constituent relations are anti-symmetric, their union may be symmetric. For
example, consider the partial order

{{a,a), (b, b}, {a, by}

and the partial order
{(a,a), (b, b), (b, a)}
Their union, is the relation

{(a" a)s {b,8), (a, b)s (bv a)}

which is symmetric and hence not a partial order.
However, the punion of two partial orders is a partial order. A punion of two partial orders

—r
<, and <,, denoted by <; U <, is defined as:

—
< U< = §t—(5%)
§ = 51U
VIR
R = {(z.y) | (z,y) € RA{y,z) € RNz #y}
. is the symmetric sub-relation on K
Rt = RUR*UR?...is the transitive closure of R

A few lemmas need to be proven before proving that the punion of two partial orders is a
partial order.
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Lemma B.1 The punion of two partial orders is reflexive. Proof:

—
S+ — (%) is reflexive.

<; U <5 is reflexive,

)

Lemma B.2 The punion of two partial orders is anti-symmetric. Proof:

o)
1. (§7%) is symmetric.
—

2. §* — (S*) is anti-symmetric.

H - -
3. <4 U <5 is reflexive.

Lemma B.3 The punion of two partial orders is transitive. Proof:

—r

1. Assume (z,y) € St — (57)
—
2. Assume (y,z) € ST —(51)

3. {z,z) e ST
—
4. We need to show that (z,z) & (S7)
—
5. Assume {(z, z) € (S%)
—>
6.  (z,2) € (ST
7. (z,z) € S*
8. (zy)e St
9. (ey)e st
—
10 (z,y) Aly.z) € (57)
—ry
1. {y,z) ¢ 57— (57)
12. This is contradictory to step 2.

—

13, (2,2) & ()
14. (z,z) € St —(ST)
15. §* — (S7*) is transitive
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defnn of —
—
defn of U

1. <; is reflexive. defn of P.O.
2. <, is reflexive. defn of P.O.
3. S is reflexive. union maintains reflexivity
4. S* is reflexive. transitive closure maintains reflexivity
—
5. (587) is not reflexive. defn of «——
6.
7.

defn of +—

defnn of —
—r
defn of U

transitivity of St

—
since (S1) is symmetric.

—
since (S*) C 5t
by step 1.
by steps 7 and 8
by steps 2 and 9.

by step 10.

by steps 3 and 13.
by steps 1, 2 and 14.



The three lemmas taken together show that the punion of two partial orders is reflexive,
anti-symmetric and transitive and hence a partial order.
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