Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

MIDAS: INTEGRATED DESIGN AND SIMULATION
OF DISTRIBUTED SYSTEMS

Rajive L. Bagrodia September 1990
Chien-Chung Shen CSD-800027

MIDAS: Integrated Design and
Simulation of Distributed Systems!

Rajive L. Bagrodia
Chien-Chung Shen

3531 Boelter Hall
Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024.

Tel: (213) 825-0956

bagrodia@cs.ucla.edu

cshen@cs.ucla.edu

'This research was supported by a grant from Hughes Aircraft Co.

Abstract

Iterative transformation of performance models into operational systems is a desirable ap-
proach for designing performance-critical systems. This paper describes an approach to trans-
form a hybrid model into an operational system that can be shown to satisfy its performance
specifications. A hybrid model merges operational modules with abstract, simulation modules.
The capabilities supported by the methodology include (a) interrupt-handling, (b) integration
of distributed software and hardware components and (c) evaluation of the effect of upgrading
existing hardware components. The paper also describes a language to program hybrid models
and shows how simulation algorithms may be adapted to execute hybrid models. A small ap-

plication was designed using this methodology, and the experimental results of the exercise are
described.

1 Introduction

Many distributed systems have stringent constraints on their performance. The critical nature
of these systems often requires that their performance characteristics be determined rigorously,
preferably in the early stages of system design. In order to ensure that a proposed design will
meet its performance specifications, the behavior of the system is usually abstracted by an ana-
lytic or simulation model. The complex interactions among the software, hardware and human
components of many distributed systems typically preclude the construction or solution of detailed
analytical models. Even when approximate analytical models can be constructed, lack of sufficient
data precludes a comprehensive analysis of the performance issues. The usual alternative to ana-
lytical models is to use simulations. For large, complex systems, simulation models are themselves
complex and hence expensive to develop. Subsequent modifications in system specifications neces-
sitate a corresponding change in the simulation model. Model validation becomes difficult leading
to doubtful comsistency between the model and the actual system being developed. Traditional
software design methodologies do not lend significant support in the design of such systems.

The MIDAS approach to system design suggests the use of Partially Implemented Performance
Specifications (PIPS) as performance models for distributed systems: In this approach, a model is
viewed as a hybrid system that consists of operational software and hardware components inter-
spersed with logical abstractions of other hardware and software subsystems. The hybrid model
is iteratively transformed into an operational system that can be shown to satisfy its functional
and performance specifications. The thrust of this research is not towards system specifications;
rather it is to predict whether a proposed system design will satisfy performance requirements and
to transform the design into an operational system.

What advantages may be derived from the integrated approach to system design? The perfor-
mance model of a system does not have to be designed and maintained separately. The evolving
design is its own model. This can result in significant savings in terms of manpower and resources
while at the same time ensuring the consistency between the software and its model. This is a
realistic alternative to traditional modeling strategies as it allows non critical subsystems to be
implemented prior to being modeled, and incorporates their effect in the performance profile for
the overall system. Moreover, it allows the performance of existing subsystems to be integrated
with their evolving counterparts. In addition to performance evaluation, the hybrid system is also
useful for system testing and debugging.

This paper describes the MIDAS approach to the design of distributed systems and discuss
theoretical, language design and implementation issues in its use. The next section discusses related
work in the area of integrated design. Section 3 describes the MIDAS approach. Section 4 describes

how sequential simulation algorithms may be adapted for the execution hybrid models. Section 5
indicates the relationship between the execution of hybrid models and space-time simulation[5].
This section describes how the sequential algorithm may be adapted for interrupt-handling and
integration of high-speed operational modules. Section 6 describes how an existing simulation
language can be adapted to program hybrid models. Section 7 discusses implementation issues and
presents some experimental results on the design of a simple application using MIDAS. Section 8
is the conclusion.

2 Related Work

Performance modeling in the design stage has frequently been used in the design of hardware sys-
tems. The idea of integrating simulation models with system design was used by Zurcher and
Randell[18] to develop a methodology for the design of computer systems and also explored by
Parnas[12]. Sanguenetti[15] describes a technique for performance prediction by integrating simu-
lation and software system design using PPML[13], a system modeling language. Our work extends
the applicability of the integrated approach in significant directions: the PIPS methodology sup-
ports interrupt-handling. Further, it supports the execution of hybrid models which include physical
components that execute considerably faster than the logical one. Finally, the approach permits
an analyst to directly determine the consequence of upgrading existing hardware components.

Other researchers have suggested methodologies and tools to construct performance models
prior to developing the system. Chandy et al [4] describes a top-down methodology for evaluating
the performance of computer and communication systems in the early design stages. Estrin et
al[6] suggest a system design methodology to study performance aspects in multiple domains: a
control flow graph is constructed to analyze safety and liveness properties. Also, a data flow
graph may be used in conjunction with the control flow graph to study performance characteristics
by interactive simulation. Roman[14] describes a specification language called CSPS, to study
correctness and performance characteristics of distributed systems. CSPS is an extension of CSP[g]
and uses verification techniques that have been developed for CSP programs to prove properties of
the CSPS programs. It also uses the notion of multiway synchronization to map software modules
on a model of the proposed hardware. Although the preceding approaches encourage modular
development of models and its iterative refinement into operational systems, they do not support
the execution of hybrid models, where performance measurements include both simulation and
operational modules,

3 MIDAS Approach

A distributed system consists of a collection of communicating sequential processes that execute
concurrently on a number of processors linked by an arbitrary interconnection network. A processor
may interleave the execution of multiple processes. Processes communicate exclusively via messages.

In a simulation model, each process (pp), or a collection of processes, in the physical system
is abstracted by a logical process (Ip). In a hybrid model, each process is either an operational
module (also called a physical process or pp) or a logical process. Note that pp is used to refer to
a physical process in the real system as well as an operational module in the hybrid model, as the
two must be identical. We refer to a computation step as the sequence of instructions executed by a
pp in response to a message. In contrast, a simulation step models or simulates the activities that

would be executed by the corresponding physical process. A pp executes only computation steps,
whereas a partially elaborated Ip may execute a computation step to respond to some messages and
a simulation step in response to others. Consider a file-handler process, On receiving a read request
for the file, an operational file-handler will read the appropriate record from the file and return it
to the requesting entity. If the file-handler is abstracted by a logical process, on receiving a read
request, the lp estimates ¢, the time required for the corresponding physical process to read the
file and simulates the read action by waiting for ¢ units of simulation time to elapse. The MIDAS
approach supports the iterative transformation of a model (where the abstractions are expressed
as simulation steps of Ips) into an operational system; at every intermediate step, the expected
performance of the system can be monitored to ensure that it satisfies system requirements.

Figure 1 displays the MIDAS approach. Given the performance specification for a proposed
system and an initial system design, an analyst develops a simulation model of the software that
has not yet been implemented (or whose performance is considered to be critical) and a model of
the hardware subsystem that is not yet available. The initial model may be refined in a variety of
ways: decomposing a module into more modules, elaborating a simulation step into a computation
step, elaborating the required processing for a message, or replacing a model of some hardware
unit by actual hardware. The above process of refinement and elaboration implies that at some
intermediate stage, the model may contain some modules that are (at least partly) operational, and
the computation steps of these modules must be included in determining the overall performance
characteristics of the evolving system. The intermediate form of the model is referred to as a PIPS
program or model. The model is refined iteratively, while its performance is continuously monitored
until the (software) model has been transformed into operational code. Note that either software
or hardware models may be replaced by operational modules.

When is the integrated approach to software design useful? In order to include both operational
and simulation modules in measuring performance, the simulation 'engine’ (the architecture on
which the model is executed) must be similar to the proposed hardware for the modeled system. If
the actual hardware is available, our approach will yield maximum benefit. However, even if some
characteristic hardware parameters like clock speed, memory and disk access times, instruction
cycle time . ..are scalable with respect to the simulation engine, our approach will be of significant
help in predicting system performance.

In a hybrid model, modular decomposition of the software should be distinguished from its
mapping on some hardware. Multiple processes in the model may in fact be executed sequentially
on a common processor in the operational system. To allow for easy experimentation with a variety
of mappings for the software components, we introduce the concept of a Logical Element (LE). Each
PIPS process is mapped to a specific LE; multiple processes may be mapped to a common LE. The
simulation or computation steps of all processes mapped to a common LE are executed sequentially,
and those mapped to different LEs are executed (logically) in parallel. Each LE is associated with
a unique wirtual clock, where clock; refers to the virtual clock for LE;. Unlike a simulation, the
virtual clock of an LE may be advanced by the execution of a computation or simulation step of
any process mapped to the LE.

simulation can be made deterministic by

4 Execution of PIPS Models

PIPS models may be executed on a centralized simulation engine by adapting a sequential simulation
algorithm, as discussed in this section. This algorithm is sufficient to execute PIPS models that

FUNCTIONAL
AND
PERFORMANCE
SPECS
INTTIAL
SYSTEM
DESIGN
i
SOFTWARE HARDWARE
MODEL MODEL
Y l
f
ELABORATION PIPS SIMULATION ELABORATION
AND HARDWARE AND
REFINEMENT PROGRAM REFINEMENT
Y ¥
OPERATIONAL SYSTEM
SOFTWARE HARDWARE

!

OPERATIONAL
SYSTEM

Figure 1: Software Development from a Performance Perspective

consist of a set of interacting, non-interruptible processes.

4.1 Simulation Algorithm

In message-based simulation, each physical object is abstracted by an Ip, and interactions among
the objects (known as events) are represented by message communications among the corresponding
Ip. Message-based simulation algorithms use two data structures(10): a simulation clock and an
event-list. The simulation clock gives the time up to which the physical system has been simulated.
The event-list is a partial order of tuples; a tuple is represented by (m;,p;.s;,t;), where m; represents
a message, s; and p; the source and destination lps for m;, and ¢; is a timestamp. The partial order
is typically based on the timestamp and ensures that events are simulated in the order of their
dependencies. At every step of the simulation, the algorithm selects the tuple with the smallest
timestamp, say (m;,p;,si,ti), and delivers m; to p;. The simulation of m; by lp p; may generate

additional messages which are added to the event-list.

During the execution of a simulation program, the simulation clock advances in a monotonic
non-decreasing manner through the timestamps associated with each tuple. How is the timestamp
assigned to a message? When a message is generated, it is timestamped with the current value of
the simulation clock — with one exception. We define a special message called a timeout message.
The timeout message is scheduled by a process for delivery to itself at a future time and is typically
used by an lp to simulate the time that would be required by the corresponding physical process
to provide the desired service. For example, on receiving a request from a job which requires ¢
units of service, a server Ip may schedule a timeout message to itself ¢ time-units in the future. As
the timestamp on all messages other than the timeout message refers to the current value of the
simulation clock, the simulation time advances only when a timeout message is delivered to an lp.

The timeout message in a simulation is a conditional message which is canceled and rescheduled
by a process, if it accepts some other message in the interim. For instance, consider a serverlp that
models a preemptible process. While serving a request say low, if the server receives a request high,
that has a higher priority, low must be preempted. To preempt service of low, the server cancels its
previously scheduled timeout message, and reschedules the message to correspond to completion
of service for high (service of low is resumed subsequently). Many variations of the basic algorithm
described above are in use. A common variation is the wait-for simulation algorithm[7] in which
a process may delay acceptance of a message based on its state or the message contents. Another
variation[10] allows the timestamp on every message to refer to the (future) time at which it is
to be delivered. These differences do not concern us here as our emphasis is on establishing the
similarities between the execution of simulation and hybrid models.

As a simple example, consider the simulation of a producer consumer program. In the program,
a producer process (pI) produces data and sends it to a buffer process (41), using a message
called put. A consumer process (c1) requests data from the buffer process via a message called
get, and is blocked if the buffer is empty. On receiving a get message, a non-empty buffer sends
a data item to c¢I in a message called data. The service times for both pI and c1 are generated
in the simulation from a negative exponential distribution. Assume that process pI takes 4, 6, 8,
and 3 time units respectively to generate successive units of data; I takes 8, 2, 6, and 9 time
units respectively to consume successive data units. The simulation model assumes that the time
required by bI to process the put and get messages is negligible and can be ignored. Also, the time
required to exchange messages between the processes is ignored in the model. Figure 2 shows a
time-line diagram for the first few events in the simulation. Each simulation step corresponds to the
production or generation of a data item, where d; and 1; respectively represent the time required
to generate or consume the #** data-item.

4.2 PIPS Algorithm

As a partially implemented program contains both simulated components and implemented com-
ponents, it is required that the run-time environment be able to distinguish the execution of a
simulation step from that of a computation step. By definition, if a process receives a time-out
message it executes a simulation step; otherwise it executes a computation step. In simulations,
the clock is advanced only by the duration specified in a timeout message. If the execution time
of a computation step is important for performance measurements, its duration must be modeled
by means of a timeout message. In contrast, the computation step of an operational or partially
implemented module may be directly included in the performance measurement of a PIPS program.

pr f-Ggo LA day

c1 ¢ R e b |- -T2 -
1 1 | 1 1 1 1 I §
4 8 12 16 20 24 28 32 36

Simulation Clock
Figure 2: Simulation of a Producer Consumer Program

A PIPS algorithm (e an algorithm to execute PIPS models) also uses two main data structures:
a set of virtual clocks, one for each LE in the program, and an event-list. Messages from the event-
list are delivered to destination lps in the order determined by their timestamps. The message
timestamps are generated on the basis of the virtual clock of the transmitting process. (We use
virtual clock of a process to mean the virtual clock associated with the LE to which the process has
been mapped.) Unlike the simulation algorithm, the PIPS clock may be incremented by messages
other than the timeout message. When a timeout message is delivered to a process, its clock is
simply incremented by At,, the duration of the simulation step specified in the message. For other
messages, the clock is advanced by an interval proportional to the duration of the computation
step executed by the process (the proportionality factor represents the difference in speed of the
simulation engine and the proposed hardware). A centralized algorithm to execute PIPS programs
is presented in figure 3. In the figure, clock refers to the PIPS virtual clock whose value indicates
the time up to which the hybrid PIPS model has been executed. Each LE is associated with a
unique scaling factor f. As seen from the algorithm, the computation steps of a process mapped to
an LE is scaled by f before incrementing the clock. Execution of the model terminates when the
event-list is empty, or the earliest timestamp in the event-list is greater than T, the maximum time
for which the model is to be executed.

In order to prove that the PIPS algorithm is correct, we are required to show that the sequence
of messages, say £, generated in the execution of a PIPS program is the same as P, a sequence
of messages generated by the physical system being modeled. Under the assumption that the
computation step of a process is atomic, the correctness proof for the PIPS algorithm may be
derived in a manner similar to the proof of the sequential simulation algorithm in [10] and is
omitted.

We use our running example of a producer consumer program to illustrate execution of a
PIPS model. Assume that the code for the consumer and buffer processes is operational and
executes in physical time, whereas the producer process is only partially implemented and executes
in simulation time. (Note that in most simulation languages, the code for the buffer Ip is almost
identical to that used to describe an ‘operational’ buffer process. This is a simple example of
the potential efficiency that may be exploited by integrating system design with its performance
evaluation). In the PIPS program, we assume that the execution of the computation step for cf
takes 5 time units, and that for b7 is 3 time units. The service time for the producer entity is
sampled from an exponential distribution, and the first few values are again assumed to be 4, 6, 8
and 3 respectively. We consider two simple mappings of the PIPS program: one where each process

clock:=0;
Initialize the event-list;
while {ezecution not terminated) do
{ fetch next tuple (m;,p;,s;,ti) from event-list;
if (m;=timeout) then
{ elock;:=clock;+At,(delay specified in the timeout message);
clock:=clock;;
7 simulates processing of m;;
}
else {clock;:=max(t;,clock;);
clock:=clock,;
p; processes m,; measure Af, (duration of computation step};
clock;=clock;+ At * f;;

Figure 3: Centralized Algorithm to execute PIPS Models

is mapped to a separate LE, and the other where all three processes are mapped to a common LE.
Note that in the simulation model, the time required by the buffer to process a message was not
modeled by Ip b1, as it was considered incidental to the system performance. We include this time
in the PIPS model only to illustrate how the performance of operational modules is included in the
measurements. At the end of the section, we indicate how the computation step of a PIPS process
may be excluded from the measurements.

Figure 4 shows the time line diagram for the execution of the PIPS program where each process
is mapped to a separate LE (the processes will execute in parallel in the operational system).
The simulation steps are shown by a dashed line and the computation steps by a continuous line.
Consider the first few events from figure 4. As in the simulation, the first event is the receipt of
a get message by bl. Unlike the simulation, the computation step executed by b1 advances its
clock by 3 time units. The next event is the delivery of a timeout message to pl. This message
was scheduled by p! when its clock was 0. As each process is mapped to a unique LE, delivery of
the timeout message simply advances the the clock of p! to 4 units. On receiving this message,
pl generates a put message for bl at its current time of 4 units. Delivery of this message to bf
advances its clock to 4 (the timestamp on the puf message). The computation step executed by b1
further advances its clock by 3 time units to 7.

We next consider the situation where the computation step of an entity overlaps with the
simulation step of another, as is the case with d; and 1; in figure 4. If the computation step of a
process is assumed to be atomic, overlapping steps may be processed out of order without affecting
correctness. In the above example, even though the simulation step labeled d; completes before the
computation step labeled r,, the PIPS algorithm of figure 3 will deliver the timeout message to pI
after c1 has executed 1,. As any subsequent messages generated by pI (or some other process) for
delivery to ¢l can only be processed by c1 after it has completed 1y, the algorithm works correctly.
However, if the computation step of ¢I could be interrupted due to the generation of a message by
pl on completion of its simulation step, the preceding algorithm is inadequate. The integration of

b1 | getl | Qut| .[p'u.t= qetI .ﬁput} qet: put=

prof-bgo oy d ey

cl + F____Il____4 ! T3 1 ' I3 |
I] I 1 1 1 1 1 |
4 8 12 16 20 24 28 32 36

Virtual Clock
Figure 4: Execution of PIPS Model: Parallel Mapping

b1 | getI | put getl put

pt + 1--%y -2y 1-da

4 8 12 16 20 24 28 32 36
Virtual Clock

Figure 5: Execution of PIPS Model: Single LE Mapping

an interruptible computation step in a PIPS model is considered in the next section.

We now consider a different mapping of the PIPS model that represents a centralized imple-
mentation of the producer consumer program. The new mapping implies that the computation
and simulation steps of all three processes must be executed sequentially. This configuration may
be tested with minimum modifications to the program; it is sufficient to simply ensure that all
processes are mapped to a common LE. The sequential nature of the program is clearly visible in
the time line diagram of figure 5. In particular note that the first timeout message, which was
delivered at time 4 in the previous mapping, is delivered to p! when its clock reads 7 time units.
This is due to the prior execution of the computation step by b which advanced the common clock
to 3.

The execution time of every computation step in a PIPS program may not be relevant to the
performance of a system. Consider, for instance, a statistics collection entity, like the histogram
entity. Presumably this entity will not be a part of the eventual system, and the execution time
of its computation step should not be included in the performance metrics being collected for the
system. We define leg to be a null-valued LE. For all entities mapped to lep, the execution time
of the computation steps are ignored and the simulation steps are executed in parallel. A PIPS
program may be executed entirely as a simulation, simply by mapping all entities in the program
to the logical element lep.

PPa L— 1 computation step

Ipy l)y simulation step
ty
Figure 6: Conditional simulation step

5 PIPS and Space-Time Computation

The previous section described an algorithm to execute PIPS models on a centralized architecture,
where the computation step of a process is assumed to be atomic. In this section, we include the
execution of models whose computation steps are interruptible. In addition, we also indicate how
PIPS models may be executed on distributed hardware.

5.1 Interrupts and PIPS

Atomicity of a computation step makes it infeasible to elaborate a conditional simulation step - a
simulation step scheduled by a conditional timeout message. Once again, consider a preemptible
program module. An lp simulates such a module by scheduling a conditional timeout message which
is rescheduled if the entity accepts another message with a higher priority before completion of the
simulation step. To elaborate such models into operational modules, the language in which the
operational modules are expressed must allow a message to interrupt the execution of the destination
process. We refer to such a message as an interrupt-message or simply as an interrupt with the
understanding that it refers to a message. As illustrated by the following example, elaboration of a
conditional simulation step into a computation step is still infeasible, unless the arrival of interrupts
can be predetermined. Consider two processes pp, and pps that execute overlapping computation
steps of duration t, and t, where t, <ty. Process pp, sends an interrupt m1 to ppy, which must be
processed by ppp before the completion of interval tp. In the PIPS model of this program, pp, exists
as an operational module, and pp; is abstracted by the logical module lpy (figure 6). To model
parallel execution, the two processes are mapped to separate LEs in the PIPS program. However,
the available simulation engine is a uniprocessor and the execution of the two processes must be
interleaved.

When this PIPS model is executed, pp, executes a computation step and lps a simulation step.
To execute its simulation step, lpp schedules a conditional timeout message at time t;. The PIPS
algorithm will execute the computation step of pp, before delivering the timeout message tolp. As
the timestamp on message m1 generated by lp, is less than that of the timeout message scheduled
for 1ps, m1 will be delivered to lpy before the timeout message, as desired.

Now consider a further refinement of the model, where the simulation step of lpy has also been
elaborated into a computation step. In order to correctly process message ml, pp, and lp, must
be interleaved such that the computation step of pp, is executed first. However in general, this
dependency cannot be known until the computation steps are actually executed! In the above
example, if the order of interleavings is reversed, then message m1 has not been generated while Ip
is in execution, and obviously cannot be processed. In addition, the above scenario can be made
arbitrarily complex by defining a PIPS model that must interleave the execution of two mutually
interruptible computation steps(figure 7).

The preceding problem may be solved with the selective use of checkpointing and recomputa-

PPa L J computation &tep
ta

Ips L] computation step
tp
Figure 7: Elaboration of conditional simulation step

tion. For simplicity, we restrict our attention to interruptible PIPS models wherein each process
is mapped to a unique LE. We will use ¢; to denote some interruptible computation step and m.
to denote an interrupt-message. The state of a process, say p;, is checkpointed whenever it exe-
cutes some ¢;. Subsequently, if some other entity generates an m, that must be processed before
completion of ¢;, p; is Tolled back to its checkpointed state. It is subsequently reexecuted such
that m, is processed in its correct order. This is repeated as many times as required until all
messages have been processed in their correct order. Algorithms based on checkpointing and roll
back have already been suggested for distributed simulation[5, 9]. These algorithms use recom-
putation to decrease synchronization delays in a simulation and improve its completion time. In
our case however, checkpointing and recomputation is used to unravel dependencies among the
(logically parallel) computation steps of multiple Ip that must be interleaved on a single processor.
Note that unlike in distributed simulation, checkpointing is needed even in the execution of a PIPS
program on a centralized simulation engine. However, checkpointing and reexecution overheads
may be considerably reduced in a PIPS model by syntactically distinguishing between interruptible
and non-interruptible computation steps and by preventing transmission of {potentially) incorrect
messages. This implies that checkpointing is required only for a process that explicitly indicates
that a specific computation step is interruptible. The appropriate language constructs are described
in section 6. In this section, we describe the modifications to the sequential PIPS algorithm to
handle interrupts. Note that we are not proposing the use of recomputation to support interrupts
in the operational system; a hardware implementation will presumably be used for this purpose.
The PIPS interrupt facility allows an analyst to simulate the effect of these interrupts on system
performance even though the eventual hardware may not yet be available.

Assume that lp, executes some ¢; of duration (tp,t5). Let (melpy,site), ts<te <ty represent
an interrupt that must be handled by lp, during execution of ¢;, We define the following data
structures:

» M: messages generated by lps in its last execution of ¢;.

o M, the initial subsequence of M that consists of messages that precede the interrupt m,
in the event-list. If message timestamps are unique, Mp,={¥(m;,pi,Ips,t;) in M, such that
t;<t.}. If timestamps are not unique, M}, includes a message timestamped f. if it was
processed before m, in the execution of the model.

e M, ;: messages from M that are not included in Mp.; M=Mp.+M, s, where + indicates
sequence concatenation.

e interrupt_g: interrupts handled in the previous execution of ¢;, (these interrupts must precede
Me).

When lpy, is restored to the state checkpointed at t5, messages that belong to the sequence M, s
are removed from the event-list. Further, messages generated during reexecution of c; that belong

10

to Mp, are discarded. The modified PIPS algorithm is described in figure 8. For simplicity, the
algorithm assumes that interrupts are disabled during execution of an interrupt-handler. We prove
that the modified algorithm correctly executes a PIPS program.

Theorem 1 Reezecution of an interruptible computation step for a process, say Ipy, does not cause
any other process to be reezecuted.

Proof: To prove the result, it is sufficient to show that reexecution of Ip, does not insert into the
event-list, any tuple of the form (m;,p;,Ips.t:), where ¢; is smaller than the timestamp on the last
message processed by p;. The tuples in the event-list are processed in (the partial) order of their
timestamps. When an interrupt m, (with timestamp t.) is scheduled for lp, only messages that
belong to sequence Mj, have been delivered to other processes in the system. However, during
reexecution of ¢;, any message generated by lp, that belongs to M4 is discarded. This ensures
that no other process in the system need be rolled back. End of proof

Lemma 1 If some ¢; is reezecuted to process interrupt (m.,l.), no message timestamped smaller
than t. is generated in the reezecution.

Proof: jFrom the definition of M q, any message with a timestamp smaller than ¢, must belong
to My 4, in which case it will be discarded when ¢; is reexecuted. End of proof

As reexecution of ¢; does not change the behavior of any other process in the system, to prove
that the modified algorithm correctly executes a PIPS model, we simply need to prove the following
properties:

Convergence : Execution of an interruptible computation step will eventually converge.

Safety : The sequence of messages generated by an interruptible computation step that has con-
verged is correct.

The proofs of the safety and convergence properties assume that each component of the physical
system has been modeled accurately in the PIPS model. This requirement is referred to as the
fidelity property. In addition, we assume that every physical process (and consequently its PIPS
model) satisfies the realizability and predictability properties[10]:

Fidelity Given a sequence of input messages, a physical process and its PIPS model will output
the same sequence of messages. The definition is, of course, ‘modulo’ the statistical and
housekeeping messages that are used to execute the model.

Realizability A message sent by a process at time ¢, is a function of its initial state, ¢, and the
messages received by the process upto and including t.

Predictability The state of a process at time ¢, cannot depend on the messages sent by it at ¢

The convergence and safety properties are proven in theorems 2 and 3 respectively.
Theorem 2 Ezecution of an interruptible computation step (c;) will eventually converge.

Proof: Assume that lpy executes ¢; on receipt of some message m.. Further, assume that after
the k" execution of ¢;, one or more interrupt-message for Ip is present in the event-list.

11

clock:=0;

Initialize the event-list;

while (ezecution not terminated) do

{ fetch next tuple (m;,p;,s;,t;) from event-list;
if (m; is an interrupt-message) then

{

}

/* identify the computation step c¢; that is interrupted by m;,
its execution interval [t,t;], and the sequences M, M, and May.
Let m,. refer to the message that caused execution of ¢;.
*
/
Restore state of p; checkpointed at ty;
add (m;,pi,si.t;) to interrupt_g;
Discard tuples that belong to M, ¢ from the event-list;
clock;:=tp;
remove earliest (m.,p;,s:,te) from interrupt_g and schedule m, for clock;+(tc-clock:)* fi;
p; processes m,. and handles interrupts from interrupt_q, measure At
/* Successive interrupts from the interrupt_q are scheduled and handled
until the interrupi_q is empty
At. is the physical time needed to process m. and the interrupts.
*
/
Messages that belong to M, , are discarded from the event-list.
clock;:=clock;4 Nt * f;;

else if (m,;=timeout} then
{ clock;:=clock;+At,{delay specified in the timeont message);

}.

e

clock:=clock;;
p; simulates processing of m;;

Ise {clock;:=max(t;,clock;);

clock:=clock;;

pi processes m;; measure At, (duration of computation step);
clock;:=clock;+ Nt * f;;

3

b

Figure 8: Modified PIPS Algorithm to handle Interrupts

12

Without loss of generality, let (m,lps,s;,te) be the interrupt-message with the smallest
timestamp in the event-list. (Al)

If we prove that eventually m, is processed by Ipy and that any interrupt generated subsequently for
1p, must have a timestamp greater than f., convergence of ¢; can be deduced using straightforward
induction.

As m, is the earliest interrupt, correctness of the PIPS algorithm without interrupts guarantees
that eventually all messages preceding m. will be removed from the event-list and m, will become
the message with the earliest timestamp in the event-list. At this point m, is removed from the
event-list and delivered to lp. Delivery of m, initiates the (k+1)*" execution of ¢;. Assume that
subsequently an interrupt message (m;,lps,s;,t;) exists in the event-list such that t;<t..

Consider t;j<t.. Due to the realizability property, message m; must have been generated by p,
on receipt of some m, timestamped at most t;. Further, due to assumption Al, m; must have been
generated during or after the (k+1)** execution of ¢;. Due to lemma 1, reexecution of ¢; does not
generate any message timestamped less than ¢.. It follows that m, must have been present in the
event-list when m,. was delivered to lps. As the timestamp of m, may be at most t;, and t;<t.,
this violates the assumption that m. was the interrupt with the smallest timestamp, establishing
the necessary contradiction.

Now consider t;=t,. Assume that interrupts m. and m; are generated independently. This
implies that reexecution of ¢; to handle m, (or m;), cannot cause generation of m;{or m.). As there
can only be a finite number of interrupts timestamped t., eventually they will all be processed and
the result follows. Assume that m, and m; are not independent. Due to the realizability property,
prior to generating m;, s; must have received some message, say (m,,t,) such that ¢,<t;. As m,
and m; are not independent, m, must itself have been generated as a consequence of lp, handling
interrupt m, which implies that ¢.>%.. The preceding statements together with the assumption
that t;=t, imply that ¢,=f.. This implies that the message received by Ipy at . depends on the
messages it sends at #., which violates the predictability property. End of proof

Assume that execution of some computation step ¢; was completed at ty. The following two
conditions are sufficient to deduce that its execution has converged:

e the event-list does not contain any m,. with a timestamp smaller than t; for Ips.

e clock>ty; this ensures that no further interrupts for ¢; can be generated in the model.
Theorem 8 The sequence of messages generated by some ¢; that has converged, is correct.

Prooft We use induction on the length of the message sequence. Let ¢; be the first interruptible
computation step executed in a PIPS model. Assume execution of ¢; was initiated at t, and
completed at t;. The centralized PIPS algorithm guarantees that execution of the model prior
to tp is correct. At some point after convergence of ¢;, let (m;,Ips,si,ti), ts<t;<ty, be the earliest
message in the event-list. Assume that execution of the PIPS model is correct prior to delivery of
m;. In other words, if £ denotes the sequence of messages generated in the execution of a PIPS
program and P, a sequence of messages generated by the physical system being modeled.

Vt <t;, P and L are identical. (A2)

Let (mj,t;), t;<t;, be the last message received by lpy.
;From the inductive hypothesis, £ and P must be identical prior to delivery of m; in the PIPS
model; thus the sequence of input messages to Ips in the interval [0, t;] is identical to that of the

13

corresponding physical process (if t;=t;, we only include messages upto and including m; in the
subsequences). Suppose (m;,lps,s;,t;) is not transmitted in the physical system. This implies that
the physical process must have received an interrupt (me,te), where t,<t;. However, as ¢; has
converged, it follows that lp, cannot receive this interrupt. Together with A2, we conclude that
such an interrupt cannot be received by the physical process. From the fidelity property it follows
that (m;,t;) must also be generated in the physical system. End of proof

5.2 Distributed Execution

A PIPS model is executed in a distributed architecture by mapping each LE in the model to a
specific physical processor (referred to as a PE) in the distributed architecture. This implies that
although processes mapped to different LEs may execute on different PEs, processes mapped to a
common LE are executed on the same processor.

Consider a system that consists of two interacting, concurrent physical components pp, and
ppp. Assume that the hardware for the operational system is available and consists of a network
of two PEs. In the PIPS model of this system, pp, is an operational module, whereas ppy exists
as simulation module lpy. The PIPS model is executed on the available hardware by executing
ppe and lp, on different PEs. An immediate benefit of the integrated approach is apparent in
that the available communication network may directly be used and need not be modeled in the
PIPS program. If pps and Ipy are not cyclically dependent on each other, messages for pp, may be
generated (with appropriate timestamps) in an off-line mode by lp, and then be input by pp, as
desired. However, the presence of cyclical dependencies makes the execution non-trivial. We show
that the dependencies may be unraveled by using an iterative computation method suggested by
the space-time paradigm for distributed simulation[5].

In the space-time paradigm, multiple logical processes may be used to simultaneously compute
the state of a physical process at different points in time. Let T be the upper bound on the time
for which the system is to be modeled. Let p}‘2 refer to the lp responsible for the computation of
pp: in the interval [ty, 3), t; < ?2; exactly one process computes the behavior of the system for
every t in [0,T]. A precedence relation, symbolized by ~+, is defined between two processes, where

}’2«»p:;-’4 if and only if the state of p?"‘ depends on the state of p}-‘z or on some message received
from p}‘z. If p}'?‘f\»pi"i, we say that p}-’2 is a predecessor of pif‘4 and p?"‘ is a successor of p}'z. Note
that although the exact predecessor or successor set for a process cannot be determined a priori,
a loose upper bound on these sets can typically be determined (a trivial bound is the entire set of
processes in the system).

Given that the preceding set of processes are executed on a distributed architecture, the correct
state of each process is computed by using the following iterative strategy: given some state for its
predecessor processes, a process p; computes an estimate of its final state. During this computation,
it generates a (possibly empty) sequence of messages for each of its successors. The message
sequence is sent to each successor after a process has computed its final estimated state. When
a process gets a message sequence from one of its predecessors that is different from the one it
received in its previous iteration, the process recomputes its behavior. This procedure is repeated
until eventually the computation reaches a fixed-point where further execution of any process does
not change its state, and the computation is said to have converged. A complete description of the
algorithm and sufficient conditions for the convergence of the computation may be found in [5].

The previous algorithm is used to unravel the cyclic dependencies between concurrently exe-
cuting PIPS modules like pp, and lp, described above. We use the following notation:

14

e Si: sequence of messages generated by pp, (or Ip,) in its ith iteration.
o Ri: sequences of messages received by pp, (or Ip,) after executing its ith iteration.

On receiving R} (from all its predecessors), lp, executes its (i+1)*? iteration and sends the suffix of
Si+1 that is different from S to its successor processes. Assume that the sequence S§! was correct
upto some time t;. The predictability property can be used to deduce that Si+1 must be correct
upto some time t;, where t;=t;+A, for A > 0. Using straightforward induction, it is possible to
show that eventually the correct message sequence can be generated for each module in the PIPS
program over any time-interval. We emphasize that the multiple executions of a PIPS process are
generated transparently by the distributed PIPS run-time system and need not be created explicitly
by the programmer.

6 Language Support

A language called Hybrid Maisie has been designed to develop hybrid programs. This language
extends the Maisie simulation language[3] in two ways: it incorporates software interrupts and
provides constructs to integrate simulations with physical modules. The discussion in this section
emphasizes those features of Hybrid Maisie that are pertinent to developing hybrid programs. A
complete description of the Maisie language may be found in [2].

Both physical and logical processes of a hybrid model are represented as entities. An entity-
type models objects of a given type. An entity-instance, henceforth referred to simply as an entity,
represents a specific object and may be created and destroyed dynamically. An entity can refer
to itself using the default keyword myid. The language provides two new types, e_name and
le_name, which are used to store entity- and LE-identifiers respectively. When created, an entity
may be mapped to a specific LE (by default its LE is the same as that of its creator). All entities
mapped to the same LE are executed sequentially. The following code fragment illustrates the
creation of a new server entity s; which is mapped to LE le;.

entity driver{ }
{ e_name s;; le_name le;;

31 = new server on ley;

}

Entities communicate with each other using buffered message-passing. An entity-type must
declare the types of messages that may be received by it. Every entity has a unique message-buffer.
A message is deposited in the message-buffer of an entity on the execution of an invoke statement.
For instance, the following fragment will deposit a request message in the message-buffer of entity
81.

invoke 3, with request;

Each message carries a timestamp, tstarmp, which corresponds to the time (as measured by the clock
of the sending entity) at which the corresponding invoke statement was executed. The message is
deposited in the destination buffer at the time given by its tstamp. In logical modules, the message
transmission times can be modeled explicitly by defining a separate channel entity. In a hybrid
model, the physical time required to transmit a message may be relevant for an operational module.

15

If the keyword invoke in the send statement is replaced by pinvoke, the physical time required
to transmit the message is measured (or estimated) and included in the message timestamp.

An entity accepts messages from its message-buffer by executing a wait statement. The wait
statement has two components: an integer value called wait-time (t.) and a Maisie statement
called a resume-block — a (non-empty) sequence of resume-statements. The wait-statement has the
following form:

wait ¢, until
{ [declarations;]
713
or rg;

or r,;}
Each 7; is a resume statement. A resume statement has the following form:
mtype(m,) [st b;] : statement,

where m, is a message-type, b; a boolean expression referred to as a guard and statement is any
C or Maisie statement. The guard is a side-effect free boolean expression that may reference local
variables or message parameters. If omitted, the guard is assumed to be the constant frue. The
message-type and guard are together referred to as a resume condition. A resume condition that
includes a message-type m; and a guard b; is said to be enabled if the message-buffer contains
a message of type my, which if delivered to the entity would cause b; to evaluate to irue; the
corresponding message is called an enabling message. A resume condition that is not enabled is
said to be disabled. If exactly one resume condition is enabled, and the message-buffer contains
exactly one enabling message, the message is removed from the buffer and delivered to the entity
which resumes its execution. If the buffer contains more than one enabling message, the message
with the smallest timestamp is delivered to the entity. If two or more resume conditions are enabled,
the timestamps on the corresponding enabling messages are compared and the message with the
earliest timestamp is removed and delivered to the entity.

If all resume conditions in the wait statement are disabled, the entity is suspended for a mazimum
duration equal to its wait-time t.; if omitted, #. is set to an arbitrarily large value. A suspended
entity resumes execution prior to expiration of #., if it receives an enabling message. If no enabling
message is Teceived in the interval ¢, the entity is sent a special message called a timeout message.
An entity must accept a timeout message that is sent toit. Note that a non-blocking form of receive
may be implemented by specifying #.=0. By selecting r.s appropriately, the wait statement may
be used to ensure that an entity accepts a message from its input buffer only when it is ready to
process the message.

The wait statement may also model a simulation step. For instance, the following statement
executes a simulation step of duration 10 time units.

wait 10 until
mtype(timeout): counter = counter + 1;

Another construct called the hold statement is provided to express simulation steps. The hold
statement is an abbreviated form of the wait statement and can only be used to program non-
interruptible simulation steps. The following fragment rewrites the preceding simulation step with
a hold statement. The timeout message is delivered implicitly.

16

hold(10);

counter = counter + 1;

The wait statement can also be used to model an interruptible action. For this purpose, any
resume statement in a wait statement can be augmented with the interrupt phrase to indicate
specific message(s) that may interrupt the resume statement. The general syntax for the modified
resume statement is as follows:

mtype(m,) [st b;] : statement;
interrupt {
mtype(m; 1) : stat;1;

or mtype(m;): statix; }

While executing an interruptible step (say statement;), receipt of any of the specified inter-
rupt message (say m;) causes interruption of the corresponding simulation or computation step;
the corresponding ‘interrupt-handling’ code is executed, after which the interrupted step resumes
execution.

Implementation of the interrupt phrase in the simulation mode is straightforward: the original
time-out message is simply rescheduled. The implementation is much harder for a computation step,
because the latter is assumed to be atomic, and the PIPS run-time system cannot gain control until
after the computation step has completed. As discussed in section 5.1, a restricted checkpointing
and recomputation facility is required to implement interrupts in an operational module.

7 Examples

In this section, three different variations of the classical producer consumer problem are used to
illustrate the use of MIDAS approach to the design of distributed systems and Hybrid Maisie to
program hybrid models. This problem and the variations discussed here, provide a high level
abstraction of many distributed systems. In the next section, we present measurements taken on
the prototype MIDAS environment to design each of the three applications.

7.1 Bounded-Buffer Producer/Consumer Problem

We begin with a simple configuration with one producer and one consumer that communicate via
a buffer of bounded size. The simulation model of this problem is shown in figure 9. The buffer
process sends a free message to the producer, whenever it has an empty slot. The producer entity
executes a hold statement to simulate data generation. The wait-time in the hold statement is
sampled from a random exponential distribution.

After receiving a free message from the buffer, the producer entity generates a data item and
sends a put message containing the data to the buffer. The consumer entity sends a get message to
the buffer whenever it is idle and waits to receive the next data item in a data message. The driver
entity is used to create a single instance of the the producer, consumer and buffer entities, where
each entity is mapped to a unique LE.

To program this model into an operational program, it is sufficient to replace the hold state-
ments executed in the producer and consumer entities by appropriate code that generates the
required data item. The message-type puf and get may also need to be modified to correspond to

17

the structure of the data communicated between the producer and the consumer. For instance,
in figure 10 the consumer entity is elaborated into operational code by replacing the hold state-
ment by a call to function process_data which is presumably used to process incoming data. Note
that a hybrid model with a simulated producer and implemented consumer may be reexecuted to
determine its performance characteristics.

7.2 Multiple Producers/Multiple Consumers Problem

One of the most important issues in system design is the task allocation, where a collection of
processes are allocated to finite number of processors according to some resource and/or perfor-
mance criteria. As we mentioned previously, the concept of Logical Element (LE) is introduced
for easy experimentation with the allocation of software processes to hardware processors. Here
we introduce a multiple producers/multiple consumers problem to demonstrate the applicability of
the LE concept.

Two entities, fighter and bomber respectively, generate different messages, fighter object and
bomber_object, at an arrival rate determined by a negative exponential distribution. The messages
represent the arrivals of fighter and bomber objects that need to be tracked by radar fighter and
radar_bomber entities, respectively. We first consider the configuration where both radar fighter
and radar_bomber entities are allocated to the same processor. The new statements in driver entity
create instances of radar_fighter and radar_bomber entities, which are mapped to LE 3 (le3) as spec-
ified in the at phrases shown in figure 17 of appendix A. radar_fighter and radar_bomber entities,
as mapped to the same LE, are executed sequentially according to the arriving order of fighter_object
and bomber_object messages. To improve response time, we now allocate radar_fighter and radar_bomber
entities to its own dedicated processor. All we have to do is to modify the arguments of the at
phrases in the driver entity as shown in figure 18, where radar fighter mapped to LE 4 (le4) and
radar_bomber mapped to LE 3 (le3); the rest of the program remains unchanged. Since they are
allocated to different LEs, the tracking computations for different objects may now execute in
parallel.

7.3 Priority-Based Producer/Consumer Problem

To demonstrate the design of interruptible systems, we propose a priority-based producer/consumer
problem, where an interruptible computation is specified by the interrupt construct together with
its interrupt service computation. A producer process generates data items with two different
priorities: high and low, and sends the data to the consumer for processing. The data item with
the higher priority may preempt (interrupt) the processing of lower priority data item. Figure 11
presents the simulation code for the producer and consumer entities. In the simulation, negative
exponential distributions with different means are used to generate simulation time for producing
and consuming data items.

The producer entity executes a hold statement to simulate the generation of a data item
and sends either a HIGH or a LOW message to the consumer entity according to some specified
probability. In the consumer entity, the processing of a low priority data item is simulated by
scheduling a conditional simulation step: the simulation step completes if the entity does not
receive a high priority message in the interim; otherwise the simulation step is rescheduled after
the higher priority item has been processed. Figure 12 shows a possible timing diagram for the
interrupt processing, where data item ¢ is interrupted twice.

18

entity driver{ }

{ e.name p, ¢, b; le_name lel, le2, le3,
p = new producer{pmean} at lei;
b = new buffer{p} at le2;
¢ = new consumer{b, cmean} at le3,

}

entity producer{pmean}
int pmean;
{ message free{e_name hisid; };
while (true) do {
wait until mtype(free);
hold(ezp(pmean));
invoke msg.free.hisid with put; }

}

entity consumer{bufid, cmean}
e_name bufid; int cmean;
{ message datq;
while (true) do {
invoke bufid with get{myid};
wait until mtype(data);
hold(ezp(cmean)); }

}

entity buffer{pid}

e.name pid;

{ int count; message put; message get{e_name hisid; };
for (count=0; count<BUFFER_SIZE; count++) invoke pid with free{myid};
count= 0;
while (¢rue) do {

wait until {

mtype(get) st (count> 0) {

count—--—; invoke msg.get.hisid with data;
invoke pid with free{myid}; }

or mtype(put) st (count< BUFFER_SIZE) count++;

}

}
}

Figure 9: Simulation Program for Bounded-Buffer

19

entity consumer{bufid, cmean}
e_name bufid; int cmean;
{ message datg;
while (true) do {
invoke bufid with get{myid};
wait until mtype(data);
process_data{ data); }

Figure 10: PIPS Program for Bounded-Buffer

entity producer{cons, pmeanh, prob_hi, zmit}
e_name cons; int pmeanh, zmit; float prob_hs,
{ int date;
while (true) do
{ hold(ezp(pmeanh)); /[* simulate data generation */
if (random() < prob_hi)
invoke cons with HIGH{data};
else
invoke cons with LOW{data};
}

}

entity consumer{cmeanh,cmeanl}
int emeanh,cmeanl;
{ int hent =0, lent = 0;
message HIGH{int data};
message LOW{int data};
while (true) do
wait until {
mtype(HIGH) {
hold(ezp(cmeanh)); /* simulate consumption of high priority data*/
hent++; }

or miype(LOW) {
hold{ezp(cmeanl)); /* simulate consumption of low priority data*/

lent++;

} interrupt mtype(HIGH) { /* simulate interruption by high priority data*/
hold(ezp(cmeanh));
hent++; }

Figure 11: Priority-based Producer/Consumer Simulation Program

20

[
--- data generation -— data consumption
producer | __ 40 hO____ ht __ 4 ___ __d2__, _hz_ |
o 11 2
consumer ho hi : : 1o
F | F — p—
5 10 15 20 25 30 35

Figure 12: Time-Line for Interruptible Consumer Model

entity consumer_entity{cmeanh, cmeanl}
int ecmeanh, cmeanl;
{
int hent = 0, lent = 0
message HIGH{int data};
message LOW{int data};
while (true) do
wait until {
mtype(HIGH) { hent = hent 4 1
process_high{ data); }
or mtype(LOW) {lent = lent + 1
process_low(data);
} interrupt
mtype(HIGH): {hent = hent 4+ 1;
process_high(data) }

Figure 13: Priority-based Producer/Consumer PIPS Program

We now consider the PIPS program for the preceding problem, where the consumer entity has
been elaborated into operational code as shown in figure 13. In particular, note that the code for
the consumer entity changes only to the extent that actual statements, functions process_high and
process.low, to process the messages must be included in the entity.

8 Implementation and Results

A centralized environment to support the use of MIDAS in system design has been implemented at
UCLA. The environment was used to design the three simple applications described in the previous
section. MIDAS is also being used to develop a software subsystem of the Multiple Target Tracking
Electron Beam Radar System in collaboration with Hughes Aircraft Co[11).

The MIDAS environment consists of three main components: the Hybrid Maisie compiler, a
run-time system to execute hybrid programs, and a library of simulation entities and measurement
facilities. The run-time system consists of the following major sub-systems:

¢ the PIPS algorithm

21

o an IPC kernel
» management of state-saving and recomputation to handle interrupts, and
¢ instrumentation routines to measure computation steps

The IPC kernel in a centralized implementation is straightforward and the PIPS algorithm has
been described in section 4.2. The implementation of interruptible computation steps requires a
restricted checkpointing and recomputation facility. (Note that an interruptible simulation step
can be implemented simply by rescheduling the corresponding timeout message.)

Suppose that entity p; executes a computation step ¢;, that can be interrupted by the arrival
of a message m;. Assume that execution of ¢; began at time #, and was completed at time ;5. The
state of p; is saved prior to execution of ¢; (that is at #). Suppose that an interrupt message m;
with timestamp t;, t5<t;<f;, is present. The run-time system restores entity p; to its state at 15,
and schedules an operating system alarm signal which interrupts the computation ¢; at t;; the
computation specified in the interrupt phrase is then executed as the interrupt-service code, after
which execution of step ¢; is resumed.

The fact that interrupts cannot cause propagating rollbacks ensures that a reasonably small
amount of additional storage is required to implement interrupts in PIPS models. In addition, the
overhead to detect if a rollback is needed is also small and restricted to simply checking for the
presence of an interrupt message in the event-list prior to delivering a subsequent message to the
entity following the execution of an interruptible computation step.

To measure physical time used by computation steps, the run-time system uses the clock routine
provided with UNIX. The resolution of the clock prevents accurate measurements of the smaller
time-intervals (including the physical message-transmission times). For such situations, we use an
approximation deduced from the number of instructions executed and the average time to execute
an instruction.

We first present the results of designing the simple bounded buffer application described in
section 7.1. Performance metrics are measured at three different stages of model refinement. In the
initial model, the producer, consumer and buffer entities all execute only simulation steps; subse-
quently the simulation steps of the consumer and producer entities were respectively elaborated to
yield an operational system. The buffer entity from the simulation model was incorporated directly
into the operational system. The time required to produce or consume a data item in the opera-
tional process was generated using a for loop. To validate the PIPS algorithm, the time consumed
by the for loop was kept equal to the same random values of the exponential distribution used to
generate processing time in the simulation model. For each data item, let ¢ be the time at which
the producer entity begins to produce the data item, #; be the time the data item is inserted in
the buffer, ¢, be the time it is removed by the consumer entity from the buffer and t3 be the time
at which the consumer entity finished processing the data item. At each stage of refinement, three
performance metrics were measured:

¢ t,: the average queuneing time = #; — ¢
e t,: the average system time = {3 — 1,
® t;: average total time = t3 — 1o
The preceding metrics for each of the three different stages of system design are displayed in

figures 14. The three stages respectively refer to the initial simulation model, a hybrid model with

22

an operational consumer and the eventual operational system. As seen from the figure, t,, t,and ¢,
are in reasonable agreement for each of the three stages.

A similar exercise was subsequently repeated for the priority-based producer/consumer exam-
ple, as described in section 7.1, where consumer utilization is measured at the following three
different stages of model refinement: in stage one, both producer and consumer entities execute
only simulation steps; in the second stage, consumer entity executes an operational step to consume
LOW messages, while a HIGH message is still processed by executing a simulation step. In the last
stage, the processing of HIGH messages is also elaborated into an operational step. Once again,
for easier validation, the time consumed by operational steps is sampled from the same exponential
distribution used in the simulation model. The consumer utilizations measured at three different
stages of system design are displayed in figures 15.

The multiple producers/multiple consumers problem was used to illustrate the ease with which
different mappings of the software could be tested for their impact on the overall system perfor-
mance. Two different configurations were executed: one with both consumer processes, radar { and
radar_b executing sequently, and the other where they were executed in parallel. Once again, the
performance metrics were measured at three different stages of system design: the initial simulation
model, a hybrid model with operational consumers and the eventual operational system. The mea-
surements were used to determine the average system time, the sum of queueing time and service
time. To simplify the experiment, both fighter and bomber entities use the same mean producing
time and the same mean consuming time. Figure 16 shows the performance result.

9 Conclusion

We have described a methodology to integrate the performance evaluation of distributed systems
with its design. The methodology may be used to determine that a system meet its performance
requirements from its initial stage of inception until it is operational. In this section, we examine
a few restrictions of our approach and briefly describe the implementation efforts in progress.

The central contribution of this methodology is in its use of a hybrid model of a distributed
program, where each process may execute in either simulation or computation mode. A process
may also execute partially in each mode. A process executes in the simulation mode to model the
processing of a message, and executes in the computation mode to actunally process the messages.
In the computation mode, the physical time taken by the entity to process the message is measured
by a physical processor clock. In the simulation mode, the actual time taken by the processor is
ignored; instead the relevant time is the duration of the simulation step measured by the simulation
clock. Both the simulation and computation time-periods must be included to predict system
performance. As discussed in the previous section, the PIPS methodology can handle interruptible
processes and also include the execution of hybrid models in which the physical module executes
faster than the logical module.

The discussion in this paper has assumed a message-communicating model of a distributed
system. We would like to emphasize that this does not exclude shared memory architectures from
being used in this methodology. The methodology only assumes that the programming maodel is
message-based, and may actually be implemented on a shared memory architecture. It is also
possible to use a shared memory programming model by restricting the ways in which shared
variables are updated. The effect of these restrictions is to ensure that every update to a shared
variable is effectively treated as a synchromization point among the concerned processes. The
restrictions are similar to those placed on Ada programs that use shared variables[17][section 9.11].

23

Result for Bounded Buffer Producer/Consumer

1 T 1 T T | 1
200 - Total Time -
180 8 .
160 :‘;__ producer: sim & consumer: sim O
@ producer: sim & consumer: opr o
' producer: opr & consumer: opr O
140 [.::. —
‘@ '
L System Time
120 |- -5 1
s . ‘@: . B
100 T &
Mean Consuming Time: 50
80 L Buffer Size: 3 i
60 - Queueing Time / -
40 | 1 1 | [| |

20 30 40 50 60 70 80
Mean Producing Time

Figure 14: Performance Metrics for Bounded-Buffer Producer/Consumer

24

Result for Interrupt Processing

1 1 I i 1 T
..... o 17
O gonB g
IS5 ‘|- 1 -
9 mean HIGH consuming time: 60
.85 - .
.8 - mean HIGH consuming time: 20 =
Consum -
Utilization
number of messages generated: 100
T mean producing time: 40 —
mean LOW consuming time: 40
.65 - —
6 -
LOW: sim & HIGH: sim ¢
LOW: opr & HIGH: sim o
e LOW: opr & HIGH: opr O .
5 t ! ! I L

1 2 3 4 5
Probability of High Priority Messages

Figure 15: Performance Metrics for Priority-Based Producer/Consumer

25

Result for Different LE Mappings
T T T T

340 - =

320 - Number of Fighter/Bomber Objects Produced: 100 -
Mean Fighter/Bomber Producing Time: 40

300 | Implicit Buffer Size: co _

280 |- producer: sim & consumer: sim < -
producer: sim & consumer: opr o
260 producer: opr & consumer: opr O —

240 -
220 -
200

Average

Syste B

Tim]n:]180
for

Fighter 60

140 -
120
100 -

60 -

20

0 1 | 1 |
5 10 15 20
Mean Radar_Fighter/Radar_Bomber Consuming Time

Figure 16: Performance Metrics for Multiple Producer/Multiple Consumer

26

Other restrictions have to do with the resolution of the processor clock on the simulation engine,
which may limit the accuracy of the measurement of a computation step.

In order to use the integrated approach to performance prediction, it must be the case that the
simulation hardware either be the same as, or be scalable to the hardware on which the proposed
system will eventually be executed. As discussed in section 4.2 for centralized architectures, and
section 5 for distributed architectures, the wvirtual clock of a process may possibly be advanced
by a duration that is proportional, rather than equal, to the execution time of a computation
step. This extension will allow analysts to directly examine the consequence of upgrading some
existing hardware by a component that is, for instance, 50% faster. If the simulation hardware
and the proposed hardware are radically different, measurements of the computation steps on the
simulation hardware are not meaningful. In such situations, all processes in the PIPS program
must be mapped to the null element. The integrated approach to system design is still useful;
however the nature and purpose of the iterative refinements must be modified. As refinements are
progressively introduced in the design, performance metrics must also be refined such that they
relate only to the portion of the design that is as yet abstract[1].

We have not addressed the problem of workload characterization, or the related problem that
arises when enhancements have to be made to an existing system: how do we incorporate the per-
formance of the existing system into the performance prediction for future systems? This problem
is relatively simple, because the approach presented in this papper includes operational modules in
performance predictions. As such it is sufficient to build scaffolding around the separately designed,
operational modules and treat it as a monolithic process which interacts with the rest of the system
via messages.

A prototype implementation of the PIPS environment is under development. The system con-
sists of a language called RTM and a run-time environment. RTM may be used to write real-time
programs and their message-based simulation models. The run-time support environment provides
facilities for inter-process communication and implements the PIPS algorithm to integrate opera-
tions in physical time with those in logical time. Remote communication facilities (communication
between processes resident on different nodes) are provided by the Cosmic C environment{16]. Ex-
perience with the prototype in the design of real-time programs will be reported in a forthcoming
paper.

Acknowledgements

The authors are grateful to Dick Muntz for many useful discussions and to Mani Chandy for
discussions on the applicability of the space-time ideas to the execution of PIPS programs.

27

A Multiple Producers/Multiple Consumers Problem

entity driver{ }
{ e_name f, b, rf, rb
le_name lel, le2, le3;

rf = new radar_fighter{ rfmean } at le3; /* LE 3 %/
rb = new radar_bomber { rbmean } at le3; /% LE 3 */
f = new fighter { rf, fmean } at lel;
b = new bomber { rb, bmean } at le2;

entity fighter{ radar_f, rfmean }
e_name radar_f; int rfmean;
{ for (; ;24
hold(expon(rfmean));
invoke radra_f with fighter_object; }

entity bomber{ radar_b, rbmean }
e_name radar_b; int rbmean;

{ for (; ;

hold(expon(rbmean));

invoke cb with bomber_object; }

}

entity radar_fighter{ fmean }
int fmean;
{ message fighter_object;
for(;;%
wait until mtyp(fighter_object);
hold(expon(fmean)); }

¥

entity radar_bomber{ bmean }

int bmean;

{ message bomber_object;

for (; ;) 1

vait until mtyp(bomber_object);
hold(expon(bmean)); }

}

Figure 17: Multiple Producers/Multiple Consumers Single LE Mapping

entity driver{ }
{ e_name f, b, rf, b
le_name lel, le2, le3, led;

rf = new radar_fighter{ rfmean } at le4; /* LE 4 %/
rb = new radar_bomber { rbmean } at le3; /* LE 3 %/
f = new fighter { rf, fmean } at lel;
b = new bomber { rb, bmean } at le2;

Figure 18: Multiple Producers/Multiple Consumers Multiple LE Mapping

28

References

[1] R. Bagrodia. An Environment For the Design and Performance Analysis of Distributed Sys-
tems. PhD thesis, Dept. of Computer Sciences, University of Texas, Austin, Tx 78712., May
1987.

[2] R. Bagrodia and W.-T. Liao. Maisie User Manual. Computer Science Dept., UCLA, 1990.

[3] R.L. Bagrodia and W.-T. Liao. Maisie: A language and optimizing environment for distributed
simulation. In 1990 Simulation Multiconference: Distributed Simulation, San Diego, California,
January 1990.

[4] K.M. Chandy, J. Misra, R. Berry, and D. Neuse. The use of performance models in systematic
design. In AFIPS, Procedings of the National Computer Conference, volume 52, 1982.

[5) K.M. Chandy and R. Sherman. Space-time and simulation. In Distributed Simulation Confer-
ence, Miami, 1989.

(6] G. Estrin, R. Fenchel, R. Razouk, and M. Vernon. Sara (system architects apprentice): Mod-
eling, analysis and simulation support for design of concurrent systems. IEEE Transactions
on Software Engineering, SE-12(2):293-311, February 1986.

[7] W.R. Franta. The Process View Of Simulation. Elsevier North-Hollabd Inc., New York, 1977.

[8] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666--
677, August 1978,

[9] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time-warp mechanism.
In Distributed Simulation 1985, Society for Computer Simulation Multiconference, San Diego,
1985.

[10] J. Misra. Distributed discrete-event simulation. Computing Surveys, 18(1), March 1986.

11] D. Noal. The design of the multiple target tracking electron beam radar system using midas
g g g
approach. Master’s thesis, Computer Science Dept., UCLA, 1990.

{12] D. Parnas. Sodas and a methodology for system design. In AFIPS Conference Proceedings,
1967.

[13] W.E. Riddle. The modeling and analysis of supervisory systems. Ph.D. thesis, Stanford
University, March 1972,

[14] G.C. Roman. Specifying software/hardware interactions in distributed systems. In Proceedings
of the International Conference on Software Engineering, pages 126-139, May 1987.

[15] J. Sangninetti. A technique for integrating simulation and system design. In Conference on
Simulation, Measurement and Modelling of Computer Systems, Boulder, Colorado, August
1979.

[16] C.L. Seitz. The cosmic cube. CACM, 28(1):22-33, January 1985.

29

[17] United States Department Of Defense. Reference Munual for the Ada Programming Language,
1983.

[18] F. Zurcher and B. Randell. Iterative, multi-level modelling - a methodology for computer
system design. In Proceedings IFIP Congress 68, 1968.

30

