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Abstract

Systems composed of thousands of VLSI computing nodes interconnected by
point-to-point links can achieve cost-effective supercomputing performance by exploiting
parallelism. While the memory in such multicomputers is physically distributed, shared
virtual memory is desirable for many applications. Hence, the underlying hardware and
system software must maintain coherency among the local memories. Most existing
coherency schemes for multicomputers manage memory uniformly at a single granularity
of fixed size pages or cache blocks, leading to unnecessarily high overhead and poor
performance.

If coherency is managed at the granularity of pages (thousands of bytes), network
traffic that is orders of magnitude greater than necessary may result. On the other hand,
single-level coherency management at the granularity of cache blocks (tens of bytes)
resuits in unacceptably large mapping tables. We propose a solution to this problem
using multi-level management, where mapping and transfer at the block level are done
only when necessary — during the time that the page is actually shared. When pages are
not shared, they do not require more space for mapping tables than uniform page-level
schemes. A detailed description of the scheme is presented, together with preliminary
indications of its performance and area overheads. The results of trace-driven
simulations of the multi-level coherency scheme are reported. It is shown that the multi-
level scheme makes it possible to achieve the performance advantage of uniform block-
based schemes without their large storage overhead.
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I. Introduction

Ensembles of a large number of tightly-coupled high-speed VLSI computing nodes have the
potential of achieving high performance, at a relatively low cost, by exploiting parallelism. Many
existing and proposed multiprocessors provide shared memory to all their nodes using a single shared
bus [19], a hierarchy of buses [20], or multi-dimensional grids of buses[11]. These multiprocessors rely
on wide, fast, buses. Such buses and the related drivers and arbiters, are expensive and bulky. The need
10 keep the buses short placefs tight constraints on the physical structure of the system. Furthermore, the
failure of one of the buses or an interface to one of the buses can disable or severely degrade a significant

portion of the system,

Multicomputers composed of a large number of independent computing elements (nodes), which
communicate using messages via point-to-point links, are an alternative to shared-memory
multiprocessors [2]. Each node is a complete computer containing local memory as well as a processor.
One of the advantages of this type of system is that there is no single component, such as a common bus
or shared memory, which can become a performance bottleneck and whose correct operation is critical
for the operation of the entire system, or to the operation of a significant portion of the system. There are
many alternative implementations of the point-to-point links, including byte-wide links (8], serial
cables [7], or fiber-optics links. These alternatives provide lower cost, more compact packaging, and the
potential for higher performance than in systems based on wide buses. In addition, there is great
flexibility in inter-connecting nodes that are inches or dozens of yards away from each other using the
same basic organization. Furthermore, the basic system components — the nodes — are capable of self-
diagnosis and of active participation in reconfiguration in response to changes in the system (e.g.
performance bottlenecks or node failures). Hence, systems of this type can scale up to many thousands of

nodes and can use sophisticated fault tolerance schemes to recover from component failures.

There are cases where it is desirable to provide for the application a virtual machine on which all the
processors can share a common address space even though memory is physically distributed [15]. For
example, this might be desirable for an application where the processes access a large common data
structure (e.g. a memory-resident collection of images). A shared virtual memory system may also be
required if there is a large existing application, which was written based on the shared memory model,
and there is a need to run the application on a multicomputer where memory is distributed. A potential
advantage of the shared memory model is that process migration (e.g., for load balancing) becomes
relatively cheap — in order to migrate a process only the contents of a few registers need to be migrated

while the memory can remain in place.




The idea of implementing shared memory in a system with distributed memories is not new. For
example, this was done in Cm* multiprocessor [10]. However, with the Cm* data from remote memories
was not cached locally, resulting in poor performance for remote accesses. In a more recent system [15],
when a remote page is accessed, it is brought to the local memory, where it is kept until another processor
needs it or the page-replacement algorithm pages it out. Coherency of the resulting shared virtual
memory is maintained using directory-based cache coherency algorithms [1, 5] with pages in each node’s

main memory being managed as ‘‘cache blocks.”’

With page-level shared virtual memory schemes, a page (several thousand bytes) is the unit of
mapping, the unit of transfer, and thus, the granularity of sharing. This large unit of transfer does not
provide adequate support for fine-grain parallelism since it results in long delays for interprocessor
communication even when the object being (logically) transferred is small. In addition, the large unit of
mapping results in reduced system performance due to unnecessary data movement caused by ‘‘false
sharing’’ [4]. The difficulties with page-level coherency management motivate the use of schemes which
manage coherency at the granularity of cache blocks — the unit of transfer is a block and different blocks

of a page can be simultaneously mapped to the memories of different nodes {5).

With the advent of 16 Mbit DRAM chips, a multicomputer with a thousand nodes is likely to
include tens of giga-bytes of physical memory and an even larger virtual address space. A key difficulty
with support for sharing at the granularity of blocks is that the total number of blocks in such a
multicomputer will be very large, potentially leading to unacceptably high storage overhead for the
required mapping tables. We propose a solution to this problem, based on the assumption, which is
validated by trace-driven simulations, that at any one time only a small percentage of the address space of
every process is actually shared. Hence, the mapping tables are partitioned into tables for strictly local,
non-shared pages and special tables for shared pages, where it is possible to specify different locations for
different blocks in the page. During normal execution, pages are dynamically moved between the
different mapping tables, as the need arises. The proposed coherency algorithm introduces the use of
ownership [12] at both the page level and the block level in order to provide block-level sharing and also

support dynamic page migration to reduce message traffic and the size of mapping tables.

The basic system organization and a review of Li’s[15, 14] page-level scheme are presented in
SectionII. A straightforward block-level scheme is presented in Section III, where the sizes of the
required tables are computed. The proposed efficient block-level scheme is described in Section IV,
where a preliminary evaluation of the savings in mapping tables and the effectiveness of the scheme are

presented. Section V is a summary of simulation results, based on address traces of parallel applications.




II. Page-Level Management of Shared Virtual Memory

The node of a message-passing multicomputer, designed for high-performance, consists of: an
application processor, local memory, cache memory to speed up access to the local Memory, a memory
management unit (MMU) that manages translation and protection for the local memory, and a
communication coprocessor that handles most of the tasks involved with sending, receiving, and
forwarding messages {2, 7). Shared virtual memory, with management at the granularity of pages, can be
provided on such hardware using the normal page fault mechanism of the MMU and relying on the
application processor to perform all the necessary operation [15,4]. For maximum system performance,
the application processor should not be involved in the ‘‘emulation’’ of shared memory — special-
purpose hardware should service remote requests for pages and convert local accesses to non-local pages
into request messages to remote nodes. Just as the communication coprocessor handles the various tasks
involved in message passing, a dedicated coprocessor, called a memory-to-messages / messages-to-
memory  transducer (MMT) will provide support for shared memory emulation. The resulting

organization of the multicomputer node is shown in Figure 1.
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Figure 1: A multicomputer node.

Each node in the system may be time-shared between multiple processes. A set of processes that
share their address space forms a task. The system may be executing multiple tasks simultaneously.
Unique task identifiers partition the total virtual system space into disjoint task virtual spaces. Processes

belonging to different tasks execute in disjoint address spaces and cannot share data.

Li[15,13] has proposed the implementation of coherent shared virtual memory on loosely coupled
networked workstations and has also implemented his scheme on a multicomputer [14]. In Li’s scheme,
sharing and coherency are managed with the granularity of pages. The proposed scheme is directory-

based [1] where, with the most promising of the proposed alternatives, the directory is distributed among




the nodes. The scheme requires nodes to obtain exclusive ownership of a page before modifying it so that
all other copies are invalidated. Multiple read-only copies can be distributed throughout the system.
With the “‘distributed fixed manager algorithm’’ cach virtual page is initially managed by a default

manager whose identity is determined by a simple function of the virtual page number.

HI. Block-Level Management of Shared Virtual Memory

As discussed in Section I, using pages as the unit of mapping and the unit of transfer can result in
low performance due to the long latencies and the bandwidth requirements for transferring pages and due
to false sharing. A simple solution to this problem is to use the same basic algorithms with much smaller
pages, henceforth referred to as blocks, as the unit of mapping, transfer, and ownership[5]. In a large
multicomputer, the total number of blocks in all the virtual address spaces of all the tasks in the system
will be too large for address translation based on conventional page tables (block tables). However,
address translation is needed to map any virtual block number to a local block frame, a remote node, or

secondary storage.

The above problem is solved by using an inverted table (6] for translating virtual addresses to local
physical addresses. The inverted block table on each node, called the present block table (PBT), contains
one entry for each block frame in the local physical memory (Figure 2). Hence, the PBT contains
information only about those virtual blocks that are currently resident in physical memory. Hashing is
used to provide fast associative lookups in the PBT [6]. The advantage of this scheme is that the size of
the PBT on each node is proportional to the size of the physical memory, rather than virtual memory, on
the node. If a local or remote memory access does not ‘“hit”’ in the PBT, the default owner (manager) of
the block is computed and a remote request for the block is sent to that processor. If the local processor is
the default owner of the block, some mechanism is needed to determine whether the block has mi grated
to another processor or if it is on disk. The mechanism employed is a Migrated Block Table (MBT)
which maintains the current owner of all default blocks that have been migrated away from the node.
Analysis

Consider a multicomputer with 1024 nodes, each with 32 MBytes of physical memory. The task
identifier is 16 bits wide and the maximum virtual address space per task is 1 TB (24?). A page in this
system is 4KB and a block 128 bytes. The PBT on each node has 256K entries, each about 113 bits
wide. Although the PBT is large — 3.5MB, it can fit in the physical memory of each node. The MBT

does not have to be resident in local memory but its total size can become unmanageable,

The copy set of an owned block contains the identities of the processors that possess read-onty

copies of that block [15]. This information is used when one of the nodes needs to write to the block and
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Figure 2: Address translation tables for the One-Level scheme.

all read copies must be invalidated. Very large copy sets may be needed to accommodate blocks that are
read shared by many processors. There are several approaches to limiting the size of the copy set. With
broadcast protocols, if the number of read copies exceeds some fixed bound, a system wide broadcast is
required to invalidate a block[1]. The disadvantage of this approach is that many multicomputer
interconnection networks do not provide efficient support for broadcasts. An alternative to broadcast
protocols is to invalidate one of the read-only copies of the block whenever a new read request is received
by the block owner and the size of the copy set has already reached its limit. With such an eviction
policy [5], upon receipt of a read request that would ‘‘overflow”’ the copy set, the block owner picks a

victim from the copy set, invalidates it, and uses the freed slot in the copy set for the new request.

The performance impact of limiting the size of the copy set has been evaluated based on the
access-burst model [9]. Critical section accesses and the locality of references in shared blocks are
modeled by assuming that accesses by one processor to a shared writable block are done in independent
uninterrupted bursts called access bursts. An access burst can modify the block with a fixed write
probability w. If a copy set overflow is associated with an invalidate, the performance degradation due to
the limited number of entries in the copy set can be measured as the increase in the frequency of
invalidates over an infinite copy set. The average number of access bursts before an invalidate, for an
unlimited copy set is (1 — w)/w. For a limited copy set, the average numbert of access bursts before an
invalidate B can be calculated from

i=v—1 . =00 | F=r
BN ww)= 3 i(l-wiw+ 3 i(l-w)| TPGiNw +P.i N1 -w)

i=] [=v Jj=1

N-v
N

where N is the number of processors sharing the block, v is the maximum number of entries in the copy
set, and P (p ,b ,N) is the probability that exactly p out of the N processors have copies of the block after

b read bursts. See the appendix for the derivation of this expression.




Figure 3 is a plot of the average number of access bursts before an invalidate for the infinite copy
set and for a copy set limited to eight entries for various values of w. The figure indicates that a copy set
with a maximum of eight entries has very little degradation with respect to the infinite copy set for write
probability ranges observed in practical applications [9,3]. With 8 entries in the copy set of each of the

256K blocks in the PBT, the total size of the copy sets in one processor would be about 2.5MB.
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Figure 3: Number of Access Bursts prior to invalidate for the infinite and the finite
COpYy sets.

IV. Multi-Level Management of Shared Virtual Memory

With uniform block-level sharing, all ownership and mapping information is at the granularity of
blocks. For every block in physical memory, space is allocated to maintain its access rights and copy set.
Since a large portion of physical memory is used exclusively by the local processor for long periods of
time, the one-level scheme is wasteful in allocating storage space for access rights and copy set for each
block in the physical space. Furthermore, since private segments are likely to occur in contiguous chunks
much larger than a block, a private page that would have only one mapping entry in a page level scheme,
would need as many entries as the number of blocks per page, in a block level scheme. The two-level
scheme proposed in this section improves upon the one-level scheme by optimizations based on these two
observations. The scheme distinguishes between private and shared segments (pages) in physical

memory and allocates space for coherency state information and mapping only for the shared pages. The




private segments are managed at a page level granularity. Since pages dynamically change state, on
demand, between private and shared status, the scheme is transparent to the application. In order to
eliminate the overhead that is caused by false sharing, ownership of shared segments is maintained at

both the page and block levels.

A private page located on its default owner (manager) does not require storage of any extra mapping
information in order to support the possibility that this page may have been previously shared and may be
shared in the future. On a remote request for a block of a privately owned page, the page changes to the
shared state. For each shared page in the system, information is maintained regarding two levels of
ownership: page level and block level. A processor owning a page is responsible for maintaining the
block ownership information for all blocks of that page. Ownership of a block of a shared page is the
same as ownership in the one-level scheme. The processor owning a block can provide read-only copies,
invalidate read-only copies, or transfer ownership of the block to another processor. The block owner

must maintain the copy set for that block.

When a page enters the shared state, all of its blocks are initially owned by the page owner.
However, after this point, the page owner of a shared page does not nccessarily possess copies of all
blocks belonging to that page. As with sector mapping in cache memories [16], space is allocated for the
whole page in the local memory. In every processor that has one or more blocks from a page, space must

be allocated in the local physical memory for the entire page.

The address translation tables are organized in a two-level hierarchy. The first level table indicates
which virtual page is mapped in each page frame of the physical memory and whether the page is shared.
On a memory request, the first level table identifies if the page containing the block being requested is
present in local memory. If the page is private, the block is guaranteed to be present; if the page is
shared, the mapping tables should indicate if the requested block is present with sufficient access
permission. The second level table maintains this additional information about the blocks of each shared
page. For every owned shared page, the second level table also maintains the owner identity of each
block of that page and for every non-owned shared page, the identity of the page owner. If the page is
present and shared, but the block is absent, the request is forwarded to the page owner, or to the block
owner if this processor is the page owner. As in the one-level scheme, on a page miss the request is
forwarded 1o the default owner. A Migrated Page Table (MPT) akin to the MBT in the one-level scheme
maintains the identity of the current owner of default pages that have been mi grated. The organization of

these tables is shown in Figure 4.

The first level table, the present pages table (PPT), is organized as an inverted table, consisting of a
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Figure 4: Address translation tables for mixed granularity sharing.

hash anchor table (HAT) and a page frame table (PFT)[6]. Since the PPT maps pages rather than blocks,
it is smaller than the PBT in the one-level scheme. The Page Frame Table maintains for each page in the
physical address space, the virtual address of the page currently mapped there, a bit to indicate if the page
is shared or private and, if the page is shared, a pointer to a second level table entry. The address

translation for a private page need not access the second level table.

The second level table, the shared page table (SPT), maintains additional information about shared
pages. The SPT entry indicates whether the page is owned and includes the access rights of each block in
that page. If the page-owned bit is not set, the page owner field holds the identity of the processor
owning the page. Two state bits for every block in a shared page indicate the access rights to the block:
invalid, read only, owned, and owned exclusive (write permission) [12]. Each SPT entry includes a field
which may contain a pointer to the Copy Table (CT). The CT contains information similar to the copy
set, previously discussed, but is organized differently. Specifically, if the page is owned, the CT must
indicate the owners of each non-owned block. For every owned block, the CT indicates all the nodes that
have read-only copies of the block. As in the one-level scheme, the CT size can be limited by following a
policy of eviction or broadcast. If the broadcast policy is used, in each SPT entry there is a broadcast bit

for each block in order to indicate that a broadcast is required to invalidate copies of that block (Figure 4).

Figure 5 shows the sequence of actions of the address translation mechanism for local requests.

Remote requests are handled similarly but without the initial lookup in the local cache., The messages
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exchanged between the nodes include: Block, Page, Block Request, Page Request, Invalidate Block,
Update Ownership, and Update Invalidate. The Block and Page messages transfer the block or page data
from one node to the other. The rest of the messages are control messages for maintaining coherence. Of
the control messages, the purpose of the first three is obvious from their names. The Update Ownership
message is sent by a block owner to its page owner when ownership of a block is transferred. The Update
Invalidate message is sent to a block owner by a node that has a copy of the block and decides to

invalidate it.
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Figure 5: Address Translation for local requests.

Two of the key ideas in our proposed scheme have also been proposed by O’Krafka and
Newton [18]: 1) managing coherency at two levels of granularity, block and sub-block, and 2) exploiting
the fact that not all the blocks are actually shared at each point in time. However, the first idea is not
fully exploited in [18] since the scheme requires invalidating all the sub-blocks of a block when only one
sub-block needs to be invalidated. This limitation results in poor performance [18]. While in [18]
exploiting the second idea above requires separate associative tag tables, we have shown that such a table
can be eliminated by integrating the required functionality with a standard virtual memory management
scheme. There is no discussion in [18] of how the two ideas for reducing the storage requirements for

mapping tables can be combined in one efficient scheme, as described earlier in this section.
Analysis of the Proposed Coherency Scheme

With the system parameters discussed in Section III, the PPT has just 8K entries as opposed to
256K entries in the PBT. As a result, the total size of the PPT is only 88 KB. Since the SPT entries are

large (on the order of 132 bits) and often require even larger Copy Tables, it is desirable to bound the
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number of SPT entries and the size of the Copy Table.

In many parallel applications the proportion of references to shared storage is less than 15%[3].
Furthermore, only part of the shared space is actually shared during each ‘‘phase’ of the program.
Hence, an SPT with significantly fewer entries than the PPT should be sufficient to accommodate the
“*shared working set’” of most applications. When the SPT ‘“‘overflows,” an entry can be freed up by
flushing an un-owned page back to its owner, “‘recalling’’ an owned page and making it private, or
migrating an owned page to another node which already owns some of its blocks. We expect an SPT
which can accommodate about 10% of the working set of the process, roughly 10% of the entries of the
PPT, to be sufficient. With the system parameters discussed in Section ITI, the SPT will have
approximately 1K 132 bit entries, taking up approximately 17 KB.

As discussed in Section III, we expect that the maximum number of entries in the copy set for each
shared block can be bounded with little performance degradation. With the two level scheme, there may
be a need to maintain copy set entries for every block in every shared page. In the example system,
where the number of copy set entries per block may be bounded by eight, we may need to maintain 256
copy sel entries per shared page. The Copy Table, shown in Figure 4, is a different organization of the
copy set information. This organization attempts to minimize the required storage based on the
assumption that, on average, two nodes that share one block of a particular page are likely to share other
blocks from that page. In each entry there is a bit vector with one bit per block indicating whether the
particular remote node has a copy of the corresponding block. With this organization, the maximum
number of entries in the CT per shared page is the maximum number of nodes that may share a page.
Since every entry in the CT keeps track of all the blocks of the page, the total number of entries needed is
expected to be significantly smaller than in an organization based on one entry per block. For the
example system, it is expected that 32 entries will be sufficient. Investigation of other possible

organizations of the copy set information is one of the topics of our ongoing research.

With the proposed organization of the Copy Table, given a fixed memory size and page size, the
total storage needed for the copy set is sensitive to the size of the block. For the example system,
Figure 6 shows the size of the Copy Table per node versus the block size for different number of entries
in the CT per shared page. Larger blocks lead to smaller CT entries (fewer blocks per page), and thus
reduce the memory used for CT storage. However, small blocks are needed to minimize false sharing.
Based on the graph, a block size of about 128 bytes offers a good compromise. At this block size, the
total CT size per node is about 192KB, when the number of entries per CT is 32. For the example

system, it should be noted that, in the one-level scheme the total size of memory resident tables — PBT
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Figure 6: Total size of all the Copy Tables on a node versus the granularity of sharing.
IK entries in the SPT. 4KB pages. 32 MB local memory. The parameter v is the
number of Copy Table entries per shared page. The total memory required for the
Copy Tables increases rapidly for block sizes below 64 bytes.
and the copy set — is approximately 6 MB (18% of local memory) if all blocks are allowed to be shared,
and is approximately 3.8 MB (11% of local memory) for the same proportion of shared blocks (10%) as
in the two-level scheme. The total size of memory resident tables — PPT, SPT and the CT — in the

two-level scheme is about 300 KB, consuming less than 1% of the local memory.

V. Evaluation Based on Trace-Driven Simulations

To evaluate the performance of the multi-level coherency scheme, its behavior has been simulated
using address traces of parallel programs. This methodology provides the flexibility of studying the
performance of the mulii-level coherency scheme on realistic applications over a range of parameters.
The simulation results corroborate our assumptions and the results of the simple analysis regarding the

SPT and Copy Table sizes,

Our simulations were based on address traces from three parallel applications: Weather, Speech, and
FFT. The Weather application partitions the atmosphere into a three dimensional grid and uses finite

difference methods to solve a set of partial differential equations describing the state of the system. The
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Number of Number of | Max data | Shared foot print (KB)
. Number of .
N Trace length | Instruction Shared foot print | Average of system
Application s Data refs
(10° refs) refs (105 rc f5) data refs (KB)per | per
(108 refs) (10° refs) processor | processor
Weather 31.76 13.64 18.12 5.02 5346 5192 5330
Speech 11.77 10.78 11.77 11.77 510 434 596
FFT 7.44 3.11 4133 1.05 164 130 130

Table 1: Trace characteristics. The system shared footprint is the number of 1KB
pages accessed by more than one processor during the execution of the application.
The per-processor shared footprint is the average number of pages, out of the system
shared footprint, that were accessed by individual processors.
Speech application comprises the lexical decoding stage of a phonetically-based spoken language
understanding system. The application uses a modified Viterbi search algorithm to find the best match
between paths through a directed graph representing a dictionary and another directed graph representing
the input. FFT is a radix-2 fast Fourier transform. The basic characteristics of the traces are summarized

in Table 1. More details about the applications and the traces can be found in [5].

The simulator faithfully implements the multi-level coherency scheme described in Section IV,
LRU replacement in used with the PPT. For this study, the PPT size is chosen to accommodate most of
the process footprint in order to ensure that the number of misses due to PPT overflows will be negligible.
Specifically, the PPT size for Weather, Speech, and FFT, was 2048, 1024, and 256 pages, respectively.
Pseudo-random replacement is used to pick a victim Copy Table entry when eviction is necessary. When
an SPT entry has to be freed, if the victim selected is an unowned page, it is flushed back to its owner; if
it is an owned page, all of its shared blocks are ‘‘recalled”’ and the page is made private. The simulator
determines the state of the PPT, SPT, and the CT after each memory reference and builds statistics on
miss ratios, network traffic, and the number of SPT and PPT replacements. The size of the PPT was
chosen to be sufficient to accommodate all, or a major portion, of the applications’ address space, since
our primary objective was to study the impact of sharing on performance. Simulations were performed
for both 1KB and 4 KB pages for a range of block sizes, SPT sizes and Copy Table sizes. The system
miss ratio on accesses to the shared address space and the total network traffic are good indicators of the
potential system performance, and will be used to present the results of the simulation. The network
traffic is calculated assuming that each control message is 16 bytes long, while the size of data messages

(Block or Page) is 16 bytes plus the data being transmitted.

Figures 7 and 8 show the data access miss ratios, for all three applications with various SPT and

block sizes. The corresponding network traffic is shown in Figures 9 and 10. There is a negligible




Data
Miss

Percentage

Data
Miss

Percentage

-14 -

90 90 90
80 - 80 80 4
A~ Block size = 128 bytes —&—DBlock xize = 128 by —A—Block ziza = 128 byice
—~—Block size = 256 bytes —— ook rize = 296 bytes ——Biock #ize = 256 byws
0 it Block size = 512 hytes 70 ~s— Block size = 512 byksa 70 - Block sizz = 512 bywea
B —a—Block #ize = 4096 bytes T —m—Block size = 4096 bylos T —m—Block size = 4096 hytes
60 4 60ja, . 60
50 - 50 - 50 -
40 40 S 40 -
30 30 - % 304
20 20 20 fere—r .
T_;
10 - 104 10 -
il 1 i 1 111 | 1 L 11 1 1 ] |
116 64 128 256 116 o4 128 256 116 64 128 256
SPT Size SPT Size SPT Size
Trace: Weather Trace: Speech Trace: FFT
Figure 7: Data miss percentage versus SPT size; 4KB pages; Copy Table size 32.
45 ~&—Block aize = 32 bytes 45 —#—=Bluock size = 32 bytes 45 —aA—Block sire = 32 bytes
1 v~ Block aize = 64 bytes T ——Black site = 64 bytes T —veus Block size = 64 bytes
—+—Black fizo = 128 bytes ~—+w—Block xize = 128 bytes —w—Block size = 128 bytoe
Block sizn = ize = =
40 —— 1024 bytes 40 ——Block size = 1024 byt 40 —&—Block size = 1024 bytes
35 35 35
30 - 30 1 301
W |
25 25 25
20 4 204 20 8naoa—» »
15 -J‘ 15 15
Lo s S—— '
10 - ¥ * 10 4 10
54 54 5
i1 1 1 1 i 11 1 i 1 1 ty 1 ! 1
116 o4 128 256 116 o4 128 256 116 64 128 256
SPT Size SPT Size SPT Size
Trace: Weather Trace: Speech Trace: FFT

Figure 8: Data miss percentage versus SPT size; 1KB pages; Copy Table size 32.
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contribution to the miss ratio due to private accesses, i.e., due 10 accesses to unshared data. Hence, the
miss ratio for accesses to the shared address space can be easily derived from the information shown, as
the product of the total data miss ratio and the ratic of the number of data accesses to the number of
accesses to shared space. The key advantage of a small block size is demonstrated by the decrease in
network traffic with decreasing block size. Furthermore, with the Speech and FFT applications,

decreasing block size results in a decrease in false sharing, leading to a decrease in miss ratio.

An important result of the simulations is that, for all three applications, performance appears to be
dependent on block size rather than page size. Specifically, for a page-level scheme (block size equal
page size), 4 KB pages lead to significantly higher miss ratios and network traffic than 1 KB pages.
However, for equal block size (128 bytes), performance of the system with 4 KB pages is almost identical
to the system with 1 KB pages. Since larger pages result in smaller tables, this is a clear demonstration of

the advantage of our multi-level coherency scheme.
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Figure 11: Shared miss percentage and network traffic versus Copy Table size for page
sizes 1KB and 4KB; SPT size is 64. Block size is 128 bytes.

The results show that, for very small SPTs, significant reduction in miss ratio and network traffic is
obtained by increasing the size of the SPT. However, once the knee of the curves is reached (in this case,
at around 32 entries), further increases in the SPT size do not provide significant performance
improvement. These results confirm our expectation that a small SPT (about 10% of the total working

set) would be capable of accommodating the ‘‘shared working set’” and provide good performance. It
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should be noted that the knee occurs at a higher SPT size for 1 KB pages than for 4 KB pages. This
indicates that, for these applications, in our two-level scheme, for a fixed block size, a smaller page size

will actually reduce performance unless a larger SPT is used.

Figure 11 shows the miss ratio and network traffic for various sizes of the Copy Table. As
expected, performance is reduced if the CT is too small. For Weather and FFT, the reduction in miss
ratio and network traffic with increasing CT size levels off for a CT with 32 entries or more. This agrees
with the expectation, based on the access burst model (Section III), that there is little performance
advantage in maintaining full copyset tables for shared blocks. The different behavior for Speech is due
to the high read-only sharing of a dictionary. A policy of eviction, such as we have employed, will fair
poorly in the presence of significant read sharing by a large number of processors. Better support for read
shared pages can be provided with broadcast policy [1] or a policy that allows small, dynamically

determined, set of pages to have larger copy tables [18].

VI. Summary and Conclusions

For many important applications, it is useful to allow processes executing on different processors of
a multicomputer to share their address spaces. Previously proposed techniques for providing shared
memory on multicomputers, perform the mapping, data transfers, and ownership management at the
granularity of pages (thousands of bytes). Hence, when sharing small objects, these techniques suffer
from unnecessary long latencies for remote requests, they require higher network bandwidth than is
inherently needed by the application, and they lead to unnecessary transfers due to false sharing. We
have introduced a coherency scheme for multicomputers that manages storage at a granularity close to a
cache block. For parallel applications, the smaller block size will lead to increased block ownership
time [3], a decrease in miss ratio [9], and is expected to reduce remote access latencies and the required

network bandwidth.

A straightforward implementation of coherency management at the block level in a large
multicomputer results in unacceptably high storage overhead for the various mapping tables, We propose
the use of inverted tables and multiple levels of mapping and coherency management as a solution to this
problem. The proposed scheme dynamically distinguishes between shared and private pages in order to
manage each class efficiently. For shared pages ownership is maintained at both the block and page
level, thus distributing the coherency management load according to the characteristics of the application.
In order to limit the storage overhead for coherency management, tables that keep track of read-only
copies are not allowed to grow beyond a static bound. The performance impact of this static bound has

been analyzed using the access burst model and shown to be negligible. In a realistic example of a large
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multicomputer, less than 1% of the total system storage will be dedicated to tables needed for coherency

management.

The performance of the proposed coherency scheme has been analyzed using trace-driven
simulations of three parallel applications. It is shown that some applications can benefit from special
support for a large number of copies of strictly read-only data. In general, the results indicate that
significant performance improvement over conventional page-level schemes are possible with our two-
level scheme, without incurring the storage overhead that makes uniform block-level schemes impractical
in large systems. Using multi-level coherency management it is thus possible to realize the potential of
multicomputers for high performance with fine grain parallel applications, even when providing global

shared virtual memory.

Appendix — The Average Number of Access Bursts Before an Invalidate
Based on the access-burst model [9], the average number of access bursts before an invalidate is:
i=v~-1

B(Nww)= ¥ i(1-w)"w+‘§i(1—w)" JEPU,i,]V)w+P(v,iJV)(1—w)

i=1 i=v j=1

N-—v
N

where N is the total number of processors sharing the block, w is the probability that an access burst
modifies the block, v is the maximum number of entries in the copy set and P (p,b ,N) is the probability

that exactly p out of the N processors have copies of the block after b read bursts.

In the above expression for B, the first summation corresponds to the case when the invalidate
happens within v access bursts. The invalidate, in this case, happens on the first write burst. When the
number of access bursts is greater than v, an invalidate can occur in two ways: by a write burst or by a
copy set overflow. The probability of it occurring due to a write burst is the product of the probability
that there are not more than v processors sharing the block and the probability that the current burst is the
first write burst. The first term within the square brackets expresses this. The second term gives the
probability that the invalidate is due to a copy set overflow, i.e, exactly v processors shared the block

prior to this burst and a new processor began this burst.

P(p.b,N) can be derived, given that each processor is independent and has equal probability of
beginning an access burst. We apply the Principle of Inclusion and Exclusion in Combinatorial Theory
(see page 101, reference [17]), to obtain:

x"(lﬁhb,f\f)=fgl

b

Z::(—l)" o= )”}
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