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Dynamic Load Sharing Algorithms in

Asymmetric Distributed Systems

by

Alberto Avritzer
Doctor of Philosophy in Computer Science
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Professor Mario Gerla, Co-Chair

Professor Jack W. Carlyle, Co-Chair

We develop analytical models for load sharing policies that schedule jobs based on
global system state. In particular, we are interested in large highly asymmetric
distributed computing systems. Qur approach includes algorithm formulation,
testbed measurements, simulation, and analytical modeling. In addition, we have
studied the case of high-performance systems for real-time computing, proposing
algorithms and carrying out analysis and simulation.

We calibrate our performance model based on measurements carried out on
our testbed. We present a new approach for the modeling of dynamic load sharing
algorithms in asymmetric systems that employs a global state Markov Chain. The
model is validated through simulation and a very good agreement is obtained at low
to medium loads. We analyze large systems as well, by bounding the performance
measure (long run average delay.)

We present a family of algorithms for dynamic load sharing which cover a
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wide range of costs and information gathering. We carry out a sensitivity analysis
on their performance as a function of various parameters, including burstiness in
the arrival process, number of hosts in the system, and speed ratio between slow
and fast processors. We conclude that in asymmetric systems random allocation
causes major performance degradation as compared to shortest queue allocation.
The proper tuning of thresholds to the hosts capacities and to the arrival process
1s critical.

We evaluate the use of load sharing algorithms in the control of distributed
hard real-time systems, assuming the availability of emerging fast interconnection
networks. The traditional approach for scheduling in loosely coupled, hard real
time systems has been to use good heuristics for local scheduling. Instead, we use
simple local scheduling algorithms and enforce deadline constraints by postulating
a fast load sharing interconnection network that can schedule tasks with commu-
nication delays on the order of microseconds. Preliminary experiments show that
our approach can be used effectively in order to schedule jobs in hard real time

systems.
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Chapter 1

Introduction

“Continuo aprendiz, mesmo em quarta edigao,

e de quanto aprendi foi a melhor licio.”

I am still an apprentice, even in the fourth edition of my book,
and for all that I have learned that was the best lesson.

Carlog Drummond de Andrade, In: Viola de Bolso

1.1 Introduction

With the increasing availability of powerful low end machines the perspective
of building highly asymmetric distributed systems has become an exciting reality.
These systems may be composed of a few top of the line mainframes, tens of pow-
erful workstations and hundreds of low end machines, manufactured by different
vendors and owned by many organizations. Due to the high degree of heterogeneity

present, designers are being faced with many difficult challenges.

o How can we take advantage of the huge processing capacity that is now
available? Many technical as well as political issues arise when one tries to
share huge computing resources that vary greatly in size. While it is easy to
see how a huge and expensive computer can be well utilized, it is not clear
what is the best operating point when that same capacity is spread over

thousands of desk-top computers.



o What are the implications of heterogeneity on the design of a load balancing
system? Much care must be employed when managing highly asymmetric
systems since the rewards for good design decisions and the penalties for
mistakes are much higher than in homogeneous systems. In the latter sys-
tems we can ship tasks around almost randomly without incurring a major
degradation in system performance, since all the sub-systems have the same
capacity and can handle any type of jobs. In such systems, very simple con-
trol algorithms were shown to perform almost as well as very sophisticated
algorithms [ELZ86a). This is not the case for highly asymmetric distributed
systems where a big job can overwhelm a slow processor while a fast and

expensive processor may be underutilized.

Many other difficult issues need to be addressed. What is the cost of controlling
this complex environment? What fraction of the total capacity will be invested in
overhead for controlling the system? Will that capacity loss be user transparent or
will the users pay for it in terms of performance degradation ? How can we balance
the need to be fair to all users while providing fast response time? If somebody
must pay a price for better overall resource utilization, how will the price be shared
among all users in a reasonable way?

When the workload is composed from jobs that have very different service
requirements we have a new dimension of heterogeneity: traffic heterogeneity.

Algorithms that dynamically control the allocation of work within the system
can assist us in answering some of these questions. One of the goals of the present
work is the evaluation of cost/benefit tradeoffs involved in using load sharing poli-
cies to manage highly asymmetric systems.

The term Load Balancing has been used in the literature to denote algorithms

that try to equalize the utilizations on different machines. Load Sharing algorithms



on the other hand try to optimize performance (e.g. minimize the overall average
system response time.) In this work we will use the term Load Sharing since our

main objective is to optimize the overall average system response time.

1.2 Problem Statement

Given a large asymmetric distributed system we want to design and evaluate
dynamic load sharing algorithm that optimize the system performance in respect

to a given performance metric .
The traditional performance measure is the average delay.

Other performance metrics are also important depending on the example at

hand:

* Real-time systems - fraction of jobs that complete their service satisfying a

given deadline constraint.

® campus computing systems - fraction processed remotely, delay of remote

jobs, variance in the delay.

A problem closely related to load sharing is the routing of packets in packet

switching networks.

There is a mapping between these two problems:

® Processors in the distributed system may be mapped into links in the packet

switching network

e Jobs in the distributed system may be mapped into packets in the packet

switching network

What are the main differences between the routing of P/S networks and load

sharing of distributed systems?



Jobs in distributed systems require service usually at only one processor (we
are not considering multiple task systems) while path length in P/S networks is
usually multi-hop.

Load sharing is not required for normal operation of distributed systems but
is provided as a way to improve performance and computing capacity available to
users.

Packet switching networks are designed top-down with flow control issues ad-
dressed at an early stage. Distributed systems are usually assembled bottom-up
with load sharing policies considered afterwards.

The most popular routing solutions for P/S networks are distributed in flavor
due to consideration of scaling, reliability and overheads [Sch87]. Our intuition
is that practical dynamic load sharing policies for large asymmetric systems con-
nected by a local area network will tend to be centralized in nature, since the main
performance issue is the timely allocation of jobs to underutilized processors. The
issue of reliability can be taken care of by providing a spare for the load control

site.

1.3 Literature Review

1.3.1 Initial Work

The potential for load sharing in distributed systems has been identified in
[LM82]. Livny et al. used a model of k independent systems subjected to Poisson
arrivals and exponential service time distributions to show that there exists a high
probability of finding an idle host where there is at least one job queued in another
host. Initial work in the field addressed static policies where the assignment of jobs

to hosts was done in a deterministic way or using precomputed probabilities . Those



policies were applied to both homogeneous systems where the hosts are identical
and experience the same workload pattern, and asymmetric systems where some

systems may have different capacities and workload characterization.

1.3.2 Static Load Sharing

[dSeSG84] proposed a static load sharing algorithm based on the flow devia-
tion method that computes shipping probabilities in order to minimize average
response time. Since job transfer decisions are made without taking into consider-
ation the current state, the algorithm cannot cope with unexpected load patterns.
In [dSeSG87] the model is extended to incorporate multiple classes of jobs, multi-
tasking within each job and jobs with spawned tasks.

In [TT85] a optimal static load balance algorithm for a load balancing network
1s considered. They show that if the triangle inequality is assumed (the cheapest
route to transmit a job from node a to node b is the direct route that connects
node a to b ) the optimal solution divides the network in three classes of nodes:
sources(ship jobs to be processed remotely), sinks( accepts remotes jobs to be

processed locally ) and neutrals ( processes all its local jobs).

1.3.3 Dynamic Load Sharing in Homogeneous Systems

Dynamic load sharing algorithms balance the load when jobs arrive by making
an assignment that is a function of the current state. Most of the work done in
dynamic load sharing considers homogeneous systems.

[ELZ86a] showed that very simple dynamic load sharing algorithms were able to
improve performance in homogeneous distributed systems. The main contribution
of their paper was to show that very little improvement in performance compared

to what was already achieved by the simple dynamic algorithms could be achieved



when highly tuned algorithms were employed. {ELZ86b] divided the dynamic load
sharing policies into sender-initiated and receiver-initiated classes. Sender Initiated
should be used in systems with light to moderate load. Receiver Initiated should be
used in high loads. It was stressed that the main problems of complex policies come
from overhead costs and unpredictable behavior when confronted with inaccurate
information.

[LT86b] define 3 dynamic load sharing algorithms for homogeneous systems
that use only local information. They divide the jobs in a host in two classes:
local and remote. The 3 algorithms are threshold type based in the length of the
local job-queue and give different priorities to the local and remote jobs. They
conclude that the selfish algorithm(priority to local jobs) have worse performance
since remote jobs are delayed until the queue of local jobs is exhausted. The
altruistic(priority to remote) is the best since the most expensive jobs are done
quickly. They don’t degrade performance of the local jobs because their relative
number is small. The balanced priority policy(priority to the type that has most
jobs in queue) has similar performance to the altruistic but is a little worse at high
utilizations(meore than .7)

In [LT86¢c] a distributed algorithm is presented were each host compares its
incremental delay to the incremental delay of other hosts in order to determine the
optimal value of its threshold. The algorithm is iterative and adapts to changes in
the job arrival rates.

[Zho87] performed a sensitivity analysis of seven dynamic load sharing algo-
rithms in a homogeneous environment. Instead of driving the simulations by prob-
abilistic distributions he used a job trace, measured at the production machine

running 4.3 BSD. The main conclusion of the work were the following;

e algorithms using periodic and non-periodic information policies produce sim-



ilar performances,

o the use of a central host instead of using a distributed decision scheme to
make all placement decisions yields the best performance, since the central

scheduler could make consistent decisions,
o the improvement achieved by using load sharing levels off around 33 hosts,

¢ load sharing can be used effectively even when some jobs are pinned to par-

ticular hosts,
e load sharing has a beneficial effect on every host,

¢ load sharing improves performance over a wide range of overhead assump-

tions,

e large jobs benefit more from load sharing that short jobs since the overhead

incurred is divided over a long useful life.

1.3.4 Dynamic Load Sharing in Asymmetric Distributed Systems

As for load sharing in asymmetric systems, there have been recently a number
of contributions. We review some of them in the sequel.

[Gre88] analyzed a load sharing algorithm based on thresholds for a asymmetric
system where each host has two servers: a processing server and a communication
server. Each host is assigned a different threshold. He showed through simulation
that the arrival rate from other hosts could be reasonably well approximated as a
Poisson process even for a small number of sources. The variance of the simulated
process was higher than an exponential interarrival rate. This happens because

the overflow process from hosts is more bursty than the Poisson process.



[LT86a] defines and analyzes a dynamic load sharing policy for a asymmetric
system composed of homogeneous clusters that uses only local information. A
queueing model of the system was formulated and solved to produce a closed form
expression that is used to pose a non-linear optimization problem with the response
time as optimization metric and the thresholds of each host as the optimization
variable. It was shown that the remote arrival process at each host in their model
approaches a Poisson process as the number of clusters goes to infinity, maintaining
a constant number of hosts per cluster.

In a recent paper [MTS89], the effect of delays in the network interface in
limited probing dynamic load sharing algorithms was studied. The model used
was the same as in [LT86a]. The performance modeling was done by constructing
the algorithm Markov Chain and was solved using the Matrix-Geometric solution
technique [Neu81]. An evaluation of the algorithms was done by measuring the
sensitivity of the response time to the variation in the thresholds, change in probe
limit and biasing in the probe probabilities. They concluded that the benefits of
load sharing and the sensitivity of the response time to threshold tuning become

more important with increased heterogeneity.

[RP88] considered a queueing system composed of n exponential servers each
with a different state dependent service rate. Customers arrive according to a
Poisson process. They succeeded in defining an ideal system that provides an upper
bound on performance. In that system each server optimally selects a customer
fraction independent of the other server choices.

[SW88| reported a asymptotic analysis of large asymmetric queueing systems.
Their model considered a single quene multi-server system. They simplified their
system by considering that server speeds can be grouped in two classes: fast and

slow. They model the system as a M/M/m/K queue where K is the sum of



the threshold to the number of servers. They concluded that in the limit as the
number of servers goes to infinity, the policy of never queueing achieves optimal
performance while the policy that tries to optimize the individual performance of

each job ( ‘greedy’ ) does not.

1.3.5 Aggregation and Decomposition

The aggregation and decomposition method is a well known approach that
was introduced into the area of Computer Networks by Courtois. The approach
was first introduced by Simon and Ando in the area of Economics [CouT7]. Infor-
mally, the decomposition approach applies to a class of the so called near-complete
decomposable systems [Cou77], (Cou82], [CS84), [CS86]. In such systems the in-
finitesimal generator matrix Q can be decomposed into square matrixes Q(a, )
such that transitions within each aggregate group are more frequent than between
different groups. The approach consists of 3 main steps: decomposition, aggrega-
tion, and unconditioning. In the decomposition phase, the off diagonal row sum is
distributed among the non zero row terms of the Matrixes Q(a, a). Each aggregate
generates an independent system of equations which is solved to obtain the steady
state distribution conditioned on the system being in a state of the block matrix
Q(a, ). In the aggregation phase, an infinitesimal generator A is constructed to
represent the transition rates between aggregates. It is then solved to generate the
steady state probability of being in an aggregate. In the unconditioning phase,
the conditional steady state vector obtained in the decomposition phase is uncon-
ditioned by the steady state vector obtained in the aggregation phase to yield an
approximation on the steady state probability vector of the original matrix Q. The
main difficulty in the approach resides in the way to distribute the off diagonal row

sum in order to minimize the error introduced by the approximation. Courtois ad-



dressed this problem in [Cou82], and [CS84]. In [Cou82] the error minimization in
decomposable stochastic models was considered. Let P be a finite, non-negative,

normalized stochastic matrix of the following form:

Q E

F G

Let Q; be constructed by the distribution of the row sums of E into the non-
zero rows of Q. In [Cou82] Courtois showed that if Q} = Q; + E(I- G)"'F,
then the decomposition approach yields exact results. Usually, the computation
of E(I — G)~'F is prohibitive, since it ix;volves the inversion of a matrix that have
only one aggregate less than the full system. In [CS84] it was shown that if E and

F are fully known tight bounds on E(I — G)7!'F can be obtained as follows:

[EF);; < [E(I- G)™'F]; < [E1]; - Y [EFa
k#3

Furthermore, in [CS84] looser bounds are given in the case where F is not fully
known.

In [MdSeSG89] an approximation method to reduce the Markov chain state
space involved in the numerical solution of real models was presented. The method
involved the detailed modeling of the part of the Markov Chain where most of
the mass probability was located, and a aggregated representation of the rest of
the Markov chain. Through the computation of upper and lower bounds on the

performance, a bound on the error incurred was obtained.

1.3.6 Real-Time Systems

In Section 4.2 we present a literature review on real-time systems.
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1.4 Dissertation Outline

The Dissertation is composed of the following Chapters:

1. In Chapter 1 we present the motivation for the work and the literature review,

2. In Chapter 2, we obtain parameters for our performance modeling by per-

1.5

forming measurements on our testbed (for campus computing systems} and
by running simulations(for the campus computing system). In order to assess
the cost/performance characteristics of those systems we present algorithms
for delay/throughput estimation as well as upper and lower bounds in the

performance of those systems.

In Chapter 3 we present a family of algorithms for dynamic load sharing that
covers a range of costs and information gathering, and perform a sensitivity

analysis of the average delay on a range of parameters.

In Chapter 4 we study the use of load sharing algorithms in order to schedule

task in hard-real time systems.

Contributions

New Algorithms for Load Sharing in Asymmetric Systems

The use of varying thresholds to reflect the result of a centralized optimiza-
tion based in the flow deviation approach to perform a dynamic tuning of
load sharing algorithms to the instantaneous global load in the system has
not been reported in the literature reviewed. The use of this approach sub-
stitutes the use of ad-hoc heuristics by the formulation of a mathematical

model that expresses the problem constraints. [Zho87] reports the use of the
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centralized /distributed approach for the allocation of tasks in homogeneous
distributed systems. [Rud76] use also the idea of centralized/distributed con-
trol in the delta routing algorithm. [LT86¢] propose the use of distributed

algorithms to iteratively compute the optimal thresholds.

Bound Computation for Load Sharing Systems

The analytical modeling of multiple queue asymmetric systems is very dif-
ficult since the state space is huge. We presented a new approach for the
modeling of dynamic load sharing algorithms in asymmetric systems that
employs a global state Markov Chain. The model was validated through
simulation and a very good agreement was found at low to medium loads.
We managed to analyze large systems as well, by bounding the performance
measure (long run average delay.) The lower bound obtained is tight , since
the states discarded have very low probabilities. The upper bound proposed

1s tight as well.

Sensitivity Analysis of Algorithms for Load Sharing in Asymmetric Systems

We have compared the cost/performance of different algorithms employing
the cost measured in our testbed. We have demonstrated that the proper
tuning of thresholds to the hosts capacities and arrival process is critical. The
mismatch between host capacities and thresholds is responsible for a major
degradation in the performance of fixed thresholds algorithms, as compared
to the same algorithms with tuned thresholds. Dynamic tuning of thresholds
exhibits the best performance over all algorithms analyzed for range of pa-
rameters. We evaluated the sensitivity of the algorithms to the speed ratio
between fast and slow processor. This is a very important measure since

it will indicate how the algorithms behave in face of unpredictable system
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behaviors that affect processor speed. We concluded that dynamic tuning

outperforms fixed thresholds for all speed ratios.

Load Sharing in Hard Real-Time Systems

We have proposed an alternative approach for scheduling in hard real-time
systems. We propose to use simple local scheduling algorithms and enforce
deadline constraints by using a fast load sharing interconnection network that
can schedule tasks with communication delays on the order of microseconds.
We have evaluated our approach under Poisson and bursty arrivals assump-
tions. We have simulated the effect of system size, different local scheduling
algorithms, burstiness, burst length, thresholds, synchronous allocation due
to the interconnection network, and of a job mix composed of Poisson and
periodic tasks. We have shown that load sharing can be used effectively in
order to schedule jobs in hard real time systems. A simple inexpensive hard-
ware base algorithm for local scheduling can be used together with a fast
interconnection network. However, the burstiness of the process must be
carefully studied, since it has a major impact on performance. Synchronous
remote allocation can be used effectively to reduce the fraction of tasks that
are dropped. The current approach to improve performance has been to
reduce processor utilization. We have shown that reducing communication

delay is an effective alternative.

Performance Modeling of Hard Real-Time Systems

We have proposed a new approach for modeling distributed real-time systems
with exponentially distributed deadlines. We managed to obtain a very good

approximation by applying a M*/D/c model.
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Chapter 2

Performance Modeling of Campus Computing Systems

“Digo: o real nio estd na saida nem na chegada:

ele se dispoé para a gente é no meio da travessia.”

I say: the real is not in the departure or in the arrival:
it reveals itself to us during the journey.

Jodo Guimardes Rosg In: Grande Sertdo: Veredas, pp 62

2.1 Introduction

In this chapter we develop an analytical performance modeling approach for
load sharing policies that schedule jobs based on global system state. In particular
we are interested in modeling highly asymmetric systems. Those systems are
composed of hosts of many different speeds which are subjected to heterogeneous
workloads. They are object code compatible in the sense that programs can be
run everywhere. Examples of such systems are IBM-clusters running AIX/370,
workstation networks composed of different cpu speed models, and distributed
databases. One of the most critical decisions in the performance modeling of load
sharing algorithms is the way to account for overhead in remote job initiation.
In this work we use a three-pronged approach, in which experiments, analytical
modeling, and simulation reinforce one another. We implement the algorithms in
a LAN testbed composed of IBM-RTs, HPs, and SUN workstations (all running

variations of the UNIX operating system) and measure the overhead incurred to
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initiate jobs remotely. We then include the measured parameters in our analytic

and simulation models.

The implementation of load sharing algorithms can be done at two levels:

1. Inside the operating system either at the kernel or shell level. This option
is the most efficient in terms of overhead incurred for remote job initiation.
It has however a huge drawback, that is, the need for compatibility between
the versions implemented. Different vendors will have to agree to a common
standard if their load sharing operating systems are supposed to talk to each
other. This and the need to modify very complex programs are the probable
reasons why load sharing operating systems are not commonplace, despite the

great performance advantages that has been demonstrated in the literature

[Zho88].

2. At the user level as a shell front end. The overhead incurred to initiate a job
remotely at this level will be an order of magnitude larger, since we will use
high level primitives to initiate jobs. The advantages however are multiple.
First, we can easily implement a job control manager that handles systems
from many different vendors. Second, load sharing can be made transparent
to machines and users, since only machines running clients to the load sharing
algorithm will be involved. Third, users can be excluded or included in the

load sharing population by having them run the shell front end.

A well known result in the area of load sharing for homogeneous distributed
systems [ELZ86a) is that very little improvement in performance can be achieved
with highly tuned algorithms as compared with simple dynamic algorithms. In
this chapter we show that in highly asymmetric systems this is not the case,

since the penalty for bad decisions (sending a job to an overloaded and slow ma-
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chine) and the rewards for the timely scheduling of jobs have a major impact on
performance. If high overheads are incurred to initiate a job remotely (as in the
user level load sharing approach) the penalty for bad decisions are even higher.
To this end, we consider two similar algorithms that route jobs to the shortest
queue: one, with fixed and identical thresholds for all sites; the other, with quasi-
static thresholds. The huge improvement observed in the performance, when using
quasi-static thresholds, indicates that in highly asymmetric systems sophisticated
algorithms must be employed. Furthermore, the use of load sharing algorithms in
large asymmetric networks will drive users to run more and more complex appli-
cations (e.g. distributed simulations) and utilize the available resources in many
new ways. The optimal control of this large and costly environment will be critical

in order to provide quality service in a user transparent way.

The term load balancing has been used in the literature to denote algorithms
that try to equalize the utilizations on different machines. Load sharing algorithms
on the other hand try to optimize performance (e.g. minimize the overall average
system response time) by routing jobs to underutilized hosts. In this work we
will use the term load sharing since our main objective is to optimize the overall
average system response time. Static load sharing algorithms assume knowledge
of the offered workload in order to compute routing probabilities that minimize
average response time [dSeSG84]. Since job transfer decisions are made without
taking into consideration the current system state, the algorithm cannot cope
with unexpected load patterns. In this chapter we use the static load sharing
approach in order to periodically compute the optimal routing probabilities that
drive the system in a near optimal state. The offered workload is measured and
the optimal routing probabilities are converted into the optimal thresholds, which

are the fraction of the instantaneous load that would be assigned to a host by
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the routing probabilities. Dynamic load sharing algorithms balance the load when
jobs arrive by making an assignment that is a function of the currept state, In
[ELZ86b], the dynamic load sharing policies were classified into sender-initiated
and receiver-initiated policies. Sender initiated should be used in systems with
light to moderate load. Receiver initiated should be used at high loads. It was
stressed that the main problems with using complex policies come from overhead
costs and unpredictable behavior when confronted with inaccurate information.
In our approach, the input parameters for the computation of the optimal routing
probabilities will be measured periodically, thus partially overcoming the problem
of inaccurate workload characterization.

Zhou [Zho88| performed a sensitivity analysis of seven dynamic load sharing
algorithms in a homogeneous environment. Instead of driving the simulations
by probabilistic distributions, he used a job trace measured at the production
machine running 4.3 BSD. It was found that the use of a central host to make
all placement decisions yields the best performance, since the central scheduler
could make perfect decisions. The use of a central site to compute the optimal
dynamic thresholds has many advantages over the decentralized approach. The
central site can be a special purpose computer optimized for the routing function
and designed to be fault-tolerant [Avi67]. The central site can also contribute to
system reliability by keeping track of the available resources and adjusting the
optimization to account for down sites. The availability of a central optimization
makes it easier to redefine system objectives, to maintain, and to upgrade the

system.

In the present work we employ a centralized/distributed approach by computing
the optimal thresholds periodically at the central site and shipping them to each

local host. We will refer to this approach as Dynamic Tuning . The local sites
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accept jobs to be run locally by using only local information. Remote requests are
directed to the central site. We employ as performance measure the average total

response time.

The main contributions of this chapter are the following:

e Derivation of analytical bounds to compute the average delay in large asym-

metric systems under dynamic load sharing control,

¢ Experimental derivation of parameters which affect the implementation of

load sharing policies at the user level,

* Demonstration that load sharing is effective even in the presence of high

overheads,

¢ Demonstration that in the asymmetric environment under study, carefully
tuned algorithms for load sharing provide a significant improvement in per-

formance over simpler algorithms.

The outline of the rest of the chapter is as follows: In Section 2.2 we describe
the environment used in the measurements and the model used in the algorithms
evaluation through analysis and simulation. In Section 2.3 we present a new self
tuning load sharing algorithm that employs dynamic thresholds, and its perfor-
mance evaluation through measurement and simulation. In Section 2.4 we present
the analytical modeling of the testbed. In Section 2.5, 2.6, 2.7, and 2.8 we present
bounding techniques to compute the average delay in large asymmetric systems

under dynamic load sharing control.
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Figure 2.1: Simulation Model

2.2 Environment and Model

We performed measurements on the testbed available at the UCLA Computer
Science Department. The testbed was composed of 5 IBM PC/RTs (4 mips), 5 HP-
9000 (0.3 mips), and the residual capacity of 3 Suns when the production workload
1s present {0.4 mips.) The sites are connected by a local area network (Ethernet.)
The load sharing control algorithm was implemented at the user level. This en-
vironment enabled us to demonstrate the usefulness of load sharing even when
high overheads are present. We found that a processing overhead (due to software
protocol layering) of 0.3 secs and a communication delay of 20ms is incurred for

every remote job. The simulation model was the following:

1. Jobs arrive at the local sites according to the arrival process under study (in

this paper we adopted a Poisson arrival process.)

2. The local scheduling algorithm is employed and the job is classified as local

or remmote,.

3. Local jobs are queued in the local cpu according to FCFS scheduling and are

run for a exponentially distributed number of instructions with 1M instruc-
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tions average.

. Remote jobs suffers 0.125 secs (processing overhead) and 5 ms communication
delay to get to central site. There, they queue for the central cpu and use
100k instructions processing overhead and 5 ms communication delay to be

scheduled for remote execution.

. Upon arrival at the remote site, they are queued in the remote cpu according
to FCFS scheduling (one queue for local and remote jobs) and are run for
an exponentially distributed number of instructions with 1M instructions

average.

. Once a local job completes its running time it is done. A remote job suffers
another 0.125 secs (processing overhead) and 5 ms communication delay to
get to the central site and must queue again for the central cpu to consume
another 100k instructions processing overhead and 5 ms communication de-

lay, before being sent to its originating site for completion.

In a user level implementation the main overheads are in the cpu, as the Ethernet

is usually underloaded. We account for the communication delays in the Ethernet,

but we don’t model any queueing for the cable.

2.3 A Self Tuning Dynamic Load Sharing Algorithm

In this section we introduce a new load sharing algorithm for distributed asym-

metric systems. It is a threshold type algorithm that varies the thresholds dy-

namically, adjusting them to the load in order to keep an optimal number of tasks

in each site. The algorithm periodically gathers information on the global load

in the system and analytically computes an optimal task allocation in order to
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minimize the total average response time. This optimal allocation is a function of
the total measured load. The site thresholds are set to be equal to the optimal
task allocations.

The two main decisions implemented in the algorithm are the thresholds com-
putation and the task allocation and shipping. A designated site is responsible for
computing the global load and the thresholds that each site will use in the near
future. Periodically all sites send to the central site the number of arrivals they
received from the external world in the last time slice. Using a steepest descent

technique [FGK73] the central site solves the following optimization problem.

Let,

AY - average arrival rate to site i,i > 0,

A{ - average remote arrival rate to site 7, due to load sharing,i > 0,

A? - average remote departure rate from site i, due to load sharing,i > 0,
A; ~ average rate of jobs processed at site 7,; > 0,

Ao — average rate of jobs processed at the central site (processing overhead),
7. — optimal threshold for site i,

T; - average job delay in site 1,

T - total average delay,

n; — average number of jobs in site i, site 0 is the central site,

ng - total average number of jobs due to comm. delay,

¢q — cost due to communication delay (comm. delay)

cp — cost due to processing overhead (to send a job remotely)

#4i — average processing rate at site 2,

p] - average job processing rate at site i,

v - total external arrival rate to the system.
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TASK ALLOCATION PROBLEM
Given: {A?, u;,ca,¢,}
Minimize: T

With Respect to: {);}

0
A= AN+ a-adi>o
o = 2) N
>0
A
R e
ng = 2)\064
po' = (m)™
a3
b= W) R s 0

Using Little's result:
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Solving this optimization problem we obtain a set A7. To obtain the optimal

thresholds we compute:
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These will be real numbers that must be rounded to yield the approximate
sub-optimal thresholds we are after.

Task allocation and shipping is as follows:

1. Upon an external arrival to a site, if the number of tasks present 1s less than

its threshold, the arrival is accepted as local.

2. Otherwise, a scheduling request together with the task is sent to the central
site. The central site allocates remote requests to the site that has the biggest
positive difference between its threshold and its queue length and ships the
task directly to that site. If no site can satisfy the request the task is returned

to the source site.

3. Upon a remote task completion, the results are shipped to the central site

and forwarded from there to the originating site.

The decision to route tasks and results through the center (instead of having
them transmitted directly from the source to the destination) was made to avoid
the delay incurred in establishing a connection every time an allocation is made.
Thus, for our purposes the network is a virtual star with every site connected to
the central site. In order to make proper task allocation the central site must
have a consistent view of all sites. To this end, queue length measurements are
periodically broadcast from each site to the central site. The idea of combining
centralized/distributed algorithms was used previously in [Zho88] for dynamic load
sharing in homogeneous systems, and in the delta routing algorithm [Rud76] for
routing in packet switching networks.

The performance evaluation of the dynamic tuning algorithm was done by
comparing it to an algorithm where all thresholds were fixed and identical to

one. This is the best reported algorithm for homogeneous systems {Zho88]. The
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example reflects a situation were a large number of homogeneous workstations is
sharing their residual capacity, defined as the fraction of the processing power not
used by the workstation owner. In this case thresholds can not be set a priori to
be proportional to the (unknown) available processing power. Figure 2.2 reports
typical measurement and simulation results for the average delay of the dynamic
thresholds algorithm and of the fized thresholds algorithm. Our conclusions from

the evaluation are the following:

¢ The self tuning algorithm is able to improve performance for a wide range of
arrival rates. The dynamic threshold algorithm is able to reduce the average
delay to more than 50% of the value obtained when the fixed threshold of
1 1s used. Furthermore, it can support an arrival rate 20% larger than the

fixed threshold algorithm.

¢ Load sharing implementation at the user level incurs high overhead (0.3 secs
cpu overhead/job initiation and 20 ms communication delay.) Load Sharing
is still very attractive in the environment considered: asymmetric systems

with many cpus speeds running jobs with 1M instructions average.

¢ Fixed and uniform thresholds algorithms in asymmetric environments are
highly sensitive to tuning. The thresholds must be well matched to the service
demands and capacities of the site in order to achieve good performance. This
1s the main drawback of this kind of algorithm since workloads must be very
well specified in advance. Furthermore the algorithm fails to adapt to varying

workloads. The dynamic computation of thresholds solves this problem.

¢ The dynamic computation of thresholds leads to a better utilization of the
more expensive resources since it tends to make better use of the higher

capacity servers.
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Figure 2.2: 13 Hosts, simulation and measurements, dynamic thresholds vs. fixed

thresholds, average delay vs. arrival rate
¢ The simulation model gives very good performance prediction for the dy-
namic tuning algorithm but disagrees in about 30% for the fixed thresholds
algorithm before the knee of the curve. The reason for the disagreement in

the fixed threshold algorithm is that it exhibits a larger statistical variation,

since the slower hosts are run at very high utilizations.
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2.4 Analytical Modeling of the Testbed

In this section we will describe the analytical approach used in order to model
and evaluate the Dynamic Tuning Algorithm in our testbed. The main challenge is
the explosion of the number of states of the Markov Chain when the system grows
large.

An previously reported approach for the modeling of dynamic load sharing al-
gorithms ([ELZ86a],[LT86¢]) applies decomposition to generate a separate Markov
Chain for each site. The main simplifying assumption was that the remote arrival
process due to threshold overflow is Poisson. The key advantage of that approach
was that the number of states in each Markov Chain is very small. The decompo-
sition approach however has a drawback: it cannot properly model an algorithm
that allocates jobs based on global information. In order to cope with this prob-
lem, we propose to model the system using a global Markov Chain. We conclude
this section by comparing the analytical results with simulation. In Section 2.5,
we show a method for avoiding the combinatorial state explosion typical of global

models when size becomes large, using the bounding techniques as proposed in

[MdSeSG89).

2.4.1 Markov Chain Modeling

In order to provide a first order approximation on algorithm performance, we
assumed that the slower site thresholds were fixed and equal to zero and the faster
site thresholds were fixed and equal to 2.

In order to maintain the number of states in our Markov chain bounded, we

assume that,

e fast processors will accept a maximum of four jobs (two above the threshold).
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¢ the slow machines are aggregated and modeled as a single M/M/1 server {
with cumulative service rate.) A maximum of three jobs are permitted in
this server. The slow machines receive jobs only when all fast processors
are at or above their thresholds (the slow processors thresholds are all zero).
This approach will provide a lower bound on the delay performance of the

slow machines.

¢ a job arriving when the queues are full (i.e. 4 for each fast process and 3
for the cluster of slow processors) is discarded. This is also an ‘optimistic’

approximation.
The state of the system is S = (N1, N2, N3, N4, N5) where,

N1 = number of fast processors with exactly one job,
N2 = number of fast processors with exactly two jobs,
N3 = number of fast processors with exactly three jobs,
N4 = number of fast processors with exactly four jobs,

N5 = number of jobs in the slow processors.

Note that S completely defines the system, since the scheduling of arrivals
depends only on the difference between the site threshold and its queue length,
and, the service rate of a state depends only on how many processors of a certain

class are busy.

Let,

e N be the total processor number,
e N be the total fast processor number,

e N, be the total slow processor number,
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Figure 2.3: Arrivals and departures at the slow processors when the system is

saturated
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Figure 2.4: State transitions when there are idle fast processors
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Figure 2.5: State transitions when all fast processors are busy
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A be the uniform average arrival rate at each processor from the external

world,

o 4 be the fast processor job departure rate,

i, be the slow processor job departure rate,

fiq be the equivalent departure rate of the lumped server that represents the

slow processors( p, = 4, N, ),

5 =(N1,N2,N3, N4, N5} be a state in the Markov Chain,

S +1 —j be the state (N1,...,Ni+1,...,Nj —1,..),

N, be the number of busy fast processors, that is, N1 + N2 + N3 4+ N4.

The transitions can be divided in the following groups:

1. (there are idle fast processors) N < Ny :
e arrivals to idle fast processors occur at a rate of (N — N1) x A, causing
the transition from State S to §+ 1,
e arrivals to fast processors with one job occur at a rate of N1 x A, from
State Sto S —1+2.

2. {all fast processors are busy ) N = N :

e (system is saturated - all processors are at or above their thresholds)

— arrivals to the N1 fast processors occur at a rate of Nz x A, from
State Sto S—i+ (1 +1) (1 <1< 4),
— arrivals to the slow processors occur at a rate of (N — Ny) x A, from

State S to § + 5.
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* (system is not saturated) arrivals to fast processors with one job occur

at a rate of N x A, from State Sto S — 1+ 2,

3. Departures from a fast processor with 7 jobs. Occurs at a rate of Ni X p,

from State S to S+ (: — 1) — 4.

4. Departures from slow processors. Occurs at a rate of pg X N5, from State

Sto §—5(N5>0).

The main Markov Chain transitions are described in Figure 2.3 and Figures 2.4
and 2.5 ( state N5 is omitted for simplicity). From the steady state probabilities
( that are obtained using a Markov Chain solver) we can obtain the average delay

as follows:

¢ Let P(S) be the probability that the system is in state S of the Markov
Chain,

e Let nyp(S) be the number of jobs in the fast processors in state S.
ngp(N1,N2,N3,N4,N5) = N14+2 x N2+3 x N3+ 4 x N4.
Compute Ny, the average number of jobs in the fast processors .

Nip = L P(S) x ngp(S).

¢ Let n,,(S) be the number of jobs in the slow processors in state S.
nw(N1,N2, N3, N4, N5) = N.
Compute N,, the average number of jobs in the slow processors .

Nopp = T P(S) x np(S).

¢ Compute ps the probability that the system is in saturation {i.e. all proces-

sors are at or above their thresholds.) ps = 3 P(S), {S|N2+ N3+ N4 = N/},
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¢ Using Little’s result, compute Ty, the average job delay in a fast processor.
The average arrival rate to a fast processor is N if the system is not satu-
rated, and is NyX is the system is saturated. However, all arrivals that find

4 jobs in a processor are discarded.

= ij —
NX1 — ps) + NyAps — AN4|sys.saturated

Ty

e Using the M/M/1 formula, compute T,, the average job delay in a slow

Processor.

T, = (s — ’\ps)—l
e Compute T, the average job delay.

7 = NIy + Nl
pr + N.p

2.5 Bounding Techniques

The previous approximate approach is applicable to small systems only. As
system size increases, the number of states in the complete Markov Chain grows
combinatorially with the number of sites in the system modeled. In order to
permit a scaling of system size, we will compute lower and upper bounds on the
system performance [MdSeSG89). If these bounds are close to each other, we have
obtained a good estimate of the desired performance, and we know the error of
such estimate.

First, we compute the upper bound. The dynamics of job allocation in the
system 1s described below. Jobs that arrive to the slow processors see the fast
processors cluster as a gated system. Namely, when the cluster is below threshold

{ i.e. at least one fast processor is below the threshold ) the arriving job will
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Figure 2.6: Markov chain for the underthreshold state, arrivals

be allocated to the fast processor that has the biggest positive difference between
threshold and queue length . On the other hand, if the fast processors cluster
is at threshold ( all processors at threshold ) or above threshold ( at least one
processor above threshold ), the job will be allocated to be run in the local slow
host ( all slow host have a threshold of zero.) Jobs that arrive to fast processors will
behave similarly. Namely, when the fast processors cluster is at, or above threshold
these jobs will run locally in the originating processors. When the system is below
threshold, the job will be allocated to the fast processor that has the biggest

difference between threshold and queue length.

As we shall see, we can decompose the above threshold model into two sub-

models corresponding to the fast and slow processors clusters.

Let us study the fast processors cluster first. When the fast processors cluster

1s at saturation or below, the state of its Markov Chain is given by N1 ( the
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Figure 2.7: Markov chain for the underthreshold state, departures

number of fast processors with 1 job) and by N2 (the number of fast PTOCessors
with 2 jobs.) All fast processors have the same threshold of 2. This Markov chain
is the same as the one introduced in the previous section with states N3, N4 and
N5 removed and is shown in figures 2.6, and 2.7. In order to model the behavior
of the system above threshold, we use the following approach. First, recall that
the system is above threshold if there is at least one fast processor queue above
threshold ( this, of course, implies that all queues are at, or above threshold.) We

assume that, as long as this condition persists:

1. no job is reallocated to another processor (i.e. all jobs are run locally); this

1s consistent with our load balance algorithm definition.

2. each processor is allowed to process only jobs above threshold; this is clearly

a conservative assumption, since it forces the fast processors with only 2 jobs
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Figure 2.8: Fast Processors Cluster Behavior
in the queue to remain idle until the system returns to the threshold state.

Thus, the first arrival to a system in threshold state ‘freezes’ the processing of
all fast processor jobs found in the system. This arrival generates a busy period for
the fast processors cluster, where all arrivals are processed locally. The busy period
terminates when the system returns to the threshold state. This behavior will be
modeled by aggregating all above threshold states and adding to the Markov Chain
an aggregate above threshold state that will model the busy period for the fast
processor cluster. Arrivals to the above threshold state occurs at a rate N #A from
the threshold state { i.e. N2 = N;.) Departures from this state occur at a rate
1/T (where T is the average length of the N fast processors cluster busy period.)
Figure 2.8 illustrates this fast processors cluster behavior.

In order to compute T' we use the following renewal theory approach: Given
that we have Poisson a.rrivé.ls, the points where the N, queues become idle are

renewal points for the Ny fast processors cluster busy period. Let,

P, be the probability of a empty system
I be the mean length of the idle period

T be the mean length of the busy period

I'=1/(ANy)
Py=(1-p)™%
Po=I/(I+T)
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Solving for T yields:
T = (ANg(1 = p)")7" — (ANy)™

with p = A/u.

Having computed T we can solve the Markov Chain and obtain the steady
state probabilities for the number of jobs in the fast processors when the system
is at threshold and below. The average number of fast processor jobs given that
the system is in above threshold state can also be easily computed as follows. The
average ﬁumber in Ny independent M/M/1 queues is clearly N;p/(1—p}. We note,
however, that in the above threshold state at least one of the queues is non-empty.
Thus, we must compute {Q/non empty] = average queue length given that at least

one of the queues is non empty. Clearly,

Ngp/(1 — p) = [@/non empty]| Prob[Q non empty] + [Q/empty] Prob|Q empty]

Since [@Q/empty] = 0 , we have :

Nyp
1-p)(1—(1-p)")

Normalizing by the probability of being in the above threshold state we get the

[Q/non empty] = (

average number in the fast processors when the system is in the above threshold
state.

We now move on to examine the slow processors cluster. The arrivals to the
slow processors are processed locally only when the fast processors cluster is at or
over threshold. Since there is no load sharing among the slow processors clusters,
we can model a single slow queue and obtain the average delay for the whole

cluster.
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Figure 2.9: Markov chain for the slow processor cluster

The approach follows closely [ZR86]. The arrival rate to each slow processor
when the fast processors’ cluster is on the threshold state or in the overthreshold
state is A. When the gate for the fast processors’ cluster is open, the arrival rate
to the slow processors’ cluster is zero. The state of the Markov chain for a slow
processor is given by the pair: number in system, state of the gate for the fast
processor cluster. The Markov chain is shown in figure 2.9.

We assume that ag(the rate that transitions are made from the saturated state
to the unsaturated state in the fast processors’ cluster), and a; (the rate back
from the unsaturated state to the saturated state) are exponential rates in order
to obtain an upper bound on the performance of the slow processors cluster. ag,
and a; are obtained from the solution of the fast processors’ cluster, as follows:

psat is the probability that the fast processors’ cluster is at or over threshold.

By aggregating all the saturated and unsaturated states and solving the balance

equation we get:

aq

sal = ———
P Qg + o,
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This result could also be obtained also by using renewal theory arguments,

Using a first passage times approach we get, ao:

B /LN
% = Norw TNt
ag _ N

1+ AN,T

The balance equations for the slow processor Markov chain are as follows:
For the set of states when the gate for the fast processors’ cluster is closed (all

arrivals to the slow processor are processed locally),

(A+ao)po = pep1 + o190,k =0

(At ao+ p)pe = paPre1 + a1gx + Apr_1, k> 0

For the set of states when the gate for the fast processors’ cluster is open (no

arrivals into the slow processor),

argo = H,q1 +copo, k=0

(a1 + Ha)gx = fager1 +aopr, k>0

Following the approach in [ZR86] we define:

M(2) = ip,,zk

k=0
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IL(Z) = Z gxz
k=0

2) = 7
Lz = 5

(Z) = I\(Z)+I0,(Z)

From [ZR86] we know:

D(Z) = —(pAd2a)Z? + p(A+aog+ay 4 p)Z — 4
A(Z) = Zao—(1 - Z)(ns — Z))
AZ) = Zoy~(1-2)p,
By = p,po
By = g
No(Z) = AWZ)Bo(Z) + ZBi(2Z)ey

N](Z) = Ao(Z)Bl(Z) + ZB()(Z)C!()

which gives,

No(Z) = papolZen — (1 = Z)p] + pta90Z ey

N(Z) = pagolZoo— (1= 2Z)(py = ZN)] + ttapoZ g

Let Q* be the average queue length in the slow processors’ cluster.
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N1,

Q= T =(5p)
N'(l) = (a0 + pabo)(o + 1 + pta) — Miago
D'(1) = —2Xay + (a0 + 1) + 42 — p)
D(1) = —day+ u,(0c0 + ay)

N(l) = (I—‘-sgo + #.po)(au + Cq)

After some algebra we get,

pa(ao + 1) — Aag _ g2 = A, + 1)
(ap + ay)? pe{ao + a1) — Ay

Q!

Using the same approach as in Section 2.4 , we can compute the upper bound
on the system average delay since we know the average arrival rate to the slow and
fast processors clusters and the average number of jobs in each cluster.

In order to compute the lower bound, we use a similar approach as the upper
bound computation. Here, instead of having a above threshold state, we simple
discard arrivals to the fast processors that find the system at threshold. For the
slow processor cluster, we use a Poisson model in order to have a lower bound
on the performance. This is necessary because the rates at which transitions are
made between the saturated and unsaturated states are not exponential. The
exponential rates used in the computation of the upper bound provide us with
an upper bound on the performance of the slow processors’ cluster, since in the
real system we have a sum of exponential rates, which has a variation less than

one. For the lower bound, a single slow processor queue will then be modeled as
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a birth-death Markov Chain with arrival rate of ADsat and service rate of pu,. We

can solve for Q*, the single slow processor average queue length, analytically:

with p, = Apsar/i,.

Theorem 1 The procedures described in this section compute upper and lower

bounds on the average delay.

Proof: The upper bound proceﬁure models the slow jobs without discarding any
jobs and processing locally the jobs which arrive when the fast processors are at
or above threshold. The probability that the system is over threshold is over-
estimated, since in the real system, the gate for the fast processors cluster will
be opened as soon as one fast processor goes below the threshold (while, in the
upperbound model, the gate opens only when all fast processors are at or below
threshold.) Also, in the over threshold state, we ‘freeze’ fast processors at the
threshold; this clearly increases the over threshold interval. Thus, the average
delay of slow processor jobs is overestimated. The average delay of the fast proces-
sors job is also overestimated, since all jobs that were in the fast processors cluster,
when the system enters the over threshold state, are frozen.

The lower bound procedure underestimates the probability that the system is
above threshold, thus the delay of slow processor jobs is underestimated. Since
all jobs that arrive to the fast processors cluster to find the system at or above

threshold are discarded, the delay of the fast processors job is underestimated.

2.5.1 Bounds Example
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Arrival Rate

Upper Bound

Lower Bound

Simulation + 95% cfi

0.2 0.261904 0.261904 0.267 + 0.0001
0.6 0.282654 0.282654 0.288 + 0.0001
0.8 0.293119 0.293061 0.298 + 0.0001
1.0 0.420428 0.312424 0.320 £ 0.0002
1.1 NA 0.331483 0.36 + 0.007
1.2 NA 0.357993 0.50 £+ 0.04
1.5 NA 0.435952 NA

Table 2.1: Bounds on Average Delay for the 60 Host Example
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A R. tun 1 run 2 run 3 run 4 rum 3

0.2 0.267731 0.267317 0.267541 0.267502 0.26744

0.6 0.288350 0.288009 0.28147 | 0.288049 0.287824

0.8 0.298457 | 0.298221 0.298468 0.298399 0.298203

1.0 0.320281 0.320111 0.320027 | 0.320162 0.319479

1.1 0.362110 | 0.359434 0.376739 0.364300 0.355754

1.2 0.561083 | 0.476405 0.478484 | 0.506030 0.455610

seed | 2027350275 | 648473574 | 1396717869 | 377003613 | 1752629996

Table 2.2: Simulation Results for 60 Hosts Example; Average Delay vs. Arrival

Rate
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Table 2.1 shows the results obtained for upper and lower bounds for a system
with 20 fast processors (4mips RT) and 40 slow processors (0.4 mips HP). The
table also shows the simulation results. The simulation was run with 5 replications,
each run for 800,000 local jobs. The transient phase was estimated to be of 100,000
jobs. The % 95 confidence interval was computed using the method of independent
replications [Lav83]. The bounds are tight in the working range (0.2-0.8) agreeing
on the first 3 digits. At 0.8 arrival rate there is already a substantial load balancing
activity. In fact, without load balancing, we would have all slow processors with
utilization of 2.0 in a M/M/1 system (g, = 0.4 ). We observe that for an arrival
rate of 1.0-1.1 the lower bound gives a very good performance prediction. The
upper bound diverges from the lower bound for higher loads(1.0-) but it can still
be used to determine the knee of the curve. Table 2.2 shows the simulation results
and the seed for the 60 hosts example. The average and the confidence interval

obtained are shown in table 2.1.

2.6 Tighter Upper Bound

The bounding approach described in section 2.5 works very well from small to
medium loads, since most of the probability mass in the Markov Chain resides in
the under threshold region. At high loads, however, the busy period generated
by the overthreshold state (with all jobs on the threshold ‘frozen’), caused the
upper bound to diverge. There, we considered that the first arrival to a system in
threshold state ‘froze’ the processing of all fast processor jobs found in the system.
That arrival generated a busy period for the fast processors cluster, where all
arrivals were processed locally.

In this section we develop a tighter upper bound on the average delay. We

compute T (the average time to go from the overthreshold state to the threshold
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Figure 2.10: Transitions in Region A

state) by building a Markov Chain that models the fast processors cluster behavior
in the overthreshold state and by using a first passage time computation approach
[HS82] . We then use the same approach as in section 2.5 as described in figure 2.8,
that is, we still consider all jobs found in the fast processor cluster to be frozen.

The state of the system in the overthreshold state is S = (N1, N2, N3, N4)

where,

N1 = number of fast processors with exactly one job,
N2 = number of fast processors with exactly two jobs,
N3 == number of fast processors with exactly three jobs,

N4 = number of jobs that arrived to a three job processor.

In order to keep the number of states in the Markov Chain bounded we divided

the Markov Chain in 4 regions:

o Region A: At least one processor has only one job. We assume that the one
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Figure 2.13: Transitions in Region D

job processors are frozen and that the load sharing algorithm works only for

the fast processors. The transitions in region A are described in figure 2.10.

Region B: All processors have 2 or 3 jobs. No jobs are frozen in this state.

The transitions is region B are described in figure 2.11.

Region C: In this region we have Ny — 1 processors with 2 jobs, 1 processor
with 3 and zero processors with 1 job. We consider that all jobs that arrived
to 3 processor jobs are stacked in the same processor { worst case ) and are
thus processed serially. The 2 job processors are frozen. The transitions is

region C are described in figure 2.12.

Region D: In this region we have at least one job that arrived to a three job
processor . Those jobs and the jobs in the 2 job processors are frozen. In
this region we process only jobs in the 3 job processors. The transitions is

region D are described in figure 2.13.
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Figure 2.14 shows the full Markov Chain state space and its division in the
regions A,B,C and D. The transitions are described in figures 2.10, 2.11, 2.12 and
2.13.

In order to compute T (the average time to go from the overthreshold state to
the threshold state) we write down a linear set of equations for T(S) ( the first

passage time from a general state S to any state were the gate is open.)

Region A:
T(t,Ny—i~k, k,0)= (N1A+(Nf—i)p)"l+
NyA . .
W’N_,ZWT(I“ LNy ~1+1~kk0)+
. k : .
Mgl Ny —i+1 -k k—1,0)+
(Ny—i=k) : )
Rtz T+ 1, Ny — i~ k —1,k,0)
Region B:
T(OaN.f - ka k,O) = (Nf.u + Nj/\)_l')!' %T(I’Nf — k- 1,k’0) +
(Ny—k}A
WT(O’N)‘ —k - 1,k + 1,0) +

k
WT(O,N;-—’C-}-I,]E-—].,O)'F

,—V-,;';"WT(O, Ny -k, k1)
Region C:

T(O‘J N.f - li]-’.]) = (ﬂ+ Nf’\)—l+ E‘fVLP\'T(OSNf - l,laj - 1) +

Ne=1)A .
(-J.{-N%T(OaNf - 232,]) +

aina (0, Ny ~1,1,5 +1)
Region D:

T(0,Ny— kK, ) = (kp + Ny 8 T(ON; -k + 1,k - 1,5) +
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Ne=k}A .
(,‘—u";m—’)T(O,N;—k—l,kH,;H

avx (0, Ny — ke k,j + 1)

This is an infinite sparse linear set of equations. In order to solve it numerically
we truncate Regions C and D for values of j that have very small probability
of occurring. In the example considered in Section 2.6.1 for values of j greater
than 20 we already have very small probabilities (less than 10e™%). The solution
for T{(0, N — 1,1,0) was obtained by iteration. The number of steps needed for
convergence is of the order of the number of states in the Markov Chain [PFTV86]

The average number of fast processor jobs given that the system is in above

threshold state can be computed as in Section 2.5.

Theorem 2 The procedure described in this section compute upper bound on the

average delay.

Proof:

The probability that the system is over threshold is overestimated, since in the
real system, the gate for the fast processors cluster will be opened as soon as one
fast processor goes below the threshold (while, in the upperbound model, the gate
opens only when all fast processors are at or below threshold.) Also, in the over
threshold state, we ‘freeze’ two job processors in region C and D and we ‘freeze’ one
job processors in region A. This clearly increases the over threshold interval. Thus,
the average delay of slow processor jobs is overestimated. The average delay of the
fast processors job is overestimated, since all jobs that were in the fast processors

cluster, when the system enters the over threshold state, are frozen.

2.6.1 Bounds Example
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Arrival Rate

Upper Bound

Lower Bound

Simulation + 95 % ch

0.2 0.261904 0.261904 0.267 £ 0.0001
0.6 0.282654 0.282654 0.288 + 0.0001
0.8 0.293119 0.293061 0.298 £ 0.0001
1.0 0.351617 0.312424 0.320 £ 0.0002
1.1 0.697628 0.331483 0.36 + 0.007
1.2 5.25 0.357993 0.50 £ 0.04
1.5 NA 0.435952 NA

Table 2.3: Bounds on Average Delay for the 60 Host Example
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Table 2.3 shows the results obtained for the upper bound for a system with 20
fast processors (4mips RT) and 40 slow processors (0.4 mips HP). The table also
shows the simulation results. The simulation was run with 5 replications, each run
for 800,000 local jobs. The transient phase was estimated to be of 100,000 jobs.
The 95 % confidence interval was computed using the method of independent
replications [Lav83]. The bounds are tight in the whole working range diverging

only, when the system cannot sustain the offered load any more.

2.7 Generalizations

In the previous Section we described the modeling of the dynamic load sharing
algorithm, when the thresholds where fixed and equal to zero for the slow PrOCESSOTS
and equal to two for the fast processors. In this Section we analyze the case where
the thresholds for the fast processors’ cluster can assume a higher value, but is still
identical to some integer k, for all fast processors. In this case we can aggregate
the states of the Markov Chain in the same way as before. What is different now,
is the Markov Chain for the under threshold states for the fast processors’ cluster.
When the thresholds were equal to two we had a two-dimension Markov Chain
with vertical and horizontal transitions only. When the thresholds can assume
higher values for each step in the thresholds value a new dimension is added to the
Markov Chain.

The state of the Markov chain when the thresholds are equal to k is:

S = (51,52, .--, Si, ... Sk),

where S; is the number of processors with ¢ jobs. Using the same approach
as before we can obtain an upper bound on the performance of the system. The
problem here is the combinatorial explosion in the number of states of the Markov

chain. Let,
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n — nurnber of processors

k - threshold for the fast processors’ cluster

Then the number of states in underthreshold the Markov chain is given by:

n+k

Currently it is possible to solve Markov chains with about tens of thousands
of states. In order to give a flavor on which size of examples may be solvable
using state of the art/1990 computers, table 2.4 shows the number of states of the
Markov chain as a function of the number processors and the threshold for the fast

processors’ cluster.

2.8 Decomposition by Threshold Configuration Approach: Bursty Ar-

rivals

In systems with fluctuating parameters, quasi-static thresholds can be used to
dynamically match the load sharing algorithm to the system parameters. In order
to solve for the response time of such systems we apply the well know decomposi-
tion/ aggregation approach [Cou77), [CS84], [CS86], [CG89)].

Let @ be an irreducible infinitesimal generator matrix of order n associated
with the homogeneous , continuous time Markov Chain with global state-space S
that describes the complete load sharing problem. Let us assume that Q can be
partitioned into submatrices Q(a, ) such that the states represented in the diago-
nal square matrix Q(a, a) are strongly coupled (i.e. transitions within Q(a, ) are

much more frequent than across them.) Each Q(a, a) represents the infinitesimal
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Number of Processors | Threshold | Number of States
10 2 66
10 ) 3,003
10 7 19,448
10 8 43,758
20 | 2 231
20 4 10,626
20 5 53,130
30 2 496
30 3 5,456
30 4 46,376
50 2 1,326
50 3 23,426
70 2 | 2,556
70 3 62, 196

Table 2.4: Number of States for the Underthreshold Markov chain
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generator for a given threshold configuration as shown in section 2.5. Let n(a) be
the order of the the square matrix Q(e,a). Let s, be the off diagonal row sum
associated with the i row of the square matrix Q(a,a). Also, let’s assume that
Q is normalized, so that the maximum value of any external row sum is one. Let
Q = Q" + ¢C be a decomposition where Q" = diag(Qj,...,Qxy), Q. is an in-
finitesimal generator matrix constructed from Q(a, @) by distributing the quantity

3ia Over the non-zero elements of the ith row of Q(a,a), for all rows of Q(a,a).

Let ¢ = max, sa. €is called the maximum degree of coupling between the Q{a, a).

The error introduced by the decomposition is known to be O(e) . The pro-
portionality constant is however dependent on the way the distribution of the off

diagonal row sum is chosen [Cou82).

We now assume that the arrival process is bursty, i.e., it fluctuates between two
arrival states: State A where the arrival rate is A,, and state B were the arrival
rate is A;. Transitions between these modes are exponentially distributed with

rate a; from state A to state B, and rate a, from state B to state A.

Clearly Q is given by:
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Q(lvl) ay

541

Qg

Qs

Qg Q(2, 2)

\ s )
Where Q(1,1) and Q(2,2) are computed as in Section 2.5.

Application of the Simon and Ando Decomposition and Aggregation

1. Decomposition Construct Q* from Q, and find v*, where v*(Q* + I) = v*

and v* = (vi,v3), and v = (v},,... s Un(a)a)> Subject to the constraint that

vilT =1 ,for1 <a<2.

(=]

2. Aggregation Construct the infinitesimal generator A, of order M, where q; ;

is the (1, j) element of A, let
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ViQUL, NI, for i # 5,

a,-,-zJ

2 . .
—2k=1,k¢=‘ ak, fori=j.

\

Clearly,
VIQ(L 2)1T = o

v;Q(2, 1T = o

and the infinitesimal generator A reduces to:
—op o

Q; —ap

Find the equilibrium distribution u of the reduced system A, by solving
u(A +1) = u, with ul” = 1. This step is straight forward, since in our case

the v, factored out.

3. Unconditioning Use the vector u in order to uncondition v*.We do that by

computing the desired approximation for = = [[u;v}], [uzv3]].

In order to compute the distribution of the external row sum into the diagonal
block matrixes we proceed as follows. Without loss of generality we can consider
the case of stochastic matrixes only [MdSeSG89)]. Let P be a finite, non-negative,

normalized, stochastic matrix. Let P be:
e E

F G
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The above form is considered in order to simplify notation. The approach is
from [CS84]. Let Q} be constructed by the distribution of the row sums of E
into the non-zero rows of Q;. In [Cou82] Courtois showed that if Q =Q, +

E(I - G)7'F, then the decomposition approach yields exact results.

In our case E:
ay
ap

4]

And F:

Qy

a3

az

\ )
Usually, the computation of E(I — G)~'F is prohibitive, since it involves the

inversion of a matrix that have only one aggregate less than the full system. In our

case, we can compute the decomposition exactly by inverting I — G, G = Q(2, 2).
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If E and F are fully known tight bounds on E(I — G)~'F can be obtained as
follows [CS84]:

[EF];; < [E(I- G)7'F);; < [E1]; - Y [EF]
k#j
In [CS84] looser bounds are given in the case where F is not fully known.

It is interesting to point out that the analysis of systems with bursty departures
(ie. the service rate can assume many different states) can be done by following
the same procedure as in this section. There, one model must be computed for

each departure rate configuration.

2.9 Conclusions and Future Research

We presented a new approach for the modeling of dynamic load sharing algo-
rithms in asymmetric systems that employs a global state Markov Chain. The
model was validated through simulation and a very good agreement was found at
low to medium loads. We managed to analyze large systems as well, by bounding
the performance measure (long run average delay.) The lower bound obtained is
tight (in the range of arrival rates between 0.2-1.0), since the states discarded have
very low probabilities. The upper bound proposed is tight as well in the same
range.

We are continuing and extending these studies in the following directions:
o Optimal Job Miz

The optimal way to mix different classes of jobs(e.g., Short and long cpu
intensive and Interactive) in order to minimize average delay. This question
involves the modeling of multiple class load sharing asymmetric systems and
the problem of workload characterization since we usually do not know what

are the job demands for resources a priori.
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e Configuration Design

The configuration design of such systems under load sharing control requires
an efficient performance modeling algorithm. We intend to study the suitabil-

ity of our performance bounds to the configuration design of such systems.

60



Chapter 3

Sensitivity Analysis

“No mais, mesmo, da mesmice, sempre vem a novidade...”
So, really, the obviousness still brings novelty.

Jodo Guimardes Rosa In: Primeiras Estérias, pp 106

When comparing representative algorithms for load sharing under bursty ar-
rivals, the performance measure sensitivity to the variation of the following pa-

rameters must be evaluated:

e Number of hosts in the system,

e Burstiness of the arrival process,

Speed ratio between fast and slow processors,

¢ Sensitivity to the system model (dynamic tuning only,)

Sensitivity to the optimization algorithm (dynamic tuning only,)

Sensitivity to the threshold computation period (dynamic tuning only.)

In this Chapter we present the evaluation of seven algorithms for load sharing
in distributed systems according to the criteria described above. The sensitivity

to the optimization algorithm is left as a topic for future research.
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Figure 3.1: Simulation Model

3.1 The Model
The simulation model considered was the following:

1. The system under study is composed of fast processors (40 mips} and slow

processors (4 mips,)

2. Jobs arrive at the local sites according to a bursty Poisson arrival process.
The arrival process is composed of two phases: an active phase where arrivals
are accepted and a passive phase we arrivals are discarded. The length of
the active phase (with burst length average) and of the passive phase (with
idle length average) are exponentially distributed. The burstiness of the

process is defined to be the ratio: (burstlength + idle length)/burstlength,

3. The local scheduling algorithm is employed and the job is classified as local

or remote,

4. Local jobs are queued in the local cpu according to FCFS scheduling and are
run for a exponentially distributed number of instructions with 1M instruc-

tions average,
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5. Remote jobs suffers 12.5 ms (processing overhead) and 5 ms communication
delay to get to central site. There, they queue for the central cpu and use
100k instructions processing overhead and 5 ms communication delay to be

scheduled for remote execution,

6. Upon arrival at the remote site, they are queued in the remote cpu according
to FCFS scheduling (one queue for local and remote jobs) and are run for
an exponentially distributed number of instructions with 1M instructions

average,

7. Once a local job completes its running time it is done. A remote job suffers
another 12.5ms (processing overhead) and 5 ms communication delay to get
to the central site, and must queue again for the central cpu to consume an-
other 100k instructions processing overhead and 5 ms communication delay,

before being sent to its originating site for completion.

3.2 Representative Algorithms

We will start by presenting the algorithms we have chosen to perform the
sensitivity analysis. Those algorithms use different amounts of information in
order to perform load sharing. In this work we assume that we have a workstation
(e.g. 40 mips IBM PC-RT) dedicated to job routing in the system. The different
algorithms presented represent the information that is used by the router in order
to perform global scheduling, and the conditions for a remote request to be issued

by a local site.
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3.2.1 Dynamic Tuning Algorithm

This is the algorithm that was presented in Chapter 2. It is a threshold type
algorithm that varies the thresholds dynamically adjusting them to the load in
order to keep an optimal number of tasks in each site. The algorithm periodically
gathers information on the global load in the system and analytically computes an
optimal task allocation in order to minimize the total average response time. This
optimal allocation is a function of the total measured load. The site thresholds
are set to be equal to the optimal task allocations. We will consider two versions
of this algorithm. One where the computation of thresholds is done every second

dynamic(1) and another where it is done every five seconds dynamic(5).

3.2.2 Local Information Algorithm

This algorithm is a threshold based algorithm, where remote jobs are scheduled
randomly. It was originally described in [LT86a). We assigned a threshold of 2 to
the fast processors and a threshold of 0 to the slow processors. We refer to it in

the tables as Random(LT).

3.2.3 Fixed thresholds algorithm

This is the best scheme found in [Zho87]. We will consider a version with
thresholds identical to 1 for all sites, a version where the thresholds are set to 0
for the slow sites and 2 for the fast sites, and a version where the thresholds are
set to 0 for the slow sites and set to 10 for the fast sites. We refer to them in the

tables as Fixed(1-1), Fixed(0-2), and Fixed(0-10), respectively.
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3.2.4 Optimal static algorithm

This algorithm routes jobs according to pre-computed probabilities, which op-
timize the average delay statically. This approach is the one described in [FGKT3].

We refer to it in the tables as Static.

3.3 Simulation Results

In this section we report simulation results obtained when the representative
algorithms are employed. The performance measure used was the long range av-
erage delay. All simulation were run for 800,000 local jobs with a transient phase
estimated at 100,000 jobs. The simulations were run with 5 independent replica-
tions, which were used in order to compute the 95 % confidence intervals, using
the method of independent replications. Each simulation point took 10 cpu hours
on a 4mips PC/RT to compute. In the following tables we report average delays

and the 95 % confidence intervals.

3.3.1 Burstiness of the arrival process

The environment considered in this subsection was composed of 5 slow hosts (4
mips) and 5 fast hosts (40 mips). The fixed(1-1), random with local thresholds, and
static algorithms diverged for the experiment reported on tables 3.3 and 3.4. Tables
3.1,3.2,3.3, 3.4, 3.5,3.6,3.7, 3.8, 3.9,and 3.10 report the results for the simulation
with burstiness of 2 and 4 for the burstlength varying from 0.1-10.0. The main

conclusions to be drawn from the tables are the following:

e The seven algorithms considered can be divided in two groups that ex-
hibit major difference in performance, according to their performance at low

burstiness and low utilizations (25 %). The first group is the one that main-
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tains global information about queue length, schedules jobs to the queue with
maximum difference between threshold and queue length, and has a thresh-
old of 0 for the slow processors (table 3.1.) The second group include static
load sharing, identical threshold of 1 for all sites with shortest queue alloca-
tion, and random allocation with local thresholds (table 3.2.) Figures 3.2,
and 3.4 compare the performance of the algorithms in the first group with a
representative algorithm of the second group dynamic(5). From the figures
we learn that in asymmetric systems under bursty arrivals great care must be
used when selecting load sharing algorithms. We conclude that random al-
location in asymmetric systems produces major degradation in performance

as compared to shortest queue allocation.

¢ Burstiness and burstlength have a major impact on performance on all algo-

rithms.

* The proper tuning of thresholds to the hosts capacities and arrival process is
critical. The mismatch between host capacities and thresholds is responsible
for a major degradation in the performance of the fixed(1-1) algorithm, as

compared to the same algorithms with tuned thresholds.

* Dynamic tuning of thresholds exhibits the best performance over all algo-
rithms analyzed for range of parameters. The fixed(0-10) exhibits a similar
performance at low to medium loads and low burst lengths, since its thresh-
olds are matched to the sites capacities. However, when the system is stressed
to its limits (tables 3.4, 3.7, 3.8, and figure 3.3) we observe that the dynamic

tuning is able to improve performance over the fixed(0-10) by factors of 2-2.6.

In figures 3.6, and 3.7 we plot the average delay as a function of the burstiness

while maintaining the utilization constant. Those plots reinforce our previous
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B. L.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.1

0.062 = 0.0001

0.060 + 0.0001

0.060 + 0.0001

0.060 = 0.0001

0.2

0.063 £ 0.0001

0.061 + 0.0001

0.061 + 0.0001

0.061 £ 0.0001

0.5

0.063 £ 0.0001

0.061 £+ 0.0001

0.061 % 0.0001

0.061 £ 0.0001

1.0

0.064 £+ 0.0001

0.062 + 0.0001

0.061 £ 0.0001

0.061 £ 0.0001

10.0

0.064 + 0.0001

0.062 + 0.0001

0.062 £+ 0.0001

0.062 £ 0.0001

Table 3.1: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 11;

number of hosts = 10

conclusions that dynamic tuning provides better performance at higher burstiness

and higher loads.

The fixed(1-1), random with local thresholds, and static algorithms diverged

for the experiment reported on tables 3.7 and 3.8.

3.3.2 Number of Hosts in the system

In this subsection we evaluate the effect of varying the number of hosts on the
performance of the algorithms. We consider only the second group of algorithms
fixed(0-2), dynamic(1), dynamic(5), fixed(0-10); since the first group is
already degrading with 10 hosts. The environment considered in this subsection
was composed of half slow hosts (4 mips) and half fast hosts (40 mips). The main

objective here is to assess the following:
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Fixed(1-1)

Random(LT)

Static

0.1

0.128 + 0.0001

0.089 & 0.0001

0.217 + 0.0001

0.2

0.129 £ 0.0001

0.091 £ 0.0001

0.217 £ 0.0001

0.5

0.131 £ 0.0001

0.094 £ 0.0001

0.236 £ 0.0001

1.0

0.133 £+ 0.0001

0.096 £ 0.0001

0.235 + 0.0001

10.0

0.138 + 0.0001

0.101 £ 0.0001

0.348 £+ 0.0001

Table 3.2: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 11;

number of hosts = 10

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.1

0.154 + 0.0008

0.086 £ 0.0001

0.086 £ 0.0001

0.086 + 0.0001

0.2

0.194 + 0.0022

0.090 £ 0.0001

0.090 X 0.0002

0.090 = 0.0001

0.5

0.285 + 0.0001

0.098 £ 0.0001

0.098 + 0.0001

0.100 £ 0.0001

1.0

0.424 + 0.0096

0.105 £ 0.0007

0.106 £ 0.0009

0.114 £+ 0.0026

10.0

INF

0.211 £ 0.0869

10.219 £ 0.021

INF

Table 3.3: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 22;

number of hosts = 10
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B. L. | Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)
6.1 INF | 0.112 4+ 0.0006 | 0.112 £ 0.0006 | 0.117 £ 0.0012
0.2 INF | 0.124 £ 0.0008 | 0.124 & 0.0006 | 0.141 =+ 0.0021
0.5 INF | 0.154 4 0.0042 | 0.159 + 0.0034 | 0.214 + 0.0037
1.0 INF | 0.189 + 0.0040 { 0.214 + 0.0021 | 0.353 £ 0.0155

10.0 INF INF INF INF

Table 3.4: Average delay vs. burst length : burstiness = 2 ; arrival rate = 26;

number of hosts = 10

B. L. Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)

0.1 | 0.071 + 0.0004 | 0.066 £ 0.0001 { 0.066 £ 0.0001 | 0.066 + 0.0001

0.2 | 0.075 £ 0.0001 | 0.069 £+ 0.00005 | 0.069 £+ 0.0001 | 0.069 + 0.0001

0.5 | 0.080 £ 0.0001 | 0.072 £ 0.0002 | 0.072 £ 0.0002 | 0.072 £ 0.0002

1.0 | 0.084 £+ 0.0002 | 0.073 + 0.0001 | 0.073 £ 0.0002 | 0.073 £ 0.0002

10.0 [ 0.128 £ 0.0001 | 0.076 £ 0.0034 | 0.075 £ 0.0030 | 0.077 + 0.0026

Table 3.5: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 22;

number of hosts = 10
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Table 3.6: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 22;

Fixed(1-1)

Random(LT)

Static

0.1

0.115 £ 0.0008

0.107 £+ 0.0007

0.236 & 0.0104

0.2

0.160 £ 0.0003

0.116 £ 0.0004

0.247 £ 0.0061

0.5

0.182 + 0.0008

0.132 £ 0.0007

0.278 £ 0.0186

1.0

0.211 + 0.0016

0.146 + 0.0008

0.312 £ 0.0110

10.0

0.638 + 0.0416

0.276 £+ 0.0268

0.975 £+ 0.2415

number of hosts = 10

B.L Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)
0.10.729 £ 0.0374 | 0.121 + 0.0006 | 0.122 + 0.0018 | 0.131 + 0.0018
0.2 INF | 0.156 £ 0.0014 | 0.161 £+ 0.0021 | 0.202 £ 0.0018
0.5 INF | 0.260 + 0.0114 | 0.312 £ 0.0109 | 0.507 £ 0.0371
1.0 INF | 0.493 £ 0.0796 INF INF

10.0 INF INF INF INF

; burstiness = 4 ; arrival rate = 44;

Table 3.7: Average delay vs. burst length

number of hosts = 10
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B. L. | Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)

0.1 INF | 0.192 £ 0.0025 | 0.205 £+ 0.0039 | 0.331 + 0.0062
0.2 INF | 0.328 + 0.0086 | 0.386 + 0.0165 | 0.860 + 0.0380
0.5 INF INF INF INF

Table 3.8: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 52;

number of hosts = 10

A.R. Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)

9.5 | 0.059 £ 0.0001 | 0.058 % 0.00003 | 0.058 + 0.00001 | 0.058 + 0.00001

11.0 | 0.106 £+ 0.6003 | ©0.077 £ 0.0001 | 0.077 £ 0.0002 | 0.077 + 0.0001

Table 3.9: Average delay vs. arrival rate ; number of hosts = 10 ; Poisson arrivals

A R Fixed(1-1) | Random(LT) Static

5.5 | 0.121 £ 0.0002 | 0.083 £+ 0.0003 { 0.218 + 0.0014

11.0 INF INF INF

Table 3.10: Average delay vs. arrival rate ; number of hosts = 10 ; Poisson arrivals
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Figure 3.6: Average delay vs. burstiness; burst length = 10; utilization = 25% ;

number of hosts = 10

76



Burst Length = 0.5

0.60 i I I ]
H eies(Q----  Fixed(0-2)
-+ Dynamic(5) ...ouend

---A-- Fixed(0-10)

/

0.45

1
1
)
'
)
[}
b
i }
1)
1
]
L)
!
L}
1

= ’
é’ H ‘f‘ !
5 0¥ A
it F s
g l' I’
< ; f'
’ A
."‘ /
0.15 i 7
d p)
Y
0.00
0.00 1.25 2.50 3.75 5.00
Burstness
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e For the parameters given in our system, how many hosts can a central site

manage for a given configuration of burstiness, burstlength and arrival rate?

e What is the point beyond which there is no performance advantage in in-

creasing the system size?

For a configuration with burstiness = 2, and arrival rate = 11 we varied the
number of hosts from 10 to 50 and the burstlength from 0.1 to 10. From tables 3.1,
3.12, and 3.11 we conclude that at low loads and low burstiness no performance
improvement (average delay) is achieved by using larger systems, since the central
site has to manage a remote job allocation proportional to system size, and most
of the time the fast processors are idle. We observe a minor degradation in the
fixed(0-2) algorithm for high burst length, and we attribute that to queueing at
the central site due to larger remote traffic.

For a configuration with burstiness = 2, and arrival rate = 22 we varied the
number of hosts from 10 to 20 (the 50 hosts example diverged) and the burstlength
from 0.1 to 10. In tables 3.3, and 3.13 we are able to observe that for the dynamic
tuning algorithms and the fixed(0-10) algorithms there is a major performance
improvement at high burst length (10) by doubling the number of hosts. However,
for the fixed(0-2) algorithm a major degradation in performance is observed.

For a configuration with burstiness = 4, and arrival rate = 22 we varied the
number of hosts from 10 to 50 and the burstlength from 0.1 to 10. In tables 3.5,
3.14 , and 3.16 we are able to observe that at low loads and higher burstiness there
1s no performance improvement by increasing the number of hosts.

For a configuration with burstiness = 4, and arrival rate = 44 we varied the
number of hosts from 10 to 20 (the 50 hosts example diverged) and the burstlength

from 0.1 to 10. Intables 3.7, and 3.15 we are able to observe that for the dynamic(5)
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B. L.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.1

0.072 £ 0.0002

0.066 + 0.0001

0.066 + 0.0001

0.066 + 0.0001

0.2

0.074 + 0.0001

0.067 £ 0.0001

0.067 + 0.0001

0.067 £ 0.0002

0.5

0.077 £+ 0.0001

0.068 + 0.0001

0.068 + 0.0001

0.068 + 0.0001

1.0

0.080 £ 0.0001

0.069 + 0.0002

0.068 + 0.0002

0.067 £ 0.0002

10.0

0.112 + 0.0108

0.071 £ 0.0018

0.070 £ 0.0016

0.070 £ 0.0002

Table 3.11: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 11;

number of hosts = 50

algorithm and the fixed(0-10) algorithms there is a major performance improve-
ment at medium burst length (1.0) by doubling the number of hosts. However, for
the dynamic(1) algorithm a major degradation in performance is observed. This
result indicates that for our parameters, high frequency for threshold computation

at the central site can result in performance degradation. We will explore this

result in more detail in section 3.3.4.

The justification for the optimal cluster size must take into account not only
the average delay but also the cost for setting up central sites. Previous work
has suggested that an optimal cluster size for homogeneous distributed system
is around 30 [Zho87]. Our results seems to indicate that, for our parameters an

optimal cluster size would be between 20-30.
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B. L. Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)
0.1 | 0.063 £ 0.0001 } 0.061 + 0.00004 | 0.061 + 0.0001 | 0.061 + 0.0001
0.2 | 0.063 £ 0.0001 | 0.062 + 0.0001 | 0.062 + 0.0001 | 0.062 & 0.0001
0.5 | 0.064 £ 0.00003 | 0.062 + 0.00003 | 0.062 + 0.0001 { 0.062 + 0.0001

1.0

0.064 + 0.0001

0.062 £ 0.0001

0.062 + 0.0001

0.062 £+ 0.0001

10.0

0.064 + 0.0002

0.063 £+ 0.0002

0.063 £ 0.0001

0.063 + 0.0001

Table 3.12: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 11;

number of hosts = 20

B. L.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.1

0.183 £+ 0.0070

0.081 + 0.0001

0.081 £ 0.0002

0.081 £ 0.0002

0.2

0.266 + 0.0123

0.083 + 0.0001

0.083 + 0.0001

0.083 £ 0.0003

0.5

0.534 + 0.0646

0.087 £ 0.00003

0.087 + 0.0003

0.087 + 0.0001

1.0

0.927 + 0.1592

0.090 £ 0.0003

0.090 £ 0.0009

0.090 £ 0.0003

10.0

INF

0.097 £+ 0.0003

0.101 £ 0.0065

0.176 + 0.0443

Table 3.13: Average delay vs. burst length ; burstiness = 2 ; arrival rate = 22;

number of hosts = 20
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B.L Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)
0.1 | 0.069 £ 0.00003 | 0.066 + 0.0001 | 0.067 + 0.0001 | 0.066 + 0.00004
0.2 | 0.070 + 0.0001 | 0.069 £ 0.0001 | 0.069 + 0.0001 | 0.069 + 0.0001
0.5} 0.072 & 0.0001 | 0.071 £ 0.0001 | 0.071 + 0.0001 | 0.071 + 0.0002
1.0 | 0.073 £ 0.0001 | 0.073 £ 0.0003 | 0.072 £ 0.0002 | 0.073 + 0.0002

10.0 { 0.079 X 0.0041 | 0.079 £ 0.0080 | 0.073 £ 0.0004 | 0.076 + 0.0006

Table 3.14: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 22;

number of hosts = 20

B. L. | Fixed(0-2) Dynamic(1) Dynamic(5) Fixed(0-10)
0.1 INF | 0.1219 +£ 0.0003 | 0.1056 4+ 0.0005 | 0.1280 + 0.0004
0.2 INF | 0.1609 £ 0.0029 | 0.1249 + 0.0007 | 0.1691 + 0.0016
0.5 INF | 0.3233 £ 0.0170 | 0.1788 + 0.084 | 0.2570 £ 0.0034
1.0 INF | 0.7257 £+ 0.0398 | 0.3032 £ 0.0240 | 0.3918 + 0.0079

10.0 INF INF INF INF

Table 3.15: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 44;

number of hosts = 20
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Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.1

0.099 £+ 0.0011

0.074 * 0.0001

0.074 £ 0.0002

0.074 + 0.0002

0.2

0.143 £+ 0.0138

0.078 + 0.0003

0.078 + 0.0002

0.078 + 0.0004

0.5

0.347 + 0.2158

0.085 £ 0.0011

0.084 £ 0.0010

0.085 + 0.0004

1.0

INF

0.092 + 0.0017

0.095 £ 0.0023

0.093 £ 0.0028

10.0

INF

0.199 % 0.0463

0.210 + 0.0562

0.238 £+ 0.0200

Table 3.16: Average delay vs. burst length ; burstiness = 4 ; arrival rate = 22;

number of hosts = 50

3.3.3 Speed Ratio between Fast and Slow processors

In this section we evaluate the sensitivity of the algorithms to the speed ra-
tio between fast and slow processors. This is a very important measure since it
will indicate how the algorithms behave in face of unpredictable system behav-
lor that affect processor speed. The most common factors that affect Processor
speed are: varying user workload, operating system versions, memory sizes, dif-
ferent hardware configurations, and bugs. From tables 3.17, 3.18, 3.19, and figure
3.8 we conclude that dynamic tuning outperforms fixed thresholds for all speed
ratios. Furthermore, for burstlength of 10, fixed(0-2), and fixed(0-10) diverge for
speed ratios of 10, while dynamic tuning still maintain good performance. When
the fixed thresholds are matched to the capacities, fixed(0-2) performs well, while
it faces major degradation when the thresholds are not tuned. When the fixed

thresholds are untuned, dynamic tuning outperforms fixed thresholds by factors of
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S.R.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.105 % 0.0006

0.083 £ 0.0004

0.079 £ 0.0002

0.099 £ 0.0004

0.143 + 0.0016

0.096 £ 0.0003

0.098 £ 0.00005

0.099 + 0.6008

10

0.285 + 0.0045

0.098 + 0.0004

0.098 £ 0.0005

0.100 £ 0.0008

Table 3.17: Average delay vs. speed ratio between fast and slow processors; bursti-

ness = 2; burst length = 0.5; arrival rate = 22; number of hosts = 10

1.5-5.

3.3.4 Sensitivity to threshold computation period (dynamic tuning

only)

We have measured the sensitivity of the dynamic tuning algorithm to the
threshold computation period, by reporting in all tables values for dynamic(1)
and dynamic(3). For almost all results the values are either identical or show
minor discrepances. We have observed anomalies in the case of high load and
high burstiness were dynamic(5) outperformed dynamic(1). This indicates that in
dynamic environment adapting too fast can be harmful. Tables 3.20, 3.21, 3.22,
3.23, and 3.24 report results when the threshold computation period is varied from
1-20 seconds. Here again, we observe that the delay is almost insensitive to the
threshold computation period. Table 3.24 shows the anomaly observed before, also
in a situation were the system is stressed.

These results indicate that the main purpose of dynamic tuning is to match

thresholds the varying effective capacities, and not to cope with varying loads. The
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S. R.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.110 £+ 0.0004

0.088 + 0.0002

0.083 £ 0.0003

0.108 + 0.0015

0.171 + 0.0019

0.101 £ 0.0003

0.106 £+ 0.0010

0.110 £ 0.0012

10

0.424 + 0.0096

0.105 £ 0.0007

0.106 £+ 0.0009

0.114 + 0.0026

Table 3.18: Average delay vs. speed ratio between fast and slow processors; bursti-

ness = 2; burst length = 1.0 ; arrival rate = 22; number of hosts = 10

S.R.

Fixed(0-2)

Dynamic(1)

Dynamic(5)

Fixed(0-10)

0.130 £ 0.0050

0.095 £ 0.0006

0.095 + 0.0008

0.142 £ 0.0060

0.514 + 0.0511

0.108 + 0.0010

0.149 £ 0.0104

0.214 £ 0.0206

10

INF

0.211 + 0.0869

0.219 £ 0.0208

INF

Table 3.19: Average delay vs. speed ratio between fast and slow processors; bursti-

ness = 2; burst length = 10.0; arrival rate = 22; number of hosts = 10
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Figure 3.8: Average delay vs. speed ratio between fast and slow processors; bursti-

ness = 2; burst length = 10.0; arrival rate = 22; number of hosts = 10
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Threshold Computation Period

1 ) 10 20
11.0 | 0.062 £ 0.0001 | 0.062 £ 0.0001 | 0.062 + 0.0001 | 0.062 + 0.0002
22.0 | 0.211 + 0.00869 | 0.219 + 0.0208 | 0.258 + 0.0239 | 0.231 + 0.0360
Table 3.20: Average delay vs. threshold computation period ; burstiness = 2 :
number of hosts = 10
A.R. Threshold Computation Period
1 3 10 20
22 1 0.076 £ 0.0034 | 0.075 £ 0.0030 | 0.079 + 0.0050 | 0.079 + 0.0080

44.0

INF

INF

INF

INF

Table 3.21: Average delay vs. threshold computation period ; burstiness = 4 ;

number of hosts = 10

varying system loads are taken care of by dynamic load sharing.

3.4 Sensitivity to the system model (dynamic tuning only)

In our evaluations of the dynamic tuning algorithm we have used a M/M/1

mode] in the optimizations. The results indicate that the exact modeling of the

arrival process is not critical, since we obtained good results for bursty arrivals,

while using a Poisson arrival model.
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Threshold Computation Period

1 5 10 20
3.5 | 0.06 £ 0.00003 | 0.06 + 0.00003 | 0.06 + 0.0001 | 0.058 + 0.0001
11.0 | 0.08 £ 0.0001 | 0.08 £ 0.0002 | 0.08 + 0.00005 | 0.08 + 0.0001

Table 3.22: Average delay vs. threshold computation period ; number of hosts =

10; Poisson Arrivals

B. L.

Threshold Computation Period

10

20

0.5

0.26 + 0.0014

0.312 £ 0.0109

0.322 + 0.0172

0.323+ 0.0170

0.2

0.156 + 0.0014

0.161 £ 0.0021

0.161 £ 0.0028

0.161 £+ 0.0029

0.1

0.121 + 0.0006

0.122 £+ 0.0018

0.122 £ 0.0006

0.122 + 0.0003

Table 3.23: Average delay vs. threshold computation period; number of hosts =

10; burstiness = 4; arrival rate = 44
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B. L. Threshold Computation Period

1 5 10 20

0.5 INF INF | 1.396 + 0.1470 | 1.294+ 0.1019

0.2 | 0.328 + 0.0086 | 0.386 + 0.0165 | 0.377 + 0.0149 | 0.205 + 0.0041

0.1 10.192 £ 0.0025 | 0.205 + 0.0039 | 0.205 + 0.0041 { 0.203 + 0.0028

Table 3.24: Average delay vs. threshold computation period: number of hosts =

10; burstiness = 4; arrival rate = 52

Future research need to be done in this area in order to evaluate what is the

real impact of proper modeling in the performance of the algorithm.

3.5 Conclusions and Future Research

The main conclusions of our evaluation are the following:

¢ The seven algorithms comsidered can be divided in two groups that ex-
hibit major difference in performance, according to their performance at low
burstiness and low utilizations (25 %). The first group is the one that main-
tains global information about queue length, schedules jobs to the queue
with maximum difference between threshold and queue length, and has a
threshold of 0 for the slow processors. The second group includes static load
sharing, identical threshold of 1 for all sites with shortest queue allocation,

and random allocation with local thresholds.
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¢ Random allocation in asymmetric systems produces major degradation in

performance as compared to shortest queue allocation.

¢ Burstiness and burstlength have a major impact on performance on all algo-

rithms.

¢ The proper tuning of thresholds to the hosts capacities and arrival process is
critical. The mismatch between host capacities and thresholds is responsible
for a major degradation in the performance of fixed thresholds algorithms,

as compared to the same algorithms with tuned thresholds.

¢ Dynamic tuning of thresholds exhibits the best performance over all algo-
rithms analyzed for range of parameters. The fixed(0-10) exhibits a similar
performance at low to medium loads and low burst lengths, since its thresh-
olds are matched to the sites capacities. However, when the system is stressed
to its limits we observe that the dynamic tuning is able to improve perfor-

mance over the fixed(0-10) by factors of 2-2.6.

o We varied the number of host from 10 to 50 and the burstlength from 0.1
to 10. We conclude that at low loads and low burstiness no performance
improvement (average delay) is achieved by using larger systems, since the
central site has to manage a remote job allocation proportional to system
size, and most of the time the fast processors are idle. For medium loads
we observed that for the dynamic tuning algorithms, and for the fixed(0-10)
algorithms there is a major performance improvement at high burst length
(10) by doubling the number of hosts. However, for the fixed(0-2) algorithm

a major degradation in performance was observed.
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¢ The justification for the optimal cluster size must take into account not only
the average delay but also the cost for setting up central sites. Previous
work has suggested that an optimal cluster size for hornogeneous distributed
system is around 30 [Zho87]. Our results seems to indicate that, for our

parameters an optimal cluster size would be between 20-30.

¢ We evaluated the sensitivity of the algorithms to the speed ratio between fast
and slow processors. This is a very important measure since it will indicate
how the algorithms behave in face of unpredictable system behaviors that
affect processor speed. We concluded that dynamic tuning outperforms fixed
thresholds for all speed ratios. Furthermore, for burstlength of 10, fixed(0-2)
and fixed(0-10) diverged for speed ratios of 10 while dynamic tuning still
maintain bounded performance. When the fixed thresholds are matched
to the capacities, fixed(0-2) performs well while it faces major degradation
when the thresholds are not tuned. When the fixed thresholds are not tuned

dynamic tuning outperforms fixed thresholds by factors of 1.5-5.

® We have measured the sensitivity of the dynamic tuning algorithm to the
threshold computation period. The average delay is insensitive to the thresh-
old computation period at low to medium loads. We have observed anomalies
in the case of high load and high burstiness were dynamic(5) outperformed
dynamic(1). This indicated that in dynamic environments adapting too fast
can be harmful. This results indicate that the main purpose of dynamic tun-
ing is to match thresholds the varying effective capacities, and not to cope
with varying loads. The varying system loads are taken care of by dynamic

load sharing.

We are continuing and extending these studies in the following direction:
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Dynamic Tuning Sensitivity to optimization algorithm

In this work we have used a coordinate descent algorithm in order to optimize
the system. We propose to use different optimization algorithms with varying de-
gree of complexity and evaluate its impact on the system performance. We propose

to investigate further, the impact of system model in the algorithm performance.
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Chapter 4

Hard Real Time Systems

“chacham eino medaber bifnei mi sheu gadol mimenu be chochma,
ve eino nichnass le toch divrei chavero,
ve eino nivhal leashiv,

shoel qui inian ve one quealacha,

ve omer al rishon rishon ve al acharon acharon,
ve al ma she lo shama omer: lo shamati,

ve mode al a emet.”

The wise does not talk in front of a wiser man,
And does not interrupt his friend,
And does not answer hastily,

Asks from interest and answers to the point,

And says first first and last last,
And about what he has not heard he says: I have not heard,

And acknowledges the truth.

Chapters of the fathers, chapter 5, par. 7

4.1 Introduction

In this chapter we will address the design of next generation hard real-time
systems [Sta88|. First, we exemplify the scenario considered through examples. A

computer system controlling a next generation medical environment may be com-
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posed of thousands of nodes connected to life monitoring devices. All the nodes
will have the full set of tasks that deals with emergency actions built-in. Once an
event(e.g. heart failure) is triggered, a hardware interrupt is generated and the
proper actions must be taken within a very short period of time (delivery of elec-
trical shock, injection of proper medicine, or emergency attention by the medical
staff.) Real time requirements may vary from seconds to microseconds according
to the application. If we generalize the use of life monitoring devices into the fu-
ture, it is conceivable that sophisticated monitoring devices could prevent serious
illnesses (e.g. strokes and heart attacks.) The patients won't need to be hospital-
ized. They should carry monitf)ring devices that would be connected to regional
centers through a packet radio network. The information would be monitored and
the proper action to be taken informed to the patient (irnmediate hospitalization,
specific drug ingestion or activation of hardware equipment.) In this case, the real
time requirement may well be in the order of microseconds. Another example is the
control of spacecrafts . In this case, some tasks must be performed routinely and
others only when major events occur. For example, equipment checks for faults
must be done periodically. However, prior to takeoff, every equipment needed for
launching must be troughly checked. Those applications demonstrate a need to
combine the execution of periodic tasks with tasks that are generated via hardware
interrupts. In this chapter we will model the latter task type by a Poisson process

and we will call them Poisson tasks.

The increase in processing speeds available, the decrease in cost of processors,
deadline constraints, and fault-tolerance requirements indicate that the solutions
for these problems may involve large number of fast processors connected by a fast

packet switched network.

In this chapter we evaluate the tradeoffs involved in the design of next genera-
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tion hard real-time systems [Sta88], using fast packet switching technology [Jac90],
[AD89]. Those systems will be distributed and compoéed by hundreds of nodes
connected through high speed switches based on optical technology. Next gener-
ation computer networks, using fast packet switching technology, will be able to
deliver hundreds of thousands of packets per second with communication delays on
the order of microseconds. Load sharing in this context is very attractive, since we
have a situation where scheduling decisions can be made with perfect information.
Next generation hard real-time systems will be used in similar environments as n
the present, e.g. life monitoring, nuclear power plants, intelligent manufacturing,
underseas exploration, air traffic control, spacecrafts, military applications, etc...
Failures of such systems occur when a iask misses its deadline without running a
recover routine in time. This can happen due to hardware failure or task sched-
uling conflicts. Such failures are often followed by large human and economical

losses,

The outline of the remaining of the chapter is as follows. In Section 4.2 we
briefly describe the literature reviewed. In Section 4.3 we consider the design of
medium size (10 nodes) hard real-time systems, subjected to Poisson arrivals and
bursty arrivals. In that section we present the design of a high speed load balancing
switch based on fast packet switching techniques, as well as simulation results for
the fraction of tasks dropped. In Section 4.4 we consider the design of hard real
time systems when the job mix is composed of Poisson tasks and periodic tasks. In
section 4.5 we develop an analytical model for the fraction rejected due to deadline

constraints. Section 4.6 contains the main conclusions of the chapter.
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4.2 Literature Review

The literature in scheduling of tasks under real time constraints is vast [Sta88],
[Sta89], [ZRS87], [RSZ89], [SC88], [CL86b], [CKT89]. Previous work in the area
considered either fault-tolerant centralized multiprocessing systems where tasks are
run synchronous in replication [AP84] or distributed systems consisting of loosely
coupled single processors [Sta89]. In loosely coupled systems the approach has
been to use sophisticated local scheduling algorithms, and to schedule in foreign
processors only those jobs that cannot be scheduled locally, due to deadline con-
straints. In next generation systems, the most likely approach will be to use cheap
straight forward hardware implemented local scheduling algorithms and schedule

tasks remotely whenever a task cannot be successfully scheduled locally.

In [Sta89] the reallocation of hard real-time tasks in a distributed system after
a single site failure was considered. The performance metric used was the success
ratio , defined as the fraction of tasks that were allocated previously to the failed
host and were successfully completed (met their deadline constraints) after reallo-
cation. A decentralized task reallocation algorithm of order O(n?) was presented
and analyzed through simulation. The conclusion was that the decentralized ap-
proach achieved a better success ratio than an equivalent centralized algorithm.
The intuition behind the improvement was that given a high cost for reallocation
O(n?) and the framework for task reallocation, the distributed algorithm was able

to produce a linear speedup for the reallocation of the failed site tasks.

In [ZRS87] the problem of scheduling tasks locally in a node with multiple
resource requirements and hard real-time deadlines was considered. An heuristic
approach that took into consideration (1) resource requirements, (2) tasks laxity

(difference between deadline and computation time) and (3) tasks computation
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time, was described. It was shown that policies that considered only one of the
three measures performed poorly for the workload simulated. However, if the
measures were weighted in a way to tune the scheduler to the offered workload,
the heuristic proposed performed well,

In [RSZ89] a set of heuristic algorithms to schedule tasks with deadline and
resource requirements in loosely coupled distributed systems was presented. They
considered the allocation of tasks that could not be guaranteed locally, and eval-
uated the performance of four different algorithms: random allocation, focusing
addressing (send to a particular node that has the most chance of satisfying the
request), bidding and a flexible algorithm that combines the advantage of bidding
and focusing addressing. They performed an extensive simulation study to eval-
uate the effect of communication delay, task laxity, load differences in the nodes
and task computation times on the performance of the algorithms. They con-
cluded that hard real-time algorithms can be effectively implemented on the top

of a loosely coupled distributed architecture.

In [SC88] a decentralized, dynamic load sharing algorithm for a real-time dis-
tributed system built from uniprocessor nodes was proposed and analyzed. Service
times and deadlines were considered constant and identical for all tasks. The state
of each node was defined as light, full or heavy according to a comparison of the
current workload to three predefined thresholds. Each node used state informa-
tion about a set of nodes that was maintained by a broadcast of state changes.
The optimal number of buddies per node was observed to be between 10-15 nodes.
They were able to show that, for the parameters used in their workload, the load
sharing method proposed succeeded in reducing the probability of deadline misses
to a small number. The overhead incurred in collecting global state information

could be controlled by an appropriate tuning of the thresholds.
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In [CL86b} a receiver-initiated scheduling algorithm for distributed soft real-
time system was presented and analyzed through simulation. The algorithm di-
vided jobs in "blessed” ( if the deadline was sure to be met), "to-be-late” ( if there
was uncertainty about the ability to meet the deadline) and "late” ( if the deadline
would be missed for sure ). The performance of the algorithm was compared with
that of a similar sender-initiated algorithm and with a simple load sharing algo-
rithm that did not use any deadline information. The sender-initiated algorithm
was found to be unstable at high loads because it could not efficiently gather load
information when most processors were busy. The sender-initiated algorithm per-
formed better at low loads due to the ability to provide a better service to the high
loaded sites. They concluded that receiver-initiated algorithms should be employed
in distributed soft-real time systems since the the benefit of better performance
at low loads is negligible in comparison to the damage that can be caused by the

unstability at high loads demonstrated by the sender-initiated algorithm.

In [CKT89a] routing and flow control of a simple parallel network of M/M/1
queues subjected to deadline constraints was considered. They posed an optimiza-
tion problem where the cost function to minimize was the fraction of messages that
were rejected either at the entry point(due to flow control) or at the exit point (due
to deadline violation). Using the assumption that the cost function was convex,
they showed that the optimal solution used only a subset of the links and that
for the active set of links the incremental rejection of messages was the same for
all links. They also showed that for a FCFS discipline an admissions policy that

rejected messages at the entry point was optimal above some critical load value.
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Figure 4.1: Real-time architecture considered

4.3 Evaluation of Real Time Systems Under Poisson Tasks

4.3.1 Model

The model considered for hard real-time systems under Poisson arrivals is de-

scribed in figure 4.1 and is the following:

1. The system is composed of processing nodes that are connected through a

load balancing fast packet switch,

2. the job mix is composed of Poisson tasks that arrive to the local nodes with

the following requirements:

¢ a truncated exponentially distributed worst case computation time c.
The computation time is discretized in slots and ranges from 0 to the
maximum number of slots a task can execute. If c is greater than
the maximum number of slots the running time is chosen to be the

maximuim,
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¢ a deadline d that is the sum of ¢ and an exponentially distributed vari-

able { (laxity -~ maximum time until process start execution)
3. all processors have direct access to the full set of tasks that can be executed.

4. a task can be scheduled locally or remotely, according to laxity requirements.

4.3.2 Scheduling

We now describe the scheduling mechanics in the system. The time is slotted
and maintained globally through a synchronized clock. In a job mix with Poisson
tasks only, the scheduler works as follows. At the beginning of a slot, the local
scheduler in all nodes accept the first pending Poisson arrival from the external
world, and compare the task laxity with the number of busy slots in the local node.
A task will be scheduled locally if the laxity is greater or equal to the number of
busy slots. At the end of the local acceptance phase each local scheduler will route
through the load balancing interconnection network one of two packets as follows
(to have a concrete example and to relate to our simulations, we indicate lengths

in bits):

e If the local scheduler is scheduling a task for remote execution, it will route

a schedule request packet with the following information:

— Task laxity minus the interconnection network communication delay (

4 bits ) ,

— Task identification ( 8 bits ). Since in our architecture we assume that
all tasks are previously known to all nodes, the task identification is an
index in a task table built-in in every node. The gathering of the data

needed to execute the task is responsibility of the own task (probably
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done through a data gathering network) and is included in the task

computation time,

e If the local scheduler is not requesting a remote task allocation it will route

a packet with the following information:

— Number of busy slots at the node ( 4 bits )

bl

— Node address ( 4 bits).

The interconnection network will either drop the remote request packet (if it
couldn’t be scheduled properly) or schedule the job to be executed in a node with
the number of busy slots less than the laxity. Each local scheduler will end the
allocation cycle, as before, by incrementing the number of busy slots by the task
requirement allocated to it. The interesting feature in this load sharing algorithm
is that remote job allocation is done with perfect knowledge, since the number of
busy slots available in each node at the beginning of the interconnection network
cycle is the same as when the task is really allocated to run remotelly (the slot of
the local scheduling algorithm is orders of magnitude larger than the slot of the

interconnection network.)

4.3.3 Load Balancing Interconnection Network

In this subsection we describe a version of the interconnection network for the
job mix with Poisson tasks only. The load balancing interconnection network is

composed of three stages as shown in figure 4.2:

1. a sort network, that sorts all packets according to type (request for allocation
or offer of available slots), laxity of the task being scheduled, and number

of busy slots in the destination node. Packets will come out of this stage
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Figure 4.2: Load balancing interconnection network
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Figure 4.3: Matching Network
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sorted by type with a maximum of N/2 packets of each type. The first N/2
packets will be busy slots packets; the next N/2 packets will be laxity packets.

Within each group packets will be sorted by shortest busy slots (laxities,)

. a matching network, that is a multistage network composed of 2x2 elements,
N/2 stages and N(N +2)/8 elements. Each element compares the information
in its upper input(number of busy slots) with the information in its lower
input (laxity.) If the number of busy slots is less or equal to the laxity
a match is found and a packet with the destination address (A) and task
identification {T) is routed to the destination through the element output
line across the third stage self-routing network. Otherwise, the element copy
its input lines to its output lines. The matching network topology is shown in
figure 4.3. In the first stage a match is attempted between ordered offers and
requests. If the smallest laxity cannot be satisfied by the smallest number of
busy slots, it could not be satisfied by any other and is thus dropped. On the
other hand, if the larger number of busy slots cannot, satisfy the larger laxity
it for sure won’t be able to satisfy any other task and will also be dropped.
In the next stage we have one less element, and the number of busy slots
are propagated straight, while the laxities are propagated to the input of the
upper element in the next row. The process is repeated until we get to the
last stage with only one element, where the largest laxity is compared to the

smallest number of busy slots,

. a self-routing network, that routes the matching pairs to the destination
node. At each slot of the matching network the successful packets will be fed

into the routing network.
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4.3.4 Simulation Results-Scheduling Based on Laxity only

In this section we evaluate the performance of the load sharing algorithm pro-
posed for hard real-time systems through a discrete event simulation. In the fol-
lowing we describe the basic core of the simulation. The events in the simulation

are the following:

1. Poisson task arrival. A task artives to a local site. A running time ¢ and a
laxity [ are selected according to the model described in section 4.3.1. The
local scheduling algorithm described in section 4.3.2 is run and the task is
classified as local or remote. If the task is local the number of busy slots in
the local node is incremented by the number of slots requested by the task;
otherwise a remote node that best satisfies the laxity constraint is selected for
remote execution (this assumes that a task is scheduled as soon as it arrives;
in section 4.3.4.3 we consider the effect of the interconnection network in
the system performance.) If no remote node can satisfy the request the task
1s dropped; otherwise a task arrival event is scheduled to happen at the

destination node after the remote scheduling delay,

2. Remote task arrival. If the local scheduling algorithm is satisfied the number
of busy slots is incremented by the number of slots requested; otherwise the

task is dropped,

3. End of slot. All busy nodes have the number of busy slots decremented by

one.

The simulation results for the fraction of tasks dropped are shown in the fol-

lowing subsections.
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Unless stated differently in the section that reports the result, the parameters

used were the following:
1. The arrival rates are constant and equal to 0.075 tasks/node/slot.

2. The communication delay for starting a remote task is varied from 0 slots to

1.0 slot.
3. The Poisson tasks laxity is varied from 1 slot to 100 slots.

4. The service time distribution for the Poisson tasks is truncated to maximum
of 20 slots exponentially distributed with 10 slots average. This gives roughly

50 % total utilization ( the utilization will depend on the fraction dropped.)
5. The system is composed of 10 nodes.

6. Local and remote scheduling is done immediately based on global informa-

tion.

4.3.4.1 Immediate Scheduling with Perfect Information

Table 4.1 shows the results for the fraction dropped for the model described
in section 4.3.4. From the table we learn that communication delay and laxity
have a major impact on performance. It demonstrates that, for the environment
considered, simple local scheduling algorithms can be used effectively if average
laxities are bigger than average processing times, or if communication delay for

remote task initiation is is less than 1 % the average task processing time.

4.3.4.2 Service times

In this section we investigate the influence of the processor speed in the fraction

of tasks dropped. Tasks service times were exponentially distributed with 1 slot
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Comm. Delay Laxity

1 ) 10 50 100

0 /0.046 | 0.025 | 0.015 | 0.0025 | 0.001053

0.01 { 0.052 | 0.027 | 0.016 | 0.0027 | 0.001053

0.1 | 0.089 | 0.038 | 0.022 | 0.0043 | 0.001857

0.5 0.21 |0.082 |0.049 | 0.011 0.0058

1.0} 029 | 0.12|0.078 | 0.020 0.010

Table 4.1: Fraction dropped vs. average laxity and communication delay; imme-

diate scheduling based only on laxity
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Comm. Delay Laxity
1 10 100
0 | 0.00014 0.00 0.00
0.01 | 0.00097 | 0.000027 0.00
0.1 ] 0.0087 0.0010 | 0.000014
1.0 0.05 0.0085 { 0.00094

Table 4.2: Fraction dropped vs. average laxity and communication delay; imme-

diate scheduling based only on laxity; 1 slot average processing per task

average (table 4.2), or 5 slots average (table 4.3} truncated to a maximum of 20
slots. Assuming that we can upgrade the network speed by a factor of 10 and the
processor speed by the same factor, which will result in the best improvement in the
fraction of tasks dropped? A first look at the tables 4.1, 4.2, and 4.3 could indicate
that the investment in processing power would produce a better improvement than
the investment in the network. This will be true only if the cost /upgrade is the
same in both technologies. The true answer for the question will depend on the
stage of technology development and on which technology is being used to its
limit. Today, using optical technology and fast packet switching, we can achieve
an improvement of 1000 in the network speeds. To achieve that same factor in
the speeds of processors we would have to resort to very fancy technology that

wouldn’t be cost effective.
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Comm. Delay Laxity

1 10 100

0 | 0.003 | 0.0003 0.00

0.01 | 0.006 | 0.0008 | 0.000014

0.1 | 0.04{ 0.004 0.0005

1.0 0.20 0.04 0.004

Table 4.3: Fraction dropped vs. average laxity and communication delay; imme-

diate scheduling based only on laxity; 5 slot average processing per task
4.3.4.3 Load Balancing Interconnection Network Evaluation

In this section we evaluate the performance of the load balancing intercon-
nection network proposed in section 4.3. The approach used was to simulate the
influence of the interconnection network in the fraction of tasks that were dropped.
We did that by delaying the remote scheduling to the boundary of the interconnec-
tion network slot. We defined the communication network slot to be equal to the
network communication delay, and we varied it while maintaining the processor
and scheduler slots constant. Table 4.4 show the results for the fraction dropped.
Comparing table 4.4 with table 4.1 we can see that for very small communication
delays (0.01 slot) the performance of the interconnection network approaches the
perfect knowledge system asymptotically. However, as the communication delay
increases, the fraction dropped is increased due to the fact that remote tasks wait,

on the average, half a slot plus the communication delay until they get sched-
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Comm. Delay Laxity

1 ) 10 50 100

0.01 | 0.053 | 0.027 | 0.016 | 0.0024 | 0.0010

0.1 0.11 { 0.043 | 0.026 | 0.0050 | 0.0020

0.5| 026 | 0.10 | 0.062 | 0.015} 0.007

1.0} 033 016 0.10| 0.026 | 0.014

Table 4.4: Fraction dropped vs. average laxity and communication delay; immedi-
ate local scheduling based only on laxity ; interconnection network effect included;

10 slot average processing per task
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Laxity/ Number of Nodes

Com. Del. 1 2 5 10 15 20 25 30

10 1 0.37 | 0.26 | 0.14 [ 0.089 | 0.074 | 0.066 | 0.064 | 0.062

50 0.29 | 0.18 | 0.081 | 0.037 | 0.025 | 0.020 | 0.018 | 0.016

Table 4.5: Fraction dropped vs. Number of Nodes; immediate scheduling

uled. If laxities are small, the extra wait prevents successful allocations that were
possible before in the system with immediate remote allocation. This result indi-
cates that the approach proposed is very effective in special purpose hard real time

architectures, where we can control the delay incurred for remote task allocation.

4.3.4.4 Number of nodes

In this section we evaluate the effect system size (number of nodes) has in the
fraction of tasks that are dropped. The number of nodes was varied from 1to
30. The task fraction dropped vs. the number of nodes is shown in table 4.5,
Two ratios of laxity and communication delay were considered. The scheduling
algorithm used was the immediate local and remote scheduling.

From the table 4.5 we can see that the performance improvement due to increase

in system size levels off around 10 nodes.

4.3.4.5 Local Scheduling Algorithms

Two local scheduling algorithm were considered. The first is the one described

in section 4.3 and reported in table 4.1. The second, that we will call delayed
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Comm. Delay Laxity

1 5 10 50 100

0| 0.057 | 0.050 | 0.040 | 0.022 | 0.019

0.01 ] 0.061 | 0.050 | 0.040 | 0.021 | 0.019

0.1 0.098 | 0.061 | 0.047 | 0.024 | 0.020

0.5| 0.22| 0.10]0.072 | 0.034 | 0.028

1.0 034 025 022 | 0.17] 0.16

Table 4.6: Fraction dropped vs. average laxity and communication delay; delayed

scheduling

scheduling, schedule immediately tasks with laxities that are within one slot of the
number of busy slots found in the local node; tasks with larger laxities are delayed
in a local queue and scheduled when their laxities gets to within one slot of the
number of busy slots found in the system. Table 4.6 show the fraction dropped for

delayed local scheduling.

The delayed scheduling algorithm, shows worse performance because at 50 %
utilization the processors are half the time idle when a task arrives. Since the
rational behind the policy is to avoid contention with short laxity tasks, this is
achieved by the immediate scheduling algorithm as well. However, large laxity
tasks don’t take advantage of their laxity (because they are delayed.) In table 4.6

we observe major degradation for high laxity. For large communication delays the
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performance is degraded as well since load sharing is not effectively used by the

algorithm.

4.3.5 Simulation Results-Scheduling Based on Laxity and Threshold

In this section we evaluate the utilization of a local threshold in order to sched-
ule tasks in the architecture evaluated. Each node has a threshold that is the
maximum number of slots that will ever be allocated in that node. The only event

in the simulation that is different from section 4.3.4 is the following:

* Poisson task arrival. A task arrives to a local site. A running time ¢ and
a laxity I are selected according to the model described in section 4.3. The
local scheduling algorithm is the following: If the number of busy slots in the
local node plus the number of slots required to run the task is less or equal
to the threshold and the task laxity is greater than the number of busy slots
the task is classified as local; otherwise the task is classified as remote. If
the task is local the number of busy slots in the local node is incremented
by the number of slots requested by the task; otherwise a remote node that
best satisfies the threshold constraint and satisfies the laxity constraint is
selected for remote execution. If no remote node can satisfy the request the
task is dropped; otherwise a task arrival event is scheduled to happen at the

destination node after the remote scheduling delay.

4.3.5.1 Local Scheduling Algorithms

Two local scheduling algorithm were considered as in Section 4.3.4.5.
Table 4.7 and 4.8 show the fraction dropped for delayed and immediate sched-

uling respectively, when the threshold was 20 for all nodes. The tables show that
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Comm. Delay Laxity

1 5 10 30 100

0]0.116 | 0.103 | 0.0962 | 0.084 | 0.082

0.01 [ 0.121 | 0.105 | 0.098 | 0.084 | 0.082

0.1 10.150 | 0.111 | 0.101 | 0.086 | 0.084

051 024 | 0.14 0.12 | 0.094 | 0.091

1.0 0.38 | 0.27 024 021 0.20

Table 4.7: Fraction dropped vs. average laxity and communication delay; delayed

scheduling ; threshold = 20

using thresholds, immediate scheduling performs much better than delayed sched-
uling as in section 4.3.4.5. Comparing table 4.8 with table 4.1, we observe that
for the working range (fraction dropped less than 0.1) the use of thresholds de-
grades performance 1.6 times for communication delay equal to 0.01, laxity equal
to 1. For communication delay equal to 0.01, laxity equal to 100, we observed a

degradation in performance of 2 orders of magnitude.

In systems with periodic tasks the number of slots that can be allocated in
a window is limited. This result indicates that in systems where Poisson tasks
constitute a significant fraction of the workload, the system designer may consider

allocating them to a load sharing cluster separate from the periodic tasks.
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Comm. Delay Laxity

1 3 10 30 100

0 0.083 | 0.080 | 0.079 | 0.078 { 0.078

0.01 | 0.087 [ 0.081 { 0.079 | 0.078 | 0.078

0.1 | 0.12}0.089 | 0.084 | 0.079 | 0.079

0.5 0.21| 0.12] 0.10 ] 0.085 | 0.083

1.0 0.28 | 0.15| 0.12 | 0.091 | 0.086

Table 4.8: Fraction dropped vs. average laxity and communication delay; imme-

diate scheduling; threshold = 20
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Laxity/ Number of Nodes

Com. Del. 1 2 5 10 15 20 25 30

10 1 0.34 | 0.23 | 0.14 { 0.118 | 0.114 | 0.114 | 0.114 | 0.113

50 1 0.28 | 0.18 | 0.11 | 0.089 | 0.087 | 0.087 | 0.086 | 0.086

Table 4.9: Fraction dropped vs. Number of Nodes; immediate scheduling
4.3.5.2 Number of nodes

The task fraction dropped vs. the number of nodes is shown in table 4.9.
Two ratios of laxity and communication delay were considered. The scheduling
algorithm used was the immediate local scheduling.

From the table 4.9 we can see that the performance improvement due to increase

in system size levels off around 10 nodes.

4.3.6 Simulation Results - Bursty Arrivals

In this section we consider that the arrival process is bursty. The arrival process
can be in one of two states: active or passive. In the active phase, tasks arrive
according to a Poisson process, as in the previous section. We call the length of the
active phase: the burst length. In the passive phase the arrival process is blocked.
i.e. no tasks arrive. The length of the active and passive phase are exponentially
distributed. The arrival process period is defined as the sum of the average active
phase length and of average the passive phase length. We evaluate the performance
as a function of the arrival process burstiness, defined as the ratio of the the total

period to the active phase; and as a function of the burst length. We scale the
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Comm. Delay Laxity

1 3 10 30 100

0} 0.08 | 0.05|0.03 { 0.007 | 0.003

0.01 1 0.09 | 0.05 | 0.03 | 0.007 | 0.004

0.1 0.12 | 0.06 | 0.04 | 0.009 | 0.004

0.50.23 | 0.10 { 0.07 | 0.018 | 0.009

1.0 {0.31 | 0.15 | 0.09 { 0.025 | 0.014

Table 4.10: Fraction dropped vs. average laxity and communication delay; imme-

diate local and remote scheduling; bursty arrivals, burst length = 1

rate of the Poisson process accordingly, in order to maintain the offered load to

the system constant.

4.3.6.1 Burst Length

In this section we consider a system with 10 nodes, subjected to 0.150 Poisson
tasks arrival per slot per node. Local allocation is based on laxity only. The
burstiness of the process is 2. Tables 4.10, and 4.11 show the results for burst
lengths of 1 and 10 respectively. From the tables we can see that for constant
burstiness, the burst length has a major impact on performance. The impact of
the burst is roughly proportional to the ratio between laxity and communication

delay. The ratio between the main diagonal in tables 4.11 and 4.10 ranges between
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Comm. Delay Laxity

1 5 10 50 100

0]0.21 {0.15 | 0.11 | 0.04 | 0.020

0.01 1 0.20 | 0.15 | 0.11 { 0.035 | 0.020

0.1]0.23|0.16 | 0.12 | 0.04 | 0.020

0.51031}0.180.14] 0.0510.025

1.0 10371022016 | 0.06 | 0.03

Table 4.11: Fraction dropped vs. average laxity and communication delay; imme-

diate local and remote scheduling; bursty arrivals, burst length = 10
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Comm. Delay Laxity

1 5 10 50 100

0(0.11 | 0.096 | 0.092 | 0.087 | 0.085

0.01 1 0.12 | 0.098 | 0.090 | 0.088 | 0.087

0.1 {0.15| 0.10 | 0.097 | 0.089 | 0.089

0.3]0.25| 0.14| 0.12 | 0.093 | 0.091

1.0 /031 018 | 0.14| 0.10 | 0.096

Table 4.12: Fraction dropped vs. average laxity and communication delay; imme-
diate local and remote scheduling; bursty arrivals, burst length = 1; threshold =

20

2.14 t0 3.0. For the other diagonals the ratio varies in a small range decreasing from
6.6 (for communication delay equal 0, laxity equal 100) to 1.2 (for communication

delay equal to 1.0 , laxity equal to 1.0.)

4.3.6.2 Burst Length and Thresholds

In this section we consider that the local allocation is based on laxity and

thresholds as in section 4.3.5.

The system modeled is the same as in the previous section. The burstiness of
the process is 2. Tables 4.12, 4.13, and 4.14 show the results for burst lengths of

1, 10, and 100 respectively. Comparing table 4.13 with table 4.11, we reinforce the
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Comm. Delay Laxity

1 5 10 50 | 100

0020|016 |0.14 | 0.12 | 0.11

0.01 1 0.20 | 0.16 | 0.14 | 0.12 | 0.11

0.1 10.220.16 {0.15|0.12 | 0.11

0.5}0.31]0.20]0.17{0.13 | 0.12

101038 {1 0.23 | 0.19 | 0.14 | 0.13

Table 4.13: Fraction dropped vs. average laxity and communication delay; imme-
diate local and remote scheduling; bursty arrivals, burst length = 10; threshold =
20
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Comm. Delay Laxity

1 5 10 50 | 100

0/0.26)0.210.19|0.16 { 0.15

0.010.26 | 0.21 | 0.19 | 0.16 | 0.15

0.110.28)022]|0.20]0.16 | 0.15

0510371025022 ]0.17 | 0.16

1.0 | 0.45 | 0.29 | 0.24 | 0.18 | 0.17

Table 4.14: Fraction dropped vs. average laxity and communication delay; imme-
diate local and remote scheduling; bursty arrivals, burst length = 100: threshold
= 20
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Comm. Delay Burstiness

8| 4| 2| 4/3

01032017 |0.08]0.07

0.01 {0.33 | 0.18 | 0.09 | 0.07

0.1 |0.34{0.20 | 0.12 ]| 0.10

. 0.5]0.390.29 |0.23 | 0.22

1.0 1 0.44 { 0.35 | 0.31 | 0.30

Table 4.15: Fraction dropped vs. burstiness and communication delay; bursty

arrivals, burst length = 1, laxity = 1; no thresholds

conclusion that in real time systems thresholds degrade performance.

4.3.6.3 Burstiness

Table 4.15 show the effect of burstiness in the fraction dropped for the algorithm
without thresholds. The arrival rate was scaled accordingly, in order to maintain
the system utilization (if no tasks were dropped) constant. Burstiness degrades
performance for low(0.32 vs. 0.07) and high communication delays (0.44 vs. 0.30.)

However, for low communication delays the impact is bigger.
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Comm. Delay Laxity

1 5 10 50 100

010.0695 | 0.073 | 0.057 | 0.03 | 0.026

0.01{ 0.100.072 | 0.058 { 0.03 | 0.024

0.1 0.130.085|0.064 | 0.03 | 0.028

05| 0.24 | 0.12|0.088 | 0.04 | 0.04

1.0 035 026 | 0.23]0.18] 0.17

Table 4.16: Fraction dropped vs. average laxity and communication delay; delayed

scheduling; bursty arrivals, burst length = 1, burstiness = 2, no thresholds
4.3.6.4 Local Scheduling Algorithms

Table 4.16 show the fraction dropped for delayed scheduling, for a 10 node
system, subjected to 0.150 bursty Poisson tasks arrival per slot per node. The
burst length was 1 and the burstiness was 2. No thresholds were used. We observe

here degradation in performance due to delayed scheduling as well.

4.4 Evaluation of Real Time Systems Under Periodjc Tasks

4.4.1 Model

The model considered for hard real-time systems under periodic tasks is the

same as in Section 4.3, with the following additions:
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1. The job mix is composed from two job types :periodic jobs that must be exe-
cuted at a constant rate, and dynamically assigned jobs that arrive according

to a Poisson process. The Poisson rates are identical for all nodes,

2. when considering a job mix composed from periodic tasks and Poisson tasks
we need to define a window for the execution of the periodic tasks. Each
node has a local window that is the maximum number of busy slots that
will ever be allocated in that node. The window can be different from node
to node. In this section we are considering the window to be constant and

identical for all nodes,

3. the job mix with periodic tasks requires a more complex scheduler. In this
case each node has a local scheduler for Poisson tasks, that based on a local
threshold (the window minus the number of slots required by periodic tasks)
and the number of busy slots scheduled for the node, decides if the arriving

task will be scheduled locally or remotely.

4. each periodic task arrives at the local nodes with requests for constant service

time. The task is always guaranteed to be executed in the next window.

4.4.2 Scheduling

In a job mix with periodic and Poisson tasks, the scheduler works as follows.
At the beginning of a slot, the local scheduler in all nodes accept the first pending
Poisson arrival or Periodic task from the external world . If the task is periodic it
is scheduled to run after the already scheduled tasks in the node, by incrementing
the number of local busy slots by the task requirement. If the task is Poisson then

the scheduler takes the following action:
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1. compare the number of slots requested by the task with the number of slots

available in the local node,

2. compare the task laxity with the number of busy slots in the local node.
A task will be scheduled locally if:

1. it satisfies the load balancing constraint, the threshold minus the number of
busy slots is greater or equal to the number of slots the task needs to run to

completion, and,

2. it satisfies the laxity constraint, the laxity is greater or equal to the number

of busy slots.

At the end of the local acceptance phase each local scheduler will route through

the load balancing interconnection network one of two packets:

o If the local scheduler is scheduling a task for remote execution, it will route
a schedule request packet with the following information:
— Number of slots requested ( 4 bits ),
— Task laxity ( 4 bits ),
— Task identification ( 8 bits ).
e If the local scheduler is not requesting a remote task allocation it will route
a packet with the following information:
— Number of slots available at the node ( 4 bits )
— Number of busy slots at the node ( 4 bits ),

— Node address ( 4 bits).
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The interconnection network will either drop the packet or schedule it to be
executed in a node with the largest difference between threshold and number of
busy slots that satisfies the laxity requirement. At the end of the remote task
scheduling in the interconnection network, each local scheduler that had a task
allocated to it, will increment the number of busy slots by the task requirement

allocated to it.

4.4.3 Load balancing interconnection network — Periodic Tasks

In this subsection we describe a version of the interconnection network for the
job mix with Poisson tasks and periodic tasks. The load balance interconnection
network will be the same as in section 4.3.3. The only difference here is that the 2
x 2 element in the matching network will have to compare two pairs of information
. (available number of slots, required number of slots) and (number of busy slots,
task laxity.)

The simulation results for the fraction of tasks dropped are shown in the fol-

lowing subsections. The parameters used were the following:

1. The window was considered constant for all nodes and equal to 20.
2. The thresholds are equal to 15.

3. The arrival rates are constant and equal to 0.075 tasks/node/slot for the
Poisson tasks. The service time distribution for the Poisson tasks is truncated
to maximum of 15 slots exponentially distributed with 5 slots average. This

gives a half the previous utilization for the Poisson tasks.

4. The periodic tasks arrives once in every window ( 20 slots ) and use 5 slots,

accounting for another 25 % utilization.
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Comm. Delay Laxity

1 10 100

0]0.16 | 0.073 | 0.047

0.1]0.19 ] 0.077 | 0.048

1.0 031 { 0.11 [ 0.048

Table 4.17: Poisson fraction dropped vs. average laxity and communication delay;

immediate scheduling with periodic tasks

5. The communication delay for starting a remote task is varied from 0 slots to

1.0 slot.

6. The Poisson tasks laxity is varied from 1 slot to 100 slots.

4.4.4 Periodic and Poisson tasks mix

In this subsection we consider a system with periodic tasks. The service time
distribution for the Poisson tasks is truncated to a maximum of 15 slots exponen-
tially distributed with 5 slots average. This gives a 25 % utilization for the Poisson
tasks. The periodic tasks arrives once in every window ( 20 slots ) and use 5 slots,
accounting for another 25 % utilization.

From the table 4.17 we can observe two main effects due to the introduction of

the D/D/1 periodic tasks:

1. large laxity jobs don’t get hurt by the smaller window, since they still have

enough time to be scheduled successfully. On the contrary, since they account
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only for half the total utilization, they are competing with less large laxity

jobs with high variability.

2. small laxity jobs are hurt because the periodic tasks are likely to get a fraction

of the window it needs.

4.5 Performance Modeling

In this section we will describe three different analytical approachs used in
order to model the local and global scheduling algorithms. The first approach uses
a global state Markov chain in order to model the system. The main challenge
here as in section 2.4 is the explosion of the number of states of the Markov Chain
when the system grows large. The second approach treats the system as a single
server discrete time bulk arrival system in order to obtain an upper bound in the

performance. The third approach computes a lower bound by modeling the system

as a modified M/D/c.

4.5.1 Markov Chain Modeling

Our system could be modeled as a Markov chain with state

S =(NO,N1,...,Nk,...) where,

Nk = number of processors with k busy slots.

Note that S completely defines the system , since the scheduling of arrivals
depends only on the difference between the task laxity and the number of busy
slots. We have a discrete time Markov chain with transitions occurring at the
service time boundary. The problem with this approach is that the state space is

huge if we maintain the state for any k with reasonable size. As we learned in the
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previous sections, a threshold of 20 produces major degradation in performance.
So in order to achieve a good approximation we shall keep track of k >> 20. This
exceeds the capacity of most available computers since for k = 20, n = 10 we
already have 10 million states in the Markov chain. We present in the following
sections simple approximations that enable us to model the system in a very cost

effective way.

4.5.2 Bulk Arrivals

In this section we will present an analytical approach in order to compute an
upper bound on the fraction of tasks t%xa,t are dropped. The upper bound results
from the fact that we have only one processor. We compute the fraction dropped
in a discrete time, single server system subjected to bulk arrivals. The model is
the same as in section 4.3.1 with the exception that service times are exponentially
distributed (in section 4.3.1 service times were truncated exponential.)

We make the following assumptions:
¢ The probability of no arrivals in a slot is e~2,

o With probability 1 — e~* we have at least one arrival in a slot. All of those
arrivals will be batched together, and the length of the whole batch will be
expogentially distributed with average 1/u. A single laxity will be chosen

for the whole batch with average 1/D.

¢ The whole batch will be accepted or rejected as a bulk. The probability that

a bulk is discarded given that there are k busy slots when it arrives is 1 — e2*

Let’s define the following notation:

k - is the number of busy slots in the system,
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Figure 4.4: Markov chain for bulk arrivals systern

Px - is the steady state probability of having k busy slots in the system,
go - is the probability that are no arrivals in a slot,
di - is the probability that a bulk is discarded given that there are
k busy slots in the system when it arrives,
gik - 1s probability that a bulk of i slots is accepted given that there

are k busy slots in the system when it arrives.

gix = e-Dk(e—u(t'—l) _ e"‘("))(l - e”\)

A bulk of arrivals is accepted if it has a laxity greater or equal to k. It has
length i with probability e=#'-1) — ¢=# and arrives with probability 1 — e~*.

Under those assumptions we have a discrete time Markov chain as shown in
figure 4.4. The system is a bulk arrival single service discrete time system. The

set of equations to be solved is:
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Laxity

1 S 10 50 | 160

Simulation | 0.4] | 0.35 | 0.30 0.17 ] 0.12

Analysis | 0.42 | 0.35 | 0.30 | 0.17 | 0.12

Table 4.18: Fraction dropped vs. average laxity; analysis and simulation

Po = pi{go+d1) + pogo

Pn = Pnt1(90+ dntr) + Pogao + Zpkgn—-k+l,k1n >0
k=1

We solve this system of equations numerically. The standard method of Z-
transforms would led in this case to a two dimension transform in (i,k). Table 4.18
shows the results obtained through analysis and simulation. The agreement is very
good demonstrating that the assumptions we made are reasonable( discarding or
accepting the whole set of arrivals in a slot is reasonable if the arrival rate/slot is

less than 1.)

4.5.3 M*/D/c

In this section we generalize the approach in section 4.5.2 in order to analyze
a system with c processors. We will model our system as a M* /D/c. That is, we
assume that we have a global queue where we accumulate all arrivals, and that

different slots of the same task may be processed in different processors. At the
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beginning of a processor slot, the first ¢ slots in the global queue are allocated to

be run in the ¢ processors.

We make the following approximations in order to be able to carry the analysis

through:

o The probability of no arrivals in a slot is e=*.

o With probability 1 — e=** we have at least one arrival in a slot. All of those
arrivals will be batched together, and the length of the whole batch will be
exponentially distributed with average 1/u. A single laxity will be chosen
for the whole batch with average 1/D.

o The whole batch will be accepted or rejected as a bulk. The probability

that a bulk is discarded given that there are k busy slots when it arrives is

1 — ekD/c

We use the same notation as in section 4.5.2.

Gik = eRDIe(gmnl=1) _ —u()(] ~ g=er)

A bulk of arrivals is accepted if it has a laxity greater or equal to kfc. It has
length i with probability e™#("=!} — ¢=#' and arrives with probability 1 — e~<*,

Under those assumptions we have a discrete time Markov chain as shown in
figure 4.5. The state of the Markov chain is the number of busy slots in the system.

The set of equations to be solved is:

Po = podo+ Y (g0+di)pi

=1

c . n—1
n = pn+c(90 + dn+c) + Zpign,i + z Gin—itcPnmitc,n >0
i=0 =1

Transitions into state n,n > 0 occur:
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Figure 4.5: Markov chLaiR for M*/D/C system

1. From state n + ¢, if the arrival bulk is rejected, or if there are no arrivals,

with probability (go + do4n);
2. From a state 0 < ¢ < ¢, serve i and n arrive;
3. From a state c+ 1 <1 < ¢+ n, serve c and arrive n+c-l.
Transitions into state 0 occur:

1. From state ¢ < ¢, if the arrival bulk is rejected, or if there are no arrivals,

with probability (go + d;);
2. From state 0 if there are no arrivals with probability gq.

We solve this system of equations numerically as in section 4.5.2.
Table 4.19 shows the results obtained through analysis and simulation. The
agreement is very good demonstrating that the model captures the most important

aspects of the physics of the problem. The simulation results shown are for a
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Laxity

1 5 10 50 100

Simulation | 0.29 | 0.12 | 0.078 | 0.020 | 0.010

Analysis | 0.31 | 0.14 | 0.09 | 0.022 | 0.012

Table 4.19: Fraction dropped vs. average laxity; analysis and simulation, 10 nodes

system with communication delay of 1 slot for remote allocation, and 0 slot for
local allocation. In our system arrivals see, on the average, a delay for allocation

of 1/2 a slot, since all allocations are done at the boundary of the slot.

4.6 Conclusions and Future Research

The problem of optimal local scheduling in hard real time systems is NP-
complete [RSZ89]. The traditional approach for scheduling in loosely coupled hard
real time systems has been to use good heuristics for local scheduling [RSZ89].
We have proposed an alternative approach for scheduling in hard real-time sys-
tems. We propose to use simple local scheduling algorithms and enforce deadline
constraints by using a fast load sharing interconnection network that can schedule
tasks with communication delays on the order of microseconds. We have evaluated
our approach under Poisson and bursty arrivals assumptions. We have simulated
the effect of system size, different local scheduling algorithms, burstiness, burst
length, thresholds, synchronous allocation due to the interconnection network, and
of a job mix composed of Poisson and periodic tasks. The main conclusions of our

evaluation are the following:
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¢ Load sharing can be used effectively in order to schedule jobs in hard real time
systems. A simple inexpensive hardware based algorithm for local scheduling
can be used together with a fast interconnection network. However, the
burstiness of the process must be carefully studied, since it has a major

impact on performance.

* The improvement in the performance levels off around 10-15 nodes. This is
similar to results obtained for load sharing in homogeneous systems [Zho87]

and real time systems [SC88].

* Delayed scheduling of jobs degrades performance. This is because real time
systems are designed to be run at low utilizations. The immediate scheduling

algorithm should be used.

¢ In systems with periodic tasks the number of slots that can be allocated in a
window is limited. This result indicates that in systems where Poisson tasks
constitute a significant fraction of the workload, the system designer may
consider allocating them to a load sharing cluster separate from the periodic

tasks.

* Laxity and number of busy slots is a good load measure in load sharing in
hard real-time systems. Thresholds on queue length degrade performance

and shall be avoided.

o Synchronous remote allocation can be used effectively to reduce the fraction
of tasks that are dropped. The current approach to improve performance
has been to reduce processor utilization. We have shown that reducing com-

munication delay is an effective alternative.

We are continuing and extending these studies in the following directions:
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o Large Systems Topology

In order to design for large systems we have following alternatives:

1. To expand only the interconnection network in order to manage a larger

system, thus constructing a flat structure,

2. To structure the whole system hierarchically and to redesign the load

balance interconnection network,

3. To have clusters of small systems that are autonomous and are con-

nected by routers.

We propose to evaluate those alternatives in terms of their cost/performance.

¢ Modeling

We have only touched the performance evaluation of those systems. This is
a rich and difficult area. In particular we must account for the proper delay
in the interconnection network and the various distributions of deadlines.
We propose to use a mini-slot approach in order to model different intercon-
nection network delays. The idea is to express the all units in the system
in terms of the interconnection network mini-slot. The state of the Markov

chain will be the number of minislots in the system.

o Fault-tolerance

We have not addressed the issue of fault-tolerance. One approach should
be to have all jobs come in with a priority that indicates its criticality. If
the priority is high the job will be started with backups in other nodes with
different parent. At high loads those backups may have lower priorities and

will use only idle cycles. On node failures, or when they get to a point where
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if a node fails they will miss the deadline, their priorities will be increased.
The point here is that many idle cycles can occur due to the fact that jobs

are scheduled based on worst case computation times.
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Chapter 5

Conclusions and Future Research

“Se procuro, estou achando. Se acho, ainda estou procurando?”
If I search, T am finding. If I find, am I still searching?

Jodo Guimardes Rosa In: Terceiras Estrias - Tutameia, pp 74

First we summarize the portion of our work applicable to asymmetric dis-
tributed computing systems. After formulating the basic load sharing strategies,
we performed measurements (Chapter 2) on our testbed under Poisson arrivals in
order to obtain the main parameters that characterize the load sharing algorithms
under study. The performance evaluation of the dynamic tuning algorithm was
done by comparing it to an algorithm where all thresholds were fixed and identi-
cal to one. The example reflects a situation were a large number of homogeneous
workstations is sharing their residual capacity, defined as the fraction of the pro-
cessing power not used by the workstation owner. In this case thresholds can not
be set a priori to be proportional to the (unknown) available processing power.

Our conclusions from the evaluation were the following:

o The self tuning algorithm is able to improve performance for a wide range of
arrival rates. The dynamic threshold algorithm is able to reduce the average
delay to more than 50% of the value obtained when the fixed threshold of
1 is used. Furthermore, it can support an arrival rate 20% larger than the

fixed threshold algorithm.
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¢ Load sharing implementation at the user level incurs high overhead (0.3 secs
cpu overhead/job initiation and 20 ms communication delay.) Load Sharing
is still very attractive in the environment considered: asymmetric systems

with many cpus speeds running jobs with 1M instructions average.

¢ Fixed and uniform thresholds algorithms in asymmetric environments are
highly sensitive to tuning. The thresholds must be well matched to the service
demands and capacities of the site in order to achieve good performance. This
is the main drawback of this kind of algorithm since workloads must be very
well specified in advance. Furthermore the algorithm fails to adapt to varying

workloads. The dynamic computation of thresholds solves this problem.

* The dynamic computation of thresholds leads to a better utilization of the
more expensive resources since it tends to make better use of the higher

capacity servers.

 The simulation model gives very good performance prediction for the dy-
namic tuning algorithm but disagrees in about 30% for the fixed thresholds
algorithm before the knee of the curve. The reason for the disagreement in
the fixed threshold algorithm is that it exhibits a larger statistical variation,

since the slower hosts are run at very high utilizations.

We proceeded in Chapter 2 to present a new approach for the modeling of

dynamic load sharing algorithms in asymmetric systems that employed a global

state Markov Chain. The model was validated through simulation and a very

good agreement was found at low to medium loads. We managed to analyze large

systems as well, by bounding the performance measure (long run average delay.)

The lower bound obtained is tight (in the range of arrival rates between 0.2-1.0),

138



since the states discarded have very low probabilities. The upper bound proposed
is tight as well in the range (0.2-1.0).

We evaluated a system with half 4mips processors (slow) and half 40 mips
processors (fast) (Chapter 3). The arrival process considered was bursty, and the
parameters were scaled from the testbed measurement results. We considered
7 typical algorithms all using centralized routing, but with different amount of
information used in the scheduling process.

The main conclusions of our evaluation there were the following:

¢ The seven algorithms considered can be divided in two groups that ex-
hibit major difference in performance, according to their performance at
low burstiness and low utilizations (25 %). The first group 1s the one that
maintain global information about queue length, schedule jobs to the queue
with maximum difference between threshold and queue length, and has a
threshold of 0 for the slow processors. The second group include static load
sharing, identical threshold of 1 for all sites with shortest queue allocation,

and random allocation with local thresholds.

» Random allocation in asymmetric systems produces major degradation in

performance as compared to shortest queue allocation.

* Burstiness and burstlength have a major impact on performance on all algo-

rithms.

o The proper tuning of thresholds to the hosts capacities and arrival process is
critical. The mismatch between host capacities and thresholds is responsible
for a major degradation in the performance of fixed thresholds algorithms,

as compared to the same algorithms with tuned thresholds.
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¢ Dynamic tuning of thresholds exhibits the best performance over all algo-
rithms analyzed for range of parameters. The fixed(0-10) exhibits a similar
performance at low to medium loads and low burst lengths, since its thresh-
olds are matched to the sites capacities. However, when the system is stressed
to its limits we observe that the dynamic tuning is able to improve perfor-

mance over the fixed(0-10) by factors of 2-2.6.

¢ We varied the number of host from 10 to 50 and the burstlength from 0.1 to
10. We conclude that at low loads and low burstiness there is no performance
improvement (average delay) in using larger systems since the central site has
to manage a remote job allocation proportional to system size, and most of
the time the fast processor are idle. For medium to arrival rates we are
able to observe that for the dynamic tuning algorithms and the fixed(0-10)
algorithms there is a major performance improvement at high burst length
(10) by doubling the number of hosts. However, for the fixed(0-2) algorithm
a major degradation in performance was observed. we are able to observe
that at low loads and higher burstiness there is no performance improvement

by increasing the number of hosts.

e The justification for the optimal cluster size must take into account not only
the average delay but also the cost of setting up central sites. Previous
work has suggested that an optimal cluster size for homogeneous distributed
system 1s around 30 [Zho88]. Our results seems to indicate that, for our

parameters an optimal cluster size would be between 20-30.

e We evaluated the sensitivity of the algorithms to the speed ratio between fast
and slow processor. This is a very important measure since it will indicate

how the algorithms behave in face of unpredictable system behaviors that

140



affect processor speed. We concluded that dynamic tuning outperforms fixed
thresholds for all speed ratios. Furthermore, for burstlength of 10, fixed(0-2)
and fixed(0-10) diverged for speed ratios of 10 while dynamic tuning still
maintain bounded performance. When the fixed thresholds are matched
to the capacities, fixed(0-2) performs well while it faces major degradation
when the thresholds are not tuned. When the fixed thresholds are not tuned

dynamic tuning outperforms fixed thresholds by factors of 1.5-5.

We have measured the sensitivity of the dynamic tuning algorithm to the
threshold computation period. The average delay is insensitive to the thresh-
old computation period at low to medium loads. We have observed anomalies
in the case of high load and high burstiness were dynamic(5) outperformed
dynamic(1). This indicated that in dynamic environments adapting too fast
can be harmful. This results indicate that the main purpose of dynamic tun-
ing is to match thresholds the varying effective capacities, and not to cope
with varying loads. The varying system loads are taken care of by dynamic

load sharing.

We turn now to a summary of our work in real-time systems. The problem

of optimal local scheduling in hard real time systems is NP-complete {RSZ389].

The traditional approach for scheduling in loosely coupled hard real time systems

has been to use good heuristics for local scheduling {RSZ89]. We have proposed

an alternative approach for scheduling in hard real-time systems. We propose to

use simple local scheduling algorithms and enforce deadline constraints by using

a fast load sharing interconnection network that can schedule tasks with commu-

nication delays on the order of microseconds. We have evaluated our approach

under Poisson and bursty arrivals assumptions. We have simulated the effect of
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systemn size, different local scheduling algorithms, burstiness, burst length, thresh-
olds, synchronous allocation due to the interconnection network, and of a job mix
composed of Poisson and periodic tasks. The main conclusions of our evaluation

were the following:

¢ Load sharing can be used effectively in order to schedule jobs in hard real time
systems. A simple inexpensive hardware base algorithm for local scheduling
can be used together with a fast interconnection network. However, the
burstiness of the process must be carefully studied, since it has a major

impact on performance.

® The improvement in the performance levels off around 10-15 nodes. This is
similar to results obtained for load sharing in homogeneous{Zho87) systems

and real time systems [SC88].

* Delayed scheduling of jobs degrades performance. This is because real time
systems are designed to be run at low utilizations. The immediate scheduling

algorithm should be used.

* In systems with periodic tasks the number of slots that can be allocated in a
window is limited. This result indicates that in systems were Poisson tasks
constitute a significant fraction of the workload, the system designer may
consider allocating them to a load sharing cluster separate from the periodic

tasks.

¢ Laxity and number of busy slots is a good load measure in load sharing in
hard real-time systems. Thresholds on queue length degrade performance

and shall be avoided.
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e Synchronous remote allocation can be used effectively to reduce the fraction
of tasks that are dropped. The current approach to improve performance
has been to reduce processor utilization. We have shown that reducing com-

munication delay is an effective alternative.

This research has opened many areas for continuation, some of which were men-
tioned in their respective Chapters, and which we summarize here.

We have proposed the following as future research in the area of modeling:

o Optimal Job Miz

The optimal way to mix different classes of jobs(e.g., Short and long cpu
intensive and Interactive) in order to minimize average delay. This question
involves the modeling of multiple class load sharing asymmetric systems and
the problem of workload characterization since we usually do not know what

are the job demands for resources a priori.

o Configuration Design

The configuration design of such systems under load sharing control requires
an efficient performance modeling algorithm. We intend to study the suitabil-

ity of our performance bounds to the configuration design of such systems.

We have proposed to continue the sensitivity analysis as follows:

Dynamic Tuning Sensitivity to optimization algorithm

In this work we have used a coordinate descent algorithm in order to optimize
the system. We propose use try different optimization algorithms with varying de-
gree of complexity and evaluate its impact on the system performance, We propose
to investigate further, the impact of system model in the algorithm performance.

As future research in hard real-time systems we have proposed the following:
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o Large Systems Topology

In order to design for large systems we have following alternatives:

1. To expand only the interconnection network in order to manage a larger

system, thus constructing a flat structure,

2. To structure the whole system hierarchically and to redesign the load

balance interconnection network,

3. To have clusters of small systems that are autonomous and are con-

nected by routers.

We propose to evaluate those alternatives in terms of their cost /performance.

o Modeling

We have only touched the performance evaluation of those systems. This is
a rich and difficult area. In particular we must account for the proper delay

in interconnection network and various distributions of deadlines.

o Fauli-tolerance

We have not addressed the issue of fault-tolerance. One approach should
be to have all jobs come in with a priority that indicates its criticality. If
the priority is high the job will be started with backups in other nodes with
different parent. At high loads those backups may have lower priorities and
will use only idle cycles. On node failures, or when they get to a point where
if a node fails they will miss the deadline, their priorities will be increased.
The point here is that many idle cycles can occur due to the fact that jobs

are scheduled based on worst case computation times.

"Isto é conto ou nio € conto?
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Discute a critica, acesa.

E o contista, meio tonto.

é que tem menos certeza.”
Is that a short story or not?
Debate the critics, in heat.
An the author, half dizzy,
is the most unsure.

Carlos Drummond de Andrade, In: Viola de Bolso
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