Computer Department Technical Report
University of California
Los Angeles, CA 90024-1596

EFFICIENT IMPLEMENTATION OF
HIGH-LEVEL PARALLEL PROGRAMS

R. L. Bagrodia August 1990
S. Mathur CSD-900022

Efficient Implementation of High-Level Parallel
Programs*

Rajive Bagrodia and Sharad Mathur
3531F Boelter Hall
Computer Science Department
UCLA
Los Angeles, CA 90024
(213) 825-0936
rajive@cs.ucla.edu

August 10, 1990

Abstract

The efficiency of a parallel program is related to the implementation of its data
structures on the distributed (or shared) memory of a specific architecture. This
paper describes a declarative approach that may be used to modify the mapping
of the program data on a specific architecture. The ideas are developed in the
context of a new language called UC and its implementation on the Connnection
Machine. The paper also contains measurements on sample programs to illustrate
the effectiveness of data mappings in improving the execution efficiency of a
program.

*This research was supported by a grant from the Schlumberger Foundation

1 Introduction

In designing parallel languages. software engineering concerns dictate that the
language abstract out architectural details and present a simple virtual machine
to the programmer. However, experience with programming parallel architectures
has indicated that optimal performance can be extracted only by exploiting the
communication topology of the architecture such that communication and syn-
chronization costs are minimized. Abstracting out architectural details in the
program generally entails a performance penalty.

Consider the Counection Machine {CM) as an example. The main memory in
the CM is divided into two parts: the front-end memory and the data processor
memory. The former is associated with the ‘front-end’ machine that controls the
data processors; this memory may only be operated upon sequentially. The latter
consists of the local memory associated with each of the 64K data processors; data
stored on this memory may be executed in parallel. Although the CM has (upto)
64K physical processors, a program may assume an arbitrary number of virtual
processors (VP) which are interleaved transparently on the physical processors.
The number of VPs that are mapped to each data processor is referred to as the
VP ratio for the program.

In general, an access to the local memory of a data processor is faster than that
of a remote processor. The CM provides two mechanisms to allow remote memory
access[12}: a general purpose router which can be used by any processor to access
the local memory of any other processor, and a special-purpose 2-dimensional
rectangular grid called the NEWS grid which allows relatively fast communication
among the processors that lie along the grid. Ignoring the difference in the cost of
accessing different memories may have a significant impact on execution efficiency.
For instance, if the operands in a parallel summation lie along a NEWS grid line,
the summation can be computed considerably faster than if they were distributed
randomly among the processors (actual measurements of the speedup that is
realized is included in a subsequent section). Furthermore, if a set of elements
is manipulated sequentially, storing them on the data processors rather than the
front-end memoty will severely degrade performance.

In this paper, we describe our approach to parallel program design embod-
ied in a language called UC. UC differs from most existing languages in that
a UC program clearly separates efficiency concerns from programming issues.
The programming task is concerned with describing an algorithm in an abstract,
high-level language. The efficiency concerns are addressed by indicating how
the program data-space is to be mapped on a specific architecture. Separating
these tasks allows a programmer to initially develop a correct prototype rapidly
and follow this by incremental refinements to improve program efficiency. The
approach is illustrated by the following example.

Arrays are the primary data structure used by a UC program. The program

o

is not required to specify how the arrays are to be mapped on the CM memories.
The compiler uses simple heuristics to generate default mappings for the arrays
in a given program. For instance, if an array is never used within a parallel
construct, it is automatically stored on the front-end; otherwise it is mapped on
the data processor. If an array is stored on the data processors, each element of
the array will be stored on a unigue (virtual) processor. Arrays that have the
same dimensionality are mapped such that corresponding elements of different
arrays lie on the same processor and successive elements of an array are mapped
to neighboring processors. Thus if a program uses two arrays a,, and b,
the (4,7)*" elements of each array are automatically mapped on the same data
processor.

The default mappings may generate sub-optimal code for a specific applica-
tion. Consider an application where the majority of the operations access a[i][7]
and b[i][j+1] simultaneously. The execution efficiency may be improved by using
a data mapping that will store afi][j] and bi][j+1] on the same processor. In
most existing languages, the only way to modify the data mapping, is by execut-
ing an explict assignment statement to appropriately shift the data elements of
array b. However, this modification may have a ripple effect and cause extensive
changes in the program, forcing it to be tested and debugged all over again. In
addition, the program loses the algorithmic dependence of a[i](7] on b[i][j +1].

In contrast, UC provides a set of well-defined mapping constructs that allow
a programmer to optionally override the default mappings generated by the com-
piler. The mappings allow a programmer to manipulate an array in a variety of
ways including changes in its shape and size. The primary motivation behind
these mappings is to optimize the communication time consumed by the pattern
of remote accesses that are used most frequently in the program. The default
mappings may also be changed to reduce the VP ratio as also to more evenly
spread the computation load. The data mappings are specified in a separate
section of the program, and do not require direct modification to the program
logic. As such changing the data mappings does not affect the correctness of a
UC program.

The next section gives a brief description of the UC language. Section 3
presents the data mappings and section 4 describes how they are implemented.
Section 5 provides experimental results to demonstrate their effectiveness in jm-
proving the execution time of various programs. Section 6 describes some re-
strictions and future directions. The paper concludes with a brief discussion of
related work.

2 The UC Programming Language

UC is a simple extension of C. This section gives a brief description of a subset
of the language. The description is aimed at giving a flavor of the language

and is not intended to be a precise definition of its semantics. For a complete
description, the reader is referred to /2, §].

UC enhances C with a data-type called indez-set and some new operators
to specify parallel execution. An index-set represents an ordered set of integers.
The most commonly used UC operators are reduction and parallel assignment.
Reduction is used to perform an associative, commutative binary operation on a
set of elements, and parallel assignment is used to simultaneously modify a set
of elements. The set of elements used by the parallel operators is selected from
a C array by using an indez-set together with a boolean predicate,

Consider the UC program in figure 1. The program computes matrix ¢y, ,
as the product of two matrices @nn and b, ,. For brevity, input-output issues
are ignored. The program declarations include the standard C declarations for
matrices a, b and c(line 1). In addition, three index-sets I, J and K are declared
(line 2). Each index-set consists of N integers from 0 to N-1. The declaration of
an index-set uses two identifiers, the first one (example I) refers to the index-set
itself and the second (example) to an arbitrary element of the set.

1 int a[N][N], B[N][N], <[NJ[N];

2 index-set I:i={0..N-1}, J:j=I, X:k=I;
3 par(I,J}

4 clil{j] = $+(X; a[il [x]*blXx] [31);

Figure 1: Matrix multiplication in UC

The program consists of a single UC parallel assignment. The UC keyword
par (line 3) specifies parallel execution of the assignment statement in line 4. The
index-set(s) contained in the par statement determine the number of instances of
the assignment statement that are executed in parallel. In this case, N? instances
of the assignment will be executed, one for each of the N2 elements in the product
set I*J. Now consider the assignment statement itself. For a given (i, j), the
value of c[i][j] is computed as the dot product of two vectors: the ith row of a
and the j* column of b. The dot product is programmed in UC as a reduction
(line 4). The reduction specifies the addition of N expressions, one for each value
of index-element k, where the k** expression is a[3)[k}*b(k][j].

The next example (figure 2) computes the trace of array a(the sum of elements
on its main diagonal). The declarations are similar to the previous example and
have been omitted. The body is a single reduction which computes the sum of
the diagonal elements. This example illustrates how a boolean expression may be
used to select a subset of the elements from an index-set. The predicate (i==j)
selects only those elements from the index-sets that correspond to the subscripts
of the diagonal elements of array a. The keyword st in the reduction separates

the index-sets from the boolean expression. (Note that this reduction may be
expressed more concisely as: $+(I; a[4](i])). A boolean expression may also be

used in a par statement to restrict the assignment operation to a sttbset of the
array elements.

par(I, 1)
trace = $+(I,J st{i==j) alil[j1);

Figure 2: Trace Computation in UC

The restriction of a single assignment statement in the body of a parallel
statement causes programs to become verbose. For example, the program in
Figure 3 initializes a and then computes the prefix partial sums; the keyword
par and the index-set have to be repeated. To abbreviate such programs, we
allow the extent of parallelism for a seguence of statements to be specified only
once as shown in figure 4. _

par(I) ali] = i;
par(I) psum[il = $+(J st (j<=i) al[il);

Figure 3: Partial sums in UC

par(I)
{

alil = i;

psum(i] = $+(J at (j<=i) alil};
}

Figure 4: Partial sums in UC

The last example (figure 5) illustrates repeated execution of a par statement.
The asterisk preceding the keyword par indicates that the statement is executed
repeatedly until every instance of the predicate associated with the statement
evaluates to false. In this example, the assignment statement for the i** row is
executed repeatedly until the first element of the row is negative.

spar(I) st (a[il[0I>=0)
alil[0] -= $+(J st (jt=0) a[il[jl);

Figure 5: Iterative Par statement

If the keyword par of a UC statement is replaced by seq, the corresponding

statement (or statement block) is executed sequentially for each element in the
index-set. The elements are selected in the order of their occurence in the original
specification for the corresponding index-set. The seq statement may be thought
of as an abbreviated specification of a counting loop.

3 Mappings

A UC program need not specify how an array is to be mapped on the CM mem-
ory. However, even for a relatively simple program like matrix multiplication, a
modified data mapping can improve the execution efficiency of a program. In this
section we describe the UC constructs to modify the default mappings generated
by the compiler.

UC currently defines four types of mappings: permute, fold, copy and
reduce. A permute mapping is used to reorder the elements of an array so that
corresponding elements of different arrays that are accessed in a single assignment
can be stored locally; fold allows part of an array to be folded over so that
corresponding elements of the same array that are accessed together can be stored
locally. A copy allows an array to be replicated along an extra dimension to
reduce the need for broadcasts. In contrast, a reduce mapping allows an array
to be collapsed along one dimension to reduce the VP ratio of the program as
well as to make some data references local. This mapping is particularly useful
for arrays that have parallel operations defined only along one dimension. Each
type of mapping is explained in detail subsequently in this section.

We use the matrix multiplication program of figure 1 to illustrate mappings
in UC. Figure 6 contains the program and its map section. The multiplication
algorithm uses O(N3) processors: the reduction in line 19 uses N processors to
compute each element of array C and the par statement in line 18 computes the
N? elements of array C simultaneously. However, the default mappings generated
for the arrays stores the corresponding elements of arrays 4, B and C on the local
memory of N? processors. This implies that the program includes a significant
number of remote data accesses. A copy mapping may be used to expand both
arrays A and B onto N? processors such that each remote access is replaced by
a functionally equivalent local access.

The map section comes at the end of a UC program and begins with the
keyword map. The map section for this program begins at line 22. This section
consists of an optional declaration section and a list of mappings. The key-
word virtual is used to declare variables in the map section. These variables are
‘typeless’ and do not occupy physical memory; their only purpose is to define a
template that is used to specify a subsequent mapping. The example declares a
3-dimensional array in line 24. Lines 26 and 27 respectively specify the mapping
for arrays A and B. A mapping specification has five parts: the type of mapping,

1 #detine M 39

2 #define N 39

3

4 index_set I:i = {0..M-1};

5 index_set J:j = {0..N-1};

6 index_set K:k = {0..M-1};

7

8 int A[MIEN], BINI[MI, CIMI[M];

9

10 init ()

i1 {

12 /* Some initialization of A and B */
13 }

14

15 main()

16 {

17 init();

18 par (I,K)

19 Clil[x] = $+(J; A[il[j1«BLj]1[x1);
20 }

21

22 map

23 {

24 virtual M1[M][N][M];

25

26 copy{I,J) A[i]1{3] :- M1C{il[j]10x];
27 copy(K,3) B[j1[x] :~ M1(iI[j][x];
28 }

Figure 6: A Matrix multiplication example

which may be one of permute, fold, copy or reduce, the source which refers to
the array whose default mapping is being modified, the target which refers to the
array that the source is modified with respect to, a predicate which may restrict
the mapping to a subset of the source and a mapping function which specifies
how the source is to be transformed. Each array in the program may be the
source array in at most one mapping.

Data mappings for UC arrays may be specified to be either absolute or rela-
tive. In absolute mappings, the target array is a virtual data structure declared in
the map section (as in the example in figure 6). Relative mappings use a program
array as the target. Examples of this type of mapping are included subsequently.

The mapping defined in line 26 specifies a copy mapping with the array 4
as the source and the virtual array M1 as the target. The symbol :- is used
to separate the source and target arrays. The mapping function specifies that
the array A be transformed into a 3-dimensional object by copying it M times

along a third dimension. This ensures that each of the N3 processors, say (1,7.k)
can access A[i]j] locally as A[¢][5][k]. Similazly, the mapping for array B {line
27) allows each processor to access the corresponding element of B in its local
memory. The two mappings together ensure that the multiplication in line 19
of the original program beconies a local computation for each processor in the
transformed program. If matrix multiplication is used frequently in some program
than this mapping may yield a significant overall benefit. The speedup achieved
as a result of using this mapping is described in a subsequent section.

For completeness, we present the BNF description for the map section:

map.section — map { [virt_decl]* [map_stmt]* }

virt_decl — virtual arr_dec! [,arr_decl] ; | idz_decl;
map_stmt - map_op (idzs) int_stmis

int_stmts — bas.map_stmt | { [bas.map_stmt|* }
bas-map_stmt — map_fn_spec ; | st (ezpr) map_fn_spec ;
map-fn.spec — id [[id]]* - id [[expr]]*

map_op -~ permute | fold | copy | reduce

The non-terminals arr_decl and idz_dec! respectively refer to declaration state-
ments for array objects or index-sets.

A permute mapping refers to any one-to-one onto mapping of the source data
structure on the target. Although a permute mapping may change the shape of
the source array, the number of elements in the source array remains unchanged.
Figure 7 illustrates some commonly used permute mappings together with their
UC specification.

Permute mappings may also be used to map dissimlar arrays relative to each
other. The following fragment maps a vector a1,n With respect to a matrix by,

(m > n) such that the elements of a are left flushed along the third row of array
b. Other relative mappings may be defined similarly.

permuta(I)
ali] :- b{2][i];

A fold mapping moves a subset of the array elements such that some locations
in the original array will contain multiple data items and others will be ‘empty’.
The most commonly used fold mapping involves folding the array along some
axis. Figure 8 displays a fold mapping of this type, where the array is folded
along a vertical axis. Note that a fold mapping typically includes a predicate in
order to distinguish between those elements that are to be moved and those that
remain in their original location in the source.

A copy mapping specifically increases the dimensionality of the source by one
and replicates it along this new dimension. An example of this is given in figure 9.
Expansion mappings are useful where increasing the dimensionality of the data
structure can make references local without increasing the order of complexity of
the algorithm.

A reduce mapping on the other hand reduces the dimensionality of the
source. It does this by collapsing one dimension and storing all the collapsed
elements in a struct. A generic example of this can be seen in figure 10. In addi-
tion to making references local, these mappings reduce the size of a data structure
and any extra level of parallelism associated with the contracted dimension, This
decreases the number of virtual processors required for a program, but may in-
crease the computation time for operations along its collapsed dimension.

A series of the above kinds of mappings can be composed together to define
more complex mapping functions. For instance, the mapping in figure 11 uses a

1234C

i

|
12 3 4 12,3 4 12 3 4
56 7 8 56 7 8 56,17 8 56 7 8
9 10 11 12 9 10 11 12 9 10s 11 12 9 10 11 12
9 10 1112 9 5 1 43 2 1 15 9
12 3 4 10 6 2 87 6 5 2 6 10
56 7 8 1 7 3 12 11 10 9 3 7 11
12 8 4 4 8 12
Linear shift Rotation Reflection Transpose
permute(I,J) permute(I,J} permute(I,J) permute(I,J)

A1) :~ALCi+1)%H1 L] A[i1[§):-4[j} [M-i-1] A[iI[j):-aCilm=-j=-1] AlilC51:-aE3][4]

Figure 7: Permute mappings

n
- — ol
1
Oiri2i3ia)l o [03:147 2
5:6: 7!8:9 58:6,9: 7

/% n=3 in this example */
£old(I, D
st (j >= n) /* this is the mapping predicate */
A[il[j) :- M[i1[j-nl;

Figure 8: A fold mapping

01 2 3 4 5 6 7| _o |lo 1

()
[
B
o
o
~J

L=}
-
o
[X]
-
w
=]
-~

map { 0 1 2 3 4 5 6 7
virtual M[K][I];

copy (I}
Afi) :- M[x]1[i];
}
Figure 9: A copy mapping
1,2, 3] [1.2,3]
: 4,5.6] = [456]
map { 7/8'9 7,89

virtual M[K];
reducae (I)

AL] (1] :- MIX];

Figure 10: A reduce mapping

/% A compesition mapping */
map {
virtual M1[M](N];

copy (I)
A4 - M1[i1C5];

permute (I,J)
M1[4i2(3] :- M1[i-2](51;

Figure 11: A composite Mapping

copy mapping to expand 4 and then uses a permute mapping to shift it along
the x axis.

10

4 Implementation

A mapping is implemented by means of a source to source transformation of the
UC program such that the data in the transformed program is shifted as specified
in the mapping but the program is functionally equivalent to the original program.
Implementing a mapping involves one or more of the following tasks:

o If the target array in the mapping has a different size or shape than the
source {example, transpose or expand), the declaration for the source must
be modified in the transformed program. For instance, if an array A, is
mapped to its transpose, the transformed program must include a decla-
ration for A, . Similarly, if 4, ., is expanded using a copy mapping to
a 3-dimensional array, then the declaration for array A must be modified
accordingly in the transformed program.

o References to the source array in the original program must be modified in
the transformed program. For instance, a permute mapping may map Ali]
to A[i-1]. A statement of the form A[i+1]=B[i] must then be modified to
A[(4 + 1)-1)=B[i] in the transformed program.

o Expressions in the modified references must be simplified (where possible)
to allow compile time detection of local references in the transformed pro-
gram. In the preceding example, in order that the compiler be able to
detect the modified assignment as a completely local operation, the sub-
script expression must be simplified to yield A[i]=B[1].

¢ Additional UC code may have to be introduced in the transformed program
to ensure that it is functionally equivalent to the original program. For
instance, a copy mappiug creates multiple instances of a data item in the
transformed program. If an element in the source array is modified in the
original program, the transformed program must include a broadcast to
suitably update all instances of the data element.

The next section presents the experimental results of including each of the
four types of mappings in sample programs. Implementation issues that arise for
a specific type of mapping are examined in further detail in the context of the
sample programs.

5 Performance

This section presents a complete exainple for each of the four types of mappings
that were described in the previous section. The examples were chosen for expos-
itory purposes and are not necessarily representative of real UC programs. Each
example illustrates a specific type of mapping. The discussion for the example

11

includes a short description of the program and the mapping and also includes ex-
perimental measurements on the speedup obtained with each mapping. Speedup
is defined as the ratio of the execution time for the original program to the execu-
tion time for the transformed program. After measuring speedup, each example
was modified to include a code fragment for which the default mappings generated
by the compiler are optimal. The following is an example of such a fragment:

par (I,1)
A[i1[§3 = BLi1(3];

Program transformations to implement a specific programmer specified mappings
for arrays A and B will cause the preceding fragment to be executed less efficiently
than with the default mappings. A fragment with this form of access pattern is
referred to as ‘previously ideal references’. The measurements for each example
include an estimate of the extent to which previously ideal references can be
tolerated by each mapping before the inefficiency introduced by modifying the
‘ideal’ access pattern outpaces the efficiency gained by a specific mapping.

The results reported in this section were obtained using a CM-2 {12] with a
sun/4 front end. All runs used 8k physical processors. The mapped code shown
is actual code generated by the UC optimizer, with some numerical constants
replaced by the corresponding symbols for readability. Speedup is defined as the
ratio of the execution time for the original program to the execution time for the
transformed program.

5.1 Copy

A copy mapping is used to reduce the need for broadcasts. Consider the program
of figure 12 which uses an O(N?) matrix multiplication algorithm to compute
the all-pairs reachability matrix (7) for a graph. Assume that A represents the
adjacency matrix. The program computes r by calculating successive powers of
the adjacency matrix until a fixed point is reached. To remove the randomness
from the algorithm, a linear graph was chosen.

The innermost reduction in line 11 is an obvious target for optimization,
as it is the most frequently executed operation. The reduction involves remote
accesses of array r and array 4. The remote accesses may be reduced either by
using a copy mapping to expand the arrays to 3-dimensional objects, or by using
a reduce mapping to collapse one dimension and take advantage of the common
index k. As the program uses an O(n?) algorithm, it is preferable to use a copy
mapping which is specified in lines 15-20 of the program.

The actual code generated by the UC optimizer is also shown in Lines 1-13 in
figure 12. Note that all remote accesses to arrays r and A4 in the original program
are replaced by local accesses of the replicated array in the transformed program.
In particular, whereas the (i,,k)** processor reads r[4][k} remotely in line 11 of

1 { int ACNIIN], rIN1EN], tmp[N][N]:
2 /% initially r=A and tmp !'= r */
3 init();
4
b /% While some element of r is still changing */
6 while ($11(I,J; r(il (3] '=tmp{i][j1})
7 /* multiply r by the adjacency matrix =/
8 par (I,1)
9 {
10 temp[il [j] = £[i1(j];
11 r[i1 (] = $11CK; r[i]0x] ae ALKIT31);
12 ¥
13 }
14
15 map {
16 virtual 3DMEM[I][K][J];
17
18 copy(I,K) r[il (k] :- 3DMEM{il[x]1[j];
19 copy(K,J) ALKI[j] :- 3DMEM[il[x1(31;
20 }
I
1 {int AINIINI[N], zINJINI{N], tmp[N][N];
2
3 init();
4 while ($}| (I, J; r[i1[3]105] '= temp[i)[j1))
B {
6 par(I, I}
7 {
8 templi] [j] = x[i1[jI[3];
9 r[i](5]00] = $1] (K; rlil[x1(3] ex A[i{XI[j1);
10 }
11 par(J, K, I) r[iJ[x][j]1 = r[i]0xI[0];
12 }
13 }

Figure 12: An example of copy mapping

the original program, it reads it locally as r[i][k][;] in line 9 of the transformed
program.

As array A is not modified by the par statement, its replication does not in-
troduce significant overhead. However, r is both modified and referenced within
the par statement in the original program. This implies that the modification
must be broadcast to update all copies of array r. As seen in line 11 of the trans-
formed program, this broadcast may be implemented efficiently by using a single
parallel assignment. The overall efficiency gain achieved by this transformation
is shown in table 1. The results show considerable speedups within the range of

13

array sizes tested in our experiments.

Matric Size | Original Timing | Mapped Timings | speedup
19 1.36 0.67 2.03
25 5.11 1.59 3.21
31 19.44 3.85 5.05
39 59.13 9.92 5.96
49 154.1 23.93 6.44

Table 1: Timings for Transitive Closure

Tests show that for this example, the transformed program outperforms the
original program as long as the ratio of the number of previously ideal references
(defined in the beginning of this section) to the number of references optimized
by the mapping is less than 2.5 : 1. The primary overhead for this mapping are
the broadcasts required for mapped arrays that are both modified and referenced
in the program. An increase in the number of broadcasts will reduce the speedup.

5.2 Reduce

Reduce mappings improve execution efficiency of a program by decreasing re-
mote access of data and also by reducing the VP ratio for the program. Figure 13
presents an example that computes the trace of the product of two matrices
without computing the product matrix. The reduction on line 5 computes the
diagonal elements of the product, and the reduction on line 6 sums the elements
to compute the trace. The reduction in line 5 is the most expensive operation
in the program. A copy mapping cannot be used to improve the efficiency of
this program as expanding B or € will dramatically increase the VP ratio and
expanding 4 does not reduce the remote access. Instead, a reduce mapping is
used to collapse each array along its smaller dimension. The mapping in lines
9-14 in the figure specifies that B be collapsed along its second dimension and
C along its first. A transpose mapping will also improve the efficiency of this
program, but this mapping is discussed in a separate section.

The transformed code is shown in lines 1-12 at the bottom of figure 13. Lines
1-2 show the modified declarations for B and C. Note that the reduction in line
5 of the original program is now computed sequentially (line 8) for each element
of the diagonal (although different elements of the diagonal are still computed in
parallel).

The performance gains obtained with this mapping are shown in table 2.
While considerable speedups result from this mapping, as expected, the gain
decreases as the size of the dimension being contracted is increased. The main
inefficiency of the transformed program is that each element of the diagonal
must now be computed sequentially. However, the last entry in the table shows

14

b int BIMI{N], CIN]I(M];
2
3 {
4 par (I)
5 Ali} = $+(K; BLi][x] = c[x1[il);
6 trace = $+ (I; A[il);
T }
8
9 map {
10 virtual Mi[M];
11
12 reduce (I,K) B[i][k] :- M1[i];
13 reduce (I,K) C[kJ[i] :- M1[i];
14 }
1
1 struct { int val[N];} CIM];
2 struct { int vall[N];} B[M];
3 int _O_tmp_[N];
4 {
5 par (I}
8 {
7 _0_tmp_[i] = 0;
8 seq(K) _0_tmp_[i] += B[i].val(k] * C[i).vallk];
9 Afid) = _o_tmp_[il;
10 }
11 trace = $+ (I; Alil);
12 ¥

Figure 13: A reduce mapping

that even for square matrices of reasonably large size, the speedup is significant.
Resource constraints prevented our being able to run experiments for larger size
arrays. The additional experiments will be useful in determining the largest
array that may be contracted before the performance of the transformed program
becomes worse. We hope to include timings for larger configurations in the final
version of the paper.

Size:M*N | Original Timing | Mapped Timings | speedup
250%32 0.74 0.08 9.25
250*64 0.92 0.16 5.75
250%128 1.22 0.33 3.69
350*350 3.61 0.89 4.05

Table 2: Timings for Trace

Tests show that for this example, the transformed program outperforms the
original program as long as the ratio of the number of previously ideal references

i5

to the number of references optimized by the mapping is less than 3 : 1. The
reduce mapping causes all elements in the reduced dimension to be stored on
one processor. This implies that the memory available per processor may also
constrain the use of this mapping for larger arrays.

5.3 Fold

Fold mappings are useful for programs that include multiple references to the
same data structure in a single operation. An example program that benefits
from such mappings is described in figure 14. The assignment statement in line
14 is the most frequently executed statement in the program. As the statement
contains a symmetric reference to array A, the array is a suitable candidate for
a fold mapping. The mapping is specified in lines 17-23 in the original program.
The program includes a code fragment (line 6-8) that is mapped optimally using
the default mappings. Implementing the fold mapping for array 4 will make
execution of this fragment inefficient. Al previous examples included similar
code which was used to determine the ration of previously ideal references that
could be tolerated by the corresponding mapping.

Folding an array implies that some locations of the initial array will contain
multiple elements. In this example, a temporary array is declared in line 1 of
the transformed program to store the ‘doubled up’ elements. Further, as a fold
mapping moves only a subset of the elements in the array being mapped, every
reference to the array in the original program generates a conditional reference
in the transformed program, where one branch of the conditional refers to the
unmapped elements of the original array, and the other refers to the mapped
elements. For instance, the assignment statement in line 8 of the original program
is divided into two parts in the transformed program (lines 7-10).

Other things remaining the same, the speedup achieved for this transforma-
tion will increase linearly with the size of the array. More interestingly, as seen
from table 3, the speedup is independent of the shape of the array as long as
the toatl number of elements are kept constant. This is counter-intuitive because
folding an array with a larger number of columns should result in a smaller VP
ratio and hence better performance. Unfortunately, the VP ratio does not im-
prove. Although the size of the ‘folded’ array in the transformed program does
decrease (line 1), the par statements in the transformed program (lines 5,12) are
still executed over the old index sets I and J, preventing the number of virtual
processors from being reduced. Ideally, the transformed code should look like
this:-

/% S is a new index set for j < N/2 »/

par (I,S)
BLil[a] = A[il[s] + _dupa_[il[s];

16

QR N AN ah WM =

WO NBO e WK =

int
int

{

map

int
int

AMI[N];
B[M][N/2];

/* A previcusly ideal reference */
par (I,1)
seq(R)

Ali] (i) = i *j;

/* A symmetric reference to A */
par (I.J)
seq (X)
st (j<N/2)
Bi1[3] = ALid03] » A[41[j+N/2];

{
virtual M1[M]{N/2];

fold (I,J)
st (j>=N/2)
ALi31 (3] :- M1[i1(j-N/2];

AMMIIN/2], _2ccBO_A[MIIN/22;
BIMI[N/2];

seq(R)
st(j >= N/2)

2cc60_A[il[j - N/2] = i = j;
st(!(j >= N/2))

ALLIC3) = i » j;

par(I, I)
seq(K)
st(j - N/2 < 0)

BLiJ[j] = ALil[j] * _2ccé0_alil[3];

Figure 14: An example for fold mappings

17

The preceding code not only contains local accesses but also reduces the VP ratio
as compared to the original program. However, generation of the preceding code
involves more complex code simplifications than are currently implemented. For
the current implementation, a ratio of 1.5:1 for previously ideal references vields
overall performance gains.

Size:M*N | Original Timing | Mapped Timings | speedup
8000*16 48.45 27.3 1.77
2000*64 48.47 27.3 1.77
500%256 48.48 27.3 1.77

Table 3: Timings for fold mappings

5.4 Permute

Permute mappings can improve execution efficiency by replacing a previously
remote access by a local access. In some cases a permute mapping may also
reduce the VP ratio of a program. For example, consider the case when the code
contains declarations for two arrays, A[M][N] and B[N][M], M # N. With the
default mapping, the program would require (max (A, N))? virtual processors. If
a transpose mapping is used to map A onto B, the virtual processor requirement
drops to M * N.

Figure 15 presents an example of the use of a transpose mapping for an O(n?)
matrix multiplication algorithm. The N? clements of the product matrix are
computed in parallel (line 4); however the summation to compute each element
is performed sequentially (lines 7-8). The major computation in this algorithm is
the sequential loop in lines 7-8. This code will not benefit from a copy mapping as
it only uses n? processors. A reduce mapping of both 4 and B would leave C as
a two dimensional array and would not result in any gain. However, a transpose
mapping may reduce the VP ratio as described earlier. More significantly, the
transpose mapping will cause all data items involved in the multiplication on line
8 of the original program to be aligned along a NEWS grid axis in the transformed
program (line 8).

Table 4 shows the timings obtained for this example for various array sizes.
The improvement in execution time are broken up into two parts, one due to the
reduction in VP ratio and the other due to the use of the NEWS grid. The use of
NEWS grid reduces the execution time by a factor of 5, and the reduction in the
VP ratio yields an additional speedup of about 1.8, giving an overall performance
gain of a factor of 10.

18

i int AIMI(N], BINI[M), CIMI[M];

2

3 {

4 par (I,K)

& {

6 Clilfx] = 0;

7 saq(J)

8 Clil[x] += A[i][j1=BLj10k];

] }

10 1

11

12 map {

13 permuts (J,K)

14 B[j10k] :- A[X1[§);

15 ¥

I

1 int A[MI[N], BIMI[N], C[MI[M1;

2

3 {

4 par(I, K)

3 {

6 clil{x] = 0;

7 seq(J)

8 CLil[x] += A[i][j] = B[XI[j]1;

9 }

10 }

Figure 15: A permute mapping
Size:M*N | Original Timing | Mapped Timings | Mapped Timings speedtﬂ
original VP ratio | reduced VP ratio

125*250 64K,107.58 64K, 20.66 32K, 11.63 1.78
90*175 32K, 42.58 32K, 7.47 16K, 4.26 1.75
60*125 16K, 9.87 16K, 3.16 8K, 1.87 1.69

Table 4: Timings for permute mappings

6 Discussion

An approach to generate efficient mapping of high-level programs on a specific
parallel architecture has been developed. The initial program does not specify the
mapping of program data structures on the parallel memory. Instead the mapping
is generated automatically by the compiler. Subsequently, the programmer can
override the default mapping of some structures to improve the performance of
the algorithm. Mappings specified by the programmer leave the correctness of

19

the algorithm invariant.

The current implementation places certain restrictions on the data structures
whose default mappings can be modified by the programmer. In particular,
an array that is specified as the source in a mapping cannot be aliased in the
program, unless the alias is also mapped in an identical manner. Furthermore, it
is not currently feasible to map a specific array element on multiple processors.
This facility may be useful for arrays of structs, where each struct itself contains
an array. The current implementation will always force the entire struct to be
mapped on a single processor memory.

The research described in this paper may be extended along different di-
rections, some of which are currently being explored. In particular, this paper
assumed that the data mappings are static. If the data access patterns of a pro-
gram change dynamically, a static mapping will typically be unable to optimize
all remote accesses executed by the program. Dynamic mappings require that
each mapping be treated as an executable statement rather than as a declarative
specification. Dynamic mappings have higher overheads and are considerably
more complex to implement than static mappings. However, preliminary inves-
tigations indicate that they may significantly improve execution efficiency. As
a simple example consider an array that is manipulated both sequentially and
in parallel by some program. Such an array will benefit from being dynami-
cally shifted among the front-end and data processor memory in response to the
access pattern for its elements. Similarly the elements of an array may be re-
ordered dynamically to optmize its current access pattern. Efforts to include
dynamic mappings in a UC program are in progress.

Automatic generation of the data mappings is another avenue for further ex-
ploration. Automatic mappings may be generated on the basis of built-in heuris-
tics (example, use copy mappings for matrix multiplications) as well as from a
compile-time dependency analysis of the access patterns for program data. If the
array subscripts use variables, a compile-time analysis will not yield sufficient
information to generate useful mappings. In our limited experience with pro-
gramming scientific applications in UC (particle diffusion in fluids, SVD applica-
tions, diagonalization of symmetric matrices ...) subscript expressions generally
include only index-sets and literal constants. For such programs, automatic gen-
eration of data mappings is feasible and will be investigated. A hybrid approach
where obvious data mappings are automatically generated by the compiler and
others are specified by the programmer will also be investigated.

7 Related Work

The UC research was motivated by UNITY([3], a specification and programming
notation for parallel programs. The UNITY work clearly enunciates the advan-
tages of separating the programming concerns from efficiency considerations. It

encourages an initial design of an architecture-independent program and sug-
gests how the initial prototype may be refined in a step-wise manner for eventual
implementation on diverse architectures,

SETL{6] seems to have been among the first languages to separate program-
ming issues from performance concerns. SETL is a lLigh-level language based
on set theoretic concepts. A SETL program is developed almost entirely as a
sequence of set operations. The program does not explicitly indicate how the
sets are implemented (arrays, linked list, hash table, ...). This may either be
specified separately by the programmer or be generated automatically by the
compiler(10]. To the best of our knowledge, SETL has not been implemented on
a parallel architecture.

More recently, a functional notation called Crystal[4] has been designed to
separate algorithmic issues from performance concerns. Crystal defines the notion
of a data field as a data-set together with a description of its shape and topology.
Code optimizations are specified as transformations (called morphisms) on the
data fields and are used to generate efficient data implementations on a parallel
architecture, Crystal has been implemented on multicomputers like the NCUBE
and the Intel iPSC.

CM Fortran[9] provides a restricted facility to declaratively change the map-
ping of an array on the CM memory. In particular, the layout directive may
be used to force an array to be stored on the front-end or cause the array to
be stored on the parallel memory such that certain axes lie along the NEWS
grid. The align directive may be used to specify the layout of an array relative
to another array declared in the program. Together these directives allow a pro-
grammer to chnage the mapping of an array in a manner similar to the permute
mappings defined for UC.

This project was also influenced by the considerable body of existing research
in the area of parallelizing compilers[1, 5, 7]. Parallelizing compilers allow sequen-
tial programs to be automatically executed on parallel architectures primarily by
transforming sequential loops into a sequence of parallel assignments. A number
of sophisticated dependency analysis techniques have been developed for these
compilers. Similar techniques are useful in both implementation and automatic
generation of the data mappings. A reduce mapping may cause a parallel UC
operation to be implemented sequentially. As an example consider a reduce map-
ping that causes a statement like par(I) a[i)=a[i-1] to be sequentialized. A naive
sequential implementation may execute this statement for increasing values of 1.
This would require that temporary storage be used to save intermediate values
of the array. In contrast, if the statement is executed for decreasing values of
1, it may be implemented without using any temporary storage. The required
information may be easily generated from a dependency analysis of the program.

References

[1] I.R. Allen and K. Kennedy. PFC: A Program to Convert Fortran to Parallel

{11]

[12]

Form, pages 186-205. IEEE Computer Society Press, 1985,

R. Bagrodia, K.M. Chandy, and E. Kwan. UC: A Language for the Connec-
tion Machine. In Supercomputing 90, New York. N ovember 1990,

K.M. Chandy and J. Misra. Paraliel Program Design: A Foundation.
Addison-Wesley Publishing Company, Inc., 1988,

M. Chen, Young-1l Choo, and Jingke Li. Compiling parallel programs by
optimizing performance. JOurnal of Supercomputing, (2):171-207, 1988,

D.A Padua, D.J.Kuch, and D.H.Lawrie. High Speed Multiprocessors and
Compilation Techniques. IEEE Transactions on Computers, C-29:763-776,
September 1980.

S. Freudenberger, J. Schwartz, and M. Sharir. Experience with the SETL
optimizer. ACM TOPLAS, 5(1), January 1983.

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In Eigth ACM Sympesium on Principles
of Programming Languages, pages 207-218, 1981.

Edmund Kwan. The UC Programming Language. Master’s thesis, UCLA,
1990.

Argonne National Laboratory. Using the Connection Machine System (CM
Fortran). Technical report anl/mes-tm-118, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439, June 1989.

E. Schonberg, J. Schwartz, and M. Sharir. An automatic technique for the
selection of data representation in SETL. ACM TOPLAS, 3(2), April 1981.

Thinking Machines Corporation. C* Reference Manual, August 1987. ver-
sion 4.0.

Thinking Machines Corporation. Connection Machine Mode! CM-2 Techni-
cal Summary, April 1987.

I~
o

