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1 Introduction

The multiway interaction problem abstracts the basic issues, namely synchronization and mutual
exclusion, in implementing the symmetric, nondeterministic synchronous communication constructs
of programming languages like CSP [Hoa78], Script [FHT86], and IP [Fra89] on a distributed
architecture. An anthropomorphic version of this problem, called committee coordination, can be
found in [CM88].

Consider a set of processes and a set of interactions defined among them. Each interaction
is a nonempty subset of processes representing some synchronization activity of its members. A
Process can be in active, idle, or commit state. An active process may autonomously become idle
and wait to participate in some interaction. (Note that, in general, it is impossible to determine
when, or if, an active process will become idle.) An interaction is enabled if all of its members are
idle; it is disabled otherwise. Only enabled interactions can be started —- synchronization. An idle
process will transit to commit state only after an interaction of which it is a member is started.
A process can participate in at most one interaction — mutual exclusion. A process in commit
state can become active only after the interaction in which it participates is terminated — another
synchronization.

The binary interaction problem is a special case where each interaction has exactly two members.

The interaction problems are significantly different from the standard resource allocation prob-
lems [Lyn80]. In the latter, a process requests a resource and blocks until the resource is available;
however, in the interaction problem if an interaction is viewed as a resource, a process, say p,
cannot block until some specific interaction, say I, is enabled. This follows because interaction [
may never be enabled and some other interaction of which p; is a member may be enabled.

A large number of algorithms have been devised to implement binary and multiway interactions
[Sch82, BS83, Sis84, Bag89b, CM88, Ram87, Bag89a]. Three primary classes of properties are
associated with such algorithms: safety, liveness, and fairness. Although most existing algorithms
satisfy the safety and liveness properties, few implement fairness. In {Fra86] Francez gives an
extensive overview of fairness notions and demonstrates the effects of some of them on program
correctness,

In this paper, we specify the general problem of implementing interactions and formally express
the desired safety, liveness, and fairness properties. Two types of strong fairness are considered:
Strong Interaction Fairness (SIF), which requires that if an interaction is enabled infinitely often,
it be started infinitely often, and Strong Process Fairness (SPF), which requires that if a process
is ready to participate in some enabled interaction infinitely often, it does so infinitely often. It

has been shown [TB89] that SIF is impossible for binary (and hence for multiway) interactions and



SPF is impossible for multiway interactions,

We describe an efficient algorithm that satisfies the requirements of SPF for binary interactions.
This algorithm is a significant improvement on existing algorithms: other than Sistla [Sis84], none
of the existing algorithms provide strong fairness. Sistla’s algorithm guarantees strong fairness,
but has two drawbacks. First, it assumes that every process will eventually become idle. Apart
from limiting the applicability of this algorithm, this assumption introduces unnecessary blocking
and degrades performance. Secondly, the complexity of Sistla’s algorithm depends on the number
of processes in the system and may be affected considerably by the average time some process
remains in the active state. The complexity of our algorithm is independent of both these factors
and depends only on the maximum number of communicating partners for a process. In graph
theoretic term, whereas the complexity of the former algorithm is determined by the size of the
graph, ours is dependent only on its degree.

The remainder of the paper is organized as follows: Section 2 gives a brief description of our
computation model. Section 3 gives a formal specification of the problem and the properties desired
in the solution. Section 4 uses the notion of knowledge in a distributed system [CMB86] to derive
the necessary and sufficiet condition that must be satisfied by any algorithm that solves the fair
synchronization problem. Section 5 contains the algorithm, its correctness proof, and its message

and time complexities. Section 6 discusses the optimality of our algorithm.

2 Model and Definitions

A program is essentially a set of variables and a set of state transition rules. The state of a program
consists of the values assumed by its variables. A computation of a program starts from an initial
state and goes on forever; in each step of the computation, a rule is selected nondeterministically
for execution. Each computation uniquely determines an infinite sequence of program states. The
meaning of a program is thus characterized by the set of all possible computations. With this
view of program, conventional temporal logics [Kr687, ES89] can be adopted to describe properties
of programs. We omit the definition of our logical language; an explanatory statement will be
provided along with every formally stated property of a program.

Programs (program modules) can be combined to produce composite programs in a natural
way. The set of rules of a composite program is the union of those of its constituting modules. A
program composed of programs F and G is denoted by F}G; Fand G may themselves be composite
programs. Variables belonging to more than one modules are termed shared variables. Program
modules communicate with one another by shared variables. We are interested in distributed

programs where program modules are functionally divided into two categories: processes which do
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significant computations and channels which simply relay messages. Messages are modeled as the
values written to and read from the shared variables between a process and a channel,

A more detailed description of our model can be found in {TB89).

3 Problem Specification

We adapt the UNITY format of problem specification [CM88]: Let USER refer to a set of asyn-
chronous processes (including the channels) and OS refer to the (distributed) scheduler that im-
plements synchronizations among the asynchron_ous processes in USER. The composite program
USER| OS is referred to as P. We use the temporal logic language introduced in section 2 to specify
the properties of USER and P as well as the constraints on OS.

We assume processes in USER are numbered 1 through n and the i-th process is denoted by
user;; analogously for OS. p; = user;[os,; denotes the i-th process in P. We shall refer to a process
in USER as a user, a process in OS as an o0s, and a process in P as a process. An interaction among
user;, user;, and usery is represented by {ij,k}. T is the set of interactions defined among users;
each element of 7 is a nonempty subset of {1,2,...,n}. Two interactions are said to be conflicting if
they have at least one common member. The set of all interactions of which a process is a member
is referred to as the interaction set of the process.

Each user and the corresponding os share two variables: a boolean array called flag and variable
state which may assume the value active, idle, or commit, The three states of a process correspond
to a user that does not want to participate in any interaction, a user that is waiting to participate
in some interaction, and a user that has committed itself to a specific interaction. Each component
of flag corresponds to an interaction in the user’s interaction set. Interaction I is started if one of
its members, say p;, sets flag! to 1 and is terminated if flag! is set back to 0 for all members of I,

We introduce some abbreviations for commonly used predicates:

active; = (state; = active), similary for idle; and commit; (d1)
enable! = (Vi:ie: idle;) (d2)
syncl = (Ji:ieluflagl =1) (d3)
EBlILJ] = (I#JAINT #9) (d4)

All assertions are assumed to be universally quantified over all values of their free variables. In
the remainder of this section, we formalize the behavior of a user process, the constraints imposed

on the scheduler and the safety, liveness, and fairess properties desired in the composite program.



3.1 Specification of USER

This part specifies the behavior of the USER program at its interface with the OS and also specifies
some properties that are guaranteed when USER is composed with the OS.

For each user, state is initialized to active and each component of flag to 0. An active user
may autonomously transit to idle — (ul). An idle user may transit to commit only after some
interaction in its interaction set is started — (u2) and the user transits from commit back to active
only after the interaction is terminated — (u4). When an interaction is started, all members will

eventually transit to commit — (u3). A user may not start an interaction — {ub).

active; Unless idle; in USER {ul)
idle; Unless commit; A(3T:ie 1 syne!) in USER (u2)
sync! = OWi:ie Tl commit;) in P (u3)
commit; Unless active; A (VI:i € I:: -sync’) in USER (ud)
(flag] = 0) - O(flag! = 0) in USER (u3)

3.2 Specification of P

This part specifies the safety and liveness properties that must be provided by the composition of
USER and OS.

The safety properties require that only enabled interactions can be started — (ppl) and that
conflicting interactions cannot be started simultaneously — (pp2). The liveness property requires

that if an interaction Iis enabled, either Jor a conflicting interaction be eventually started — (pp3).

-sync! Unless enable! in P (ppl)
E[I,J)— -(sync! A sync’) in P (pp2)
enable! — O(syncl v (37 : E[I,J] :: sync?)) in P {pp3)

(pp3) and (u3) imply that an enabled interaction will eventually be disabled.

3.3 Constraints on 0S

The only shared variables between user; and 0s; are state; and flag;. For each os, state is initialized
to active and each component of flag to 0 (consistent with the initialization in USER). An os may
not change the state of a user so that the properties (ul), (u2), and (u4) are preserved in the

composite program P. Furthermore, an os may not terminate an interaction.,

3.4 Fairness

The notion of fairness in the problem specification is weak. A user is said to be ready if some

interaction in its interaction set is enabled. The problem specification allows starvation: from a



certain point of computation, a user may become ready infinitely many times but never participate
in any interaction. Also, an interaction may be enabled infinitely many times but never be started.

We are interested in two stronger fairness notions: Strong Process Fairness (SPF) and Strong
Interaction Fairness (SIF). SPF asserts a user that is infinitely often ready will infinitely often
participate in some interaction. SIF asserts an interaction that is enabled infinitely often will be
started infinitely often. It can be shown that SPF subsumes (pp3).

ready; = (3I:1i € I:: enable!)

SPF = OCready; — O0O(37:i € I :: synel)

SIF = DOenable! —» OOsyne!

We call an additional property satisfiable if there exists an OS that satisfies the original speci-
fication such that the additional property also holds; otherwise it is unsatisfiable.

It has been shown [TB89] that SIF is unsatisfiable for the binary (and hence multiway) inter-

action problem and SPF is unsatisfiable for the multiway interaction problem.

4 Derivation of a Fair Algorithm

We describe an algorithm for the binary interaction problem with SPF, The design process of the

algorithm is elaborated using reasoning about knowledge.

4.1 Knowledge

Suppose s is a program state of P. s[p;] denotes the projection of s on p;, i.e. the state of p; at s.
Let b be a predicate on program states. The knowledge of p; about b at s, K;b at s, is defined as
Vs': 8" € Reach(P) A '[pi] = s[pi] :: b at ¢, where Reach(P) is the set of states reachable from
an initial state. Note that K;b — b. A predicate is local to pi if its truth value can always be
determined by the state of p;. So, if b is local to Pi, then it is always the case that K;b or K;-b.
The transfer of knowledge among processes in a distributed system is well explored in [CMS88].
We shall refer to the results as principles of knowledge transfer. Of particular interest to us are the
following properties: A process p; may not have the knowledge about a local predicate of another
process p; unless p; receives a message (from p;). Conversely, p; may not lose the knowledge about

a local predicate of p; unless p; sends a message (to p;).

4.2 (pp1)—(pp3) and SPF Revisited

In this section, we derive the necessary and sufficient conditions that must be satisfied by any
solution to the binary interaction problem with SPF. We informally argue their correctness and

formally prove them in the appendix.



To start an interaction, say {i,j}, either p; or p; has to set the corresponding flag (flag:-{"'j For
flag}i'j}) to 1. As stipulated by the safety properties (ppl) and (pp2), a process that starts an
interaction must have some knowledge about the local states of its communicating partners. Let
K i{i‘j} (K J{i‘j }) represent the state of knowledge needed by p; (p;) before it may start interaction
{i.3}. As either p; or p; may start interaction {17}, we define K{H} = I;’,-{i’j} v Ii'j,{-i’j}. The
following assertion simply states that K {7} must necessarily be achieved before interaction {45}
can be started.

—synclii} A gsynclii}l o G4, (kp1)

To ensure that a process starts at most one interaction, (kpl) must be strengthened by the
following assertion:

~(37, k15 # ko (lagt™h = 1) A (gl = 1), (kp2)

We now consider fairness. SPF requires that if some p; is infinitely often ready to participate in
some (possibly different) interactions, it eventually succeed in doing so. Without loss of generality,
assume that p; eventually execute interaction {i,j}. Due to (kp1), interaction {%,7} may be started
only if K} has been achieved. This leads us to the following predicate as being necessary for
SPF.

OOCready; — 0OO(3; : K1} (kp3)

(kp3) would be sufficient for SPF, if we could argue that K1} — Osyneliv}, This however
is not the case: in general, a process p; may simultaneously achieve ﬁ'i{i‘j} and R’,-{i‘k} for some 7,k
such that it has to choose either {i,j} or {f,k} but not both. Thus (kp3) must be strengthened by
the following predicate which asserts that if K'{"} is achieved infinitely often, both p; and p; will
infinitely participate in some interaction from their respective interaction sets.

oo KUY o 0o(3k = syncl™* My A DO(3k = synclily (kp4)

We now turn to the issue of what should constitute K {iv}, particularly R,-{i’j}. (ppl) re-
quires that only enabled interactions may be started, which suggests that K ,-{"j } should imply K;
enablethi} je. Ki(idle; Aidle;) or (idle; A Kjidle;). (pp2) requires that conflicting interactions can-
not be started simultaneously. It follows that Iz'fi’j } should also imply that no other interactions
involving either p; or p; has been started: in other words Ki((Vk 2 ~synclAMY A (Vk = —syneliFhy),
As Ki(Vk :: -~syncls*}) is implied by Kienableli}, we define I;’,-{i'j} = K;enablel's} A K;(VE =
—syncli*}) or Ki(enableliv} A (Vk i ~synclikhy),

Theorem 1 (kpl)-(kp4) if and only if (pp1)-(pp3) and SPF. (proof in appendix, page 21)



4.3 The Fair Algorithm

We first investigate how K i{i‘j } can be achieved. The first conjunct of this knowledge predicate
K;enablelid} requires that p; is idle and p; knows p; is idle. By the principles of knowledge
transfer, p; cannot know whether p;j is idle unless p; receives a message from p; after p; becomes
idle. Suppose p; becomes idle at some point of computation. To help p; achieve Kjenablelis},
p; sends a message to p;. Let’s call this message a request. When pi receives the request, if p;
itself is idle, then Kenable{"s} is achieved. Note that pj should send a request to at most one
process; otherwise the requests will not help other processes achieve sufficient knowledge to start
interactions.

The second conjunct K;(Vk :: =syncl**}) requires that pi knows that no interaction in its
interaction set is started. Since a process will not start any interaction unless it receives a request,
the knowledge predicate is true in any initial state. After becoming idle, if p; does not send any
request to other processes then the knowledge predicate remains true according to the principles
of knowledge transfer. Even if p; has sent some request, but has also received a “denial,” then the
knowledge predicate is still true. {An obvious reason for a process to deny a request is if it is not
idle. We shall explore this issue in detail.} In the first case, by not sending any request p; does
not lose the knowledge K;(Vk :: <synct™*}); while in the second case, it regains the knowledge by
receiving a denial to each request it sent.

In summary, I?.ii‘j Vis achieved when p; receives a request from P;» and p; is idle and does not
have any outstanding request. At this moment, pi can start interaction {4,7}. After starting the
interaction, p; has to send an accept message to p; such that p; will know {ij} is started. It is
interesting to note that p; may send an accept message to p; without starting interaction {%,5}. On
receiving the accept message, p; achieves K }i‘j } and can start {i.4}.

From the analysis above, to achieve IE'{"j}, either p; or p; or both should be “willing” to send
request to the other process. To prevent a process from constantly denying another {and thus
wasting a lot of messages), we adopt a token scheme [Bag89b]. We associate a unique token with
each interaction; a token embodies a request. Omnly the process with a token may send a request,
i.e. the token, to the other process of the corresponding interaction.

The problem of when a process should deny a request remains unresolved. Since a process
may never become idle, it should deny any request that it receives when it is not idle. Also, a
process cannot participate in more than one interactions, so it should deny any request when it has
already participated in some interaction. The situation is complicated only when a process receives
a request while it is waiting for a reply to its own request. To avoid deadlock, a process may deny

a request whenever it has an outstanding request: however, this naive approach will cause livelock.
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We introduce asymmetry by assigning a unique non-negative integer (id) to each interaction (token
or request) [Bag89b]. p; denies a request from p; when the id of the request is smaller than that of
its outstanding request to py; it delays the reply otherwise. In the latter case, if p; receives a denial
from pg, it achieves K i{"j } and accepts the request from pj; if it receives an accept from Pk, which
indicates that K éi’k} was achieved, it denies the request from p;.

. With a way to achieve K157} an algorithm can satisfy (kpl). (kp2) and (kp4) are straight-
forward. (kp3) demands that K {7} be achieved in a fair manner; in other words, if interactions
involving some p; are enabled infinitely often, than p; should not be ignored infinitely often. This
may be achieved by requiring that a process be allowed only a finite number of transitions to the
idle state, before it is required to send a specific token owned by it.

For this purpose, each process maintains the tokens owned by it in a queue. Tokens received by
the process are inserted in the queue in FIFO manner. The requirements of (kp3) can be satisfied
by requiring that the process send tokens from this queue in a FIFO order. However, for the sake
of efficiency, we follow a slightly different order. When a process becomes idle, if its token queue
is not empty, it requests the token at the head of the queue before replying to any request. If its
first request is denied, the subsequent requests will be made by sending tokens in the descending
order of token id’s. This mechanism ensures that (a) if a process becomes idle infinitely often, no
token owned by it can be ignored indefinitely and (b) the token at the head of queue is denied at
most twice while others are denied at most once, before a process participates in some interaction.

Furthermore, it is not necessary that all tokens have distinct id’s. It suffices to number to-
kens in such a way that the id’s of tokens associated with conflicting interactions are distinct.
We subsequently prove that this schema has a significant impact on the time complexity of the

algorithm,

5 The Algorithm and Its Correctness Proof
5.1 The OS

We describe the code executed by an OS process using the fair algorithm. We assume that an OS
process has a separate output queue to each neighbor, but a single input queue from all neighbors;
all incoming messages to this process are appended to the single input queue. The channels among
the processes are definred to match this structure; a channel has a number of input queues and a
single output queue. The task of a channel is to transfer messages from its input queues to its only
output queue such that no message is ignored indefinitely. Since the task of a channel is extremely

simple and well understood, we show only the program for a process.



VARIABLE (Variable subscripts are omitted, as is the declaration for some variables whose purpose
is obvious.)

state,flag: shared with USER; see problem specification.

token_q: a queue of tokens. Each token is a triple (no,p;, p;), where nois a token identifier (id) and
?; and p; are the members of the corresponding interaction.
Four operations — mazdequeue, dequeue, enqueue, and empty are associated with this queue, where
mazdequeue removes and returns the token with the highest id from the queue.
dequeue: remove and return the token in the head.
enqueue: append a token to the end of queue.
empty: check whether the queue is empty.
Initially, each token is arbitrarily assigned to one of the processes named in the token.

observe: indicates that (state=idle) for the user has been observed by the corresponding os. Initially
false.

pending: indicates whether the process has an outstanding request. Initially false.
rno: the number of the token corresponding to the outstanding request. Initially null.
rid: the id of the requested process. Initially null.

myid: the id of this process.

delay: indicates whether the process has delayed a request. Initially false.
delay_token: the delayed token. Initially null.

com: an array of boolean variables, each element of which corresponds to an element of flag. com(y]
is set to true if the process is about to participate in interaction {myid,j}. Initially false.

In the following description, the expression “receive(msg) A pred,” where msg is token, yes, no, or
done and pred is a predicate which does not contain any recetve, is used as a shorthand to describe
the following actions: First, checks if the predicate is true, and if so determine whether the type of
the message at the head of the input queue is the same as that of msg; if so, extracts the message
and assigns it to msg in the beginning of the body of the rule. The rule is disabled if the type
checking fails or pred is false. In the following description, com* denotes (37 :: comff]). The use of
token.p in one process refers to the other process named in the token.

RULE
R1: /* Observing the transition to idle state by USER * /
-com* A ((state = idle) A —observe) — [ observe := true:
if ~empty(token_q) then [ Request(true);
pending := true; | |

R2: /* Requesting an interaction */
mcom™ A observe A —pending A ~empty(token_q) — [ Request(faise);
pending := true; ]

R3: /* Accepting a request */
R3.1: receive(token) A ~com® A observe A ~pending — | com(token.p] := true;
observe := false;



R4:

RS5:

Re:

RT:

RS:

Accept{token); ]

R3.2: receive(no) A delay — [ pending := false;
ro := null; rid := null;
com(token.p| := true;
observe := false;
Accept(delay_token);
delay := false; |

/* Starting an interaction */
receive(yes) — [ pending := false;
if delay then [ Deny(delay_token);
delay := false; |
flag[rid] := 1;
comirid] := true;
observe := false; |

/* Refusing a request */
receive(token) A (com™ V —observe V delay v (pending A (token.no < rno))) — Deny(token);

/* Delaying the reply to a request */
receive(token) A (pending A (token.no > rno)} A ~delay — [ delay_token := token;
delay := true; ]

/* Relinquishing a request */
receive(no) A ~delay — [ pending := false;
rno := null; rid := null; )

/* Detecting the termination of an interaction by USER */
R8.1 (rid # null) A (flagfrid] = 0) A com][rid] — [ com][rid] := false;

send domne to 63,4; |

R3.2 receive(done) — com := false; /* array assignment * /

Request(first): if first then token := dequeue(token_g)

else token := mazdegueue(token_q);
rno := token.no; rid := token.p;
send token to 0sy;

Deny(tk): send no to oss ,;

enqueue(token_q,tk);

Accept(tk): send yes to osy.p;

enqueue(token_q,tk);
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5.2 Correctness Proof

We show that the distributed program P with OS using the fair algorithm satisfies (kp1)-(kp4),
which were shown previously to be the necessary and sufficient conditions of {pp1)-(pp4) and SPF.
The safety properties (kpl) and (kp2) are proved in theorems 2 and 3 respectively; whereas the
liveness properties (kp3) and (kp4) are proved in theorems 4 and 5. It should be clear that the
OS in the previous subsection meets the constraints on OS in the problem specification. Unless
otherwise stated, all assertions in the lemmas, corollaries, and theorems are assertions on P.

We assume that the channels connecting the processes deliver every message exactly once but
not necessarily in order. Let in; be the set of messages in the input queune of os; and out}i'j } the

set of messages in the output queune of 0s; destined for os;.

5.2.1 Safety Properties: (kpl) and (kp2)

Lemma 1 pending; — ~com}. A process with an outstanding request cannot commit to any inter-

action.

Proof. pending; is initialized to false, so the statement is true initially. pending; becomes true
due to R1 or R2. Both rules are enabled only if —com; holds and ~com] remains true after the
execution of either rule. —com] becomes false due to R3.1, R3.2, or R4. R3.1 is enabled only if
pending; is false and pending; remains false after the execution of R3.1; while in R3.2 or R4, ~com}

and pending; become false together.

Lemma 2 ((yes € in;) — pending;) A ((no € in;) — pending;).

Proof. 'We show that (yes € in;) — pending;; the case for no can be argued analogously. From
R3, a process p; will send yes to another process p; only if p; has received a token from p; and has
not yet replied to the request. By R2, p; set pending; to true, after sending a token to p;. pending;

remains true until a reply is received, according to R3.2, R4, and R7. End of Proof,

flag,[s] in the program corresponds to flag,{i’j Y in the problem specification.

Lemma 3 (flag;[j] = 1) — com;[§] A com;[i].

Proof. By virtue of (u5), flag;[1] is set to 1 only due to the execution of R4 of 0s;. The execution of
R4 of os; sets com;,[j] to true. R4 of os; is enabled only after a Yes message is sent by 0s;. According
to R3.1 and R3.2 whereby os; sent yes to os;, os; must have set com;[i] to true. Subsequently,
com;[j] is set to false only due to R8.1 of os; and com;{i] set to false due to R8.2 of 0s;. However,
R8.1 and R8.2 can be enabled only after flag,[] is reset to 0 by some rule in user;. End of Proof.

11



Lemma 4 pending; — idle;.

Proof, 'We show that pending; — observe; and observe; — idle;.

The arguments will go like those in lemma 1. The first assertion is true initially, since pending;
is initialized false. pending; becomes true due to R1 or R2; observe; is set to true in R1, while R2
is enabled only if observe;. observe; becomes false due to R3.1, R3.2, or R4; R3.2 and R4 also set
pending; to false, while R3.1 is enabled only if pending; is false and pending; remains false after the
execution of R3.1.

The second assertion is true initially. From (u2) and lemma 3, idle; Unless com™. By similar
arguments as in lemma 1, it can be shown that com™ — —observe;. Hence, idle; Unless —observe;.
observe; is set to true due to R1, which is enabled only if idle; is true. It follows that ohserve; — idle;.

End of Proof.

Lemma 5 (rid; = j)A(yes € in;) — idle;. The requested process is idle when a positive reply from

that process is received.

Proof. When rid; = j, it must be os; that sends a reply message to o0s;. This follows from (a) in
the Request procedure, rid; is set to the id of the process to which os; sends the token, (b) initially
no process has an outstanding request and from R3.2, R4, and R7, os; will not send another token
until a reply for an outstanding token is received, and (c) from R3, R4, R5, and R6, a process will
not send a reply to a process unless it receives a token from that process and after doing so, the
token is appended to the token queue in procedure Deny or Accept.

0s; sends a yes to 0s; by R3.1 or R3.2; R3.1 is enabled only if observe; is true which implies
tdle; and R3.2 is enabled only if pending; is true which also implies idle;, from lemma 4. In the
meantime, pending; is true (lemma 2), which implies ~com,{;] (from lemma 1), which in turn implies
—synct®} (from lemma 3). synci™} becomes true ouly due to R4 in 0s;. From (u2), idle; remains

true unless R4 is executed. End of Proof.

Theorem 2 -synclii} A osynctii} o Flia}, {kpl)

Proof. syneli} = (flag;[j] = 1) v (flag;[{] = 1). Elaborating the antecedent of the assertion,
(flag;[i] = 0 A flag,[i] = 0) A O(flag;[j] = 1 v flag,[i] = 1). Without loss of generality, assume
that the predicate is satisfied by having flag;[j] set to 1. From the perspective of Pi, the assertion
states that (flag;[7j] = 0) A O(flag,[j] = 1) — I.{,-{"‘j}. Recall that Jf('-{"j} = K;enablel'7} A K;(VE
—synclt*}). By (u5), flag;[j] is set to 1 only due to R4 of 0s;. We need to show that R4 is
enabled only if enable!™s} A (VEk :: ~syneli*}). From lemmas 2, 4, and 5, (yes € in;) only if

(idle; A idlej), ie. enablet}. From lemmas 1 and 2, (yes € in;) only if ~com?, which implies
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(VE :: (flage[i] = 0) A (flag;[k] = 0)), i.e. (Yk :: msyncl™*}), by lemma 3. The result follows from R4
is enabled only if (yes € in;). End of Proof.

Lemma 8 ~(37,k: 7 # k :: com;[j] A com,[k]).

Proof. R4 is enabled only if pending; is true, which implies —com}, from lemma 1. The rules
R3.1, R3.2, and R4, in which some element of com; is set to true, are enabled only if ~com? holds.

End of Proof.

Theorem 8 —(37,k: 5 # k = (flag;[j] = 1) A (flag,[k] = 1)). (kp2)

Proof. This follows from lemmas 6 and 3. End of Proof.

5.2.2 Liveness Properties: (kp3) and (kp4)

Lemma 7 (msg € in;) — O(msg € in;). The message in the input queue of 0s; will eventually be

ertracted by os;.

Proof. We only need to show that the message at the head of input queue of os; will eventually
be extracted by os;. Consider the case when the message is a foken; other cases can be argued
analogously. The token can be extracted by the execution of R3.1, R5, or R6. When a token is at
the head of input queue, R3.2, R4, R7, and R8.2 are disabled and will remain disabled until the
token is extracted. The execution of R1, enabled or disabled, will disable itself; similarly for R2
and R8.1. Eventually only R3.1, R5, or R6 may be enabled. The truth values of the guards of these
three rules can not be changed by the executions of other disabled rules. The disjunction of these

guards evaluates to true. By the fair selection criterion, the token will eventually be extracted.
End of Proof.

From the properties of channels and the preceding lemma, a message put in outf"’j} by os; will
eventually be put in in; by the corresponding channel and subsequently extracted by o0s;. Let
token,{i’j} be the predicate indicating that the token associated with interaction {15} is in token_g;.

The following is a direct consequence of lemma 7.
Corollary 1 Do(to.ken'.{’-’j} v token}i‘j}).

Lemma 8 The reply to an outstanding request will eventually be received, or pending; — O-pending;.

Proof. Consider a dynamic directed graph where each node corresponds to a process and a directed

edge from o0s; to os; exists if delay; A (delay_token,.p = 7). Since adjacent interactions have distinct
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id’s, according to R6, the graph is acyclic and each node has at most one incoming edge. Since the
size of the graph is finite, any directed path will stop growing from certain point of computation.
Consider the last node in such a path. The request from this node will be replied by the execution
of either R3.1 or R5 in the requested process and the reply will eventually be received. This node
will then reply the delayed request by R3.2 or R4. Inductively, each node in the path will receive
the reply to its outstanding request and reply to the request delayed by itself. End of Proof.

Lemma 9 If a process delays some token, some interaction in its interaction set is eventually

started. delay; — O(3: 4 € I :: synch).

Proof. By similar arguments as in lemma 1, it can be shown that delay; — pending;. From lemma 1,
delay — O-pending;. pending; may be set to false by R3.2, R4, or R7. The assumption the lemma,
Le. delay;, implies that R7 cannot be enabled. It follows that eventually either R3.2 or R4 will be
enabled and executed. However, the execution of either R3.2 or R4 implies that the interaction

corresponding to the outstanding request or the delayed request will be started. End of Proof.

From (u3), (31 : i € I :: sync!) - O-idle;. The following corollary follows from the preceding

lemma.
Corollary 2 O0idle; — OO-delay,.

Lemma 10 O0idle; —» OOobserve;,

Proof. Due to (u3), ODidle; — OO-(31 : i € I :: sync!). As R3 or R4 can cause sync! to
be established for some interaction, it follows that eventually R3 and R4 must remain disabled.
Meanwhile com*, if true (lemma 3), will become false due to R8.1 or R8.2 and will remain false
thereafter, i.e. OOidle; — OO-com*. observe,, if false, will become true due to R1 and will remain

true, since R3 and R4 are always disabled. End of Proof.

Lemma 11 OOidle; —» OOempty(token.q;). A process that remains idle forever will eventually

lose all its tokens.

Proof. From corollary 2 and lemma 10, OQidle; — OO(idle; A ~delay;) A OOobserve;. R1 will
eventually be disabled forever. Let maxid; be the maximum id of tokens currently in token_q,; if
token_q; is empty, we assume that maxid; is set to some constant smaller than the minimum id of all
tokens. Suppose maxid; = k at the state when R1 is enabled for the last time. (Notice again that
when R1 is enabled, other rules are disabled.) com* is always false from that state according to the

arguments in lemma 10. We need to show that (maxid; = k) — O((maxid; < k) Vv empty(token_q;)).
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After R1 is executed, only R2, R5 and R7 may be enabled. os; may acquire more tokens only due
to R5. Since —com™ A observe; A —delay;, R5 is enabled only if (pending; A (token;.no < rno;)). So,

any subsequently acquired token must have id less than k. End of Proof.

Lemma 12 (tokeni{"'j} AOO(—~comy Addle; A ~observe;)) — Oﬁtoken:;“j}. Any token owned by os;

will eventually be sent by it if R1 is enabled sufficiently often,

Proof. R1 is enabled if —com? A idle; A ~observe;. Recall that if R1 is enabled, then all other rules
are disabled. So, R1 will remain enabled until it is selected for execution. When R1 is enabled, it
sends tokens in FIFO order; due to the repeat execution of R1, the token for interaction {15} will
eventually be sent. End of Proof.

Lemma 18 (OOidle; A OO-idle;) — OO(—~comy A idle; A —observe;). If a process participates in

somne interaction infinitely often, then R1 is enabled infinitely often.

Proof. Assume the contrary, i.e. (OOidle; A UO-idle;) A ~0O(~com! A idle; A —observe;), which is
evaluated to (OCidle; A DO-idle, A OOcom;) v (OOidle; ADO—idle; A OOobserve; ). com} becomes
false only due to R8. GOcom implies that eventually some interaction in the interaction set of i
is never terminated, which contradicts the assertion that pi transits from idle to —idle infinitely
often; hence the first disjunct of the assumption is not true. observe; becomes false only due to R3
and R4. OOobserve; implies that eventually no interaction in pi’s interaction set is ever started,

which again violates OCidle; A OO=idle;; hence the second disjunct is also false. End of Proof.

Theorem 4 OOready; — OO(3F = K1), (kp3)

Proof. Assume the contrary, i.e. there exists a computation such that some p; is infinitely often
ready to participate in some interaction but K {#4} is not achieved infinitely often for any interaction
{1,5} in p;’s interaction set. More formally, 3¢ : ¢ € Comp™(P) :: OCready; A ~0O(Fj = Klid}y |
o. Elaborate the assertion, we get OOready; A OO(V) ~KU9h), ooy = K3}y implies
O0O(Vy ﬂsync{"’j}) from theorem 2. From (u2), OCready; A OO(Vj —sync™) implies ODidle;,
which in turn implies OOempty(token_q;) from lemma 11. OOready; = OO : {i,j} € T =
idle; A idle;). Since OUempty(token_q;), it is the case that ~ODBempty(token q;) from corollary 1,
which implies ~OQidle; from lemma 11. -ODidle; = DO-idle;. DO(idle; A idlej) A OO-idle;
implies OCidle; A OO~idle;, which implies that, from lemmas 12 and 13, the token for interaction
{77} owned by os; at any time will eventually be sent to os;. This contradicts to GO empty(token_gq;).

End of Proof.
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Theorem 5 OCKW} o 00(3k :: KUAH) A OO(3k 2 K4, (kpa)

Proof. Assume the contrary, i.e. 3o : ¢ € Comp*(P) :: OO L {13} A ~(0O(3k :: Kk} A aOd(3k =
K{1k})) The assertion is elaborated to DGR (i) A (CTVk : ~K %Yy v on(vk = KUk,
The first conjunct implies OO(idle; A idle;); the second conjunct implies ©Qidle; v <0idle;. The

theorem follows from a similar argument as in the previous theorem. End of Proof.

5.3 Complexity

The message complexity of an algorithm for the OS5 is the number of messages that a process
originates or induces in the worst case, from the time the process becomes idle until it participates
in some interaction. Assume that every message is delivered within one unit of time. The time
complexity of an algorithm is the elapsed time in the worst case, from the time an interaction is
enabled until one of its members participates in some interaction. Let D be the maximum size of

interaction set.

Theorem 68 The message complezity of the fair algorithm is 2D + 2.

Proof. Let go be the token at the head of token queue of a process p; that has just transit to idle
and Q be the set of remaining tokens plus the tokens that may be subsequently received from other
processes. Note that the id of gop may be smaller than that of some token in Q. Immediately after
becoming idle, p; sends go by R1; assume it is denied. Subsequently, p; will send tokens in Q in the
decreasing order of their ids, according to R2. Tokens can be received only by R3.1, R5, or R6. If
any token is received by the execution of R3.1 or R6, p; will participate in some interaction by R3.1
or R2 without sending further requests. We may assume in the worst case Pi Teceives tokens due
to R5 so that it has to keep sending tokens in Q. From R2 and R3.2, p; has to send more tokens
only if ~com] A observe; A —delay,. As a consequence, R5 is enabled only if the received token has
id smaller than that of the pending request. And since pi sends tokens in @ in the decreasing order
of their ids, it follows that each time p; sends a token in ¢, the maximum id of tokens remaining in
@ will decrease. p; has at most D tokens which are numbered distinctively, so p; can send tokens
from @ for at most D times. Each request generates at most two messages: one request and a yes
or no response. Together with the 2 messages generated by the initial request gq, this yields 2.D + 2

messages. End of Proof.

At most (D + 1) colors are needed to color the edges of a graph with maximum degree D such
that adjacent edges have different colors (id’s). Using edge colorings to assign token ids, the length
of the longest delay chain is guaranteed to be less than or equal to (D + 1), since a process delays

a request only when its id is greater than that of the outstanding request, if any.
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Theorem 7 The time complezity of the fair algorithm with an edge coloring assignment of token

ids is at most D? + 5D.

Proof. Some interaction {i,j} is enabled when both p; and p; are idle. From theorem 6, an idle
process can generate at most (D + 1) requests, each of which may introduce a delay chain at most of
length equal to its id. A request whose id is { will be replied within 2{ units of time. When a request
is denied, a process will continue sending tokens one by one to corresponding processes. Only the
token at the head of queue may be sent twice and this token must not have the largest id; otherwise
it will be delayed when it returns. Within at most 2(2+3+...+ D+ (D + 1))+ 2D = D? + 5D
units of time p; will participate in some interaction or run out of tokens without being accepted;
similarly for p;. Since it is impossible that two neighboring processes simultaneously run out of
tokens without being accepted, either p; or p; will participate in some interaction within the amount

of time. End of Proof.

The situation described in theorem 7 is very unlikely to happen. Assuming tokens are evenly
distributed among all processes, on the average, each process owns % tokens. Further, on receiving
a request, the requested process will delay the request only if it has an outstanding request with
a smaller id. Hence, the length of the delay chain introduced by a request will usually be much
smaller than its id. Finally, according to our algorithm, the replies propagating along a delay chain
will alternately be accept and deny. The three factors together imply that it is impossible for every
process along a delay chain to have the worst case complexity of theorem 7. We expect that the

average time complexity of our algorithm is a very small factor of the bound in theorem 7.

6 Discussion: Optimality of The Algorithm

We argue informally that the message complexity of our algorithm is within a constant difference
from optimum. Also, compared to algorithms that achieve optimal message complexity, its time

complexity is near optimal.
6.1 Message Bound

As has been shown in section 4, if p; is to start interaction {7}, F{;{i'j} must be achieved. In
other words, p; must have received some message from p; after p; became idle so that p; knows
p; is idle (which, by definition, also implies that p; is not participating in any other interaction).
We shall refer to this message as a request as we did in the derivation of the fair algorithm. An
enabled interaction may remain enabled continuously if both members are waiting for the other to
send a request, so at least one of them must “take the initiative” and eventually send a request

to the other. A process is said to be aggressive for an interaction if it is responsible for taking
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the initiative; it is passive for the interaction otherwise. Both members of an interaction may be
aggressive simultaneously for the interaction.

We observe that, if a process receives a negative reply in response to its request, it should
become passive for the corresponding interaction, while the requested process becomes aggressive.
The message complexity of an algorithm that disobeys this principle is always worse than a similar
é.lgorithm that obeys the principle, since the requested process may again deny the second, third

. Tequests for the same reason as it denied the first. Furthermore, a process that is passive for
an interaction should remain passive unless the other member of the interaction sends it a request
or itself participates in some interaction. A process aggressive for an interaction should remain
aggressive unless it sends a request to the other member of the interaction.

On receiving a request from p;, p; must eventually respond to the message; the reponse may
be either positive, if p; is idle and is not participating in any other interaction, or negative, if p; is
not ready to participate in any interaction or is participating in some interaction. Suppose pi has
D neighbors. It may happen that, at a certain point of computation, p; is idle, not participating
in any interaction, and aggressive for all interactions of which it is a member, but all its neighbors
happen not to be idle. All requests from p; will be denied by its neighbors. The total number
of messages that should be charged to p; is at least 2D, if each request is replied directly. The
preceding discussion has assumed that at most one process is aggressive for any interaction. If both
processes are simultaneously aggressive for a given interaction, in the worst case, each idle process
will still induce atr least 2D messages.

We consider a few common alternatives and indicate their impact on message complexity. An
alternative to direct replies is that instead of replying negatively to P;j, pi may relay the original
request to another neighbor of p;. Although, this technique may reduce the total number of
messages to D + 1 (upto D relayed requests and 1 reply message), each message would have to be
longer than in the case of direct replies and the total amount of “information bits” in this case is
greater. A request typically needs at least log V bits, where N is the total number of processes, for
the receiver to identify which process is the sender. (Though a token in our algorithm carries some
extra information, this information can be stored within each of the two processes which share the
token.) A reply needs only 1 bit. In the case of direct replies, the total number of bits that should
be charged to p; is D(log N + 1).

Using the technique of relaying requests, a request must carry information as for which inter-
actions the requesting process is aggressive, because a process may be aggressive for any number
of interactions in its interaction set. This information needs at least 1 bit and in the worst case D

bits. So, the number of bits that a request carries will range from (log N + 1) to (log N + D). In
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the worst case, a request will be relayed up to D times (including the original request sent by i)
implying that the total number of bits charged to p; is larger than D(log N + 1).

Another alternative discussed in the next section allows a passive process to send a solicitation
message. The primary difference between a solicitation and a request is that a process may send
multiple solicitation messages (to different processes) simultaneously. Each solicitation may induce
a request message. When more than one request arrives, a process must deny all but one of them.
In the worst case, a process may simultaneously receive D requests and have to deny D -1 of
them resulting in 3D - 1 messages (including the D solicitation messages), which is worse than
the preceding bound. Furthermore, if we assume that a process may send at most one solicitation
message at any time, the algorithm is essentially the same as one which allows both processes in
an interaction to be simultaneously aggressive. Once again, this modification can not improve the

message complexity of the worst case to be better than 2D.

6.2 Time Bound

We consider the time complexity for deterministic algorithms that have an optimal message com-
plexity as discussed in the previous subsection.

An idle process that has a pending request may itself receive a request from some other process.
When this happens, the process must decide either to immediately deny the received request or delay
its response (it definitely cannot accept the request immediately; otherwise mutual exclusion will be
violated if it receives an accept for its outstanding request) in such a way that undesirable situations,
e.g. deadlock or starvation, will not happen. For convenience, let the binary interaction problem be
represented by an undirected graph whose nodes are processes and edges are interactions. We refer
to this graph as the interaction graph. To enable a process to selectively deny or delay its response
to a request, it is necessary to introduce asymmetry in some form in the interaction graph. We
describe two methods to introduce asymmetry and infer a loose lower bound on the time complexity.

The first method is to a priori orient the interaction graph such that the resulting directed
graph is acyclic. A process may request an interaction only if the orientation of the corresponding
edge is outgoing. Nevertheless, a process may send a solicitation for a request along an incoming
edge. Since the orientation of the graph is acyclic, a process with an outstanding request can always
delay a request without introducing deadlocks. The reply to a request may be delayed by another
request, which may be delayed by yet another request and so on. This delay chain can be as long
as any directed path in the oriented graph. Thus every outgoing edge of a process contributes to
a delay chain. However, a process p; may also create a delay chain on an incoming edge (7,%) by
sending a solicitation along that edge to p;. If p; has an outstanding request, it will be unable to

reply to the solicitation until it receives a reply to its request. So, both a request and a solicitation
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from a process may induce delay chains. The delay introduced by the delay chain is analyzed at the
end of this section, following the description of a second method to orient the graph as an acyclic
directed graph.

The second method is to allow a process to request any of its neighbors, while relying on a
binary relation on the set of interactions to avoid deadlocks or starvation. The reaction of an idle
process with an outstanding request to a request, delay or deny, is determined by the relation
between the outstanding request and the received request (or equivalently between the requested
process and the requesting process). To satisfy SPF, a binary relation R on 7 should be defined
as follows: ({i,7},{j,k}) € R if and only if, when p; has a pending request for interaction {j,k}
and receives a request for {7} from p,, p; will delay its response to p; until it receives a response
from pi to its pending request. And R must have the following two properties: First, for any pair
of conflicting interactions, say I and J, either (I,J) € R or (J,I) € R; otherwise starvation may
happen and SPF is violated. Second, there is no cycle of length greater than 2 (e.g. (LN, (J.K),
and (K,J) will form a cycle of length 3, if I.J, and Kdo not have a common member); otherwise,
the algorithm may deadlock. An edge-coloring, which we adopted for our algorithm, defines one
such relation. .

Let R denote the class of all binary relations that may be used by any algorithm ensuring SPF
for binary interaction. Given some R € R, we define a delay chain as a path p;-py— - —p such that
({f,i+1},{s+1,i+2}) € R, where 1 < i <[ - 2, and the path p;—p,— - —pi_1 does not contain
any cycle. When a chain of requests is formed along p;—p;— - —p;, the request from P to p, may
be replied in 2(I — 1) units of times but no earlier.

For a given R, we need to compute the maximum delay that can be induced on an idle process,
say p;, before it becomes active. Without loss of generality, assume p; eventually interacts with
Dj. i,From the discussion in the previous section, p; may request every neighbor once. p; is
the last process requested by p;. Every px (k # j) requested by p; must eventually deny p;’s
request. Each such request can establish a delay chain; however, the delay chain cannot include
p; (because, otherwise p; must become active). Let LE:i}}(R) be the length of the longest possible
delay chain starting from the edge {i,k} without visiting p;. L‘{"'j}(R) = ks Lgﬁ(R) L{R)=
min{ LI (R)}. L(R) = maxicica{L:(R)}.

At a certain point of computation, p; is idle, not participating in any interaction, and aggressive
for all interactions of which it is a member. Meanwhile one of its neighbors pj, which happens to
be the last one that p; will send request to, is idle and passive for all interactions. The request from
p;i to pr, k # j, may be replied in ZLg:‘g(R) units of time but no earlier. The total elapsed time

from p; sends out the first request until it sends a request to p; is 2L‘-{£'j}(R) units. An algorithm



may at best choose p; such that L;-[i’j - L;(R). The time complexity is 2L( R} for an algorithm
based on R.

Let R* be a relation in R such that VR : R € R :: L(R) > L(R*). Such a relation would then
determine the lower bound on the time complexity of the problem. L(R*) is apparently > O(D)
from the analysis of message complexity. The time complexity of our algorithm is O(D?) indicating
that L{R*) <O(D?). We suspect that, if R consists of static relations, L(R™)is O(D?),

Both aforementioned methods rely on a relation on processes or interactions (which can be
realized solely by comparisons of ids) to break symmetry. Other methods, e.g. deterministic coin
tossing [CV86)] (which assumes binary encoding of process ids), might reduce the time complexity

at the cost of a less than optimal message complexity.

Appendix: Proof of Theorem 1

Theorem 8 (1) (kpl)-(kp4) if and only if (ppl)-(pp3) and SPF.

Proof. Note that (pp3) is subsumed by SPF and can be ignored.

(only if) Since K17} — enable{id} (kpl) implies that —~sync{i7} A —enablelti} O-synelidl
which implies (pp1).

Assume (pp2) does not hold, i.e. 3o : 0 € Comp™(P) == (i = (37, k :: synclid} A syncli*})) | o.
(Comp™(P) denotes the suffix closure of the set of all possible computaions of P.) From (kp2),
interactions {i,j} and {7k} must be started by different processes; we assume they are p; and py,
and pi starts {i,k} while sync{"} is true. According to (kpl), when py is to start interaction
{#,k}, it must be the case that IE',E""C}, which implies Ki(V! :: ~synel™?), which in turn implies
(V1 :: msynclih), contradicting to syncliilt,

From (kp3) and (kp4), OOready; — (3 :: OO(3k :: synct™* ) A DO(Ik = syneli*h)), It follows
that OOready; — BO(3k :: sync"*}) which is SPF.

(if) Assume (kpl) does not hold, i.e. 30 : ¢ € Comp*(P) :: ~synclii} A gaynclidd A K05} | o,
We assume that it is p; to start interaction {i,j} at oo,

(flagl*?} = 0 Aflagl?? = 0) A o(flag{™? = 1) A KL} | 4.

(flag; Y= oA f!ag?’j} =0)A o(flagi{"’j} = 1) A ~K;(enablel} A (Vi 1 msynelikly) | 0.

By the definition of knowledge, 3s : s € Reach(P) A s[pi} = ao[p;] :: (flag,-{i’j} =0A flag}i‘j} =
0) A ~(enablel™} A (V& :: ~syncli®})) at s.

Since p; is to start interaction {47} at og and s[pi] = oo[pi), 37 : 7 € Comp™(P)A 7o = 2 &
(flag‘-i'j} =0A flag}“j} =0)A o(flagii'j} = 1) A ~(enabletiv} A (Vk 12 msyncli#h)) | 7.

((flagf"? = 0 A flaglt = 0) A o(ftagl™™ = 1) A ~enablel) v ((flagt = 0 A flagt™} =
0) A o(flag‘.{i’j} = 1) A ~(Vk = nsynclFh)) | 7.



The second disjunct contradicts to (pp2). With (ul), (u5), and constraints on OS, (pp1) implies

that —synclid} A menablelii} O-synclii}, which invalidates the first disjunct.
(kp2) holds trivially.
Assume (kp3) does not hold, i.e. 3o : ¢ € Comp™(P) :: QOready; A -0O(Ij :: Ky | 0.
OCready; A OO(Vj 1 =K1}y | o,
From (kpl), ¢O(V7 :: =K1}y o ©O(V5 2 ~synelivh | o.
OCready; A CO(Vj :: ~sync{™}) | o, contradicting to SPF.
By an argument similar to that for (kp3), SPF implies (kp4). Note that K{"/} — ready;Aready;.

End of Proof.
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