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ABSTRACT OF THE DISSERTATION

Semantic Formalization in Mathematical Modeling Languages
by
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Professor Michel A. Melkanoff, Co—chair

Mathematical modeling is notoriously error-prone because existing commercial
languages and systems for Operations Research (OR) modeling lack semantic for-
malization. The absence of formal semantics has limited the amount of assistance
that is provided by current mathematical modeling language environments to de-
tect and prevent errors in models. For example, it has prevented the development
of practical tools which could provide immediate feedback on the location and na-
ture of semantic errors in a model, of tool extensions which could simplify model
design by automatically deducing missing, or incomplete, fragments in the model,
and of entirely new semantics—driven tools which could support model-analysis

activities within the modeling environment itself. Even more importantly, this
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deficiency has prevented the automatic generation of major components of the
environments for OR modeling.

The purpose of this dissertation is to promote semantic formalization in math-
ematical modeling languages by showing the feasibility of employing an attribute
grammar formalism as a design paradigm for some of the major components of
an OR modeling environment. We begin by identifying the areas where seman-
tic formalization is needed in selected modeling languages for mathematical pro-
gramming. Then, using SML (Structured Modeling Language) as an example, we
propose and show the feasibility of supporting the complete static semantics of
mathematical modeling languages through attribute grammar equations. Next,
we propose equations for various areas that we identify as amenable to language
simplification via the automatic deduction of missing language constructs. Later,
we show how we could support the numerical evaluation of expressions in immedi-
ate mode in SML. Finally, we validate our approach by implementing a prototype
modeling environment which enforces the full syntax and semantics of SML, and
by testing it using a large number of models from a variety of domains.

We conclude that it is possible to use attribute grammars to rigorously formal-
ize a mathematical modeling language, and to automatically generate modeling
environment tools. This kind of explicit semantic formalization can help to make
the modeling activity in OR less error-prone, thereby shortening the length of time

required to develop correct new models and maintain existing ones.
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CHAPTER 1

Introduction

1.1 Statement of Purpose

The purpose of this dissertation is to promote semantic formalization in math-
ematical modeling languages and computer-based modeling environments for the
Operations Research/Management Science (OR/MS) community, as an approach
to ensure model correctness and to provide systematic methodologies for devel-
oping aids and tools to support the model formulation process. The particular
direction we follow is to present a design and implementation of a development
environment for OR/MS modeling based on the attribute grammar methodology.

The primary claim of this dissertation is that a declarative specification based
on the attribute grammar foundation can and should be used as the definition
paradigm for some of the major components of future modeling environments,
such as language-based editors for building models, type checking and inferenc-
ing tools to simplify the writing of modeling statements, and code generators to
support expression evaluation activities in immediate mode. The significance of
the claim is that it should be possible to reduce the amount of time required to

develop correct new models and to maintain existing ones in an attribute grammar



based modeling environment than in other currently existing ones. Furthermore,
the generation of the semantic tools and aids for the modeling environment can
be automated from the attribute grammar description of the modeling language.
‘The benefits of this automation come not only from the time saved during the
initial development of the modeling environment tools, but also from time savings
achieved during enhancements, changes, and evolution of these systems. Thus, the
attribute grammar approach supports “evolutionary flexibility”, a very desirable
characteristic for modeling environments.

To examine the feasibility of our claim, the following hypotheses can be exam-

ined:

1. Current mathematical modeling languages which lack formal context—sen-
sitive semantic definitions tend to make the modeling activity more error—

prone, and the models written in these languages are more difficult to develop

correctly and to maintain.

2. Complete static semantics of mathematical modeling languages can be sup-

ported via the attribute grammar framework,

3. Inferencing, or deduction, of mathematical modeling language constructs can

be realized via the attribute grammar framework.

4. Evaluation of expressions in mathematical modeling languages can be sup-

ported in immediate mode via the attribute grammar framework.



5. Language-based tools, including syntax-directed editors that guarantee that
model and data are correctly built and maintained, can be generated auto-

matically from an attribute grammar framework.

6. Queries on the model structure and on its data can be answered with the

support of an attribute grammar framework.

7. Tools to support structural relationships, such as configuration managers and

version control systems, can also be supported with an attribute graminar

framework.

One of the most challenging aspects of this dissertation is to investigate the
feasibility of the primary claim. The first five hypotheses are the themes examined
in subsequent chapters of the dissertation. The last two hypotheses are outside
the scope of this work, but remain a topic of future research.

Attribute grammars is not the only approach to semantic formalization in
mathematical modeling languages and environments. Among the other alterna-
tive paradigms for specifying a language or environment, the most popular ones
include toolkit, ad hoc semantic-action, and method-based approaches; a complete
taxonomy of software development environments, including toolkit, method-based,
structure-oriented, and language-centered environments, can be found in [Dart87).
Other formal paradigms include logic programming approaches [Ster86], denota-
tional semantic approaches [Gord79] [Tenn76], and axiomatic semantic approaches

in Hoare style [Hoar69]. An extensive bibliography of these systems and other



semantics—related activities can be found in {Gogu87].

1.2 Motivation for this Dissertation

In the Operations Research and Management Science communities there is an
ever increasing number of modeling languages and systems available for mathemat-
ical modeling. To name a few examples, in the area of mathematical programming
there are: AMPL [Four89], GAMS [Broo88], IFPS/OPTIMUM [Roy86], LINGO
[Cunn89], LPL [Hii87), MIMI/LP [Bake86], MPL [Soft], and PAM [Welc87]. See
[Matu87] for a list that includes over 20 mathematical programining systems to-
gether with a comparative analysis of some of them; see [Chil85] for an overview of
the analytical computing environment ANALYTICOL; and see [Cuni87a) [Cuni87b]
for a collection of special articles on mathematical programming modeling systems.

In spite of the numerous modeling languages and systems, mathematical mod-
eling remains an activity that is notoriously error—prone for the following reasons.
First, traditional modeling languages and systems have been weak in the area of
detecting errors in models. Contemporary modeling languages, for instance, have
not been designed around the idea of preventing errors. And although computer
assisted systems to analyze linear programming models and diagnose errors do ex-
ist [Gree83], the approach usually taken has been to provide assistance after the
“solvers” have been employed. (A solver is a piece of computer software for solving
a given problem type, such as a linear or nonlinear programming problem.)

Next, although syntax and post-algorithm error checks are supported by some



systems, only a limited amount of assistance is provided by most existing systems
to detect and prevent errors a priori in the model [Biss87]. For example, tools which
could provide immediate feedback on the location and nature of semantic errors
in the model are practically non—existent. Also missing are tool extensions which
could simplify model design by automatically deducing missing, or incomplete,
fragments in a model. Similarly absent are any class of entirely semantics—driven
tools which could support model analysis activities within the modeling system
itself.

Finally, in general, current popular modeling systems consist of a set of loosely
integrated tools that only partially support the different aspects of the modeling
life-cycle. Further, none of the existing systems has enough capabilities to support
the entire life-cycle process, all the way from the conception of the model to its
implementation, testing, maintenance, and modification. As a consequence, no
system of today has the flexibility, level of integration, and broad scope required
to be considered a “true” modeling environment in the sense given in [Geof89a).

The creation of a new generation of semantics—driven environments where
mathematical modeling could be developed in a less error—-prone fashion, and where
environment tools could be automatically generated, is one of the most pressing
challenges currently faced by the OR/MS community. The potential impact of
such new modeling environments in terms of increased productivity, quality, and
popularity of applied modeling work has already been argued in the literature

(see e.g., [Geof89a], [Geof89b]). Thus, this dissertation is motivated in part as a
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response to this challenge.

Our other main motivation is as follows. It is surprising that, even at the time
of this writing, very little attention has been paid by the OR/MS community to the
area of semantic formalization of modeling languages and modeling systems as an
approach to improving model correctness, and as a way of automatically generating
aids and tools to support the model formulation process. Few contemporary mod-
eling languages and systems —and this is also true for programming environments—
have requirements defined ‘as precisely and formally as, say, selected programming
languages that include Prolog [Jone84], Ada [Kini82], and LISP dialects [Much80].
A recent exception is the modeling language SML [Geof88], whose static semantics
are completely formalized, and whose prototype implementation FW/SM [Geof90]
offers many tools to avoid model errors.

The absence of precise, formal semantic definitions in modeling languages and
systems has contributed to the lack of successful modeling environment paradigms
in various important ways:

o It has prevented the automatic generation of major components of the envi-
ronments for OR/MS modeling.

o It has increased the effort and cost of software development and maintenance.
This negative impact has also been shared by the programming community, which
has long recognized that ease of maintenance and modification plays a key role in
controlling software costs and increasing productivity [Boeh87].

o It has influenced the evolution of modeling languages and systems in the di-



rection of data—centered approaches rather than toward semantics—driven method-
ologies. Needless to say, the software usually is developed with manual and ad-hoc
procedures, and thus there is little possibility of software reusability.

Our recognition of the importance of the role that semantic formalization of
modeling languages and systems plays in the control over model errors, coupled
with our belief that the design of stronger semantics-driven modeling environments
have the potential to influence the way model-based work will be carried out in
the future, are the main motivation for this dissertation.

An immediate challenge of this work is to show the benefits of semantic formal-
ization of modeling languages as a road to asserting model correctness. Another
short term goal is to pioneer a methodology for an improved modeling environment
that lends itself to rapid prototyping, so that new modeling studies may be quickly
undertaken.

Following an analogy between the programming language and modeling lan-
guage communities, our longer term goals are to develop uniform semantic method-
ologies that may be used to support not only “modeling in the small” activities
(like small-scale model editing and model evaluation), but also “modeling in the
large” activities (like large-scale modeling, model configuration, model manage-
ment, and model sharing) as well. According to the views of DeRemer and Kron
[DeRe76], very different languages should be used for these two apparently different
activities. Integration, however, has benefited from developments on many fronts.

Research in software design methodologies, like top—down design, has created an



effective way of handling both small-scale and large-scale problems. Integration
has also been the goal set for some software environments [Clem86]. And integra-
tion is also (partially) supported by software development facilities such as UNIX

[RitcT4].

1.3 Dissertation Overview

Each chapter in the dissertation is chartered to examine one of the hypotheses
listed in Section 1.1. The chapters as a whole lend support to the primary claim.
The different aspects of our work are now briefly explained.

Chapter 2 examines the first hypothesis. It surveys the capabilities for error
detection and semantic analysis in commercial modeling languages for mathemat-
ical programming. The semantic restrictions of GAMS, LINGO, and AMPL are
recognized and reviewed in this survey. These particular languages have been cho-
sen because of their popularity and importance, and because they present designs
that are representative of most of the options that are currently available in model
definition languages for mathematical programming. The current shortcomings of
these languages indicate the need for a more formal approach to semantic analysis
and model correctness.

Chapter 3 tests the second hypothesis: that attribute-grammar based defini-
tions can be used to represent the static semantics of modeling languages. Using
the SML language as a test language (however, the same could be done for other

modeling languages like GAMS, AMPL, and LINGO), we show the feasibility of



strictly enforcing with attribute grammar equations all the static properties of
SML (i.e., the model constraints called “Schema Properties”, together with the
data constraints called “Table Content Rules”). One objective is to show that
the static semantics of even a complex model definition language like SML can be
enforced in polynomial time.

Chapter 4 tests the third hypothesis: that inferencing, or deduction, of math-
ematical modeling language constructs can be supported via attribute grammar
based definitions. The approach is illustrated by the design and implementation
of an inferencing type checking mechanism for SML constructs that may be used
as alternative to the default one in the language.

More specifically, an SML model either explicitly declares the types of the ex-
pressions that participate in an evaluation rule, or these expression types are im-
plicit from the semantics. This requirement makes it difficult to maintain partially
complete models (i.e., models which are not yet completely refined). It is possible,
however, to have the modeling environment infer the types of all expressions from
their use, even before all its variables are explicitly declared. For example, the
environment can relieve the modeler from making explicit the type declaration of
a construct. This declaration can be generated automatically from the use of the
construct constituents,

Chapter 4 proposes specific changes in SML that allow these alternative type
checking mechanisms. The approach is generic in nature, and thus may be used

for purposes of automatic deduction of selected constructs in other mathematical



modeling languages.

Chapter 5 examines the fourth hypothesis. It presents the design of an exten-
sion to an attribute grammar based modeling environment that can be used to
perform model analysis and evaluation activities. A code generation tool is shown
which can be used in conjunction with a run-time evaluator to support the eval-
uation of expressions in SML in immediate mode. Naturally, similar approaches
may be taken for other mathematical modeling languages.

Chapter 6 examines the fifth hypothesis. It describes a prototype syntax-
directed editor of SML models. This prototype is shown to enforce the complete
syntax and static semantics of SML, and is tested using a large number of models
from a variety of domains. Since its inception, the prototype tool has been useful
for developing correct new models and maintaining existing ones.

Chapter 7 gives the conclusions of this dissertation. It summarizes the contri-
butions of this work, lists its liritations, and suggests future research directions.
A main conclusion is that it is possible to use attribute grammars to rigorously
formalize a mathematical modeling language, and to automatically generate mod-
eling environment tools. This kind of explicit semantic formalization can help to
make the modeling activity in OR/MS less error-prone, thereby shortening the

length of time required to develop correct new models and maintain existing ones.
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CHAPTER 2

Semantic Analysis in Mathematical Modeling Languages

The ability to trap modeling errors is one of the most important features of a
modeling language and system aimed at mathematical programming. This chapter
will examine the technologies with which existing commercial modeling languages
and systems for mathematical programming express and enforce their syntactic
and semantic restrictions, and thus prevent and detect modeling errors. The pur-
pose for this examination is to test the hypothesis that mathematical modeling
langunages that do not offer a high degree of formalization of context—sensitive se-
mantics tend to make modeling more error-prone, and tlie models written in these
languages are more difficult to develop correctly and to maintain.

The mathematical programming modeling languages chosen for examination
are AMPL [Four89], GAMS [Broo88}, and LINGO [Cunn89]. We do not include
SML [Geof88] in this discussion, since this model definition language for structured
modeling will be covered in more detail in a separate chapter.

The approach taken here will be to study how semantic restrictions and other
design-related issues are handled by the three modeling languages for mathemat-
ical programming. The issues under study are each language’s semantic restric-

tions, run-time model checks, unsafe constructs, diagnostic system, readability
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and writability, and implementability. These issues have been chosen for their
contribution or importance to the technologies with which semantic analysis is
performed in mathematical prograimming modeling languages.

The chapter is organized as follows. Section 2.1 explains the six language issues
which are used to evaluate AMPL, GAMS, and LINGO. A simple transportation
problem is also shown for convenience. In Section 2.2, each of the mathematical
programming modeling languages is examined with respect to the evaluation issues.

Finally, a discussion concerning the three languages studied is presented in Section

2.3.

2.1 Language Evaluation Issues

As a running example for discussing language issues, we will consider the fol-
lowing transportation problem adapted from {Geof89¢], and an associated database

given in [Geof89b] and stated here in English prose:

Model.
I: set of plants
S(I):  supply capacity (in tons) for plant i
J: set of customers
D{(J): nonnegative demand (in toms) for customer i

C(I,J): transportation cost (in $/ton) from plant i to customer j
F(I,J): nonnegative flow (in tons) from plant i to customer j

The following definitional equations hold:

min  sum{I)sum(J) (C(I,J)*F(I,J))

s.t.
sum(J) (F(I,J)) <= S(I), for all I. supply constraint
sum(I) (F(I,J)) >= D(J), for all J. demand constraint

Database.



The plants are {DALLAS, CHICAGO}.

The DALLAS plant has a supply capacity of 20,000 tons.
The CHICAGO plant has a supply capacity of 42,000 tons.
The customers are {PITTSBURG, ATLANTA, CLEVELAND}.

PITTSBURG has a demand of 25,000 tons.
ATLANTA has a demand of 15,000 tons.
CLEVELAND has a demand of 22,000 tons.
The {DALLAS,PITTSBURG} transportation
The {DALLAS,ATLANTA} transportation
The {DALLAS,CLEVELAND} transportation
The {CHICAGO,PITTSBURG} transportation
The {CHICAGOD,CLEVELAND} transportation

The issues below are the hasis for evaluating the modeling languages and sys-
tems for mathematical programming. Note that the viewpoint is that explicit
semantic restrictions are of fundamental importance to the mathematical program-
ming modeling languages, as a means of preventing and detecting modeling errors.

This point of view influences all of the other issues by which the languages and

their systems are evaluated.

¢ Semantic Restrictions

A modeling language for mathematical programming provides abstractions
to specify a model class, and data associated with particular instances of
the model class. To help catch errors, the modeling language defines a set
of semantic restrictions that apply to the abstractions of the model and to
its data. Typically, these restrictions are context-sensitive, i.e., cannot be
generated by a context—free grammar; they are either explicitly declared in
English prose or are left implicit. For each mathematical programming mod-

eling language, this subsection will identify (in boldface) some of the most
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important semantic restrictions that apply to the model (Model Restrictions
flagged <MR>-), and to the data supplied to the model (Data Restrictions
flagged <DR>). Any violation of these restrictions ought to generate an

error message from the language processing system.

The question is left open as to whether some semantic restrictions might
still be checked by the translators (since they might appear on an exhaustive
list of error messages), although they might not be recognized explicitly by
the documentation of these languages. These kinds of implicit semantic
restrictions are not considered in this discussion, as their appearance would
show too-low attention paid by the language designers to making semantic

restrictions explicit. Hence, there are no claims concerning “completeness”.

Run-Time versus Static Model Checking

To understand how a model is processed in a language for mathematical
programming, it is helpful to sketch in very general terms the steps that a
model goes through in GAMS, from its initial definition stage to its final
solution. The first phase in the processing of a model is the translation—time
(also called static-time, or compilation) phase, where the syntax and the
consistency of the model are checked. The second phase in the processing
(also called the run-time, or execution phase) is divided into a generation—
time phase and a solver-time phase. Generation—time is the initial stage of

solving a SOLVE statement; transformations on the data are carried out,
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and a problem description is generated for input to the solver. The solver is
then invoked at solver-time, to solve the specific instance of the model that
was generated during the generation-time phase. Finally, the solver’s output

is printed to a file.

This subsection refers to how conducive a modeling language for mathe-
matical programming is to having errors caught by static—time rather than
run-time checks. A typical “strongly-typed” language allows most of its
syntactic and semantic checking to be done while the model and its data are
being translated in the pre-solver phase(s), before the actual model gener-
ation and solver phases. Those semantic restrictions which cannot be pro-
cessed at model translation-time in the language (i.e., static-time), have to
be enforced at model generation-time or solver-time (i.e., run-time). For
the three mathematical programming modeling languages under evaluation,

some additional semantic restrictions that are only checked during run-time

will be identified (in boldface).

Unsafe Constructs

This subsection will highlight the areas where the individual mathematical
programming modeling languages fail to include important semantic restric-
tions. In general, the lack of appropriate semantic restrictions leads to unsafe
constructs, and the resulting models are more likely to contain errors that

will go undetected.
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Of course, the safety of a modeling language can be proven mathematically if
the language is based on some formal semantic foundation. In less rigorously-
founded modeling languages, testing can be used as a tool to detect model
errors. However, no practical test criteria can guarantee the absence of errors.
Hence, in this examination we cannot offer any claim of completeness of our

findings.

Diagnostic System

The friendlier the diagnostic facility in a modeling language for mathemati-
cal programming, the simpler it is to discover and correct model anomalies.
Comprehensive error diagnostics can be provided in a mathematical program-
ming modeling language as a consequence of explicit semantic restrictions.
Indeed, after a language has identified its set of sernantic restrictions, a good
diagnostic system can be designed and jmplemented to enforce those design
principles.

To describe the flavor of the diagnostic system, this subsection will give the
output for the transportation example for each language, using a version of

the original database that contains these erroneous modifications:

The customers are {PITTSBURG, ATLANTA, CLEVELAND, ATLANTA}.
BOSTON has a demand of 25,000 tons.

Note that the ATLANTA customer is duplicated, and BOSTON does not

exist.

16



¢ Readability and Writability

The reliability (or confidence in the correctness) of a model is strongly re-
lated to the rigorous definition of the semantics of the modeling language for
mathematical programming. Indeed, explicit semantic restrictions affect the
readability of a model (by eliminating anomalies, or making them detectable)
and consequently, its reliability (the easier we can read a model the better we
can reason about its correctness). Explicit semantic restrictions are also re-
lated to the writability of a model (by eliminating vagueness) and therefore,
to its reliability (the easier we can write models the greater the confidence we
can have of the correctness of what we write). Note that in this context, read-
ability and writability refer to “model readability and writability by persons

familiar with the mathematical programming modeling language”.

We note that, besides explicit semantic restrictions, another approach to
increased reliability in mathematical programming modeling languages is of-
fered by Bradley and Clemence’s “type calculus” system [Brad87]. This
system adds units of measurement to an algebraic modeling language, and

provides powerful checks on the completeness and consistency of a model.

This subsection will comment on the readability and writability aspects of a
few selected features of the mathematical programming modeling languages;
like the separation of model and data, self documentation features, and the

nature of comments. These features, which are also very important in the
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promotion of ‘good’ modeling style, are commented upon here from the view-

point of their relationship to semantic restrictions and reliability.

¢ Implementability

The architecture of the system supporting the modeling language for math-
ematical programming dictates the way its semantic restrictions are imple-
mented. Different architectural designs (pure model translation, or model
translation combined with model solving) provide very different implemen-
tations of semantic checks and different efficiency. Because of the importance
of designing semantic restrictions that can execute efficiently (in both time
and space), this subsection will focus on how the mathematical programming

modeling languages implement their semantic restrictions.

2.2 Systems Examined

In this section, the mathematical programming modeling languages AMPL,
GAMS, and LINGO are examined in the context of semantic restrictions and

related issues expounded in the previous section.

2.2.1 AMPL

AMPL (A Mathematical Programming Language) is a modeling language and
processor currently being developed by AT&T for use in mathematical program-

ming applications. The AMPL processor runs directly under DOS, receiving a

18



model written in the AMPL language as input, and sending the output of the
execution directly to the screen.

The AMPL processor is invoked to translate an AMPL model into a format
which can then be used by different optimizers. [Four89] reports that a translation
routine is now available for the MPS format. This routine outputs a file suitable

for the MINOS optimizer as well [Murt87,Rose86].

2.2.1.1 Semantic Restrictions

In AMPL, the semantic restrictions, or properties, apply either to the model
itself (Model Restrictions), or to the data supplied to the model (Data Restric-
tions). These restrictions must be inferred from [Gay89a,Gay89b], since AMPL
does not define them explicitly. Violations of Model Restrictions or Data Restric-
tions always generate a fatal error message from the AMPL processor.

An AMPL model includes declarations of entities (sets, parameters, variables,
constraints, objectives), optional “check” statements (that supply assertions to
verily that correct data have been read or generated), and a data set which begins
with a “data” statement and ends either with the “end” statement or with the end—
of-file. Although there is no standard format required in AMPL, two principles
are followed: (1) model entity declarations, check statements, and data statements
are terminated by a semicolon, and (2) entities must be uniquely declared
before they can be referenced <MR1>: forward references are disallowed.

Both the model declarations and the model data can be stored in either combined

19



or individual model and data files, which can be created with any ordinary text—

editor.

Example. An AMPL model for the transportation problem will have the fol-

lowing structure:

#Model .

set plants; #set of plants

set customers; #tzet of customers

param supply {plants}; #supply capacity (in tons) for plant i
param demand {customers}; #demand (in tons) for customer j

param cost {plants,customers};#transportation cost (in $ per ton)
#from plant i to customer j
var F {plants,customers}; #nonnegative flow (in tons)
#from plant i to customer j
minimize total_cost:
sum{ i in plants, j in customers} cost(i,jI1*F[i,j];
tsupply ’supply constraint’ {i in plants}:
sum{j in customers} F[i,j] <= supplyl[i] ;
tdemand ’demand constraint’ {j in customers}:
sum{i in plants} F[i,j] = demand[j] ;
#Data.
data;
set plants
set customers :
param supply
param demand

DALLAS CHICAGO;

PITTSBURG ATLANTA CLEVELAND;
DALLAS 20000 CHICAGOD 42000;
PITTSBURG 25000

ATLANTA 15000

CLEVELAND 22000;

1|

param cost ¢ PITTSBURG ATLANTA CLEVELAND :=
DALLAS 23.50 17.75 32.45
CHICAGO 7.60 0 25.75;
end;

A set in AMPL contains zero or more distinct <DR1> members. All members
must have the same number of elements <DR2>, which is the set’s “dimen”.
AMPL also provides for the declaration of arbitrary subsets. The data declared

for the subsets must be members of the original sets <DR3>.



Model entities may be subscripted by an indexing expression. The general
structure of the indexing expression is a beginning left brace ‘{’ followed by a list
of one or more comma-delimited base sets, followed optionally by a colon and a
“such-that” expression, and ended by a right brace ‘}’. Each base set may be
preceded by a dummmy member and the keyword “n”. A dummy member for a
one-dimensional set is simply an unbound <MR2> name (i.e., an alphanumeric
string that is different from previous model entity names). A dummy member
for a multi-dimensional set is comma-delimited list, enclosed in parenthesis, of
expressions or unbound <MR25> alphanumeric names; the list must include at
least one unbound name <MR3>.

Arithmetic expressions in AMPL can include any of the following functions:
abs, acos, acosh, asin, asinh, atan, atan2, atanh, ceil, cos, cosh, exp, floor, log,
log10, sin, sinh, sqrt, tan, tanh. Of these, only atan2 is binary, and the rest
are unary <MR4>,

The binary operator in checks set membership. Its left operand is an expression,
or a comma-delimited set of expressions, such that the number of expressions

is equal to the dimen of the right opefand ~<MRS5>, which must be a set

expression.

Piecewise-linear terms have one of the following structures:

<< bkpts ; slopes >> var
<< bkpts ; slopes >> (expr)
<< bkpts ; slopes >> (var,expr)

where bkpts is a list of breakpoints and slopes is a list of slopes. After the list of
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slopes and breakpoints are extended (by indexing over any indexing expressions),
there must be one more slope than breakpoints <MR6&:>.

Parameter declarations permit a number of optional phrases, like logical, inte-
ger, symbolic, etc. The keyword logical, for example, requires the named param-
eter to be either 0 or 1. Hence, the type of the input data must conform
to the corresponding restrictions implied by the parameter declarations
~<DRA4>,

Recursive definitions of indexed parameters are allowed in AMPL. Of course,
the value of a recursively defined parameter can be computed in sequences that
refer to previously computed values, but the modeler does not need to worry about
what the sequence is. An attempt to evaluate an element that has not
been previously computed will elicit a diagnostic error <DR5>. (In the
statement “param p{i in A} := if i > 3 then pf§] else ...;”, if no occasion arises
for evaluating pfif for i > 3, then no error message is produced).

Some constraints have the following structure:

cexpr relop vexpr relop cexpr
cexpr relop tkexpr relop cexpr

where relop stands for one of the relational operators (<, >, ==, =). When there
are two relop’s, both must be < or both must be > <MR7>.
The special form of indexing expression, if lexpr, is allowed for variable, con-

straint, and objective declarations (and also for piecewise-linear terms). If the

logical expression lezpr is true, then an unsubscripted entity results; otherwise the



entity is excluded from the model. It is illegal to subsequently reference an
excluded entity <MRS8>,
The phrases := and default in set declarations are mutually exclusive. If the set

1s not defined in the data section, either phrase must be present <MR9>.

2.2.1.2 Run-Time versus Static Model Checking

The semantic restrictions identified in the previous subsection are all checked
statically (i.e., at model translation-time) by the AMPL processor. Some model
errors, however, like the specification of inconsistent constraints, cannot be de-
tected by the AMPL processor, and are actually caught by a post-translation
solver. AMPL does not include a run-time, or execution-time, processor.

In AMPL, there are no exception handling capabilities. Run-time errors cannot

be trapped, so the execution immediately halts following the exception.

2.2.1.3 Unsafe Constructs

AMPL does not include semantic restrictions to enforce the concept of domain
integrity in the traditional relational algebraic sense. The language has chosen to
allow traditional binary set operators, like difference, mtersection, and union, to
draw their operands from any domains. Although such set operations are math-
ematically defined for operands drawn from distinct domains, it is generally not

semantically meaningful, nor safe, to do so. For example, the following model

set  part_number ‘a set of unique part identifiers’;
set fish ’some edible species’;
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set  aggregate within part_number union fish;

data;

set  part_number := 1 2;

set  fish = BASS HALIBUT;
end;

is legal in AMPL, although the values of the aggregate set, {1, 2, BASS, HALIBUT},
do not come from a common domain. AMPL takes the viewpoint that the elements
of this set belong to the universal domain. From a different perspective, however,
this violates a basic principle of relational data structure. It prevents the language
from performing automatic domain integrity checks, as in other more strongly
typed modeling languages and systems, In AMPL, either the within clauses in set
declarations or separate check statements are required to enforce domain integrity.

Another area where AMPL lacks appropriate semantic restrictions is in its

construct for indexed expressions. The following statements, for example,

set faultyi :
set  faulty2 :
set  faulty3 :

{ f in fish : log(~f) };
{ £ in fish : £+1/0 };
{ £ in fish, p in part_number : £ +2 < p };

are all legal in AMPL, although they are meaningless. The language does not
check at translation time for the domains of operands of arithmetic and logical
operators if they occur in an expression that does not need to be evaluated. In
particular, the translator only computes the elements of a set if it needs to iterate
over the set; it can usually check membership in a set without computing all the
elements, which sometimes yields a big time savings. Thus, the subprogram above
does not elicit complaints since neither faully!, nor faulty2, nor faultyd needs to

be evaluated. However, if var a{faulty?,faulty2, faulty3}; is inserted before a data
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statement, an appropriate error message is generated.

2.2.1.4 Diagnostic System

The error reporting capabilities in AMPL are rather simple. During the trans-
lation process, if AMPL discovers errors, it sends an error message directly to the
screen. This message, however, will only describe the first mistake found by the
translator, and further mistakes may be sometimes lost. Although error recovery
does not appear very powerful in AMPL, the translation of the mode! will continue
as long as it is reasonable, or until the translator has printed the number of error
messages specified by the -e option. It is necessary to correct the first mistake
before processing can be resumed,

When AMPL encounters a translation error, it optionally outputs the name of
the file and the line number of the offending error. Then an explanatory message
is issued, optionally followed by a “context” line, which approximately locates the
end of the offending statement. For data section errors, the context line marks the
sermicolon at the end of the statement with the symbols “>>>; <<<”. The reason
why data-section error messages point to the semicolon at the end of the relevant
statement is that, when reading a set in the data section, the translator first
reads all its elements, and then checks whether they satisfy domain restrictions.
For syntax errors, >>>< << surround a token near the one where the error was

detected.

In the transportation problem, when the database contains the first mistake,



#the transportation example is stored in file ‘diag.amp’
set customers := PITTSBURG ATLANTA
CLEVELAND ATLANTA;

the translator issues the message:

diag.amp, line 18 (offset 667):
duplicate element ATLANTA for set customers
context: CLEVELAND ATLANTA >>> ; <<«

When the database contains the second rmistake,

param demand := PITTSBURG 25000
ATLANTA 15000
CLEVELAND 22000
BOSTON 25000;

the translator discovers the unknown customer BOSTON and issues the message:

error processing param demand:
invalid subscript demand[BOSTON]

2.2.1.5 Readability and Writability

AMPL models are easy to read because the model section and the data section
are kept separate. This principle of independence of model and data is strongly
encouraged by AMPL, although instances of commingling of model structure with
data are possible, as shown in [Geof89c). An immediate advantage of this in-

dependence in AMPL is that Model Restrictions and Data Restrictions can be

implemented separately.
AMPL includes two documentation features: comments and literals. Com-
ments have the following syntax: they start with the symbol ‘#’ and extend to the

end of the line. Literals are strings delimited by single quotes or double quotes,
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which are associated with the entity that is being declared. In the general model

entity declaration:
Entity name [alias] [indexing]

“alias” is an optional literal. This literal is treated as a comment which AMPL
makes available to solvers and post—optimal analyzers. However, since comments
and lhiterals are not subject to semantic restrictions, they cannot be used by spe-

cialized tools to verify model correctness.

2.2.1.6 Implementability

The AMPL processor, which 1s written in C++, takes the entity declaration file
representing the model, and the input data (file) following the “data” statement,
and proceeds to write a new representation of the model in a style suitable for
optimization algorithms. The translation work is carried out in the following seven

phases described in [Four89]:

® Parse. The lexical analyzer reads characters from the model file and sends
them to the parser which generates suitable expression trees. The lexical

analyzer is written in Lex [Lesk75] and the parser is written using YACC

[John78].

® Read Data. This phase reads the input data and performs various on-line
semantic checks. It checks that all entities are uniquely defined; that no set
contains duplicate identifier values; that set elements have the correct number

of dimensions; and that the given parameter values are of the correct type.
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o Compile. This phase optimizes the expression trees created in the first phase,
subject to the data read in the second phase. The optimization actions
include removing invariants from loops, coalescing common subexpressions,
and rearranging the retrieval of parameter values that are indexed over an

identical set.

o (senerate. In this phase, all the derived sets are computed and the list of all
linear terms of the model are generated. Checks are performed on the data

to verify the satisfaction of the conditions imposed by the model.

e Collect. In this phase, the repeated appearances of a variable in terms with
the same objective or constraint are collected and merged into one appear-
ance. The sorting of coeflicients to match the order of the constraints is also

performed.

¢ Presolve. This phase applies transformations on the linear program defined

by the model and data files to make it simpler and smaller.

¢ Qutput. This final phase generates the original model translated into a file

format suitable for optimizers.

From this architectural layout, we observe that the Parse phase implements
the syntactic analysis, and the Read Data and Compile phases implement most of
the context-sensitive semantic restrictions. This modular design provides enough

separation between phases to make the implementation of additional semantic
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restrictions an easy task. However, since a parallel processing of the phases does
not look possible, possible improvements in the efficiency of implementation of the

semantic restrictions may be rather limited.

2.2.2 GAMS

GAMS (General Algebraic Modeling System) is a mathematical modeling lan-
guage developed originally at the World Bank for use as a modeling tool in a variety
of strategic planning environments. The language has a mature mainframe imple-

mentation and is also available on personal computers.

2.2.2.1 Semantic Restrictions

In GAMS, some semantic restrictions, or properties, are applicable to the model
(Model Restrictions), while others are applicable to the data (Data Restrictions).
These properties must be inferred from [Broo88], since GAMS does not define them
explicitly. The GAMS processor always halts with numerous error messages when
a semantic restriction is violated.

The basic entities of a GAMS model are statements for sets, parameters, vari-
ables, and equations. Other entities may include commands that generate output;
that use special operators which delimit the scope of a variable or equation; and
that use the relational capabilities of the GAMS system. A typical GAMS model

will include some of the following entities:

* GAMS Input
SETS
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PARAMETERS

VARIABLES

EQUATIONS

MODEL AND SOLUTION STATEMENTS
* GAMS Output

ECHO PRINT

REFERENCE MAPS

EQUATION LISTINGS

RESULTS

Example. The following GAMS statements describe the transportation prob-
lem:

*Model and Data.
SETS
I set of plants /DALLAS,CHICAGO/
J set of customers /PITTSBURG,ATLANTA,CLEVELAND/;
PARAMETERS
S(1) supply capacity (in tons) for plant i
/DALLAS 20000,CHICAGD 42000/
D(J) nonnegative demand (in tons) for customer j
/PITTSBURG 25000,ATLANTA 15000,CLEVELAND 22000/
C(I,J) tramsportation cost ($ per ton) from plant i to customer h|
/DALLAS .PITTSBURG 23.50, DALLAS.ATLANTA = 17.75
DALLAS.CLEVELAND 32.45, CHICAGO.PITTSBURG = 7.60,
CHICAGO.CLEVELAND = 25.75/;

VARIABLES
F(I,J) nonnegative flow (in tons) from plant i to customer j
TOTCOST total cost (in $ per tom) ;
POSITIVE VARIABLE F ;
EQUATIONS
G0BJ
TSUPPLY(I)
TDEMAND(J) ;
0BJ R TOTCOST =E= SUM((I,J), C(I,I)*F(I,]));
TSUPPLY(I) - SUM(J, F(I,J)) =L= S(I) ;
TDEMAND(J) .. SUM(I, F(1,J)) =E= D(J) ;
MODEL TRANSPORT /ALL/ ;
SOLVE TRANSPORT USING LP MINIMIZING TOTCOST
DISPLAY TOTCOST.L, F.L, F.M;

.
3

The ordering of statements in a GAMS model must be such that an entity of
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the model cannot be referenced before it is declared to exist <MR1>;
i.e., forward references are not allowed. In addition, any declaration of a model
entity must be unique <MR2}-; i.e., parameter and sets may not be declared
more than once. Although entities may not be declared more than once, entities
may have values defined (i.e., assigned to them) multiple times. Entity names
and labels (set and parameter elements) must be distinct from a list
of GAMS reserved words <MR3:-. Statements generally are terminated by
semicolons.

GAMS offers three different formats for entering data: lists, tables, and direct
assignments. Every domain element in a list, table, or assignment, must
be a member of the appropriate SET <DR1>. The GAMS compiler per-
forms this verification called “domain checking”, and issues an error message when
an element does not belong to a set. For example, in the specification SET T(I),
GAMS will check that every member of the set T is also a member of a previously
defined set 1.

However, if a parameter is not domain checked, the only restriction is that the
dimensionality be kept constant; i.e., identifiers must retain constant dimen-
sionality <MR4>. Once the number of labels per data item has been defined,
it is illegal to refer to the parameter differently.

A TABLE, like a SET, can have up to 10 dimensions <MR5>. Of
course, the number of labels associated with each number in the table

must coincide with the number of domains in the domain list <MR6>.
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GAMS includes various kinds of sets, namely static and dynamic, and ordered
and unordered. Sets may have ALIAS names, which must be unique <MR7>.
Static sets may have their members assigned directly in the model. The general
principle followed is that data must be non-redundant <DR2>; i.e., each
SET and PARAMETER data item (i.e., label or label-tuple combination) must
be entered only once.

One way to assign members to a set, or parameter, is the asterisk notation. It

applies to cases when elements follow a sequence, e.g.,

SET T time periods / 1991 % 2000 /;
SET M machines / MACH-1 * MACH-24 /;

Obviously, for the data assignment to be meaningful, both operands of the
* operator may only differ in characters that are digits <DR3>. Any
non-numeric differences or other inconsistencies cause errors.

GAMS also provides decision VARTABLES. A variable has a lower bound and
an upper bound, both of which are either set explicitly in the model, or take default
values. At all times, the lower bound cannot be greater than the upper
bound <DR4>. If the model violates this condition in an explicit bounds decla-
ration, GAMS will exit with an error condition. Additional restrictions on variables
are that BINARY variables must have bounds of 0 and 1 or be fixed, and
that INTEGER variables must have non—negative integer bounds or be
fixed <DR5>. If a variable appears more than once, the suffix indices of the

variable must match, in number and order, in all appearances <MR8>.
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The assignment statement (denoted by the ‘="symbol)} is the fundamental data
manipulation statement in GAMS. An assignment statement can be indexed by a
controlling index or controlling set. In an indexed assignment, any controlling
index on the right of the = sign must be matched on the left <MR9>. In
addition, the domains of all controlling indices must be subsets of those
declared for the corresponding sets, parameters, variables, or equations
~<MR10>.

Standard arithmetic operations can be used on the right of the = sign. Indexed
arithmetic operations are SUM, PROD, SMIN, and SMAX. The most common
of these is the summation, written SUM(index of summation, summand). The
summand is the scope of the controlling inder of summation. The controlling
index cannot appear outside its scope <MR11>.

GAMS provides common standard functions, like exponentiation, logarithms,
and the trigonometric functions. The number of arguments in use must be
as stated by the GAMS standard function definition <MR12>.

Also included in GAMS are binary set operations like union, difference, and in-
tersection, and operators that determine the size of a set (CARD), that determine
the position of an element in a set (ORD), and that perform the operation called
“such that” (‘$’) which can act as an assignment operator. The dollar operation
can be controlled with a set (static or dynamic) or with a numeric valued parame-
ter, but cannot mix both <MR13>. The ORD function can only be used with

a one—dimensional static, ordered SET <MR14>.
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Data types in GAMS are either “value” type or “set” type, and assignments
must be of one type or the other. For all operators, with the exception of the dollar
operator, value type and set type operands cannot be mixed <MR15>.
For the dollar operator, some mixed mode operands are allowed.

GAMS also provides a LOOP statement. LOOPs may be nested and controlled
by more than one set. It is illegal to modify a controlling set inside the
body of the loop <MR16>.

The DISPLAY statement is used with parameters to write into the output
file all values associated with identifiers. The format of this statement is the
reserved word DISPLAY, followed by a comma-delimited list of “identifiers” , Where
identifier is the name of an initialized or assigned <MR17> set or parameter.

With regard to GAMS equations, by default, when the model class is unspeci-
fied, GAMS will examine the equations and determine the model class and solver
to be used. However, when the model class is specified, the mathematics in
the equations must match the model class <MR18>. Thus, linear pro-
gramming models cannot contain nonlinear terms, nonlinear programming models
cannot contain discrete variables, etc. Furthermore, equations must be math-
ematically consistent <MR19>. For example, all indices used in equations
must match, in order and number, in all repeated appearances. More generally, all
appearances of set names and labels must be consistent with the dimensionality

and domains of the identifiers.

In GAMS, symbols may have values that are only determined subsequently
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to their declaration. At compile time, however, each symbol must have a
value assigned to it before it can be referenced in some subsequent
assignment statement <DR6>~. An attempt to use data associated with an
unassigned symbol (like a parameter) will cause an error condition.

Other restrictions exist on GAMS. Some “discontinuous” functions (CEIL,
TRUNC, SIGN, etc.) may not have endogenous arguments <MR20>;
i.e., may not have “unknown”, or variable, arguments. In addition, dollar op-
erations cannot contain references to GAMS variables <MR21>; only
exogenous data or logic is permitted.

In the case of optimization, the GAMS model must declare a scalar
variable (i.e., with no domain) to serve as the quantity to be minimized
or maximized <MR22>. During compilation, GAMS checks that the objective

variable is used in at least one of the equations.

2.2.2.2 Run—-Time versus Static Model Checking

In GAMS, the model structure and the model instance (data) are mixed, al-
though it is possible to maintain them separately. Because this separation between
maodel class and model instance is not always explicit, many model and data checks
must be deferred to run-time (generation-time). Hence, it is not possible to com-
pletely check a GAMS model statically. Some of the semantic restrictions checked

at run-time are now identified.

Illegal arithmetic operations such as division by zero, or taking the log of
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a negative number <DRT7>, cause execution time errors. The exponentiation
operator in X**Y computes a real number raised to a real power. This operation
will result in a run-time error if X has a negative value, or if Y is not
a real number <DR8>-.

Although not illegal, to avoid the risk of having GAMS treat a value as unde-
fined, the model should not create or use numbers larger than 1.0E+420, or smaller
than 1.0E-20. Arbitrarily large or small numbers can be set to INF, or -INF,

Lag operations on the domain of an equation should not lead to multiple
definitions of the same single equation <MR23>. This condition can only
be checked at model generation time.

If a solver fails to find a solution, any following SOLVE is not attempted and

GAMS treats this as a fatal error.

2.2.2.3 Unsafe Constructs

In general, GAMS allows its binary set operators, union, intersection, and dif-
ference, to take as operands dynarnic sets drawn only from identical domains,
(Dynamic sets, as opposed to static sets, may change their membership via assign-
ments). However, this semantic restriction is not enforced for sets of two or more

dimensions, as shown in the following set valued assignment:

SETS
C set of colors /BLUE, ORANGE/
CSUB(C) subset of colors /BLUE/
P set of plants /100, 200/

PSUB(P) subset of plants /200/
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FAULTY;
FAULTY(C,P) = CSUB(C) + PSUB(P) ;
DISPLAY FAULTY;

The computed set FAULTY contains the tuples (BLUE,100), (BLUE,200), and
(ORANGE,200). This set contains all tuples whose first component is BLUE (i.e.,
is a member of CSUB(C)) and second component is a member of P, together with
all tuples whose second component is 200 (i.e., is a member of PSUB(P)) and first
component is a member of C. Note that the tuple (ORANGE,200) is included in
the set FAULTY, even though ORANGE is not a member of CSUB(C). GAMS
takes the viewpoint that FAULTY is defined over the universe and actually stands
for “set faulty(*,*)”, which allows expressions like faulty(p,c), faulty(*,csub), etc.

It is apparent that this kind of set operation is not closed; therefore we consider it

unsafe.

2.2.2.4 Diagnostic System

During the compilation process, GAMS provides a listing of the input file, a
list of any error messages, and reference maps. During the execution process,
the only normal output produced may come from a DISPLAY statement. Usefu]
statistics, like model “generation time”, and model “execution time” are available
in a summary.

When GAMS encounters a compilation error, it marks the offending position
with a ‘3" sign and a number on a line that starts with 4 asterisks “****» The

section labeled ERROR MESSAGES explains the probable cause of the error.
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Some errors will only be detected on lines following wlhere they actually occurred:
hence, the messages may sometimes not show exactly where the error has occurred.
Below is a fragment of the GAMS transportation problem which includes the

duplicate ATLANTA customer and the invalid BOSTON demand.

*Database.
SETS

J set of customers /PITTSBURG,ATLANTA,CLEVELAND,ATLANTA/ ;
PARAMETERS

D(DH nonnegative demand (in tons) for customer j
/PITTSBURG'25000,ATLANTA 15000,
CLEVELAND 22000,BOSTON 25000/;
Both errors, the duplicate customer in the J set and the unknown demand in the
D(J) parameter, are caught by the GAMS translator which, in addition to inserting
the ‘§’ sign below each offending token, labels the ATLANTA line with the number
172 and the BOSTON line with the number 170. The ERROR MESSAGES section

shows the following error codes:

170 DOMAIN VIOLATION FOR ELEMENT
172 SYMBOL IS REDEFINED

When GAMS encounters an execution error caused say, by an illegal instruction,
GAMS writes an error message in the output file and continues execution. This
behavior is possible because, notably, GAMS provides an extended algebra that
contains all operations, including illegal ones. An “extended range” arithmetic
is used to handle missing data, the results of undefined operations, and bounds
regarded by the solver system as ‘inﬁnite. Hence, all run-time exceptions are
trapped, and after writing an error message in the output file, GAMS treats the

result as undefined and continues executjon. However, under solver subsystem
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control, the subsystem may report any arithmetic exception in the output file and
interrupt the solution process.

There is another way of annotating the GAMS output file with useful informa-
tion, and also ensuring data integrity. GAMS provides the ABORT statement to
terminate a GAMS task if some logical or numerical condition does not hold. At
run-time, when the stated condition does not hold, the identifiers and the message
provided in the ABORT statement are output, and the processing is terminated
with an error condition. Otherwise, if the condition holds, execution will continue
normally.

The amount of diagnostic output can also be controlled with options of the
SOLVE statement. Options can be chosen to provide debug and explanatory in-
formation, and to terminate the execution when a certain number of illegal in-

structions performed by the solver has been exceeded.

2.2.2.5 Readability and Writability

GAMS does not encourage the separation between model structure and data.
For example, the same statement can be used for the declaration of data and its
assignment of values in list-format. Hence, data tables, which are usually less-
readable, get commingled together with the model. From the point of view of
semantic restrictions, this commingling adds more complexity to their implemen-

tation.

GAMS provides two ways to include comments in a model. The first way is to
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start a comment with a ‘*’ symbol in the first character position. This comment
may extend to the end of the line. The second way is to include any block of text
between the delimiters $ONTEXT and $OFFTEXT. These delimiters must also
be in the first character position, and there are no restrictions as to the length of
the block.

GAMS also includes a self-documentation feature that facilitates the reading
of the models. Explanatory text can be embedded within the GAMS statements
immediately following a name declaration. The syntax of this optional text is
the following: it is a sequence of characters not starting with “-” or ‘=’, and is
separated by at least one blank space from the preceding symbol, which must be
on the same line; the sequence is terminated by one of the three symbols, “ /37, or
by the end-of-line, or by a quoted string not longer than 80 characters long. The
explanatory text and model comments are not subject to semantic restrictions and

consequently, cannot be used by a specialized tool to enhance model correctness.

2.2.2.6 Implementability

A GAMS program is compiled with the GAMS compiler, which produces a
set of instructions that can be executed in the GAMS Symbolic Machine. The

instructions generated by the GAMS compiler are not tied to any single computer

hardware.

The operation of the GAMS Symbolic Machine has been described in (Eijk83].

This machine is composed of the following six components:

40



o The Symbol Table. 1t is created by the compiler and contains an entry for
every symbol (name of set, parameter, variable, equation, etc.) listed in a
GAMS source program. Every entry in the Symbol Table contains an index
number and a record accessed through a pointer. This structure provides
quick access to a Symbol Table Entry based on the index number which,
if known, leads to the pointer in the Symbol Table. Access by name is
made efficient by maintaining a hash table, which given a symbol name, can

translate it to the corresponding index number.

¢ The Unique Elements Table. This table is created by the compiler and con-
tains an entry for every unique alphabetic element (set element, parameter

element, etc.) mentioned in a GAMS source program.

o The Instruction Format. The instructions in the GAMS Symbolic Machine

are of fixed length and are all stored in an array of instructions.

¢ The Program Counter. It is an index which js used to indicate the current

instruction being executed in the array code.

o The Ezecution System Stacks. The execution system operates with three
stacks: the Control Stack (which is used for controlling loops and holds the
current value of the loop index, the corresponding element, the controlling
set information and the boundaries of the loop). the Index Stack (which

contains unique element numbers), and the Value Stack (which contains the
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real values for unary and binary operators as well as the fetch and store

operations). All operations are executed on the Value Stack.

o Miscellaneous Variables. These are variables defined for diagnostic and op-

tions.

From this architectural layout, it is clear that the translation of GAMS code
into an intermediate symbolic representation has been highly optimized. Hence,

GAMS is able to implement its semantic restrictions very efficiently.

2.2.3 LINGO

LINGO is a recent linear programming modeling language from the developers
of the popular LINDO [Schr86]. Versions of the language are available for different

environments, including PC/DOS and Macintosh.

2.2.3.1 Semantic Restrictions

Very little has been published about the semantic restrictions enforced by
LINGO. The Model Restrictions and Data Restrictions given below have been
inferred from [Cunn89), and from the error messages encountered while using
LINGO.

Two solvers are available in LINGO: the direct solver, and the simultaneous
equation solver/optimizer which can only solve linear models <MR1>. The
solver to be used is determined by LINGO from examination of the structure and

mathematics of the model.
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The direct solver tries to compute values for all the variables in the relations
or constraints. It starts by computing values in relations with only one variable.
When the values of all variables have been computed, the direct solver stops and
the solution is printed. If the value of a variable in some constraint cannot be
resolved, the simultaneous equation solver/optimizer is called. This solver first
checks that all expressions are linear after variables have received their values. If
the model is not linear, LINGO halts and an appropriate message is printed. If
the solver determines that the model is linear, it attempts to find the solution.
General information about the mathematical programming methods used by the
solvers is found in [Schr86).

Two kinds of models exist in LINGO: basic “direct” models, and set-based sys-
tems of simultaneous equations and linear programs. Direct models have variables
which are not interdependent and, hence, can be directly computed by LINGQ’s
direct solver. On the contrary, set-based systems of simultaneous equations and
linear programs have variables whose values cannot be directly determined, but
which can be solved by LINGO’s simultaneous equation/solver as long as the equa-
tions are linear.

A direct model in LINGO is an unordered list of statements; each statement is
terminated by a semicolon, and may possibly span multiple lines. Since the order
of statements in the direct model is irrelevant, the same results are obtained with a
different order. The statements declare a condition that each variable must satisfy,

as opposed to a rule for computing that variable; LINGO takes care of computing a
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value for each statement variable. Apparently there are no implemented semantic
restrictions applicable to variables in direct models.

A set-based model in LINGO is a collection of statements; they are split be-
tween one or more set definition sections, constraints section(s), and data sec-
tion(s). A set section is delimited by the tokens “SETS:” and “ENDSETS”.
A constraints section is optional, and typically includes equations involving the
model entities (i.e., its scalar and set variables). For an optimization model, the
constraints section includes an equation beginning with *“MAX=", or “MIN=",
followed by the expression to be maximized or minimized. In any optimization
model, there can only be one expression to either minimize or maxi-
mize <MR2>. Finally, a data section is delimited by the tokens “DATA:” and
“ENDDATA”. There are no reserved words in LINGO.

Example. A LINGO model for the transportation problem is:

!Model and Data;
SETS:

PLANTS /DALLAS, CHICAGO/ : SUPPLY ;
CUSTOMER /PITSBURG, ATLANTA, CLEVELND/ : DEMAND ;
LINK(PLANTS, CUSTOMER) : COST, FLOW ;

ENDSETS

! The objective function;

[TOTCOST] MIN = QSUM(LINK: COST * FLOW)

! The supply constraint;

QFOR(PLANTS(I)
@SUM(CUSTOMER(J) : FLOW(I,J)) < SUPPLY(I)) ;

! The demand constraint;

QFOR (CUSTOMER (J)

QSUM(PLANTS(I): FLOW(I,J)) > DEMAND(J)) ;

.
)

DATA:
SUPPLY
DEMAND

20000, 42000 ;

¥

25000, 15000, 22000

]
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COST = 23.50, 17.75, 32.45,
7.60, 0.0, 25.75 ;
ENDDATA
END

Sets are declared in the SETS section of a model. The syntax for a set decla-

ration is:

set_name / identifiers / [:attribute(s)];
where the brackets around attribute(s) denote optionality. In LINGO, all con-
stants, attributes, set names, and corresponding identifiers, must be
globally unique <MR3s.

Set attributes are normally assigned values in the DATA section. The syntax
for a data assignment is:

attribute = value_list;
Of course, the value_list must have the same number of numeric values
as those of the attribute it initializes <DR1>.

A derived set (relation) is a set constructed from one or more other (primitive
or derived) sets, a subset of another (primitive or derived) set, or combinations of
elements in these other sets. Globally, i.e., throughout the model, sets must be
declared before they can be referenced <MR4s-.

An individual element of a derived set may be accessed with a set operator

expression. The set operators in LINGO are: @FOR, @SIZE, @SUM, @MIN, and
@MAX. A set operator expression is of the form:

set_operator(set_part:expression);
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The set_part specifies a set name, optionally followed by a comma-delimited list of
indices which are mentioned in expression. The set’s name and the number of
indices, if present, in set_part must coincide with the name and dimen-
sion of a previously defined set <MR5>. Any indices present in sef_part are
called bound indices in expression. Any indices used in expression, and which are
not mentioned in set_part, are called free indices. In any indexed variable or in-
dexed set within ezpression, the number of indices used must coincide with

the dimension of the corresponding declaration <MR6>.

2.2.3.2 Run-Time versus Static Model Checking

It is difficult to distinguish between static checking and dynamic checking in
an interpreted language like LINGO. In abstract terms, it is possible to think that
most of the pre-solver activity corresponds to static checking, while the solver’s
actions correspond to run-time model checking. The two solvers in LINGO either

compute a solution, or return an error message.

2.2.3.3 Unsafe Constructs

In at least two areas, LINGO does not have appropriate semantic restrictions,
and thus has safety problems. The first area is in the treatment of identifiers in
derived sets, and the second one is in the treatment of bound indices in set-operator
expressions. The examples below illustrate each of these concerns.

In LINGO, identifiers in derived sets do not satisfy the equivalent of semantic
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restriction <MR2 for their primitive constituents. For example, the model

SETS:
cu / PIT, ATL / ;
PL /1..2/ ;
LINK(CU,PL) / PIT 1, PIT 2, ATL 1, PIT 1, ATL 2 /;

is legal in LINGO, although the tuple (PIT 1) is duplicated. Hence, although this
model contains a mistake, it is accepted by the language.
The treatment of bound indices in set-operator expressions may also be unsafe,

For example, the following statement may be added to the above model:

QFOR( PL(I): QSUM( LINK(I,J) :1 ) >1 );
In this legal statement, the indices in LINK are running over a set of (PL,PL)
identifier—pairs, rather than over its defined set (CU,PL). This kind of liberty does

not protect the modeler from making various kinds of mistakes.

2.2.3.4 Diagnostic System

In the LINGO environment, the GO command orders LINGO to start solving
the current model. In the event of model errors, LINGO displays a line with an
error message, then the offending line, and then it marks the offending position
with a * * ’ symbol. LINGO stops at the first appearance of an error.

In LINGO, the database containing the duplicate ATLANTA customer in the

transportation problem will be described as follows:

SETS:
CUSTOMER /PITSBURG, ATLANTA, CLEVELND, ATLANTA/ : DEMAND ;

The duplicate customer in the CUSTOMER set is caught by the translator, which

issues the following message:
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INVALID PRIMITIVE SET ELEMENT NAME
4] CUSTOMER / PITSBURG, ATLANTA, CLEVELND, ATLANTA/ :DEMAND ; [

A demand for BOSTON can be added to the data section as follows:

DATA:
DEMAND = 25000, 15000, 22000, 22000 ;

The invalid demand for BOSTON is caught by the translator, which issues the

following message:

INVALID NUMBER OF ARGUMENTS IN DATA STATEMENT.
18] , 15000, 22000, 22000;

-~

2.2.3.5 Readability and Writability

LINGO offers the modeler the choice to separate or to commingle model struc-
ture and data. For simple models, it is convenient to list the data immediately
following each set declaration. For large-scale or more complex models, a DATA
section can be used to store the data following the MODEL section. Alternatively,
the @FILE(file) function can be used to input model text or data from a file. The
@FILE(file) function reads the text from the input file until it finds the end-of-file
or a LINGO end-of-record marker ( * ). @FILE behaves like the include com-
mand of programming languages, with the limitation that nesting is not allowed.
From the viewpoint of semantic restrictions, the choices available for modeling
both structure and data may add complexity to the implementation.

Comments in LINGQ begin with a ‘" symbol and are terminated by a semi-

colon. They can start anywhere in a line, and extend over multiple lines. Although
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no other self-documentation features exist in LINGO, the models written in this
language are easy to read. However, since comments are free—format and not sub-
ject to semantic restrictions, they cannot be used by a specialized tool to verify

model correctness.

2.2.3.6 Implementability

There are no details available about the architecture of LINGO. From its user
environment, however, it appears that the language is interpreted. Hence, notwith-
standing some advantages of interpreted over compiled modeling languages in areas
such as flexibility, the implementation of semantic restrictions may not be amenable

to be optimized for speed of execution.

2.3 Discussion

The leitmotiv of this chapter has been that explicit context-sensitive seman-
tic restrictions are of enormous importance to preventing and detecting modeling
errors in mathematical programming modeling languages. Qur beliefs are that, in
modeling, errors are the norm rather than the exception, and that models cannot
be assumed correct until proven so. The following comments are stimulated by the
appearance of this recurring theme in Section 2.2.

Semantic Restrictions. None of these modeling languages for mathemati-
cal programming have published formal semantic definitions (neither in attribute

grammar style nor in any other style, such as denotational semantics, operational
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semantics, or axiomatic semantics), although almost all of them have published
formal syntactic ones. The languages rank as follows, in order of greatest to least
difficulty in identifying semantic properties: LINGO, AMPL, GAMS.

There is a need for rigorous and unambiguous specifications of the semantics
of these mathematical programming modeling languages, so that confidence in
the correctness of the models and their data can be strengthened, and so that
the current approach to mastering these languages by experimentation can be
abandoned. Consequently, we recommend that accurate context-sensitive semantic
descriptions be included in language definition manuals of modeling languages
for mathematical programming, Restrictions should be properly motivated and
categorized, and the ones which cannot be properly classified, should be relegated
to the group of pragmatics.

Run—-Time versus Static Model Checking. None of these modeling lan-
guages for mathematical programming can detect all errors via static (translation—
time) checks alone; some run-time (i.e., generation-time or solver-time) model
checking is required. The languages rank as follows, in order of least to greatest
conduciveness to having error checks performed at static time: LINGO, AMPL,
GAMS.

For purposes of handling large models efficiently (i.e., having the model genera-
tor run as fast as possible and, at the same time, making the modeling task simple
and less error—prone by providing feedback as early as possible), it’s better to en-

force semantic restrictions statically. Hence, to be able to improve error-checking
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services, we believe strongly that designers should identify both the static and the
dynamic (or run-time) semantic restrictions of their languages.

Unsafe Constructs. The languages rank as follows, in terms of largest to
smallest number of unsafe constructs: AMPL, LINGO, GAMS. The highest degree
of safety is offered by GAMS, since this language has defined a large number of
semantic restrictions. LINGO places fewer semantic restrictions on its models
than GAMS, leading to more safety problems. AMPL has the largest number of
unsafe constructs, from our perspective, since it has not clearly defined semantic
restrictions for some areas. However, we recognize that, on occasions, language
designers make different design decisions deliberately.

Because ény unsafe construct in a modeling language for mathematical pro-
gramming makes modeling more error—prone and unreliable, we suggest that fu-
ture language designers eliminate unsafe constructs through the identification of
appropriate semantic restrictions and pragmatics (i.e., the system designer tells
the modeler what practices are good and bad). Depending on the developers’
intentions, this technique could be incorporated into the current mathematical
programming modeling languages or their implementations as well.

Diagnostic System. The languages rank as follows in order of increasing
friendliness of their diagnostic system: AMPL, LINGO, GAMS. The AMPL sys-
tem has a simple diagnostic system: it lists error occurrences with sometimes
understandable messages, and then stops since no error recovery mechanisms ex-

ist. Although LINGO stops at the first error occurrence, 1t provides better error
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diagnostics than AMPL and, since the modeler does not have to leave the LINGO
environment, it is easier to correct mistakes. Not surprisingly, considering the rela-
tive ease with which its semantic restrictions can be identified, GAMS has the most
complete diagnostic and error recovery system of the three languages. At model
translation-time, all model errors are clearly marked and, at model generation—
time, all exceptions are trapped and written in the output file. Notwithstanding
the fact that diagnostic systems are also a function of implementation strategies,
this language illustrates the fact that a good diagnostic system can be constructed
as a consequence of explicit semantic restrictions.

Readability and Writability. The languages rank as follows in order of
increasing readability and writability: GAMS, LINGO, AMPL. In GAMS, the
binding of data with model structure reduces the clarity of complex models, and
adds complexity to the implementation of semantic restrictions.

Documentation can be extensively included throughout a model in all three
languages, and hence they can be considered equally readable in this respect.
However, since the documentation is not sub ject to semantic restrictions in any of
the languages, it cannot be employed by automated tools to verify the correctness
of a model and increase its reliability.

Implementability. The architecture of all three mathematical programming
modeling languages is very different. AMPL and GAMS support batch mode
operation, while LINGO supports an immediate computation mode. (It is possible,

however, to use LINGO in batch mode by redirecting input from an input file,
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and redirecting output to an output file). No data are available on the relative
translation-time versus generation-time efficiency of the execution of semantic
restrictions. Hence, it is not possible to compare how efficiently the different

semantic restrictions are implemented on the current architectures.
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CHAPTER 3

Formalization of Static Semantics via Attribute Grammars

The previous chapter examined the need to identify context—sensitive semantic
restrictions in modeling languages for mathematical programming as a means of re-
ducing modeling errors. This chapter examines a formal method of representing the
context—sensitive aspects of mathematical programming modeling languages based
on attribute grammars. We show how attribute-grammar based definitions can be
used to enforce, in polynomial time, the complete static semantics of modeling
languages for mathematical programming, From examples of formalization of var-
lous semantic restrictions of SML (Structured Modeling Language), we show that
this kind of formalism is sufficiently perspicuous to facilitate the understanding of
language semantics, and leads to complete, consistent, and correct specifications
that are easy to maintain and modify.

The chapter is organized as follows. Section 3.1 provides a brief introduction
to attribute grammar concepts. Then Section 3.2 defines some SML terminology
which is necessary for reference purposes. Section 3.3 describes a methodology to
derive an attribute grammar for SML. The time complexity of attribute evalua-
tion is discussed in Section 3.4. Several examples, that show how specific semantic

restrictions of model structures and model instances written in SML can be de-

54



scribed in attribute grammar terms, are given in Section 3.5. Section 3.6 discusses
the importance of this methodology. Finally, Section 3.7 comments on some of
the main difficulties and lessons learned from the description of SML via attribute

grammar equations.

3.1 Attribute Grammars

Attribute grammars were first introduced by Knuth in [Knut68] and [Knut71]
to assign meaning to derivation trees on context-free languages. Because of their
clarity and brevity, attribute grammars have been used in an extensive range of
applications, from compiler generation to language translation, theorem proving,
and others (see e.g., [Aho86], [Farr82]). Language-based tools, like syntax—directed
editors, can also be appropriately specified with attribute grammars,

An attribute grammar (AG) is a context-free grammar together with sets of

semantic equations associated with the productions of the context—free grammar.

Formally, AG = (CFG,A,F), where

l. CFG = (V,,V;, P, S) is a context—free grammar with V, a set of nonterminal
symbols, V; a set of terminal symbols, and S the initial symbol. P is a
set of production rules, {p1,...,p;}, where p; (1 < i < 7) is of the form:
pi + X — weXywi.. Xpw,, n > 0, with Wo, ..., Wy 10 V" and X, X, ..., X, in

Va. The set of all terminal symbols in Vi, including the empty symbol, is

denoted by V*. CFG is called the underlying grammar for AG. We assume,
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without loss of generality, that the initial symbol S never appears in the right

hand side of any production rule.

. A is a set of attribute symbols. Each nonterminal in production p; has a
(possibly empty) subset of these attributes A (there is no loss of generality
in assuming that only nonterminals have attributes). An occurrence of an
attribute symbol ‘%’ of nonterminal X is written “X.5”. Attributes have

values from specific domains.

. F'is a set of semantic equations (analogous to a system of simultaneous alge-
braic equations) that specify the context—sensitive restrictions of the language
generated by CFG. Semantic equations associated with a production p; spec-
ify how the value of each attribute-occurrence in p; is defined. The solution
of these equations is an assignment of either a null value or a non-null value
to every attribute-occurrence. This value can be computed from the value

of other attribute-occurrences of the production.

Each attribute symbol is either inherited or synthesized. In a well-formed

attribute grammar, the initial symbol S has no inherited attributes, and terminal

symbols have no synthesized attributes. Inherited attributes can pass information

“down” the tree from the root towards the frontier; synthesized attributes can pass

information “up” the tree. The semantic equations associated with a production

must define all synthesized attribute-occurrences of the left—hand-sjde (LHS) of

the production and all inherited attribute-occurrences of the right-hand-side of
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the production (RHS) - - these are called the output attributes. Furthermore, they
cannot define any inherited attribute-occurrence of the LHS or any synthesized
occurrence of the RHS - - called the input attributes. In a well-formed, reduced,
attribute grammar, every nonterminal symbol, and no terminal symbol, is the

left-hand-side of some production.

3.2 SML: Structured Modeling Language

SML, as described in detail in [GeofS8), is a modeling language which provides
a representation for the core concepts of SM (Structured Modeling). SM is a
modeling approach intended to provide a foundation for the development of a
new generation of modeling environments. It provides a framework of conceptual
abstractions for representing a wide variety of models as “structured models”. An
introduction to SM appears in [Geof87], and its “core” concepts and underlying
theory are explained in [Geof89b].

Structured models consist of elemental structure together with qualifying generic
structure and modular structure. Elemental structure is a collection of elements
that is nonempty, closed, and acyclic. Generic structure is a partition of model
elements that does not mix element types (possible element types are primitive
entity, compound entity, attribute or variable attribute, function, and test). Each
cell in the partition implied by generic structure is called a genus. A modular
structure is an ordered tree whose leaves are the genera (plural of genus).

SML is composed of two parts: “Schema” and “Elemental Detail”. The Schema
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is the text-oriented representation of general model structure. It is composed of

the following five sublanguages:

1. Sublanguage for generic calling sequences. This language specifies the defi-

nitional dependencies among model elements.

2. Sublanguage for range statements. This language defines a set of permissible

values of attribute and variable attribute elements for a whole genus.

3. Sublanguage for index set statements. This language helps to define the
element population of a genus. Calling sequence feasibility also plays a major

role in determining this population.

4. Sublanguage for generic rule statements. This language specifies genus-wide

rules for determining the values of function and test elements.

5. Sublanguage for interpretation. This language provides explanatory com-

ments about a typical element of a genus.

These sublanguages are specified by a context-free grammar augmented with
context-sensitive restrictions given, in English prose, as Schema Properties. The
Schema Properties include static semantics only.

Elemental Detail is the table-oriented data that supplements the Schema in
order to specify a specific model instance. In a genuine (well-defined) structured
model, the tables are properly structured, labeled, and loaded following Table

Content Rules, which are restrictions on the data, also described in plain English.
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An SML Schema consists of paragraphs which are denoted differently depending
on the type of element represented. Each element type corresponds to one of the

following choices (the square brackets denote optionality):

e Primitive entity. It is an atom (or undefinable “thing”) in SM. The corre-
sponding genus paragraph is denoted:
GenusName [symbolic index] /pe/

[index set statement] [domain statement]
“| [interpretation] ~.

¢ Compound entity. It is a type of model element that is defined in terms of
other primitive or compound entities. The corresponding genus paragraph is

denoted:

GenusName [symbolic index] (generic calling sequence) /ce/
[index set statement] [domain statement]
“| [interpretation] ~.

o Attribute. It is a type of model clement that bears a user—specified value.
Some attributes classified as “variable” may bear a value that is solver—
specified. The corresponding genus paragraph is denoted:

GenusName [symbolic index] (gemeric calling sequence) /a/

[index set statement] [domain statement] [range statement]
"I [interpretation] ~

o Function. It is a type of model element that bears a numeric value computed
by a mathematical rule. The corresponding genus paragraph is denoted:
GenusName [symbolic index] (generic calling sequence) /f/

[index set statement] [domain statement] ; generic rule
“| [interpretation] ~.
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o Test. It is similar to a function element, but the value is of logical type. The

corresponding genus paragraph is denoted:

GenusName [symbolic index] (generic calling sequence) /t/
[index set statement] [domain statement] ; gemeric rule
“| [interpretation] ~.

In the above denotations, symbolic indez, together with possible alias indices, be-

have like a dedicated index symbol in conventional mathematics.

3.3 Formalization Methodology

To formalize the static semantic aspects of SML via an attribute grammar, the

following four iterns must be specified:

1. Attributes attached to each nonterminal symbol in the productions of the
context-free grammar that generates SML (specifying also attribute domains

- - which may be structured - - and whether they are synthesized or inherited).

2. Semantic equations and their corresponding context—free production rules.
(These are the attribute evaluation rules associated with each of the gram-
mar’s production rules. Attribute evaluation rules must include both the

Schema Properties and the Table Content Rules).
3. Auxiliary functions, if necessary (to aid the evaluation of semantic equations).

4. Local attributes, if necessary. These attributes are associated with a par-

ticular production rather than to a nonterminal symbol, and are used in
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place of synthesized or inherited attributes. For example, a local attribute
error, corresponding to a domain of error messages, can be declared armong
a production’s semantic equations. The value of error is determined by its
corresponding semantic equation ( error = ... ). Then in a modeling environ-
ment, error would be represented in the output display as a string containing

an error message, or as the empty string.

For a number of practical reasons, rather than employing the concrete syn-
tax implied by SML’s context-free grammar to specify an attribute grammar, it
is preferable to employ an abstract syntax generated by an abstract grammar.
Abstract syntax mimics concrete syntax, except that it usually ignores details
like terminal symbols, operator precedence, and similar syntactic adornments. In
abstract syntax, a production rule is written in prefix notation, with an opera-
tor symbol used as a label and a list of space—delimited arguments enclosed in
parenthesis. (In a modeling system, parse trees are internally manipulated using
abstract syntax, where operators are the nodes of a tree, and the arguments of
the operator are the children of the tree). In addition, every abstract syntax rule
has a distinguished production called the “completing production”, which plays a
special role in the specification of syntax-directed editors. This role is explained
in Section 6.1, “A Syntax-Directed Editor Description in SSL”. Usually, the first

operator in every production is taken as the completing production.
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The following example shows some of the notational differences between con-

crete and abstract representations in SML.
Example. Whereas the concrete BNF syntax for a numeric-valued expression

in the generic rule of a function or test genus paragraph may be given by

Expression ::= Term

| MINUS_SIGN Term

| Expression PLUS_SIGN Term
!

Expression MINUS_SIGN Term

its abstract counterpart might be represented by

expr: ExprNull()

TermSingle(term)

TermPair (MINUS_SIGN term)
PlusPair(expr PLUS_SIGN term)
MinusPair (expr MINUS_SIGN term)

One of the main reasons for maintaining an abstract syntax is to handle in-
complete model fragments. A Schema that may be partially complete, from the
point of view of the modeler, is always a complete derivation from the point of
view of a modeling system founded on attribute grammars. The following example

illustrates this distinction for SML.

Example. The concrete incomplete expression, PLUS_SIGN Term, will exhibit
the complete abstract representation:

PlusPair{ExpNull PLUS_SIGN term).

To determine which kind of attribute (i.e., synthesized or inherited) should

be associated with a particular nonterminal symbol, the following criteria may be

considered:



o Ifthe value of the current attribute depends on the value of the same attribute
at another left sibling node in the abstract tree, then the attribute should be

synthesized by the left sibling node, and inherited by the current node.

o If the value of the current attribute depends on the value of the same attribute
at another right sibling node in the abstract tree, then the attribute should

be synthesized by the right sibling node, and inherited by the current node.

¢ If the value of the current attribute depends on the value of the same attribute
at the parent node in the abstract tree, then the attribute should be inherited

by the current node.

e If the value of the current attribute depends on the values of attributes at
the children of the node in the abstract tree, then the attribute should be

synthesized by the current node.

3.4 Complexity

An attribute grammar for SML may be evalualed on a particular input model

by:

¢ building a parse-tree for the given input model in which every parse-tree
node for a grammar symbol X is implemented as a record, and the fields

correspond to the attributes of X,
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* traversing over this parse-tree and evaluating the fields of the records by
calling the semantic equations, using the values of other node fields as argu-

ments.

The different evaluation strategies correspond to different ways of visiting the nodes
of the tree. The result of the attribute evaluation process 1s the value of synthesized
attribute field(s) of the root node.

It has been established that the update of a distinguished attribute of an n—
attribute syntax tree can be computed in a linear number of instructions, yet at
a cost of storing only O(y/n) attribute values at any stage [Reps83]. Hence, the
process of evaluating each attribute (also called attribution) can be performed in

a polynomial number of recomputations, for any modeling language.

3.5 Examples of Schema Properties and Table Content Rules

The complete attribute grammar for SML is given in [Vicu90]; there are around
3900 lines of attribute grammar equations, which are embedded in more than 7800
lines of pseudo attribute grammar code for the syntax-directed editor prototype
described in Chapter 6. The prototype’s attribute grammar equations are tested
on a set of suitable test models in Section 6.2. The following subsections include
various examples of the application of the formalization methodology. Several
quotes, taken from [Geof88], of SML’s Schema Properties and Table Content Rules

are provided, followed by the attribute grammar equations enforcing these semantic
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restrictions. Schema Properties are flagged either <<Pn.i>>, or <<Pi>>. In the
former case, the label indicates that Schema Property i was defined in Appendix
n of [Geof88], while in the latter case, the label refers to the 'th Schema Property
defined in Section 2. Table Content Rules are tagged < <TCR.x>>, where z is an
upper—case alphabet letter.

A formal context-free grammar for SML, with its rules rendered as a Schema,
appears in Appendix 6 of [Geof88]. An abstract syntax for SML, derived from
the concrete syntax implied by the context-free grammar, is given here in Ap-
pendix A. The notation is basically unextended BNF, with the root node labeled
“schemafile”, and leaf nodes in all upper case letters (such as the module name
MNAME). The left-hand side of every production rule is to the left of the colon
symbol (*:’), and the corresponding right-hand side is the set of grammar symbols
enclosed in parenthesis, and labeled with an operator name. Right-hand side rules
assoclated with the same left-hand side nonterminal are separated by a bar (¢)’)

symbol. Individual production rules are separated from each other by a semicolon
symbol {*;7).
3.5.1 Equations for Schema Overview

Example 1: Three restrictions dictated by the semantics of SML:

<<P1>> The indentation must be in maultiples of K blanks, where K

18 a positive integer.
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<<P2>> For each genus paragraph, the indentation of the following
paragraph, if any, must not exceed the indentation of the genus para-

graph.

<<P3>> For each module paragraph, the indentation of the paragraph
immediately following must be exactly one K-multiple greater than that

of the module paragraph.

The (mandatory) indentation is defined by the production rules:

schema_par:
SchemaNil()
| SchemaPair(paragraph schema_par) ;
paragraph:
Subschemallil ()
| SubschemaModPar(indent_or_null modparagraph)
| SubschemaGenPar(indent_or_null genparagraph)
indent _or_null:
IndentOrNullEmpty()
| IndentOrNullNonEmpty(BLANKSPACE)

.
»

An inherited attribute env, corresponding to a domain of environments ENV
(see below), can be associated with the nonterminals schema_par, paragraph, and
indent_or_null. A synthesized attribute ind representing indentation, and belonging
to the domain of integers, can be associated with the nonterminals paragraph and

indent_or_null. The constraints can be specified by the following equations:

schema_par:
SchemaNil { }
| SchemaPair {
paragraph.env = schema_par$l.env;
schema_par$2.env = Binding(paragraph.ind,paragraph.ids,*,*,
paragraph.typ,*,*,*,*,*,*,*,*,*)::schema_par$1.env; }
paragraph:
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SubschemaNil() {

paragraph.ind = 0;
paragraph.ids = ",
paragraph.typ = 7. %

| SubschemaModPar {
indent_or_null.env = paragraph.env;
modparagraph.env = paragraph.env;

paragraph.ind indent_or_null.ind;
paragraph.ids = modparagraph.ids;
paragraph.typ 'm’; }
| SubschemaGenPar {
indent_or_null.env paragraph.env;
genparagraph.env paragraph.env;
paragraph.ind = indent_or_null.ind;
paragraph.ids = genparagraph.ids;
paragraph.typ genparagraph.typ; } ;
indent_or_null:
IndentOrNullEmpty {
local ERR error;
error
indent_or_null.ind
| IndentOrNullNonEmpty {

local ERR error;
local INT initspaces;
local INT tempspaces;
tempspaces = STRlen(BLANKSPACE)~-RSTRINGindex (BLANKSPACE, \n’);
indent_or_null.ind = tempspaces;
initspaces = with(indent_or_null.env)(

NullEnv: tempspaces,

default: indent_lookup(indent_or_null.env));
error = (
((tempspaces-initspaces)¥K !'= 0) || (tempspaces<initspaces) 7
ErrP1(): with(indent_or_null.env) (

NullEnv: NoErr(),

EnvConcat (b, e):

with (b)( Binding(i,s,%,% %, % # % % % % % % %):

/* is the previous paragraph a module? */

(s[1]==&’ && (i>=tempspaces || tempspaces-i!=K)) 7

ExrrP3():

(s[1]!1="&’%&i<tempspaces) PErrP2() :NoErr()) s}

ErrP1();
0; }

The environment is the most important attribute in the specification, since it
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contains data about all Schema paragraphs. The domain of environments ENV is
a list of Binding's, one for each paragraph. Each Binding is a structure of type
BINDING, which holds information about an individual paragraph, such as its
indentation, name, and other relevant data. The environment type ENV is defined

as follows:

ENV:
NullEnv()
| EnvConcat (BINDING ENV) ;
BINDING:
Binding(INT STR STR ALIAS CHAR DEP COMS STR
INT RANGE ISS COMPS SYMPARAM INTERP) ;

We ignore all components in a Binding except for the first two and the fifth: the
INTeger-valued indentation level, the STRing-valued paragraph name, and the
CHA Racter-valued paragraph type.

In the attribute equations, the local attribute error, corresponding to a domain
of error messages, is assigned the appropriate error operator: ErrP/ for a violation
of <<P1>>, ErrP2for a violation of <<P2>>, ErrP3for a violation of <<P3>>,
or the null operator NoErr in case of no violation of these semantic restrictions.
The workings of these equations are now explained.

The lexical value of the terminal BLANKSPACE is a collection of one or more
blank spaces, new lines, or tabs. The number of blank spaces in the first line
of the current paragraph is extracted in tempspaces, a local attribute of IndentOr-
NullNonEmpty, and then immediately assigned to indent_or_null.ind. This value is
transmitted by synthesis to paragraph.ind in SubschemaGenPar, and finally stored

in the first component of the current environment’s Binding in schema_par. The
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current Binding is appended at the head of the list schema_par$1.env, and trans-
mitted through inheritance to the rest of the paragraphs by schema_par$2.env.
The local attribute initspaccs is assigned the value of the indentation of the first
paragraph in the schema. This value is obtained by calling an auxiliary function
indent_lookup, which receives the environment as an actual parameter and returns
the integer-valued indentation level of the first Binding in the environment. This

auxiliary function is defined as follows:

INT indent_lockup(ENV env){
with (env) (
NullEnv: 0,
EnvConcat(bl, el): with (el1)(
NullEnv: with (bl)
(Binding(ii*!*l*’*J*Q*I*}*I*!*’*’*’*) : 1)’
default: indent_loockup(el) )) } ;

If the difference between tempspaces, the value of the current indentation, and
initspaces, the value of the initial indentation, is not a multiple of K, or if the
value of the current indentation is less that the value of the initial indentation, a
violation of <<P1>> has occurred, and error receives the value ErrPl. If no error
occurs at this point, the inherited environment is inspected once more. The second
component s of the previous Binding & contains the name of the previous para-
graph. If the previous paragraph is a module, its name starts with an ampersand
(‘4’), and its indentation i must be greater or equal than the current indentation
level stored in tempspaces. The difference between tempspaces and { must also be

a multiple of K. If neither condition holds, error receives the value ErrP3.

Finally, if none of the previous two violations have occurred, the next semantic
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restriction is checked. In this case, if the previous paragraph is a genus paragraph,
its name s does not start with an ampersand, and its indentation level ¢ should be
greater or equal than tempspaces, the indentation value of the current paragraph. If
this condition is violated, error receives the value ErrP2. Otherwise, error receives
the value NoErr.

Error also receives the value ErrPl, in IndentOrNullEmpty. This condition
may occur if the indentation of the current paragraph is null.

Example 2:
<<Pf>> Module names must be distinct.

The module names are defined by the production rules:

modparagraph:
ModParNull()
| ModParNonNull(modname TBAR interp TPERIOD)
modname:
ModNameNull ()
| ModNameNonNull (MNAME) ;

¥

A synthesized attribute ids corresponding to the domain of strings can be asso-
ciated with the nonterminals modname, modparagraph, and paragraph. The inher-
ited attribute env corresponding to the domain of ENV’s can be associated with

the nonterminals modparagraph and modname. The constraints can be specified
by the following equations:

modparagraph:
ModParNull {
modparagraph.ids = ""; }
| ModParNonNull {
modparagraph.ids

modname.ids;
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modname.env
modname:
ModNameNull {
modname.ids = M.}
| ModNameNonNull {
local ERR error;
local BINDING b;
b gname_lookup (MNAME, modname.env);
error = with(b)(Binding(*,s,% % % % % % % * % % % %): g=="17"7?
NoErr(): ErrP4());
modname.ids = with(b) (Binding(*,s,*, *,% % % % % % % % & %):
g=="T?UPMNAME: "?) ; }

modparagraph.env; } ;

The lexical value of the module name MNAME is assigned, in ModNameNon-
Null, to the attribute ids. This value is then synthesized by modparagraph, next
by paragraph, and eventually recorded in the current Binding in schema_par.

The auxiliary function gname_lookup returns the first Binding in the environ-
ment such that its corresponding paragraph name, stored as a string in the second
component s, is equal to the identifier provided as first argument to the function.
If no such Binding exists, the function returns a Binding whose s name is equal to
the string “?” - - a non-valid genus or module paragraph name. In this latter con-
dition, the local attribute error is assigned the null operator NoErr. In the former

condition, a Binding of name MNAME already exists, hence error is assigned the
operator ErrP/.
Example 3:

<<Pd>> Genus names must be distinet.

<<P6>> No genus names should be “INTERP” or “INTERPRETATION”

orend in “VAL”.
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A genus paragraph name is defined by the production rules:

genparagraph:
GenParNull{)
| PePar(peparagraph)
| CePar(ceparagraph)
| AVaPar(avaparagraph)
| FPar(fparagraph)
| TPar(tparagraph) ;
peparagraph:
PeParNull()
[ PeNode(gname opindices PE_TYPE_DECL
op.iss op_dom_stat TBAR interp TPERIOD) ;
ceparagraph:
CeParNull()
| CeNode(gname opindices LPAREN calls RPAREN CE_TYPE_DECL
op_iss op_dom_stat TBAR interp TPERIOD) ;
avaparagraph:
AVaParNull ()
| AVaNode(gname opindices LPAREN calls RPAREN A_VA_TYPE_DECL
op.iss op_dom_stat op_range_stat TBAR interp TPERIOD) ;
fparagraph:
FParNull(}
| FNode(gname opindices LPAREN calls RPAREN F_TYPE_DECL
op_iss op_dom_stat SEMICOLON modfunexpr TBAR interp TPERIOD)
tparagraph:
TParNull()
| TNode(gname opindices LPAREN calls RPAREN F_TYPE_DECL

op_iss op_dom_stat SEMICOLON modtstexpr TBAR interp TPERIOD) ;
gname:

GenNameNull ()
| GenNameNonNull(GNAME) ;

.
3

The synthesized attribute ids corresponding to the domain of strings can be
associated with the nonterminals gname, tparagraph, fparagraph, avaparagraph,
ceparagraph, peparagraph, genparagraph, and paragraph. The inherited attribute
env corresponding to the domain of ENV’s can be associated with the nonterminals
genparagraph, peparagraph, ceparagraph, avaparagraph, fparagraph, tparagraph, and

gname. The constraints can be specified by the following equations:
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genparagraph:

GenParNull {
genparagraph.ids
genparagraph.typ
PePar {
genparagraph.ids
genparagraph.typ
peparagraph.env
CePar {
genparagraph.ids
genparagraph.typ
ceparagraph.env
AVaPar {
genparagraph.ids
genparagraph.typ
avaparagraph.env
FPar {
genparagraph.ids
genparagraph.typ
fparagraph.env
TPar {
genparagraph.ids
genparagraph.typ
tparagraph.env

peparagraph:

PeParNull {
peparagraph.
peparagraph.
PeNode {
ghame.env
peparagraph.
Peparagraph.
calls.typ

ids

typ

ids
typ

ceparagraph:

CeParNull {
ceparagraph.
ceparagraph.
CeNode {
gname.env
ceparagraph.
Ceparagraph.
calls.typ

ids
typ

ids
typ

avaparagraph:

LA I I
3

J‘?); }

peparagraph.ids;
peparagraph.typ;
genparagraph.env;

ceparagraph.ids;
ceparagraph.typ;
genparagraph.env;

avaparagraph.ids;
avaparagraph.typ;
genparagraph.env;

fparagraph.ids;
fparagraph.typ;
genparagraph.env;

tparagraph. ids;

tparagraph.typ;
genparagraph.env;

LLET I
¥

705}
peparagraph.env;
gname.ids;
Jp);
JPJ; } ;
LU T

H
7750}
ceparagraph.env;
gname.ids;
)c);
<y
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AVaParNull {
avaparagraph.ids = *%";

avaparagraph.typ = ’'77; }
AVaNode {
gname.env = avaparagraph.env;
avaparagraph.ids = gname.ids;
avaparagraph.typ = (STRINGindex(A_VA_TYPE_DECL,’'v’)==07'a’:’y’
calls.typ = (STRINGindex(A_VA_TYPE_DECL,’v’)==07?’a’:’v’): } ;
fparagraph:
FParNull {
fparagraph.ids = "y
fparagraph.typ = 75}
FNode {
gname.env = fparagraph.env;
fparagraph.ids = gname.ids;
fparagraph.typ = f',
calls.typ = £},
tparagraph:
FParNull {
tparagraph.ids =
tparagraph.typ = 7 }
FNode {
gname.env = tparagraph.env;
tparagraph.ids = gname.ids;
tparagraph.typ = 't
calls.typ = ’t); )} ;
gname:

GenNameNull {

gname.ids = "}

GenNameNonNull {

local ERR error;

local BINDING b;

b = gname_lookup(GNAME, gname.env);

error = with(b)(Binding(*,s,*,*,*,*,*,*,*,*,*,*,*,*): g=="7"?

(GNAME=="INTERP"IIGNAME=="INTERPRETATION"II
((STRlen(GNAME)>4)&&(GNAME[STRlen(GNAME)-B:]=="_VAL"))
?ErrP6 () :NoErr()):
ErrP5());
gname.ids = with(b)(
Binding (¥, s, % % % ok ok ok ok %k % k%) :g=="P"72GNAME: "7"): }

.
H

The workings of these equations are similar to those of the previous example.
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The attribute ids is synthesized by each type of genus paragraph, after gname.ids
has been assigned the name of the current genus, GNAME.

If GNAME matches the name of the Binding returned by the function gname-
~lookup, the local attribute error is assigned the operator ErrP5. Otherwise,
GNAME is matched against all of the three forbidden strings. If a match oc-

curs, error is assigned the operator ErrP6. If none of the above occurs, error is

assigned the null operator NoErr.

3.5.2 Equations for Generic Calling Sequence Sublanguage

Example 4:

<<P1.I>> Closedness and monotonicity of modular structure require

that G must be defined in a prior genus paragraph.

<<PL1.Z>> Morcover, if GNAME is of type compound entity ar ai-
tribute (including variable attribute), then G may not be of type ai-

tribute, variable attribute, function, or test.

The calling sequence components are defined by the production rules:

calls:
CallComps{(components) ;
components:
CompSingle(compenent)
| CompPair(component COMMA components) ;
component :
CompSimple(simplecomp)
| CompGeneral(generalcomp) ;
simplecomp:
SimpleCompNull()
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| SimpleComp(GNAME) ;
generalcomp:
GeneralCompNull()
| GeneralComp(GNAME indexcells) ;

The attribute typ corresponding to the domain of characters can be synthesized
for the nonterminals paragraph, genparagraph, peparagraph, ceparagraph, avapara-
graph, fparagraph, and tparagraph. The same attribute can be inherited by the
nonterminals calls, components, component, simplecomp, and generalcomp. The
inherited attribute env corresponding to the domain of ENV’s can be associated
with the nonterminals calls, components, component, stmplecomp, and generalcomp.

The constraints can be specified by the following equations:

calls:
CallComps {
components.env = calls.env;
components.typ = calls.typ; } ;
components:

CompSingle {
component.env components.env;
simplecomp.typ = components.typ; }
| CompPair {
component.env components.env;
component$2.env components.env;
component.typ = components.typ;
component$2.typ components.typ; } ;
component :
CompSimple {
simplecomp.env
simplecomp.typ
| CompGeneral {
generalcomp.env
generalcomp.typ
simplecomp:
SimpleCompNull { }
| SimpleComp {
local ERR error;

i

1]

component.env;
component.typ; }

component.env;
component.typ; } ;
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local BINDING b;

b = gname_lookup(GNAME, simplecomp.env);

error = with(b) (Binding(*,s,*,% k % * * * % % % % %):
s=="?"? ErrP1_1(): (
(simplecomp.typ==’c’||simplecomp.typ=="a’||
simplecomp.typ=="v’)&&(k=="a’| [k=='v?’| |k=="F"]|
==%’))? ErrP1_2(): NoErr()); 1} ;

generalcomp:
GeneralCompNull { }
| GeneralComp {

local ERR error;

local BINDING b;

b = gname_lookup(GNAME, generalcomp.env);

error = with(b)(Binding(*,s,*,% Kk, *, % %, % % % * % *):
s=="7"? ErrPi_1(): (
(generalcomp.typ=='c’||generalcomp.typ=='a’]|
generalcomp.typ=="v’')&&(k=="a’||k=s="v’||k=="£"||
k=='t)) ? ErrP1_2(): NoErr()); } ;

3.5.3 Equations for Range Statement Sublanguage

Example 5:
<<P2.4>>lo < hi is necessary to avoid an empty subrange.

The range options are defined by the production rules:

single_string_range:
SingleStringRangeNull()
| SingleStringRangeOptioni(string_options)
| SingleStringRangeOption2(QUOTED_STRING 1ltle string_options)
| SingleStringRangeOption3(string_options 1tle QUOTED_STRING)
J SingleStringRangeOption4 (QUOTED_STRING ltle string_options
ltle QUOTED_STRING) ;
single_integer_range:
SingleIntegerRangeNull()
I SingleIntegerRangeOptionl(integer_options)
I SinglelIntegerRangeOption2(integer LT_LE_INTEGER optsign)
| SingleIntegerRangeOption3(integer_options 1tle integer)
I SingleIntegerRangertion4(integer LT_LE_INTEGER optsign

7



ltle integer) ;
single_real _range:

SingleRangeRangeNull()

| SingleRangeRangeOptioni(real_options)

| SingleRangeRangeOption2(real_int 1tle REALLY optsign)

| SingleRangeRangeOption3(real_options ltle real_int)

| SingleRangeRangeOptiond(real_int 1tle REALLY optsign
1tle real_int) ;

The synthesized attribute val corresponding to the domain of reals can be asso-

ciated with the nonterminals integer and real, and the constraint can be specified

by the following equations:

single_string_range:
SingleStringRangeNull{ }
| SingleStringRangeOptioni{ }
| SingleStringRangeOption2{ }
| SingleStringRangeOption3{ }
| SingleStringRangeOptiond{
local ERR error;

error = QUOTED_STRING$1>QUOTED_STRING$2? ErrP2_4() :NoErr(); }

single_integer_range:
SinglelntegerRangeOption4{
local ERR error;
error = integer$l.val>integer$2.val?
({UnqualRangeBodyInteger.in_sp_decl,
QualRangeBodyInteger.in_sp_decl,
QualSymParTypelnteger.in_sp_decl,
UnqualSymParTypelnteger.in_sp_decl} ?
ErrP4_34() :ErrP2_4()) : NoErr{(); } ;
single_real_range:
SingleRealRangeOption4{
local ERR error;
error = real_int$l.vald>real_int$2.val?
({UnqualRangeBodyReal.in_sp_decl,
QualRangeBodyReal.in_sp_decl,
QualSymParTypeReal.in_sp_decl,
UnqualSymParTypeReal.in_sp_decl} 7
ErrP4_34:ErrP2_4()) : NoErr(); } ;
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3.5.4 Equations for Index Set Statement Sublanguage

Example 6:

<<P3.1>> Each kind of genus has its own variely of index set state-

ment that may not be used for any other kind of genus.

The index set statement options are defined by the production rules:

op_iss:
OpIssNull()
| CpUnindexedIss(unindexed)
| OpSelfIss(self_iss)
| OpExternallss(external_iss) ;

The inherited attribute sym corresponding to the domain of strings can be
associated with the nonterminal op_iss, and the constraints can be specified by the
following equations:

op_iss:
OpIssNulli{ }
| OpUnindexedIss{
local ERR error;
error = (STRlen{op_iss.sym)==0%&STRlen(op_iss.git)==
?NoErr() :ErrP3_1()); }
| OpSelflss{
local ERR error;
error = (STRlen(op_iss.sym)==07ErrP3_1():NoErr()); }
| OpExternallss{
local ERR error;
error = (STRlen(op.iss.sym)==07?NoErr():ErrP3_1()); } :

3.5.5 Equations for Generic Rule Statement Sublanguage

Example 7:
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<<P{.2>> The generic rule of a genus of type /f/ must be a numeric-

valued expression.

A paragraph corresponding to a function element was defined by the production
rule fparagreph in Example 3.

The synthesized attribute is_num corresponding to the domain of booleans can
be associated with the nonterminal modfunezpr, and the constraint can be specified
by the following equations:
fparagraph:

FParNull { }
| FNode {

local ERR error;
error = (modfunexpr.is_num ? NoErr() : ErrP4_2()); } ;

3.5.6 Equations for Interpretation Sublanguage

Example 8:
<<P5.1>> Defined key phrases must all be distinct.

The full paragraph interpretation can be maintained as a (possibly empty) set
of interpretation lines (or logical units). Each interpretation line is either a defined
key phrase, a referenced key phrase, or a non-key phrase. An interpretation line
is defined by the production rules:
interp_line:

InterNilKeyPhrase()
| InterpNonKeyPhrase (NON_KEY_PHRASE)

| InterpDefKeyPhrase (DEF_KEY_ PHRASE)
| InterpRefKeyPhrase (REF_KEY_PHRASE) ;
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The inherited attribute env corresponding to the domain of ENV can be asso-
ciated with the nonterminal interp_line, and the constraint can be specified by the

following equations:

interp_line:

InterpNonKeyPhrase,InterpNilKeyPhrase{
interp_line.phrase = ""; }

| InterpDefKeyPhrase{
local ERR error;
error = def_key_phrase_intro(DEF_KEY_PHRASE,interp_line.env) 7

ErrP5_1() : NoErr();

interp_line.phrase = DEF_KEY_PHRASE; }

| InterpRefKeyPhrase{
interp_line.phrase = ""; } ;

3.5.7 Equations for Elemental Detail Tables

The following production rules describe the modifications that have been made
to the original SML context—free syntax to incorporate the Elemental Detail Tables

and the Table Content Rules.

schemafile:
SchemaFileList(schema_par EQF opt_element_detail)
opt_element _detail:
OptElementDetailNil ()
| OptElementDetailTable(ed_table_list)
ed_table_list:
EDTableListSingle(ed_table TPERIOD)
| EDTableListCompound(ed_table TPERIOD ed_table_list)
ed_table:
EDTableEmpty(table_struct)
| EDTableFull(table_struct line_list) ;
table_struct:
TableStructOption(QUOTED_STRING COMMA QUOTED_STRING
COMMA AN_INTEGER) ;
line_list:
LineListOptioni(data_line)
| LineListOption2(data_line line_list)

.
3

.
H

3
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data_line:

DatalineOptioni (QUOTE_BAR_BAR_QUOTE COMMA data_list)
| DatalineOption2(data_list COMMA QUOTE_BAR_BAR_QUOTE)
| DatalineOption3(data_list COMMA QUOTE_BAR_BAR_QUOTE

COMMA data_list) ;

data_list:

DatalistOptioni(data)
| DatalistOption2(data_list COMMA data) ;

data:

DataOptionNull()
| DataOptioni(QUOTED_STRING)
| DataOption2(A_REAL)
| DataOption3(AN_INTEGER) ;

The structure above describes elemental detail tables appended after the Schema
section. To accommodate models with no tables, the nonterminal opt_elemental_-
detail has the optional nil operator OptElementalDetailNil.

Example 9:

<<TCR.A>> Each stub must consist of a non—empty, finite collection

“of tuples composed of valid identifiers.

In SML, an identifier is “valid” if it is defined in the Elemental Detail Table for
the associated self-indexed genus. A data item is defined by one of the production

tules:

data:
DatabptionNull()
| DataOptioni(QUOTED_STRING)
| DataOption2(A_REAL)
| DataOption3(AN_INTEGER) ;

The inherited attribute in_stub corresponding to the domain of booleans can
be associated with the nonterminal date, and the constraint can be specified by

the following equations:



data:
DataOptionNullq{
local ERR error;
error = (data.in_stub==false) ? NoErr()}: ErrTCR_A();
data.stub = "*; }
| DataOptioni{
local ERR error;
error = (data.in_stub==false) ? NoErr():
(data.tabtype!=1) ? NoErr():
((data.domtype==0)&&(STRlen(QUDTEDwSTRING)==2))?ErrTCR_A():
NoErr() ;
data.stub = ((data.in_stub==true)&&(data.tabtype==1)) ?
QUOTED_STRING[2:STRlen(QUOTED_STRING)-1] : e 3
| DataOption2{
local ERR error;
data.stub = "v;
error = (data.in_stub==true)?ErrTCR_A():NoErr(); }
| DataOption3{
local ERR error;
error = data.in_stub==false? NoErr():
(data.domtype<3)7ErrTCR_A():
((data.domtype==4)&&(STRtoINT(AN_INTEGER)<0))?ErrTCR_A():
((data.domtype==5)&&(STRtoINT (AN_INTEGER)>0)) 7ErrTCR_A() :

NeErr();
data.stub = ((data.in_stub==true)&&(data.tabtype==1)) ?
AN_INTEGER[2:STRlen(AN_INTEGER)-1] : e} o

3.6 Importance of the Attribute Grammar Approach

It is surprising that, at the time of this writing, very little has been published
in the area of semantic formalization of modeling languages and modeling environ-
ments. Although formal definitions of programming languages and programming
environments exist in the literature, we believe this is the first attempt to formally
specify the semantics of a modeling language via attribute grammars. Moreover,

even though the examples of attribute grammar specification that were shown in
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the previous section dealt exclusively with the static semantics of SML, the fact
that this language is so large and complex, and that it contains so many of the
desirable design features of the new generation of modeling languages, suggest that
similar approaches may be applicable to other modeling languages of equal or less
complexity.,

For practical purposes, the approach is restricted to languages that have a
complete syntactic and context-dependent semantics specification, and where all
attribute instances can be defined without circularities. Algorithms for detecting
if an attribute grammar is circular do exist, e.g., [Knut6g]. Noncircularity can be
defined as a requirement of acyclicity on the dependency graph for every possible
derivation tree. A dependency graph is a directed graph which includes an edge
from ’a’ to 'b’ if "a’ is used to determine the value of ’b’, and a vertex ’c’ for every
attribute instance 'c’,

It is important to note that, while there are similarities, modeling languages
are different from programming languages. While programming languages can be
viewed as tools for writing algorithms (“programming”), mathematical modeling
languages are more concerned with describing the structural relationships between
the facts of a problem. Modeling leaves the programming tasks (like model op-
timization, evaluation, and solving) to the “solvers” which can be invoked inde-
pendently in the modeling environment. Hence, common abstractions, structures,
rules, and methodologies adopted by programiming languages are not necessarily

relevant to modeling languages. For example, the context-dependent restrictions
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of SML of existential nature are not found in typical procedural programming
languages.

Two important benefits of the attribute grammar methodology are discussed
below: its ease of modification and its non—procedural approach. Of course, these
benefits can only be derived when there is a high degree of completeness in the

specification of context sensitivities in the modeling language.

3.6.1 Easy Modifiability

Ease of maintenance and modification, also called “extendibility” [Meye88§],
plays a key role in controlling software costs and increasing productivity [Boeh87].
For mathematical programming modeling languages, and environments, the situ-
ation is similar: an easily modifiable formalization technique saves programming
time and expense. Hence, to improve productivity, a formal specification method-
ology should be easily amenable to change when faced with requirement modifica-
tions. The ultimate objective is the practical elimination of the traditional software
maintenance: when changes are made to any of the language’s, or environment’s,
requirements, only the formal specifications need to be changed.

One approach to achieving easy modifiability is via the use of automated tools
which take high-level input specifications and produce programs as output. Pro-
gram generation tools, like Lex [Lesk75] (a regular expression based lexical analyzer
generator) and YACC [John78] (an LALR(1) parser generator), for example, have

been extensively used to minimize the cost impact of software changes. However,
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because SML, like other languages for model description, has numerous context-
sensitive aspects, table-driven generators like Lex and YACC cannot be used to
generate a specification for SML that will support all of its contexi—sensitive as-
pects and, at the same, possess a definition style that can be easily modified. Of
course,. the static semantics of SML may be written in C and included as “action
routines” in an environment generated from YACC. (In fact, this has been done
in the prototype structured modeling environment FW/SM [Geof90]). However,
this approach is a hand tailored method of semantic evaluation and is not easy
to maintain and modify. Indeed, in this approach only syntax (without including
semantics) is described in a modular fashion, and all implementation details are
explicitly shown.

The advantages of the attribute grammar approach over toolkit, ad-hoc rou-
tines, and method-based approaches for ease of maintenance make it a preferred
specification technique. Moreover, this kind of definition is sufficiently clear to
facilitate the understanding of language semantics. And because the semantic
equations in the attribute grammar can be easily tested and validated, this defini-
tion style can lead to complete, consistent, and correct specifications.

Our personal experience in building an attribute grammar-based syntax—directed
editor for SML lends support to the arguments of easy modifiability. This ease of
maintenance is a byproduct of the modularity of the specifications of syntax and
semantics, and also of declarativeness which hides all implementation details, as

discussed in Section 3.6.2. We have found that the construction of a working pro-
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totype editor has not been too time-consuming. Furthermore, the prototype has

been able to evolve quickly in response to evolution in SML.

3.6.2 Declarative Approach

An important characteristic of attribute grammar specifications is that they are
declarative without side effects, as opposed to procedural; they are not programs.
Unlike procedural programming, there are no explicit loops, no control structures,
and attributes cannot be incremented or reassigned. Attribute instances are de-
fined by the semantic equations. The order in which attribute instances are evalu-
ated does not depend on the order in which the semantic equations are listed; they
only depend on the evaluation strategy employed. The concern is with “what”
needs to be done, rather than with *how” it is done. This fact concedes a high de-
gree of abstraction to the description of context-dependent semantics in modeling
languages.

The declarative nature of attribute grammar specifications has numerous im-
plications, extending from the areas of attribute evaluation to applications. In
terms of the attribution process, for example, the declarative approach makes it
suitable for exploiting parallelism in advanced machines. In terms of applications,
for instance, the declarative approach allows for the generation of syntax—directed
editors, a topic which is discussed in Chapter 6.

The other important aspect of the declarative nature of attribute grammar

specifications is that the functions described by the semantic equations do not



have side effects. Side effects, for example, are a typical objective of syntax—
directed translations, where an external procedure is specifically called during the
translation process to create the side effect.

Syntax-directed editing is one case of an application where side effects in se-
mantic equations are undesirable. In a syntax-directed editor for SML, for exam-
ple, an editing change in the source model may result in a fragment of the parse
tree for the model being deleted, and thus leave the attributes of the tree with
inconsistent values. As long as there no side effects, the attribute values for the
new tree can be updated incrementally, and thus the evaluator can perform less

work than would be required otherwise [Aho86].

3.7 Difficulties and Lessons

A great deal of experimental work was required to implement many of the
context-dependent restrictions in SML. Only after an individual and detailed in-
spection of each semantic restriction was it possible to show that all of SML’s
context—dependencies could be formalized via attribute grammar equations. Nu-
merous functions used in the semantic equations had to be newly defined to prop-
agate information across the semantic tree. Occasionally, functions that were used
in certain semantic equations had to be defined procedurally in C, but they were
referenced as if they were primitive within the semantic equation. It would be de-
sirable if the attribute grammar evaluator provided many more primitive functions,

instead of having to build these as foreign functions.
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An important difficulty in dealing with Table Content Rules relates to repre-
senting completeness and conformity. The appearance of a tuple in a certain table
is typically controlled by the satisfaction of both integrity constraints and exis-
tential constraints. To test conformity to an index set statement, for example, a
complete understanding of the relational algebraic expressions involved is required.
The interpretation of relational expressions can only be achieved by executing an
algorithm designed to interpret the index set statement when it is viewed as a
query on the tables. These algorithms fall more properly into the area of run—time
evaluation, than into the area of static semantics. Strategies of query optimiza-
tion, such as those used in high level database query languages (e.g., [Ulm82]) are
relevant to this task,

Another difficulty, not normally found with programming languages, relates
to preserving the original structure of the formal and informal parts of an SML
model, in both the concrete and the abstract syntax representation. Whereas
white space (i.e., blanks and newlines) and comments normally can be discarded
in programming languages because they have no significant structure, in SML they
need to be preserved because they add clarity to a model, or because they are an
integral part of the (informal) description of the model, and are subject to some
minimal structure (expressed via the language of keyphrases). Hence, the concrete
and abstract syntax representations need to carry, in their syntax trees, all the
white space that is contained in both the formal and informal parts of a model.

This demand adds much complexity to the modeling environment designer’s task
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of representing a generic model in both concrete and abstract syntax terms. This
complexity, of course, is a consequence of having to reproduce, for any modeling
language, the model in the output display in a form that is identical to its original
form. However, it also slows down the performance of the attribution process,
since the abstract syntax tree has to be almost identical in size and decoration to

the concrete syntax tree.
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CHAPTER 4

Type Inferencing in Mathematical Modeling Languages

Mathematical modeling languages, in general, have abstractions to permit the
declaration of typed elements. To illustrate, consider GAMS, for example, where
each identifier (called symbol) is declared to be one of six data types, which are
SET, PARAMETER, VARIABLE, EQUATION, MODEL, and ACRONYM. After
the initial specification of the data type of an identifier, the values (called labels)
assigned to the identifier have to be of the proper type. Or consider also the
Generic Rule Sublanguage of SML, which allows for the declaration of classes of
typed elements that are evaluated via generic function and test rules. Function
rules must return numeric values, while test rules must return logical values. A goal
of an “integrated” - - in the sense examined in [Geof89d] - - modeling system that
supports model building ought to be that both model classes and model instances
always be well-typed during the entire model development process.

To maintain strong-typing, languages for model description usually make de-
fault type assumptions when the explicit type declaration for an element is missing.
Note that this type information is sometimes intentionally absent from the schema
to maintain clarity in the model’s description. However, it would be possible to

endow a modeling system with an element type inferencing mechanism that in-
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serts the inferred type in the schema while freeing the modeling language from (1)
making any default assumptions, and (2) from requiring explicit type declarations.
Furthermore, the principles which would be used in an inference mechanism for
SML, for example, would be applicable to other mathematical modeling languages
that have a structure such that those same conclusions, which could be reached
about a model from information that is explicitly declared, could be implicitly
reached from an analysis of references.

This chapter discusses the design of such an alternative element type infer-
encing mechanism for SML. This design, which is based on attribute grammars,
tests capabilities of attribute-grammar-based definitions which go beyond those
of traditional context-sensitive semantic descriptions. As an additional motiva-

tion, it suggests a way of handling incompletely specified models, namely, that of

inferencing incomplete or missing details.

The chapter is organized as follows. To begin, some of the areas where in-
ferencing is appropriate in SML are described in Section 4.1. Then Section 4.2
provides attribute grammar designs (including changes to the syntax of SML, and
corresponding attribute equations) that can eliminate, through inferencing, the

explicit type declaration for symbolic parameters, and explicit domain statements.

Finally, a discussion follows in Section 4.3.



4.1 Areas Amenable to Inferencing in SML

In SML, there are at least three separate areas where explicit element type
declarations are necessary, or are assumed by default, and hence which could be
simplified by inferencing: (1) the area of simple variables in numeric-valued and
logical-valued generic rules, (2) the area of domain statements, and (3) the area
of symbolic parameter type declarations. In addition, the area of calling sequences
in genus paragraphs could also benefit from an inferencing approach. The fol-

lowing subsections formulate the problems which would be solved in each area if

inferencing were provided.

4.1.1 Simple Variables

Consider the following (incomplete) fragment of a structured model:

GENUS(CALLEDj) /t/ ;
Q@IF (CALLEDj = <expression>, <test-expressioni>, <test-expression2>)

with a generic rule (abstract) syntax-tree:

QIF

= <test-expression2>

/\ <test-expressionl>

CALLED; <expression>
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At this point in the model development process, the selection (highlight) could be
either at <ezpression>, <test-expressionl>, or <test-expression?>. The modeler
has not yet refined any of these expressions, and perhaps might not even have
introduced the corresponding genus paragraph for the simple variable CALLED;
(assuming we can suspend the associated semantic errors). Nevertheless, we would
like the modeling system to infer the type of each (numeric— or test-valued) ex-
pression, and warn the developer with an error message on the screen as soon as
any expression has a type mismatch.

For example, when the simple variable CALLED; is of type primitive entity
or compound entity, it cannot participate in this context. When the simple vari-
able CALLED] is of type attribute (or variable attribute) with real or integer
range, <ezrpression> must evaluate to a numeric value. But, when CALLEDj is
of type attribute (or variable attribute) with a string range, <ezpression> must
then evaluate to a string value. All these type inferences should be made by the
modeling system on the fly, as soon as <ezpression> is refined. Similarly, the

system should type check any occurrences of CALLEDjin <test-expression!> and

<test-expressionZ>.

4.1.2 Type Declaration for Symbolic Parameters

The data types of the symbolic parameters mentioned in a generic rule are
usually provided by explicit type declarations, at the end of the generic rule. If a

symbolic parameter type declaration is omitted, a default type is assumed.
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It would be desirable, however, to eliminate the explicit symbolic parameter
type declaration, as symbolic parameter types can be normally inferred from the
contexts where each symbolic parameter is used. For example, consider the fol-

lowing (incomplete) fragment of a structured model:

T:ZIP(CITY]) /t/ ;
QIF(j = 5, %ZIP > 9000, %ZIP = "#TRUE")

In this fragment, the symbolic parameter %ZIP is not used consistently. In
<test-expressionl>, FZIP is compared against a numeric value, while in <test-
ezpressionZ>, ZZIP is compared against a string value. It would be desirable that

a modeling system detect this kind of type violation on the fly, as soon as it occurs.

4.1.3 Domain Statements

The data type of the identifiers used for the elements of a self-indexed genus
is specified by a domain statement. If the statement is omitted, a default type is
assumed. Naturally, the modeling system takes care of enforcing that all element
identifiers be consistent with the declared, or assumed, domain statement. It would
be desirable, however, to completely eliminate the domain statement from the SML
syntax, as it is not pertinent to the core concepts of Structured Modeling.

The domain statement may be deduced by inspecting the identifiers for all the
elements stored in Elemental Detail Tables, and then subsequently propagating
this type information to the relevant sections of the Schema. If the elements are
inconsistent, a distinguished error type is propagated. Hence, the modeling system

could be flexible enough to check, at the same time, that all the identifiers in
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Elemental Detail Tables are valid (in the SML sense), and that they are consistent
with Schema declarations. The modeler would then be immediately notified on

the screen of any element type violation.

4.1.4 Calling Sequences

The calling sequence of a compound entity, attribute, function, or test genus
lists all the definitional dependencies of the current genus on genera that appear
previously in the Schema. Some restrictions exist, like the restriction that a com-
pound entity genus may not call an attribute, function, or test genus. Normally, it
is the responsibility of the modeler to include all the definitional dependencies in
the calling sequence of each genus. SML has specific Schema Properties designed
to flag errors when explicit definitional dependencies are omitted.

It is possible, however, to have an inferencing system that will deduce manda-
tory parts of the calling sequences of a function or test genus from the actual use
of the definitional dependencies in generic rules. For instance, the indices used
in index supporting functions could provide a clue about the genera that define
those indices. This inferencing approach could provide economy in the writing of
calling sequences. Additionally, it could provide a useful service to the modeler,
who could check if those calling sequences that are inferred match those that were
intended when the model was formulated. Even though it would not be desirable
to provide this service as a replacement for the explicit declaration of the calling se-

quences, this service would be very useful to complement other functions provided
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in a modeling environment.

4.2 Type Inferencing in SML via Attribute Grammars

The previous section provided examples of areas where type information in
some of SML’s Schema paragraphs might not be available (e.g., because it is not
explicitly declared for clarity considerations), and yet where immediate incremental
type inference is desired. Indeed, it is desirable that the modeling system annotate
the screen with error messages, as soon as a structural piece is incorrectly refined;
that is the least expensive moment to do it.

Support for this kind of incremental type checking is difficult in the attribute
grammar approach. In the classical attribute grammar style of semantic evaluation,
type declarations are collected via synthesized attributes which are attached to the
nonterminals closest to the declarations of the identifiers. The lexical value of a
declared identifier is then propagated to the Licad of the declaring production where
it is appended to a global symbol table. This modified global symbol table is later
broadcast down the syntax-tree, thus making the declared name visible to other
productions, This method requires that all identifiers be declared first, before the
type checking step is begun.

To derive type information when an SML model Schema is incomplete (i.e.,
when not all typed paragraph constructs are explicitly declared), type inferencing
becomes necessary. The following subsections provide attribute grammar schemes

which can perform the needed inferencing of symbolic parameters types, and of
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types implied by domain statements,

4.2.1 Inference of Types of Symbolic Parameters

In this approach we do not deal with symbolic parameters that are constrained
to some range. In principle, however, this approach may be extended to cover a
range by attaching lower and upper bounds to each inferred data type, and then
carrying the bounds information together with the type name in a structured—

valued attribute.

The first step is to eliminate the explicit symbolic parameter type declaration
from the syntax in the Generic Rule Sublanguage. Indeed, after removing the
opt_sp_type_decl operand from the operators MFunEzpr and MTstErpr, function

and test expressions are defined by the production rules:

modfunexpr:
ModFunNull ()
| MFunExpr(funexpr) ;
modtstexpr:
ModTstNull ()
| MTstExpr(testexpr) ;

Symbolic parameters can now be defined from the expansion of the nonter-
minals funexpr and testexpr via the path: {funezpr testezpr} — expr — term —

power — factor — variable — sympar. The explicit abstract syntax is as follows:

funexpr:
FuncExprNonNull (expr) ;
testexpr:
TExpNull ()
| LitConst (LITERAL)
| TestPair(expr relop expr)
| TestTriple(expr relop expr relop expr)
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LogIFc(log_index_sup_fun)
AndPair (AT_AND LPAREN testexpr COMMA testexpr_list RPAREN)
OrPair{AT_OR LPAREN testexpr COMMA testexpr_list RPAREN)
NotPair (AT_NOT LPAREN testexpr RPAREN)
IfTPair(AT_IF LPAREN testexpr COMMA testexpr COMMA testexpr RPAREN)
TParen (LPAREN testexpr RPAREN)
TExist (AT_EXIST LPAREN exist_arg COMMA testexpr COMMA testexpr
RPAREN) ;
testexpr_list:
TExpListi(testexpr)
| TExpList2(testexpr_list COMMA testexpr) ;
expr:
ExprNull()
| TermSingle(term)
| TermPair(MINUS_SIGN term)
| PlusPair(expr PLUS_SIGN term)
| MinusPair(expr MINUS_SIGN term) ;
term:
PowerSingle (power)
| ProdPair(term MULT_SIGN power)
| QuotPair(term DIVIDE_SIGN power)
power:
FactorSingle(factor)
| ExpPair(factor EXP_SIGN power)
factor:
Const(constant)
| Var(variable)
| ParenExpr(LPAREN expr RPAREN)
| IfFTPair (AT_IF LPAREN testexpr COMMA expr COMMA expr RPAREN)

| FExist(AT_EXIST LPAREN exist_arg COMMA expr COMMA expr RPAREN)
constant:

ConstNumi(nninteger)
| ConstNum2(NN_REAL)
| ConstNum3(QUOTED_STRING) ;
variable:
VarNull()
| Variablel(sympar)
| Variable2(simplevar)
| Variable3(builtin_function)
|
|

.
*

.
H

Variable4(pp_index)
VariableS(functional_dependency)
| Variable6(arith_index_sup_fun)
log_index_sup_fun:

H
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LogIndexSupFunctionNonNull(it_log_fun_unit LPAREN testexpr
RPAREN) ;
arith_index_sup_fun:
ArithIndexSupFunctionNonNull(it_arith_fun_unit LPAREN expr
RPAREN) ;
simplevar:
SimpVarConst (GNAME)
| SimpVarName(GNAME grindices) ;
builtin_function:
BuiltinFunctionNonNull( AT_SIGN GNAME expr_pack ) ;
expr_pack:
ExprPackNonNull( expr_head expr RPAREN ) ;
expr _head:
ExprHeadNull( LPAREN )
| ExprHeadNonNull( expr_head expr COMMA ) ;
sympar:
SymParNull()
| SymPari(S_P_STEM)
| SymPar2(S_P_STEM sym_par_indices) ;

Example 1. The test expression
QIF(j = 6, %ZIP > 9000, %ZIP = "#TRUE"),
discussed in Section 4.1.2, can be derived via the following paths:
modtstexpr — tstexpr — GIF( testexpr, , testexpry | testexprs ) .
lestexpr)y — expr; = expry .
expry — term — power — factor — variable — pp_inder — 7.
exprg — lerm — power — factor — constant — 5 .
testerpry; — exprs > expry .
expry — term — power — factor — variable — sympar — %ZIP .
exrpry — term — power — factor — constant — 9000 .

lestexpry — exprs = exprg .
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exprs — term — power — factor — variable — sympar — %ZIP .
erprg — term — power — factor — constant — “#TRUE” .

The productions of abstract syntax shown above do not carry type information
for the symbolic parameter sympar. Thus, the type “NoType” can be initially
assigned to sympar. After type inferencing, sympar will be assigned the legal type
“Logical”, “Integer”, “Real”, or “String”, or the error or unknown type “lllegal”.
sympar may also be given a temporary (intermediate) type, “Number”, which
stands for either “Integer”, or “Real”. The domain of symbolic parameter types,

ATYPE, can now be syntactically defined by the operators:

ATYPE:
NoType()

| Logical()

| Integer()

| Real()

| Number ()

| String()

| Illegal() ;

The names and types of all the symbolic parameters in the current function
expression (funexpr) or test expression (testexpr) can be collected in a type envi-

ronment, TYPENYV, defined by the following equations:

list TYPENV;
TYPENV:
NullSymParTypeEnv ()
| SymParTypePair(TypedMember TYPENV) ;

TypedMember:
TypedMemberOp(STR ATYPE) ;

Thus, the domain TYPENV is a list of TypedMembers, where each list member

is a pair with components (STR ATYPE), with first component in the domain of

101



STRings, and second component in the set of ATYPE. The empty list is denoted

by NullSymParTypeFno.
At the core of an inferencing scheme is a function Narrow that, given two type

operands as input, say #1 end t2, returns a narrower type according to the coercion
rules of SML. The function Narrow is defined as follows:

ATYPE Narrow(ATYPE t1, ATYPE t2){
with(t1) (

NoType: t2,

Logical: with(t2)(
NoType: Logical, Logical: Logical, Integer: Illegal,
Real: Tllegal, Number: Illegal, String: Illegal,
Illegal: Illegal,)},

Integer: with(t2)(
NoType: Integer, Logical: Illegal, Integer: Integer,
Real: Real, Number: Integer, String: Illegal,
Illegal: Illegal,),

Real: with(t2)(
NoType: Real, Logical: Illegal, Integer: Real,
Real: Real, Nunmber: Real, String: Illegal,
Illegal: Illegal,),

Number: with(t2)(
NoType: Number, Logical: Illegal, Integer: Integer,
Real: Real, Number: Number, String: Illegal,
Illegal: Illegal,),

String: with(t2)(
NoType: String, Logical: I1legal, Integer: Illegal,
Real: Illegal, Number: Illegal, String: String,
Illegal: Illegal,),

Illegal: Illegal ) } ;

The merging and sorting of two symbolic parameter {ype environments, say
el and e2, can be performed by the recursive function Merge TypeEnv, defined as

follows:

TYPENV MergeTypeEnv(TYPENV el, TYPENV e2) {
with(el) (



NullSymParTypeEnv: e2,

SymParTypePair(TypedMemberOp{ml,t1),taill): with{e2)(
NullSymParTypeEnv: el,
SymParTypePair(TypedMemberOp(m2,t2),tail2): ml < mn2 ?

TypedMemberOp(m1,t1): :MergeTypeEnv(taill,e2): ml == m2 ?
TypedMemberOp (m1,Narrow(t1,t2)): :MergeTypeEnv(taill,tail2) :
TypedMemberOp(m2,t2): :MergeTypeEnv(el,tail2)) ) } ;

Finally, a type environment, say el, can have the type of all of its members
narrowed to a different type, say {2, via the function NarrowTypeEnv defined as
follows:

TYPENV NarrowTypeEnv(TYPENV el, ATYPE t2){
with{(el)(

NullSymParTypeEnv: el,

SymParTypePair(TypedMemberOp(mi,t1),taill):
TypedMemberOp(mi,Narrow(t1,t2)): :NarrowTypeEnv(taill,t2)) } ;

To gather and broadcast type information, the synthesized attributes Sym-
ParTypeEnv, corresponding to the domain of symbolic parameter type environ-
ments TYPENV, and type, corresponding to the domain of types ATYPE, can
be associated with the nonterminals funexpr, testexpr, testexprlist, expr, term,
power, factor, constant, variable, log_index_sup_fun, arith_index_sup_fun, simple-
var, builtin.function, expr_pack, expr_head, and sympar. The first attribute carries
the symbolic parameter type bindings that are visible to the current nonterminal,
while the second attribute carries the particular inferred type of the nonterminal.
The attribute nam, corresponding to the domain of S TRings, can also be associ-
ated with the nonterminal sympar. This attribute holds the lexical name of the
symbolic parameter sympar.

The attribute equations which generate the type environment for the complete
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paragraph (i.e., funeapr.SymParTypeFnv and testexpr.SymParType Env) are as fol-

lows:
funexpr:
FuncExprNonNull{
funexpr.SymParTypeEnv = expr.SymParTypeEnv;
funexpr.type = expr.type; } ;
testexpr:
TExpNull{
testexpr.SymParTypeEnv = NullSymParTypeEnv;
testexpr.type = NoType; }
| LitConst{
testexpr.SymParTypeEnv = NullSymParTypeEnv;
testexpr.type = Logical; }
| TestPair{

testexpr.SymParTypeEnv = MergeTypeEnv(
NarrowTypeEnv(expr$1.SymParTypeEnv,expr$2.type),
NarrowTypeEnv(expr$2.SymParTypeEnv,expr$i.type)) ;

testexpr.type = Logical; }
| TestTriple{
testexpr.SymParTypeEnv = MergeTypeEnv(

MergeTypeEnv(NarrowTypeEnv(expr$1.SymParTypeEnv,expr$2.type),
NarrowTypeEnv(expr$2.SynParTypeEnv, expr$l.type)),

MergeTypeEnv(NarrowTypeEnv(expr$2.SymParTypeEnv,expr$3.type),
NarrowTypeEnv(expr$3.SymParTypeEnv,expr$2.type)));

testexpr.type = Narrow(
Narrow(expr$1.type,expr$2.type),Narrow(expr$2.type,expr$3.type)); ¥
| LogIFc{
testexpr.SymParTypeEnv = log_index_sup_fun.SymParTypeEnv;
testexpr.type = log_index_sup_fun.type; }
| AndPair,OrPair{

testexpr$l.SymParTypeEnv = MergeTypeEnv(
testexpr$2.SymParTypeEnv,testexpr_list.SymParTypeEnv);

testexpr$l.type = Logical; }

| NotPair{
testexpr$l.SymParTypeEnv = testexpr$2.SymParTypeEnv;
testexpr$l.type = Logical; }

| IfTPair{

testexpr$l.SymParTypeEnv = MergeTypeEnv(

MergeTypeEnv(testexpr$2.SymParTypeEnv,testexpr$3.SymParTypeEnv),
testexpr$4.SymParTypeEnv) ;

testexpr$l.type = Logical; }
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| TParen{
testexpr$l.SymParTypeEnv = testexpr$2.SymParTypeEnv;
testexpr$l.type = Logical; }
| TExist{
testexpr$l.SymParTypeEnv = MergeTypeFEnv(
testexpr$2.SymParTypeEnv,testexpr$3. SymParTypeEnv) ;

testexpr$i.type = Logical; } ;
testexpr_list:
TExpList1{
testexpr_list.SymParTypeEnv = testexpr.SymParTypeEnv;
testexpr_list.type = Logical; }
| TExpList2{

testexpr_list$1.SymParTypeEnv = MergeTypeEnv(
testexpr_list$2.SymParTypeEnv,testexpr.SymParTypeEnv);

testexpr_list$l.type = Logical; } ;
expr:

ExprNull{
expr.SymParTypeEnv = NullSymParTypeEnv;
expr.type = NoType; }

| TermSingle{
expr.SymParTypeEnv = term.SymParTypeEnv;
expr.type = term.type; }

| TermPair{
expr.SymParTypeEnv = NarrowTypeEnv(term.SymParTypeEnv,Number) ;
expr.type = Narrow(Number,term.type); }

| PlusPair,MinusPair{
expr$l.SymParTypeEnv = MergeTypeEnv(

NarrowTypeEnv(expr$2.SymParTypeEnv,Narrow(Number,term.type)),
NarrowTypeEnv(term.SymParTypeEnv,Narrow(Number,expr$2.type)));

expr$l.type = Narrow(expr$2.type,term.type); } ;
term:
PowerSingle{
term,SymParTypeEnv = power.SymParTypeEnv;
term.type = power.type; }
| ProdPair,QuotPair{
term$1.SymParTypeEnv = MergeTypeEnv(

NarrowTypeEnv(term$2.SymParTypeEnv,Narrow(Number,power.type)),
NarrowTypeEnv(power.SymParTypeEnv,Narrow(Number,term$2.type)));

term$l.type = Narrow(term$2.type,power.type); }o;
power:

FactorSingle{

power .SymParTypeEnv = factor.SymParTypeEnv;

power.type

factor.type; }
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| ExpPair{
power$l.SymParTypeEnv = MergeTypeEnv(
NarrowTypeEnv(factor.SymParTypeEnv,Narrow(Number,power$2.type)),
NarrowTypeEnv(power$2.SymParTypeEnv,Narrow(Number,factor.type)));
power$1.type=Narrow(Number,Narrow(factor.type,power$2.type)); };
factor:

Const{
factor.SymParTypeEnv = constant.SymParTypeEnv;
factor.type = constant.type; }

I Var{
factor.SymParTypeEnv = variable.SymParTypeEnv;
factor.type = variable.type; }

| ParenExpr{
factor.SymParTypeEnv = expr.SymParTypeEnv;
factor.type = expr.type; }

| IfFTPair{
factor.SymParTypeEnv = MergeTypeEnv(

MergeTypeEnv(testexpr.SymParTypeEnv,expr$1.SymParTypeEnv),
expr$2.SymParTypeEnv) ;
factor.type
| FExist{
factor.SymParTypeEnv
MergeTypeEnv(expr$1l.SymParTypeEnv,expr$2. SymParTypeEnv) ;
factor.type = Narrow(expr$1l.type,expr$2.type); } ;
constant:
ConstNumi{

]

Narrow(expr$i.type,expr$2.type); }

constant.SymParTypeEnv
constant.type

| ConstNum2{
constant.SymParTypeEnv
constant.type

| ConstNum3{
constant .SymParTypeEnv
constant.type

variable:

VarNull{
variable.SymParTypeEnv
variable.type

| Variablel{
variable.SymParTypeEnv

NullSymParTypeEnv;

Integer; }
= NullSymParTypeEnv;
Real; }

NullSymParTypeEnv;

= String; } ;

= NullSymParTypeEnv;
= NoType; }

TypedSetDp(sympar.nam,NoType)::NullSymParTypeEnv;

variable.type
| Variable?2{

= sympar.type; }
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variable.SymParTypeEnv = simplevar.SymParTypeEnv;

variable.type = simplevar.type; }

| Variable3{
variable.SymParTypeEnv = builtin_function.SymParTypeEnv;
variable.type = builtin_function.type; }

| Variabled4{
variable.SymParTypeEnv = NullSymParTypeEnv;
variable.type = Integer; }

| Variable5{
variable.SymParTypeEnv = NullSymParTypeEnv;
variable.type = Integer; }

| Variable6{
variable.SymParTypeEnv = arith_index_sup_fun.SymParTypeEnv;
variable.type = arith_index_sup_fun.type; } ;

log_index_sup_fun:
LogIndexSupFunctionNonNull{
log_index_sup_fun.SymParTypeEnv = testexpr.SymParTypeEnv;
log._index_sup_fun.type = Logical; } ;
arith_index_sup_fun:
ArithIndexSupFunctionNonNull{
arith_index,sup_fun.SymParTypeEnv = expr.SymParTypeEnv;
arith_index_ sup_fun.type Number; } ;
simplevar:
SimpVarConst{
simplevar.SymParTypeEnv = NullSymParTypeEnv;
simplevar.type = get_type(gname_lookup(GNAME,simplevar.env)): }
| SimpVarNamef{
simplevar.SymParTypeEnv = NullSymParTypeEnv;
simplevar.type = get_type(gname_lookup (GNAME,simplevar.env)); } ;
builtin_function:
BuiltinFunctionNonNull{
builtin_function.SymParTypeEnv = expr_pack.SymParTypeEnv; }
builtin_function.type NoType; } ;
expr_pack:
ExprPackNonNull{
expr_pack.SymParTypeEnv =
MergeTypeEnv(expr_head.SymParTypeEnv,expr.SymParTypeEnv);
expr_pack.type = NoType; } ;
expr_head:
ExprHeadNull{
expr_head.SymParTypeEnv = NullSymParTypeEnv;
expr_head.type = NoType; }
| ExprHeadNonNull{
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expr head.SymParTypeEnv =
MergeTypeEnv(expr_head.SymParTypeEnv,expr.SymParTypeEnv) ;
expr_head.type = NoType; } ;

sympar:

SymParNull{
sympar.SymParTypeEnv = NullSymParTypeEnv;
sympar.nam = M.
sympar.type = NoType; }

| SymPari{
sympar.SymParTypeEnv = NullSymParTypeEnv;
sympar.nam = 5_P_STEM;
sympar.type = NoType; }

| SymPar2{
sympar.SymParTypeEnv = NullSymParTypeEnv;
sympar.nam = S5_P_STEM;
sympar.type = NoType; } ;

The equations above make use of an additional function get_type, in the domain
of ATYPE values, that is applied to attributes of the nonterminal simplevar. The
value of get_type is the type value Number if simplevar corresponds to a numeric—
valued simple variable, or is the logical value String if simplevar corresponds to a
string-valued simple variable. The argument to get_type is the Binding returned
from a call to the function grname_lookup (described in Section 3.5.1), with input
argutnents simplevar.nam and variable.env. Thus, it is necessary that all nonter-
minals also inherit the environment attribute env, in a manner similar to that
described in Section 3.5. We omit these details, which can be found in [Vicu90].

Example 2. The values of the attributes SymParTypeEnv and type, for each of

the nonterminals listed in Example 1, are as follows:

testexpr.SymParTypeEnv:

SymParTypePair(TypedMemberOp (%ZIP Illegal) NullSymParTypeEnv)
texpr.type: Logical
testexprl.SymParTypeEnv: NullSymParTypeEnv
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testexpri.type: Logical

exprl.SymParTypeEnv: NullSymParTypeEnv
exprl.type: typeof CITY
expr2.SymParTypeEnv: NullSymParTypeEnv
expr2.type: String

testexpr2.SymParTypeEnv:

SymParTypePair(TypedMenber(p(%ZIP Integer) NullSymParTypeEnv)
testexpr2.type: Logical
expr3.SymParTypeEnv:

SymParTypePair(TypedMemberOp (%ZIP NoType) NullSymParTypeEnv)

expr3.type: NoType
expr4.SymParTypeEnv: NullSymParTypeEnv
expré4.type: Integer

testexpr3.SymParTypeEnv:

SymParTypePair (TypedMemberOp(%ZIP String) NullSymParTypeEnv)
testexprd.type: Logical
exprb.SymParTypeEnv:

SymParTypePair(TypedMemberOp(%ZIP NoType) NullSymParTypeEnv)

exprS.type: NoType
expr6.SymParTypeEnv: NullSymParTypeEnv
expr6.type: String

The screen display can then be annotated with the following output represen-

tation of the attribute SymParTypeEnv, at the place of nonterminal testezpr:

QIF(J = 5, %ZIP > 9000, ./.Z:{P = "#TRUE"),
Where AZIP Is Illegal

4.2.2 Inference of Types Implied by Domain Statements

The first step is to eliminate the optional domain construct from the SML syn-
tax. Indeed, after removing the op_dom_stat operand from all genus paragraph
operators, primitive entity, compound entity, attribute or variable attribute, func-

tion, and test paragraphs are defined by the production rules:

peparagraph:
PeParNull()
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| PeNode(gname opindices PE_TYPE_DECL op_iss TBAR interp
TPERIOD) ;
ceparagraph:
CeParNull()
| CeNode(gname opindices LPAREN calls RPAREN CE_TYPE_DECL op_iss
TBAR interp TPERIOD) ;
avaparagraph:
AVaParNuli()
| AVaNode (gname opindices LPAREN calls RPAREN A_VA_TYPE_DECL op_iss
op_range_stat TBAR interp TPERIOD) ;
fparagraph:
FParNull()
| FNode(gname opindices LPAREN calls RPAREN F_TYPE_DECL op_iss
SEMICOLON modfunexpr TBAR interp TPERIOD) ;
tparagraph:
TParNull()

| TNode(gname opindices LPAREN calls RPAREN T_TYPE_DECL op_iss
SEMICOLON modtstexpr TBAR interp TPERIOD) ;

Without any domain statements in the model Schema, the type of each of the
elements of a self-indexed genus can now be inferred solely from the Flemental
Detail Tables. The approach is similar to that shown in Section 3.5.7, where Table
Content Rule A was enforced. The main difference is that the paragraph domain
type characterized by the attribute domtype, which was previously inherited from
the model Schema, now has to be synthesized within the productions that define
the Elemental Detail Section. We now sketch an outline of the equations.

An attribute domtype, corresponding to the domain of INT: egers, can be syn-

thesized by the nonterminal data, according to the type of element. The attribute
equations are the following:

data:
DataOptionNull{
data.domtype = 0; }
| DataOptioni{
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The attribute domtype must then be synthesized via the chain of nonterminals:
data — data_list — data_line — line_list. At the same time, the attribute in_stub,
corresponding to the domain of logical values, needs to be synthesized by the

nonterminal data_list. The equations for domtype are as follows:

line_list:
LineListOptioni{
line_list.domtype
| LineListOption2{
line_list$1.domtype
Narrow(data_line.domtype,line_list$2.domtype); }
data_line:

data_line.domtype; }

DatalineOptioni{

data_line.domtype = data_list.domtype; }
| DataLineOption2{

data_line.domtype = data_list.domtype; }
| DatalineOption3{

data_line.domtype

Narrow(data_list$1.domtype,data_list$2.domtype); }
data_list:
DataListOptioni{
data_list.domtype = data.domtype; }
| DataListOption2{
data_list$1l.domtype =
Narrow(data_list$2.domtype,data.domtype); }

The function Narrow, when given two numeric type operands, will return a nar-
rower type according to the coercion rules of SML. The value of the synthesized
attribute domtype, at the nonterminal line_list, will be a legal type if the elements

are consistent, or an illegal type if they are inconsistent.
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4.3 Discussion

Type inferencing has been applied in a variety of contexts. For example, it
has been dealt with in polymorphic languages, like ML [Gord78], and explored in
the PSG system [Bahl86], developed at the Technical University of Darmstadt. In
those contexts, a unification algorithm [Robi79] is used for inferencing a construct
type from its use. In the modeling language context, we show here how miss-
ing or incomplete information can be inferred in SMIL, via an attribute grammar
formalism. Many related ideas about expression type checking can be found in
[Aho86].

The examples of inferencing with attribute grammars given in this chapter sug-
gest that mathematical modeling languages may be simplified, and become easier
to use, if appropriate inferencing mechanisms are integrated into the modeling
environment. The modeling environment can then fill in the missing details.

Type inference makes models in the modeling language easier to write, as there
are fewer details to write. lThe gained simplicity and clarity does not come at the
expense of not performing checks; they are just deferred to a later time of the
model development process. Although it might just be better to perform all type
checking as early as possible via explicit declarations, the inferencing approach
suggested here may perfectly well be the basis of dialects of the original modeling
language. These complementary dialects can help users who might want to learn

a new language, and also help experienced modelers who might want to confirm
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hypotheses.

While inferencing offers many advantages, it naturally has some limitations.
Among them, a principal one is the fact that inferencing only offers coarse distinc-
tions between values. It is not possible, for example, to infer from context that
symbolic parameter values should be restricted to a fixed number of digits. An ex-
plicit declaration could easily make this restriction available and enforceable by the
modeling environment. Similarly, although it would be possible to determine by
nference if an element’s domain is either integer valued or string valued, it would
not be possible to determine that it is positive integer, or short string. These kinds
of fine statements can only be done via explict declarations. Finally, explicit data
type information is also useful for documentation purposes, in particular when the
designer(s) and the user(s) of the model are not the same individuals.

The equations shown in Section 4.2.1 were implemented and tested in the
syntax—directed editor prototype described in Chapter 6. The ideas shown in
that section can also be used as a guideline to develop implementations for the
other areas where it is suggested that inferencing could be applied in SML. The
most important initial aspect of an implementation is to define the function Nar-
row, according to the semantic rules of the modeling language. The next concern
1s then to describe how these inferred conclusions can be broadcast along a parse

tree of the model being described.

113



CHAPTER 5

Expression Evaluation in Mathematical Modeling Languages

Mathematical modeling languages, in general, can model elements whose val-
ues are computed by indexed functions from some domain space to a range space.
A natural objective is to have a language-specific translator in the modeling envi-
ronment automatically generate (without any imperative programming) the code
to evaluate general classes of indexed families of expressions, as the model is de-
signed and/or modified. Furthermore, if this translator can be combined with a
resident execution tool (an interpreter), an immediate evaluation capability can be
provided by the modeling environment.

To illustrate this objective, consider for example a structured model that rep-
resents the sequence of Fibonacci numbers. The numbers in this sequence, which
are denoted by F,, are defined as Fy=0, =1, Fo2=Fo 1 +F,, n>0. A gen-
eral model structure (Schema), written in the recursive version of SML, is shown
in Figure 5.1. A particular model instance, comprising the first five numbers in
the sequence, is given in the Elemental Detail Table of Figure 5.3. That table is
structured according to the labels depicted in Figure 5.2. Refering to the model
instance, the function elements could have their corresponding values in column

FIB_VAL of Elemental Detail Table FIB calculated automatically, immediately
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after the indexed function expressions are written or modified in the Schema.

FS /pe/ ~| FIBONACCI SEQUENCE. ~.
FIBn (FS) /f/ ;
@IF(n=1, 0, QIF(n=2, 1, FIB<n-1> + FIB<n-2>))

“| Each "/FIBONACCI"/ number is the sum of
the preceding two FIBONACCI numbers.

Figure 5.1: Schema for a Model of Fibonacci Numbers.

Table Name Column Names
FIB FIB || INTERP FIB_VAL

Figure 5.2: Flemental Detail Table Structure.

0 Il First number 0
1 Il Second number 1
2 [l Third number 1
3 || Fourth number 2
4 Il Fifth number 3

Figure 5.3: Elemental Detail Table FIB.

The capability to evaluate indexed families of mathematical expressions of great
complexity, for example those which can be written in SML, is an important re-
quirement for the next generation of modeling environments. In this chapter, we

show how to provide a compiler for SML’s indexed families of expressions via an
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attribute grammar framework. This compiler could be combined with a resident
execution tool (interpreter) to endow a syntax-directed editor for SML, like the
prototype presented in Chapter 6, with the integrated ability to support immedi-
ate evaluation of expressions. With changes to account for differences in surface
syntax, the attribute grammar-based approach to compiling that is introduced for
SML is adaptable to other mathematical modeling languages as well.

The organization of the chapter is as follows. To place this work in perspective,
Section 3.1 reviews several methods for semantic description of programming lan-
guages, which are relevant to expression evaluation in mathematical modeling lan-
guages. Two particular methods are examined in more detail: attribute gramrnars,
and denotational semantics. Section 5.2 sketches the architecture of a compiler of
SML expressions into executable program fragments. The paradigm for expressing
this language-specific compiler is based on attribute grammar equations. Finally,

Section 5.3 provides a discussion.

5.1 Related Approaches for Semantic Evaluation

For the purpose of implementing an evaluator of indexed families of expressions,
properties like the maintenance of the focus of control of the execution, and the
assignment of values to specific elements, need to be incorporated in the evaluation
tool. However, a simple inspection of the model’s Schema and its static semantics is
insufficient for deriving these kinds of properties, which are known as “dynamic”,

or “behavioral” semantics. Indeed, after the first—stage translation of a subject
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model into an intermediate fragment, its actual evaluation by the execution tool
(interpreter and/or symbolic debugger) requires execution time (run time) sup-
port from the modeling environment. Unfortunately, most language—based system
generators do not provide this kind of support.

Recent research in language-hased environment generators that support the
description of both static and dynamic semantics falls typically in the class of action
routines, attribute grammars, and denotational semantics. Action routines are
either written in a procedural programming language as, for example, in the parser
generation system YACC, or in a special-purpose action-routine language. Action
routines are always associated with the particular productions of the grammar,
and are invoked automatically when an editing command is applied to a node in
the syntax tree representing the model. The other two approaches to semantic

description are discussed in the balance of this section.

5.1.1 Attribute Grammar Methods

Attribute grammars are an alternative semantic processing paradigm used in
various language-based generator systems. This declarative approach, however, is
generally limited to a small subset of the processing aspects of dynamic seman-
tics. Indeed, as shown by. the review made in [Dera86], most systems based on,
or related to, attribute grammars have no special provision for code generation.
Furthermore, the interpretation of generated code is not generally supported by

attribute grammar based generator systems.
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For the code generation phase, an approach is to emit “code templates” during
the traversal of the syntax—tree. For example, in the MUG 1 and MUG 2 systems
[Dera86], there is a code template for each operator (node) of the abstract syntax
tree. Each code template is an action to either visit a (son) subtree, compute
some local values, or output some intermediate code using the node’s attributes
and local values. This customized approach needs special routines, outside the
attribute grammar, to translate the intermediate code to machine language code.

For the specification of run time semantics, a generic approach is to take a
semantic definition written in a lambda—-calculus notation, and to translate the
definition into an equivalent, directly executable, intermediate language. This in-
termediate language, together with a subject test program written in the modeling
language, say SML, are then given to an interpreter which executes the test pro-
gram to obtain its dynamic semantics. Arbab [Arba86], for instance, suggests
taking an attribute grammar specification of a programming language, translating
it into Prolog code, and then supplying the subject program plus the Prolog code
to a Prolog interpreter or compiler to produce ob ject code in the form of lambda
expressions. These expressions can then be given to a lambda machine to produce
the output corresponding to the execution of the subject program.

In the Synthesizer Generator developed at Cornell [Reps89a], which proposed
the use of attribute grammars for generating language-based environments, the
syntax and static semantics of the subject language are defined using SSL (Syn-

thesizer Specification Language), but the specification of run time semantics is not
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supported. Hence, the attribute evaluation scheme(s) employed by the Synthesizer
Generator are not completely adequate for the purposes of code interpretation, as
required for immediate evaluation of indexed families of expressions.

A recent extension to attribute grammars, action equations [Kais89], embeds
rules similar in form to semantic equations, which reflect the interaction between
the user and the environment, in an event-driven architecture. This extension has
been developed to permit the generation of language-based environments which

support the specification of both static and dynamic semantics.

5.1.2 Denotational Semantic Methods

Denotational semantics is another paradigm for specifying dynamic semantics
processing: interpretation, in particular. The basic problem, however, is that as

in attribute grammar paradigms, denotational specifications are restricted to only

small aspects of dynamics processing.

The central concept behind denotational semantics is that the meaning of a
language can be computed in terms of the meaning of the constituents of the
language [Gord79]. The meaning of more primitive constituents can be expressed
as mappings from the sentences (or abstract trees) to sets of functions written in a
lambda-calculus. It has been shown that a denotational semantic specification of
a language can be mapped into a synthesized—only attribute grammar definition
[Chir79]. Thus, both denotational semantics and attribute-grammars are equally

powerful semantic definitions. However, this equivalence comes at a cost: in the
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synthesized-only attribute grammar definition, attributes have functional values,
making the definition more complex and harder to read.

In the approach taken in [Kini82], the ADA formal definition, written in deno-
tational semantic style, is translated with a software tool into a directly executable
intermediate language. Candidate test programs are mapped into corresponding
abstract syntax-trees. The translated definition is applied to the abstract trees
to obtain the semantics of the candidate programs. The execution phase is per-
formed with a special-purpose interpreter written in Interlisp. Wand [Wand84]
describes related software tools which have been developed to translate a denota-
tional semantic specification of a language into terms of a lambda-calculus. The
terms are actually functions of Scheme 84, a version of Franz Lisp, which serves
as the lambda-~calculus interpreter. An interface to the YACC parser generator

permits the use of concrete input syntax, rather that abstract syntax for its input

programs.

5.2 Immediate Expression Evaluation in SML

Several alternatives are available for the formal specification of the evaluation
properties of indexed families of expressions in SML. A generic, although complex,
approach would be to produce both a denotational semantic definition for SML,
and a translation of subject structured models into executable representations in
lambda~calculus form. Then, the evaluation of function and test genera could

be carried out by a LISP interpreter which would take as inputs the executable
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representation of the denotational semantic specification of SML and the abstract
syntax—tree representing the model, and then would execute the model (traverse
the abstract tree) to produce new output values for the affected model elements.
This approach would require execution time support from the modeling environ-
ment to handle aspects like the order of evaluation of functions, and the assignment
of values to elements.

An alternative architecture is to consider designing a compiler of SML expres-
sions directly within an attribute grammar framework, and to incorporate an ex-
ecution tool into the modeling environment that will interpret the compiled code.
This is the strategy adopted in the remainder of this section. Among the advan-
tages derived from this selection are the modularity of the generated code, the

readability of this code, and the compact size of constituent code fragments.

5.2.1 Example of Evaluation Code

This subsection shows the type of code that is required to evaluate the function
genera in the example of the structured model of Fibonacci numbers shown in
Figure 5.1. The code is written in FRED, Framework II’s built-in, interpreted,
language [Asht88]. Framework III is a popular DOS multi-function program that
supports many modeling system functions, including word processing, outlining,
spreadsheets, databases, graphs, and telecommunications. One reason for choosing
FRED to describe this example is that the language contains many of the primitive

functions that are required to support tabular databases and spreadsheets. If
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Elemental Detail Tables are stored in databases, the data handling aspects can
be completely specified in FRED. Another reason for selecting FRED is that the
language is highly readable. Nevertheless, FRED is only used here as a vehicle to
explain the kinds of operations which are required to evaluate function and test
genera and, therefore, any other procedural language might have been chosen as
well. In this latter case, it is assumed that Elemental Detail data can be stored
within some database management system which can be programmed in the chosen
procedural language.

For evaluation purposes, the meaning of the generic rule of paragraph FIB in

Figure 5.1 is the equivalent code fragment of Figure 5.4. The essentials of this

1 f£:="Qif(@"Calc.x.[is n]([FIB]),

2 [FIB_VAL] := Qif(@ Calc.x.[ir n] =1 ,
3 o,

4 Qif(@ Calc.x.[ir n] = 2 .

5 1,

6 @~Calc.x.[g FIB_VAL](""n"",-1) +

Q@"Calc.x.[g FIB_VAL](""n"",-2)
7 )
8 )
s )
L s
11 Qsetdefining("[FIB].[FIB_VAL]",f),

Figure 5.4: Defining Formula

fragment may be understood in the following.
In general, each function or test genus has an associated defining formula f In

this particular model with only one function genus, the defining formula f (lines 1
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through 10) is assigned to the FIB_.VAL column of table FIB via the @setdefining
function in line 11. Sincé the genus for FIB_.VAL only has one symbolic index
(there is a single column to the left of the “|” field in Figure 5.3), there is only
one Index Setup function call in line 1. The Index Setup function, @ Calc.zfis nj,
is called with the argument [FIB], which evaluates to the current value of the stub
(“0” for the first row, “1” for the second row, etc.).

The generic Index Setup function code, given in Figure 5.5, creates the global
variable @ Calc.zfir n] via the @makevariable function in line 12, and assigns to it
(in lines 4 and 7) the row number in the table that introduces the symbolic index
(i.e., [FIB].[FIB]) where the actual parameter value matches the table identifier
value. If a match is found, the function returns #TRUE but, if the actual param-
eter value is not a valid identifier, a match will not be found and the Index Setup

function returns #FALSE.

1 f:=";is n

2 Qlocal(i),

3  i:=Qreset({FIB].[FIB]),

4 x.[ir nl := 1,

5 @Owhile(Qand(i<>#NULL!',i<>Qitem1),
6 i:=@next([FIB].[FIR]),

7 x.[ir n] = x.[ir o] + 1
8 ),

9  Qreturn(Qand (i<>#NULL!,i<>#N/A1))
10 1

11 Qmakeformula("“Calc.x.[is n]",f),
12 @makevariable("“Calc.x.[ir nl"),

Figure 5.5: Index Setup Function
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Returning to Figure 5.4, the @if function in line 1 causes the calculation to
be aborted if the return value of @ Cale.zfis n] is #FALSE, which would indicate
that the stub value is incorrect. OQtherwise, the true clause of the @if function
is executed, and column [FIB.VAL]is assigned the value of the expression to the
right of the := sign in line 2.

The expression to evaluate (lines 2 through 9 of Figure 5.4) is practically a
literal translation of the model’s generic rule. Indeed, the value of the current
row position in the stub is maintained by variable @ Cale.«fir n]. For the first
two row positions, this variable evaluates to 1 and 2, in this order; hence, genus
FIB_VAL evaluates to 0 and 1, respectively. For row positions greater than two,
the value of genus FIB_VAL is determined in line 6 by the sum of the return values
of the two calls to the generic Genus Value function listed in Figure 5.6. The
first call passes the pair (n,-1) as actual parameters, corresponding to the index
identifier parameters of the previous row. The second call passes the pair (n,-2)

as arguments, corresponding to the index identifier parameters of the next to the

previous row.

f:=";g FIB_VAL
Qchoose(@ Calc.x.[ts FIB] (Qiteml,Q@item?2), [FIB].[FIB_VAL])

1
2
3 v ,
4 Omakeformula("“Calc.x. [g FIB_VAL]",f),

Figure 5.6: Genus Value Function

A Genus Value function returns the value of genus FIB_VAL, given the current
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settings of the variable @ Cale.zfir n], and appropriate offset modifications. The
@choose function in line 2 is used to extract a value from the [FIB].[FIB_VAL]
column, at the current rank settings. This current rank setting is determined after
a call to the Table Search function @ Calc.zfts FIB], whose generic code is shown

in Figure 5.7.

f:=";ts FIB
;Lookup index:
@x.[11 n] (Q@iteml,@item?2),
;Check if game as last search:
@if(x.[iv n] = x.[ti FIB n],
@return(x. [tp FIB])),
;Remember we did this search:
x.[ti FIB n] := x.[iv n],
;Initialize search loop:
Qreset ([FIB]. [FIB]),
x.{tp FIB] := 1,
;Search:
@while(Qget ([FIB].[FIB]) <> #NULL!,
Cif(@get ([FIB].[FIB]) = x.[iv n],
Qreturn(x. [tp FIB])),
Onext ({FIB]. [FIB]),
x.[tp FIB] := x.[tp FIB] + 1),
;Not found, return #N/A!
C@return(x.[tp FIB] := #N/A!)

L1
2

Omakeformula("~Calc.x. [ts FIB]",f),
@makevariable(""Calc.x.[ti FIB n]"),
Omakevariable(""Calc.x. [tp FIB]"),

Figure 5.7: Table Search Function

The Table Search function @ Cale.zfts FIB] searches the table FIB that con-
tains genus FIB_VAL, for the record number such that its stub values match the

position specified in the formal parameters. [t employs the auxiliary Index Lookup
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function, whose generic code is listed in Figure 5.8.

f:=";i1 n
;Simple index case:
0if (Qor(Qand (Qitem1=#NULL',Qitem2=#NULL!),
Qand (Qiteml=#N/A!,Qitem2=#N/A!)),
Qlist(x.[iv n] := Qchoose(x.[ir n], [FIB].[FIB]),
Qreturn(x.[ir nl))),
;Get index letter offset:
Qlocal (macro,rank),
Qif(@isalpha(Q@iteml) ,@list(

macro := ""x.[ir ""&Qitemi&""]"",

Qiserr(rank := Qmacro),

Q@if(@not(Q@isnumeric(rank)),0)),
rank := 0},

;Add constant offset:
Qif (Qisnumeric(@item2),

rank := rank + Qitem2),
;Fixup negative indices
Qif(rank < O,

rank := Qpanel2("“[FIB].[FIB]"") + rank + 1),
x.{iv n] := @choose(rank, [FIB].[FIB]l),
Qreturn(rank)

@makeformula("~Calec.x.[il n]",f),
Qmakevariable("~Calc.x.[iv n]"),

Figure 5.8: Index Lookup Function

The generic Index Lookup function @ Cualc.zfil n] sets up the value of the
variable @ Cale.z.fiv n] calculated from the current rank @ Calc.z.[ir nj.

This completes the explanation of the code fragments. It is necessary to add
that in the code generation scheme above, the supporting spreadsheet @ Cale. is
used to store formulas and to hold the values of variables. Figure 5.9 shows the

row and column labeling structure for this spreadsheet.
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Row Names Column Name
X

[is n]

[ir n]

[g FIB_VAL]

{ts FIB]

[ti FIB]

[tp FIB]

[il n]

(iv n]

Figure 5.9: Spreadsheet “"@Calc”.

5.2.2 An Attribute Grammar Based Compiler

The code fragments required to evaluate function and test genera in FRED can
be generated by an attribute grammar based compiler. This subsection shows how
to specify such a compiler in order to generate lines 2 through 9 of the Defining
Formula fragment of Figure 5.4. This approach can be easily extended to generate
the complete code fragments given by Figures 5.4 through 5.8, if table structuring
information is available. Issues about actual code evaluation are deferred to the
discussion presented in the next section.

The code generation strategy suggested here automatically recalculates the
evaluation code when the Schema is significantly altered. If the data in Flemen-
tal Detail Tables are changed, the code is not regenerated; it only ought to be
reexecuted to assign new values to elements.

In the attribute grammar equations, the single synthesized attribute code, from

the domain of STRings, is attached to the generic rule nonterminals. Only the
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nonterminals affected in the generation of the Defining formula code fragment are
shown below.

fparagraph:
FNode{
fparagraph.code = "["#gname.code#"] := "#modfunexpr.code; }
tparagraph:
TNodeq{ ‘
tparagraph.code = "["#gname.code#"] := "#modtstexpr.code; }
gname:
GenNameNonNull{
gname.code = GNAME; }
modfunexpr:
MFunExpr{
modfunexpr.code

It

funexpr.code; }

modtstexpr:
MTstExpr{
modtstexpr.code

testexpr.code; }
3
testexpr:
| LitConst{
testexpr.code
| TestPair{
testexpr.code
| IfTPair{
testexpr$l.code = "Qif ("#testexpr$2.code#" ,\n"#
testexpr$3. code#" »\n"#testexpr$d.code#"\n)"; }

LITERAL; }

i

expr$l.code#” "#relop.code#" "#expr$2.code; }

relop:
RelOpLt{
relop.code
| RelOpLe{
relop.code
| RelOpEq{
relop.code
! RelDpGt{
relop.code = GT; }
| RelOpGe{

LT; }

LE; }

EQ; }

128



relop.code = GE; }
| RelOpNed{
relop.code

H

NE; }
funexpr:
FuncExprNonNull{
funexpr.code = expr.code; }
expr:
| TermSingle{
expr.code = term.code; }
| TermPair{
expr.code = term.code; }
| PlusPair{
expr$l.code = expr$2.code#" "#PLUS_SIGN#" "#term.code; }
| MinusPair{
expr$i.code = expr$2.code#" "#MINUS_SIGN#" "#term.code; }
term:
PowerSingle{
term.code = power.code ; }
| ProdPair{
term$1.code = term$2.code#" "#MULT_SIGN#" "#power.code; }
| QuotPair{
term$l.code =
term$2.code#" "#DIVIDE_SIGN#" "#power.code; }
power:
FactorSingle{
power.code
| ExpPair{
pover$l.code

factor.code; }

factor.code; }
H
factor:
Constq{
factor.code
| var{
factor.cede
| ParenExpr{
factor.code = expr.code; }
| IfFTPair{ ‘
factor.code = "Qif (\n"#testexpr.code#" s\n"#texpr$i. codett
" ,\n"#expr$2.code#"\n)"; }

constant.ccde; }

variable.code; }



]
constant:
ConstNumi{
constant.code
| ConstNun2{
constant.code

nninteger.code; }

NN_REAL; }
;
variable:
| Variable2{
variable.code = simplevar.code; }
| Variabled{
variable.code = "@"Calc.x.[ir "#pp_index.code#"] "; }
simplevar:
SimpVarConst{
simplevar.code
| SimpVarName{
simplevar.code =
"@"Calc.x.[g "#GNAME#"] ("#grindices.code#")"; }

"Q@"Calc.x.[g "#GNAME#"](,)"; }

grindices:
Grindicesi{
grindices.code = grule_index.code; }

| GrIndices2{
grindices$l.code

grule_index.code#","#grindices$2.code; }

grule_index:

| GrIndi{

grule_index.code = “\"\""#pp_index.code#"\"\",": }
I GrInd2{

grule_index.code = ","#replaced_index.code; }
| GrInd3{

grule_index.code = offset_index.code; }
replaced_index:

ReplacedIndexi{

replaced_index.code = “,"#optsign.code#pinteger.code; }
offset_index:

OffsetIndexNonNull{

offset_index.code =

"\"\""#pp_index.code#"\"\","#sign.code#pinteger.code; ¥
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optsign:
OptSignNonNull{
optsign.code

sign:
SignPlus{
sign.code
| SignMinus{
sign.code

pinteger:
One{
pinteger.code
| Pinteger{
pinteger.code
nzinteger:
NzIntegeri{
nzinteger.code
| NzInteger2{
nzinteger.code
nninteger:
NnIntegeriq{
nninteger.code
| NnInteger2{
nninteger.code
integer:
Integeri{
integer.code
| Integer2{
integer.code
index:
Index1{
index.code
| Index2{
index.code

It

pp_index:
PpIndexi1{
Pp-index.code

[}

H

sign.code; }

PLUS_SIGN; }

MINUS_SIGN; }

STR; }

P_INTEGER; }

pinteger.code; }

]

sign.code#pinteger.code; }

= pinteger.code; }

STR; }

nninteger.code; }

sign.code#nninteger.code; }

INDEX; }

C_P_TOKEN; }

index.code; }
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| PpIndex2{

pp-index.code = S_P_INDEX; }
| PpIndex3{
pp.index.code = D_P_INDEX; }

Example. The value of the attribute code, for the nonterminal fparagraph, is
shown below. As expected, it is exactly that code of lines 2-9 of Figure 5.4.

fparagraph.code —

Qif(@"Calc.x.[ir n] =1 ,
0,
Qif(@~Calc.x.[ir n] = 2 ,
1,

@"Calc.x.[g FIB_VAL]("'n"",-1) + Q@“Calc.x. [g FIB_VAL] (""n"",-2)

5.3 Discussion

Several approaches exist for evaluating the code generated in the way shown in
Section 5.2. For example, FRED code could be generated by an attribute gram-
mar based compiler, exported to an output file, and then read and executed by a
built-in interpreter in a Framework III environment. Alternatively, if a database
management system is interfaced to a syntax-directed editor in an attribute gram-
mar based modeling environment, the generated code would contain function calls
against the database. These functions would form a library that would be compiled

and run under some solver control. The database would be immediately updated

by the solver’s output.



If the data is maintained in the syntax-directed editor described in Chapter 6,
for example, it is possible to provide direct, but inefficient, data access for updating
and evaluation. In this case, the syntax-directed editor would need to be provided
with an interpreter to run the compiled code fragments. This direct execution
approach could be considered a better design approach if the code is generated
and compiled incrementally, so as to reduce the work performed by the attribution
process.

An important application of the ideas of code generation presented in this
chapter can be made to the translation processes that are required in optimization
modeling. Indeed, an approach to integrate a mathematical programming solver
into a modeling environment is to have a translator convert the model described in
the modeling environment to the representation suitable for the solver. The main
tasks performed by this translator are equivalent to the lexical, syntactic, and
semantic phases performed by a compiler. Thus, the actions of a mathematical
programming translator are naturally suited to the attribute grammar approach,
since all information required about the model and its data can be kept and ma-
nipulated globally via attributes. For example, the techniques of code synthesis
via the simple synthesized attribute code, described in Section 5.2.1, can serve to
illustrate similar parts of the semantic analysis phase of the translator. It remains
open to further research how the other semantic tasks performed by the transla-
tor, such as algebraic manipulations, symbol replacements, and detection of special

structures, might be performed with attribute grammars.
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CHAPTER 6

Implementation of a Syntax—Directed Editor Prototype

This chapter describes the implementation of a syntax-directed editor for SML.
A prototype editor, which satisfies all the syntactic constraints and Schema, Prop-
erties of SML, together with some Table Content Rules, has been built with the
Synthesizer Generator —an attribute grammar based generator. This prototype ful-
fills the modeling environment goals of easy modifiability and of non-—procedural
specification advocated in Chapter 3.

To implement a modeling environment for SML that is easily modifiable, and
that is also specified non-procedurally, different language-based generator ap-
proaches were considered. However, among several language-based generator sys-
tems, only a few prototypes, like MENTOR [Donz80] and GANDALF [Elli85], are
not tailored for a particular application. The GANDALF system, for example, uses
action routines written in GC, a dialect of C. The PSG system [Bahl86)}, developed
at the Technical University of Darmstadt, uses the concept of “context relations”
to generate language—specific environments. A so-called data attribute gramrinar
1s used specify the context analysis.

Attribute grammar-based generators are another popular approach to achiev-

ing easy modeling environment modifiability. In the Synthesizer Generator, de-
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veloped at Cornell University [Deme81,Reps89a,Reps89b], for example, context—
sensitive aspects of a modeling language are declared in SSL (Synthesizer Specifi-
cation Language), a specification language which is based on attribute grammars
and closely resembles other specification languages like YACC,

The advantages of the attribute grammar approach over ad-hoc action rou-
tines for ease of maintenance influenced our decision to choose the Synthesizer
Generator to generate a desired syntax-directed editor for SML. An immediate
benefit of this choice is that, via the generated prototype editor, we are able to
independently validate the attribute grammar specification of Schema Properties
and Table Content Rules developed for SML.

The chapter is organized as follows. Section 6.1 explains the Synthesizer Gener-
ator’s specification language SSL. The implementation environment is then briefty
described in Section 6.2. Examples of four erroneous subject models, with the cor-
responding error messages displayed on the screen by the syntax—directed editor,

are shown in the balance of the chapter.

6.1 A Syntax—Directed Editor Description in SSL

The description of a syntax—directed editor in SSI, requires a specification of
the following items:

Concrete Syntax Declarations. A concrete syntax is provided in order to read
and write a file containing a subject test model. The notation employed is basically

BNF. In SML, for instance, there is a root node labeled SchemaFile, and leaf nodes
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denoted in all upper—case letters, by convention. A typical production is written

SchemaFile ::=
(Schema EOF OptElementDetail)
{ $$.t = SchemaFileList(Schema.t,EOF,OptElementDetail.t); }

3

The left-hand side of every production is located to the left of the “::=” symbol,
and the corresponding right-hand side is a set of grammar symbols enclosed in
parenthesis ‘(” and ‘)’. Right-hand side rules associated with the same left-hand
side nonterminal are separated by a bar (‘|") symbol. Associated with each pro-
duction are equations enclosed in left brace (‘{’) and right brace (‘}’) symbols.
These equations translate the concrete input syntax into an abstract syntax used
for internal manipulation. Individual productions are separated from each other
by a semicolon symbol (‘;%).

Lezical Syntaxr Declarations. Terminal symbols in the attribute grammar are
either predefined, or are denoted using a regular expression language. While some
primitive types (like INT, BOOL, and STR) are predefined in the system, the rest
of the tokens need to be explicitly declared. By convention, every terminal name is
listed in uppercase, and its corresponding lexical rule is enclosed by less-than and
greater—than symbols (‘*<” and *>’). The syntax for regular expressions is almost

identical to that of LEX, with some minor restrictions. For example, a lexical rule

for a genus name GNAME
< (CLA=Z]1"$") (La@\\:$I\[%NT* 1| [0-9] | [A-Z])%) >

states that a genus name is any of the upper case letters or the dollar sign, followed

by zero or more occurrences of those characters listed inside the first set of square
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brackets, or the digits 0-9 or the letters A-Z.

Abstract Syntaxr Declarations. The abstract syntax must match the concrete
input syntax. As described in Chapter 3, abstract syntax mimics concrete syntax,
but it usually ignores “syntactic sugaring”. For example, for the concrete syntax

declaration shown earlier, the corresponding abstract syntax is written

root schemafile;
schemafile:
SchemaFileList(schema_par EOF opt_element_detail)

The complete abstract syntax for SML is included in Appendix A.

It remains to explain the role of completing productions in abstract syntax
declarations. This distinguished production is usually a 0-ary production which
is used to construct default tree representations in the case of incomplete concrete
syntax. In this fashion, it is always possible to maintain a complete abstract syntax
tree in the presence of incomplete model fragments. An example in Section 3.3
showed how the completing production ExpNull could be used to represent an
incomplete model fragment.

Type Definitions. One of the best features of the SSL language is that its
derived types (those which are not the primitive types STRing, BOOLean, etc.)
can be expressed in the same notation that is used for declaring abstract syntax.
Thus, for example, in Chapter 3 the new type BINDING was declared as a subclass
of type STR, and type ENV was declared as a list of BINDINGs. Type BINDING
was returned by gname_lookup. This lookup function takes the identifier “id” and

the environment “env” as formal parameters, and recursively searches the list of
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BINDINGs looking for a match with the formal parameter id. If such a match
exists, that BINDING is returned. Otherwise, lookup returns the ‘?’, or unknown,
BINDING. Type definitions are generally required for the attribution of abstract
syntax.

Attribute Declarations. Attribute declarations define the domain of values of
every synthesized and inherited attribute associated with every abstract nonter-
minal symbol. These declarations must precede attribute use in the attribution
equation scheme. Every nonterminal in the abstract syntax which uses an attribute
declares it by specifying the type of the attribute and whether it is inherited or
synthesized. It is not necessary that nonterminals have both inherited and synthe-
sized attributes, nor it is required for a nonterminal to have any attribute declared
at all.

Parse Syntar. We can now explain the meaning of the equations enclosed in
braces in the concrete input syntax. These equations represent the translation
scheme from concrete to abstract syntax. The left hand side of each equation
assigns the value of the operator of the right hand side to the synthesized (syntax
tree) attribute ‘¢’ of the left hand side. For the concrete syntax production shown
earlier, for example, ¢ is a synthesized attribute for schemafile. The declaration
states that every time the cursor is in location SchemaFile in the concrete syntax,
the input should be parsed as a schemafile in the abstract syntax.

Unparsing Declarations. The display representation of the abstract syntax tree

is provided by the unparsing declarations. Normally, the screen display will con-
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tain the representation of terminal strings found in a left to right traversal of the
abstract syntax tree. However, because not all terminal symbols are carried in
the abstract tree, additional tokens to be displayed are explicitly indicated in the
unparsing declaration. Strings enclosed in quotes will be displayed interspersed
with the terminal symbols derived from each nonterminal. Attributes can also be
made to have visible display representations, like the error attribute, for example,
which either evaluates to the null string or to a nonempty error message to appear
in place.

Attribution of Abstract Syntar. The core of a description in SSL is provided
by the attribute grammar equations. For SML, the attribute grammar equations
are provided in [Vicu90]. Equations have been provided to enforce all Schema
Properties, and various Table Content Rules. Some of these equations have already
been described in Chapter 3.

Entry Declarations. A final aspect of an attribute grammar definition in the
SSL language consists of entry point declarations. These points declare those
nonterminals which are editable by the system. Thus, when the selection is at the
editable nonterminal in the concrete syntax, input is to be parsed as given in the
abstract syntax and should be inserted appropriately in the syntax tree denoted
by t. Grammar symbols which are not declared as entry points become immutable,

and as such are not subject to change.
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6.2 Prototype Implementation

A prototype of a syntax—directed editor has been developed and implemented
on an RT PC workstation, running X-Windows under UNIX Berkeley 4.3 [Ritc74].
Portability has been one of the design requirements; this prototype is capable
of running on any environment to which the Synthesizer Generator system can
be ported. The languages and tools used are standard omes provided in UNIX
environments: C, LEX, YACC, make, and sed.

The Schema Properties of SML have been implemented in about 3400 lines
of attribute-grammar style equations. The complete environment (syntactic ana-
lyzer, parser, and unparser) is written in about 7100 lines of pseudo—code.

Table Content Rules A, B, E, I, and L of SML have been implemented in
about 500 lines of additional attribute-grammar style equations. The complete
environment (Schema Properties and implemented Table Content Rules, including
syntactic analyzer, parser, and unparser) now includes about 7800 lines of special-
purpose code; all details are rendered in [Vicu90]. The non-implemented Table
Content Rules can only be verified by the user (Rules D and K), or require under-
standing a relational algebraic expression implied by an index set statement (Rule
F), or demand cognizance of element feasibility (Rules C, G, H, and J).

The prototype environment has been tested with a collection of problems ex-
tracted from various domains, including Engineering and Operations Research.

Over 100 SML models collected in [Geof89¢] and elsewhere have been used as
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subject test models.

Response-time on the RT PC is rather slow when large models are tested.
Complex models with 40-50 paragraphs, few tables, and few elements per table,
are handled quickly, with few seconds response time. Larger and more complex
models, with many tables and many element rows per tables, however, bring the
performance down very quickly. Performance of attribution evaluation is viewed
as a limitation, but some performance enhancements can be achieved with other
attribute evaluation algorithms, and faster workstation hardware.

The syntax-directed editor has successfully handled the general structure of a
model as represented by the Schema section. The specific instance of a model is
represented by the Elemental Detail section. In the syntax-directed environment,
Elemental Detail is given in tables, in a section that follows the Schema. Section.
Elemental Detail is represented in structured tables. The Table data are input
interactively, or read from files and stored in internal abstract trees. The Elemental
Detail Table Content Rules have been cast in an attribute grammar framework.

The following subsections show some representative output generated by the
syntax—directed editor for SML. Only semantic errors are displayed. These seman-
tic errors are displayed on the screen as soon as the modeler types in the faulty
model fragment, or immediately after the input file containing the model is read.
Because the editor operates in an immediate evaluation mode, the first syntax er-
ror in the model is shown directly on the screen, and processing is suspended until

the syntax error is fixed. Hence, in the tested models, all the syntax errors have

141



been corrected, and thus are not shown. Normally, a syntax error is marked by
the cursor, which positions itself immediately below the location of the error. All
syntax errors have to be fixed before a model can be successfully parsed and all its

semantic errors displayed, if any.

6.2.1 Example of Semantic Restrictions in Paragraphs

The following model contains viclations of semantic restrictions <<Pl>>-
<<P8>>. The error messages are shown in uppercase.
Aa /pe/ ~| -,
&MoD1 T T,
B /pe/ ~| ~.

&MOD1<--ERROR <<P4>>: MODULE NAME PREVIOQUSLY DEFINED-->
"] Duplicate module name ~.

C /pe/ ~I -,

C<--ERROR <<P5>>: GENUS NAME PREVIOUSLY DEFINED-->
/pe/ "l Duplicate genus name ~.

D /pe/ "l new paragraph ~.

<--ERROR <<P2>>: INCORRECT INDENTATION FOR GENUS-->
EE /pe/ ~| This paragraph is indented (3 blanks) more than last. -.

Ja<--ERROR <<P7>>: DUPLICATED SYMBOLIC INDEX-->
/pe/ ~| Duplicate index (see A) ~.

Kb,c,b<~-ERROR <<P7>>: DUPLICATED SYMBOLIC INDEX-->
/pe/ "1 Not all aliases distinct. ~.

L /pe/ :: Char <--ERROR <<P8>>: DOMAIN STATEMENT CANNOT APPEAR-->
“| Unindexed genus can’t have domain statement. ~.



NN /pe/ "} ~.

Nn /pe/ :: Str ~| Spelled Str or String ~.

NN<--ERROR <<P5>>: GENUS NAME PREVIOUSLY DEFINED--»>

/pe/ ~| Duplicate declaration of genus NN. ~.

QQ (B) /ce/ ~| No errors. ~

§MOD!$%&’:@[\]_  ~| All the acceptable special characters ~

YYY!$J%&’ :@[\]1_ /pe/ ~| genus name has all possible special
characters ~

XXXX (YYY!$%&’:Q@[\]1)) /ce/ =} -.
&MOD2 | .

<--ERROR <<P3>>: INCORRECT INDENTATION FOR MODULE-->
ZZZ /pe/ "I Violates indentation. ~.

R /pe/ "] ~.
&MODS ~| .

<--ERROR <<P1>>: INCORRECT NUMBER OF INDENTATION BLANKS-->

S /pe/ ~| Indentation is 3, while &MOD3 is indented 1. .
T /pe/ ~| ~.

U_VAL<--ERROR <<P6>>: GENUS NAME IS INVALID-->

/pe/ ~| Forbidden genus name. ~.

V /pe/ | ~.
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6.2.2 Example of Semantic Restrictions in Calling Sequences

The following model contains violations of semantic restrictions <<P1.1>>—

<<PL11>>, and <<P2.4>>. The error messages are shown in uppercase.

Aa /pe/ ~| .
Bb /pe/ “| .
Cc /pe/ I ~.

CC (AA<--ERROR <<P1.1>>: GENUS NAME IS UNDEFINED-->
) /ce/ ~| AA not defined in previous paragraph ~.

D (A) /[va/ ~| ~.

E (D<--ERROR <<P1.2>>: INAPPROPRIATE GENUS TYPE-->
) /ce/ ~| /ce/ can’t call /a/ ~.

G (Aa, Bb) /ce/ | ~.

H (A<4:3><--ERROR <<P1.3>>: NUMERIC RANGE IS INVALID-->,B<-3:-4>
<--ERROR <<P1.3>>: NUMERIC RANGE IS INVALID-->

) /fce/ "l 2 violations of numeric range. ~.
I (A<1:2>) fce/ ~| N:M are nonzero integers. ~
J (A<a+1>) /ce/ | P is a positive integer ~

K (A<a+4:4><--ERROR <<P1.4>>: NUMERIC RANGE IS INVALID-->
) /ce/ ~| Violates numeric range. ~.

M (A<a+4:2+3><--ERROR <<P1.5>>: NUMERIC RANGE IS INVALID-->
) /ce/ ~| Violates range limits. .

N (A(a—4:a~5><--ERROR <<P1.5>>: NUMERIC RANGE IS INVALID-->
) /ce/ “| Violates range limits. ~.

Q (Aa3(b,c,b<~-ERROR <<P1.6>>: DUPLICATE INDEPENDENT INDICES-->

),Bb,Cc) /ce/ | Duplicate independent indices
(violates minimality and non--duplication of indices). ~.
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U (Aa5(b),Bb) /fce/ ~| ~.

V (Aa5(b,c)<--ERROR <<Pi.7>>: INVALID INDEX REPLACEMENT OPTION--3>
,Bb,Cc) /ce/ ~| Different a5 from U’s. ~.

VVv,w (Aa6(w)<~--ERROR <<P1.8>>: INVALID INDEX REPLACEMENT

OPTION-->) /ce/ ~| Independent index in a6() not first among
aliases for VV’s indices. ~.

GNAME1g (Ga<--ERROR <<P1.9>>: INVALID INDEX REPLACEMENT OPTION-->
.) /ce/ "I (a unreplaced). ~.

GNAME2e (G.<b+1><--ERROR <<P1.9>>: INVALID INDEX REPLACEMENT
OPTION-->) /ce/ | (Option c used). ~.

GNAME3 (Gab) /ce/ ~| OK ™.

GNAME4 (Gc<--ERROR <<P1.10>>: INVALID INDEX REPLACEMENT OPTION-->
b) /ce/ ~| Violates index replacement. ~.

GNAME6 (G<2:b><--ERROR <<P1.10>>: INVALID INDEX REPLACEMENT
OPTION-->.) /ce/ ~| Violates index replacement. ~.

GNAME7 (G.b.<-~ERROR <<P1.10>>: INVALID INDEX REPLACEMENT
OPTION-->) /ce/ ~| Too many replacements. ~.

T (Ab1(c)<--ERROR <<P1.10>>: INVALID INDEX REPLACEMENT OPTION-->

,Cc) fee/ | Illegal functional dep name (A’s index is mot
b). Option d used incorrectly. ~.

GNAMES (G.<--ERROR <<P1.10>>: INVALID INDEX REPLACEMENT OPTION--»>
) /ce/ ~| One G--index unaccounted for. ~.

X (Cc1(a),A) /ce/ Filter (a>1) {a} ~| ~.

Y (Ccl(a),A(--ERRDR <<P1.11>>: INVALID INDEX REPLACEMENT OPTION-->
) /ce/ Filter (a>2) {A} ~| Need to call X, but not <<P1.12>>. ~.

Z1(aa) /a/ : "g" <= String 5 <= "A"<--ERROR <<P2.4>>: INVALID
SUBRANGE LIMITS~-> ~| -,

Z22(Aa) /a/ : 30 <= Int <= 5¢<--ERROR <<P2.4>>: INVALID SUBRANGE
LIMITS--> ~| ~.
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Z3(ha) /a/ : 3.0 <= Real <= .5<--ERROR <<P2.4>>: INVALID
SUBRANGE LIMITS--> ~| ~.

~

6.2.3 Example of Semantic Restrictions in Index Set Statements

The following model contains violations of semantic restrictions < <P3.1>>-
<<P3.26>>. The error messages are shown in uppercase.

A1 /pe/ Size {A1} <= 5<--ERROR <<P3.1>>: INVALID INDEX SET
STATEMENT--> ~| Al is unindexed, not self--indexed. -,

A2 /pe/ Select <--ERROR <<P3.1>>: INVALID INDEX SET
STATEMENT--> ~| Al is unindexed, not externally--indexed. ~.

A3d /pe/ Select <--ERROR <<P3.1>>: INVALID INDEX SET
STATEMENT--> ~| A3 is self--indexed, not externally--indexed. .

Ada /pe/ 1<--ERROR <<P3.1>>: INVALID INDEX SET STATEMENT-->
“| A4 is self--indexed, not unindexed (a singleton). ~.

AS (Ada) /ce/ 10 <= Size{AS5}<--ERROR <<P3.1>>: INVALID INDEX SET
STATEMENT--> ~| A5 is externally indexed, not self--indexed. ~.

A6 (Ada) /ce/ 1<--ERROR <<P3.1>>: INVALID INDEX SET STATEMENT-->
"l A8 is externally indexed, not unindexed. ~.

Bib /pe/ Size{A1}<--ERROR <<P3.2>>: INVALID GENUS NAME--> <= 10
"l A1 is not the current genus. -

B2u /pe/ 1 <= Size{B2} <= 10 ~| P and Q must be
positive integers. ~

Cc /pe/ 10 <= Size{C} <= 1<--ERROR <<P3.3>>: INVALID SIZE LIMITS-->
| P must be less than or equal to Q. ~.

D (A4a) /ce/ {A6}<--ERROR <<P3.4>>: INVALID GENUS CALL-->
“| {A6} is not called directly or indirectly by current genus. ~.
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E1 (Cci(a)) /[ce/ ~| ~-.

E2 (A4a) /ce/ Project (a) {c1} <--ERROR <<P3.5>>: INVALID
DEPENDENCY CALL-->"| ¢1 is not defined by a

genus that is called directly or indirectly by the current genus. ~

F (B1b,Cc) /ce/ Project (b)({B1}x{C}) <--ERROR <<P3.6>>:
INCOMPATIBLE INDEX SET STATEMENT-->~| The relation

algebra expression of index set statement must be compatible with
the generic index tuple of the current genus. ~

~

Gg, z, y /pe/ "I
GG (Gz) /ce/ ™| ~.

Gi (Cc, Gg) /ce/ ({C} Union {G}<--ERROR <<P3.7>>: DIFFERENT
SYMBOLIC INDICES-->) x {G} ~|

The union operator must apply to two generalized index sets
with identical symbolic indices. ~.

G2 (Gg, GGz) /ce/ ({GY} Union {GG}) x {GG} ~| The union
operator must apply to two generalized index sets with identical
symbolic indices (alias not considered distinct).

This test must pass. ~.

G3 (Cc, Gg) /ce/ ({C} Minus {G}<--ERROR <<P3.7>>: DIFFERENT
SYMBOLIC INDICES-->) x {G} ~|

The minus operator must apply to two generalized index sets
with identical symbolic indices. ~.

G4 (Cc, Gg) /ce/ ({C} Intersect {G}<--ERROR <<P3.7>>: DIFFERENT
SYMBOLIC INDICES-->) x {G} =~| The Intersect operator must apply
to two generalized index sets with identical symbolic indices. ~.

H (Gg, GGz, Ggi(c)) /ce/ ~| ~.

Hi (Cc,Gg) /ce/ (Project (c) {G}<--ERROR <<P3.8>>: ILLEGAL SYMBOLIC
INDICES-->) x {G} ~|

¢ is not a subset of the symbolic indices of the operand {G}. ~.
H2 (Cc) /ce/ Project(c) (Project (c,c) {C}<--ERROR <<P3.85>:

ILLEGAL SYMBOLIC INDICES-->)
“| (¢, c) are not a distinct subset of the symbolic indices of
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the operand {C}. ~.

I (Ada, Cc) fce/ {A4} * {C}<--ERROR <<P3.9>>: MISSING IDENTICAL
SYMBOLIC INDEX--> ~| The natural Join operator

must apply to two generalized index set statements with 1

or more identical symbolic indices. ~.

J (Ce, Gg) fce/ (Filter (g = -1) <--ERROR <<P3.10>>: INDEX NOT IN
OPERAND-->{C})x{G} “| Index g does not appear in the operand. -.

K (Cc, Gg) /ce/ (Filter (gi<--ERROR <<P3.11>>: UNREACHABLE
FUNCTIONAL DEPENDENCY-->(c) > 1) {gi1}<--ERROR <<P3.5>>: INVALID
DEPENDENCY CALL~->) ~|

Functional dependency gl is not defined in the the current genus

or in one that reaches it. ~.

L (B1b,Cc,Gg2(c)) /ce/ (Filter (g2(b<--ERROR <<P3.12>>: INCORRECT
NUMBER OF SYMBOLIC INDICES--»>) > 1) {B1}) x {C} ~|

Use of functional dependency g2 does not match its

definition arguments. ~

M (Lbc) /ce/ Filter ((b + ¢) <--ERROR <<P3.13a>>: INDICES NOT
ALIASES OF ONE ANOTHER-->»>= 1) {L} ~|

b and c and not aliases of one another. ~.

N (Gz) /ce/ Select Where g<-~ERROR <<P3.14>>: INDEX NOT IN GENERIC
INDEX TUPLE OF CURRENT GENUS--> Covers {G}

"l Index ’g’ should be from the generic index tuple
(should be a ’z’). ~.

0 (Gz) /ce/ Select Where z Covers {N}<~--ERROR <<P3.15>>: INVALID
GENUS CALL--> ~| N is not directly or indirectly called by 0. ~.

P (Gg, Bib) /ce/ Select Where (g, b) <--ERROR <<P3.16>>: INDICES
NOT DISTINCT ALIASES-->Reflexive

"l Reflexive must apply to a single domain (’g’ and ’b’ are not
from the same domain). ~.

Q (Gg, Gz, Gy) /ce/ Select Where Reflexive <~-=-ERROR <<P3.17>>:
ILLEGAL USE OF QUALIFIER-->"|

The short version can be used only when the generic index tuple of
the current genus has exactly 2 indices in all and they are alias
of one another. (we have three indices in this example). ~.
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T (Gg, Cc) /ce/ Select Where g<--ERROR <<P3.20>>: INDEX NOT IN
GENERIC INDEX TUPLE OF GENUS--> Covers {C} ~| g is in the
generic index tuple of T, but not C. ~.

U (Gg, Bib) /ce/ ~| ~.

U1 (Ugb) /ce/ Select Where (g, g) <--ERROR <<P3.21>>: INDICES MUST
BE DISTINCT-->Covers {U}

"] Multiple indices must be distinct. ~.

V1 (Gg, Gz, Gy) /ce/ Where (g,z) <--ERROR <<P3.22>>: ILLEGAL USE OF
QUALIFIER-->Reflexive

“| In the absence of a Select prefix, option Reflexive may be used
only if the generic index tuplé of the current genus has exactly 2
indices and these are aliases of one another. ~.

ViA (Gg, Gz, Gy) /ce/ Where (g,z) <--ERROR <<P3,22>>:
TLLEGAL USE OF QUALIFIER-->Symmetric

"] In the absence of a Select prefix, option Symmetric may be used
only if the generic index tuple of the current genus has exactly 2
indices and these are aliases of one another. ~.

ViB (Gg, Gz, Gy) /ce/ Where (g,z) <--ERROR <<P3.22>>:

ILLEGAL USE OF QUALIFIER-->Transitive

“| In the absence of a Select prefix, option Transitive may be used
only if the generic index tuple of the current genus has

exactly 2 indices and these are aliases of one another. ~.

U2 (Gg) /ce/ Where (g,g) <--ERROR <<P3.16>>: INDICES NOT DISTINCT
ALIASES--><--ERROR <<P3.23>>: ILLEGAL USE OF QUALIFIER OPTION-->
Irreflexive
"1 In the absence of a Select prefix, option Irreflexive may be used

only if the generic index tuple of the current genus has at
least 2 indices. ~

W (Gg) /ce/ Where (g,g) Asymmetric <--ERROR <<P3.245>:
ILLEGAL USE OF QUALIFIER OPTION-->"| Options ’Asymmetric’,
'Antisymmetric’, and ’Covers’ need a Select prefix. ~.

X (Gg, Gz) /ce/ Where Reflexive, Irreflexive <--ERROR <<P3.25>>:

ILLEGAL USE OF QUALIFIER OPTION--> ~|
’Extension’ should not be used with 'Restriction’. ~.
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Y1 (Gg, Gz) /ce/ Select Where Reflexive, Irreflexive <--FRROR
<<P3.26>>: ILLEGAL USE OF QUALIFIER QPTION-->"|

In the presence of a Select prefix, the two options here are not
allowed to appear at the same time. ~.

Y2 (Gg, Gz) /ce/ Select Where Symmetric, Asymmetric <--ERROR
<<P3.26>>: ILLEGAL USE OF QUALIFIER OPTION-->~| In

the presence of a Select prefix, the two options here are not
allowed to appear at the same time. ~

Y3 (Gg, Gz) /ce/ Select Where Reflexive, Asymmetric <--ERROR
<<P3.26>>: ILLEGAL USE OF QUALIFIER OPTION-->~| In

the presence of a Select prefix, the two options here are not
allowed to appear at the same time. ~

Y4 (Gg, Gz) /ce/ Select Where Symmetric, Transitive, Irreflexive
<--ERROR <<P3.26>>: ILLEGAL USE OF QUALIFIER OPTION-->

“{ In the presence of a Select prefix, the options here
are not allowed to appear at the same time. ~.

Y5 (Gg, Gz) /ce/ Select Where Symmetric, Irreflexive,
Antisymmetric <--ERROR <<P3.26>>: ILLEGAL USE OF QUALIFIER OPTION-->»

“1 In the presence of a Select prefix, the
options here are not allowed to appear at the same time.

-~

6.2.4 Example of Semantic Restrictions in Generic Rules

The following model céntains violations of semantic restrictions <<P4.1>>—
<<P4.34>>. The error messages are shown in uppercase.
&PREP_SRC “| ~/PREPARATORY SOURCE~/ ~.
Pi,j /pe/ “I| ~.
Rk /pe/ ~1 ~.

S (Pi) /a/ : Real+ ~| -~.
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T (Pi,Pj) /a/ : Real+ =i ~.
$1(T) /£/ ; @SUMi SUMj ( Tij ) ~I ~.
&TESTS ~| ~.

TEST2 (Si) /f/ ; %A, Where Y%A Is Logical <--ERROR <<P4.2>>:
GENERIC RULE MUST BE NUMERIC VALUED--> ~| Rule must be a
numeric-valued expression.

OK3 (8i) /£/ ; i ~| -.

TEST3 (Si) /f/ ; j<--ERROR <<P4.3>>: ILLEGAL USE OF LOCAL
INDEX-~> | The ordinate function instance may not be

renamed and it must be among the indices the current genus’

generic index tuple. ~.

TEST3_ALT (Si) /f/ ; i’<--ERROR <<P4.3>>: ILLEGAL USE OF
LOCAL INDEX--> ~| The ordinate function instance may not

be renamed and it must be among the indices the current genus’

generic index tuple. ~.

OK4 (Si) /f/ ; @SUMi’ ( i’ ) ~| The index i’ must be a local
index or a not renamed index among the indices of the current
genus’ generic index tuple. ~.

OK4_ALT (Si) /f/ ; @SUMi’ (i ) ~| The index i must be a local
index or a not renamed index among the indices of the current
genus’ generic index tuple. ~.

TEST4 (Si) /£/ ; QSUMi’ ( j’<~-ERROR <<P4.4>>: ILLEGAL
USE OF LOCAL INDEX~-> ) “| The index j’ must be a local index or a

not renamed index among the indices of the current genus’
generic index tuple. ~.

0KS (Si1(j)) /f/ ; @IPRODi ( i1(¢i) ) ~| The independent
index (i) is identical to that associated with the definition
of the functional dependency. ~.

TESTS (Si2(j)) /f/ ; ©IPRODi ( i2(i,i) <--ERROR <<P4.5>>,
<<P4.10A>>: ILLEGAL USE OF INDEPENDENT INDEX-->) <~| The

independent indices (i,i) are different from those

associated with the definition of the functional dependency. ~.
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TEST6 (Si3(j)) /f/ ; @IPRODi ( i1(i) <--ERROR <<P4.6>>,

<<P4.10B>>: FUNCTIONAL DEPENDENCY IS UNREACHABLE-->) ~| The

USE

USE

functional dependency ii is not defined in the calling
sequence of the current genus or one that reaches it. ~.

TEST7 ($1,T<1>j) /£/ ; T<1>j + $1j<--ERROR <<P4.7>>: ILLEGAL
OF INDEPENDENT INDEX--> + j ~| The genus name $1 is
unindexed; thus it must have no indices. ~.

TEST8 (Sj,Pj,Rk,Tij)} /f/ ; Tii + Sk<--ERROR <<P4.8>>: ILLEGAL
OF INDEPENDENT INDEX--> + j | The simple variable Sk must have
correctly replaced indices. ~

TEST9 (Pj) /f/ ; Sj<--ERROR <<P4.9>>: INVALID GENUS CALL-->
"] The named genus is unreachable. ~.

TEST9A (Pj) /f/ ; Pj<--ERROR <<P4.9A>>: INVALID GENUS CALL-->
"] The named genus is not of type /a/ or /f/ or /t/. ~.

OK2_OLD_10 (S<i+1>) /f/ ; i + 8i | ~.

TEST10A (Si8(3)) /f/ ; Si8(j,j) <--ERROR <<P4.55>,<<P4.10A>>:

TLLEGAL USE OF INDEPENDENT INDEX--> ~| The independent indices (j,j)

are different from those associated with the definition of the
functional dependency. ~.

TEST10B (8i5(j)) /f/ ; Si4(j) <--ERROR <<P4.6>>,<<P4.10B>>:

FUNCTIONAL DEPENDENCY IS UNREACHABLE--> ~| The functional

dependency i4 is not defined in the calling sequence of the
current genus or one that reaches it. ~.

TEST10B_OK (OK5,Pj) /f/ ; Si1(jy ~I ~.

A (8i6(i)) /£f/ ; 5i6(i) ~| The functional dependency i6 is
defined in the calling sequence of the current genus. ~

B (Pj) /a/ ~| ~.

TEST10C (Bj,Ai) /f/ ; Bi6(i) <--ERROR <<P4.10C>>:

TLLEGAL USE OF DEPENDENT INDEX--> | The correct index

replacement for B is j, not i. ~.



TEST11 (Sj) /£/ ;  Si<--ERROR <<P4.11>>: ILLEGAL USE CF
LOCAL INDEX--> ~| The free index i is not in the current
generic index tuple. ~

TEST11_ALT (Sj) /f/ ; Sj’<--ERROR <<P4.11>>: ILLEGAL USE OF
LOCAL INDEX--> ~| The free index j’ should not be renamed. ~.

TEST12 (Sj) /f/ ; @SUMj’<1:2> ( Si<--ERROR <<P4.12>>:

ILLEGAL USE OF LOCAL INDEX--> ) ~| The free index i is not
controlled either by the current generic index tuple or by
a local index. ~

TEST12_ALT (Si,Sj) /f/ ; @SUMj’<1:2> ( Si’<--ERROR
<<P4.12>>: ILLEGAL USE OF LOCAL INDEX--> ) ~| The free index i’

is not controlled either by the current generic index tuple
or by a local index. ~

TEST13 (Sj) /£/ ; @SUMj’<1:2> ( Sj’ ) + %Ai<--ERROR
<<P4.13>>: INDEX NOT IN GENERIC INDEX TUPLE--> + Sj ~| The
free index i is not in the current generic index tuple. ~.

TEST14 (Sj,Si) /f/ ; @SUMj’<1:2> ( S3j’') + %Ai + %Aj<--ERROR
<<P4.14>>: SYMBOLIC PARAMETER INDEX MISMATCH--> ~| The
symbolic parameter uses different free indices. ~.

TEST15 (S) /£/ ; -"#TRUE"<--ERROR <<P4.15>>: OPERAND MUST BE
NUMERIC VALUED--><--ERROR <<P4.2>>: GENERIC RULE MUST BE

NUMERIC VALUED--> ~| The operand of the unary minus must be
numeric valued. ~

TEST16 (Si) /£/ ; Si - "STRING"<--ERROR <<P4.16>>: OPERAND
MUST BE NUMERIC VALUED--><--ERROR <<P4.2>>: GENERIC RULE MUST BE
NUMERIC VALUED--> ~| Both operands of the binary minus must

be numeric valued. ~

TEST17 (Si) /f/ ; QABS("STRING"<--ERROR <<P4.17>>: ARGUMENT
MUST BE NUMERIC VALUED-->) ~| The arguments of built-in
functions must be numeric valued. ~.

TEST18 (Si) /f/ ; QABS(-3, -5) <--ERROR <<P4.18>>: INCORRECT

NUMBER OF ARGUMENTS--> ~| The number of arguments of
built-in functions must be respected. ~.
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TEST20 (Tij) /f/ ; @SUMi’IPRODj’<--ERROR <<P4.20>>: INCORRECT
INDEX SUPPORTING FUNCTION NAME--> ( Ti’j’ ) + Tij ~| Iterated
index supporting function names must match. ~.

TEST21 (Si) /f/ ; ©SUMi’ ( "STRING"<--ERROR <<P4.21>>:
ARGUMENT MUST BE NUMERIC VALUED--> ) + Si ~| The argument

of the index supporting function must be numeric-valued. ~.

TEST22 (Si) /£f/ ; @SUMi<--ERROR <<P4.22>>: SYMBOLIC INDEX
MUST BE RENAMED--> ( 5 ) + Si ~| The local index ’i’ is
in the generic index tuple; thus it must be renamed. ~.

TEST23 (Si) /f/ ; QSUMk<--ERROR <<P4.23>>: ILLEGAL USE
OF LOCAL INDEX--> ( 6 ) + Si “| The local index ’k’ is not
among the indices of a reaching genus. ~

TEST24 (Si,Rk) /f/ ; Q@SUMi’ <k<--ERROR <<P4.24>>: ILLEGAL
USE OF SYMBOLIC INDEX-->-1:4> ( 5 ) + Si | The limit index ’k’

is not in the same domain as the local index i’. ~.
OK_24 (S5i,Rk) /f/ ; QSUMi’ <i-1:4> (5) +8i~} ~.

TEST25 (Si) /f/ ; @SUMi’ <i’<--ERROR <<P4.25>>: ILLEGAL USE
OF SYMBOLIC INDEX--><--ERROR <<P4.26>>: ILLEGAL USE OF SYMBOLIC
INDEX-->:4> ( 5 ) + 8i ~| The limit index "i’" should

not be identical to the local index i’. ~.

TEST26 (Si) /f/ ; QSUMi’ <j<--ERROR <<P4.26>>: ILLEGAL USE
OF SYMBOLIC INDEX-->-1:4> ( § ) + Si “} The limit index

’j’ should not be free. -,

TEST27 (Si) /f/ ; @SUMi’ <5:4> <--ERROR <<P4.27>>:
ILLEGAL LOWER/UPPER LIMITS-->( 5 ) + Si *| The lower limit
should be less than or equal the upper limit., ~.

TEST28 (Si) /f/ ; @QSUMi’ <i+4:4> <--ERROR <<P4.28>>:
ILLEGAL LOWER/UPPER LIMITS-->( 6§ ) + Si ~| (1+4) should
be less than or equal the upper limit. ~.

TEST29 (Si) /f/ ; @SUMi’ <i+5:i+4> <--ERROR <<P4.29>>:

ILLEGAL LOWER/UPPER LIMITS-->( 5 ) + Si ~| The lower limit
(5) should be less than or equal the upper limit (4). ~.
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TEST30 (Si) /f/ ; QSUMi’ <i-4:i-5> <--ERROR <<P4.30>>:
ILLEGAL LOWER/UPPER LIMITS-->( 5 ) + Si ~| The lower limit
(-4) should be less than or equal the upper limit (-5). ~.

TEST31 (Si) /t/ ; Si = "#TRUE"<--ERROR <<P4.31>>: OPERAND
TYPE MISMATCH--> ~| The operands of the relational
operator must be of the same type. ~.

TEST31A (Pi) /f/ ; QEXIST( Pi, "#TRUE", 0 ) <--ERROR
<<P4.31A>>: BOTH ARGUMENTS MUST BE NUMERIC OR STRING VALUED-->
<--ERROR <<P4.2>>: GENERIC RULE MUST BE NUMERIC VALUED--» "l The

second and third operands of the QEXIST must both be

numeric-valued expressions here (since it is a /f/ genus) . ~.

TEST32 (Si) /£/ ; QIF( Si > 0 , "CAT" , "HOUSE")
<--ERROR <<P4.32>>: BOTH ARGUMENTS MUST BE NUMERIC VALUED-->
<--ERROR <<P4.2>>: GENERIC RULE MUST BE NUMERIC VALUED--> “| The
second and third operands of the Q@IF must be numeric-valued
expressions here (since it is a /f/ genus). ~.

OK_32 (8i) /t/ ; @IF( Si > 0 , #TRUE, #FALSE ) ~| ~.
TEST33 (Si) /f/ ; Si , Where %A Is Real <--ERROR

<<P4.33>>: SYMBOLIC PARAMETER NOT IN GENERIC RULE--> ~| Symbolic
parameter is not used in rule. ~

TEST34 (Si) /f/ ; Si + %Ai, Where %A Is 1<= Real <= -1

<--ERROR <<P4.34>>: INVALID SUBRANGE LIMITS--> -] Subranges
require that lo <= hi. ~.
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CHAPTER 7

Conclusions

This dissertation proposed adopting an attribute grammar formalism to rig-
orously formalize mathematical modeling languages used by the Operations Re-
search/Management Science (OR/MS) community, and to automatically generate
computer-based modeling environment tools. This proposition was formulated in
terms of a main claim, stated at the outset of Chapter 1.

Via the studies that we undertook of five of the hypotheses designed to test
the main claim, we have shown its feasibility. Thus, we can conclude that a
semantic formalization based on the attribute grammar framework can and should
be considered by those who design modeling languages and major components
of OR/MS modeling environments. The adoption of the semantic formalization
paradigm suggested here would help to make the modeling activity in OR/MS
less error—prone and more effective, thereby lessening the time required to develop
correct new models and maintain existing ones.

Although our evidence and experience does not demonstrate that the attribute
grammar formalism can be used to implement all aspects of a modeling environ-
ment, it suggests that it can be used to implement tools beyond those of syntax-

directed editors, inferencing tools, and code generators. A new and very important
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application to the area of mathematical optimization has been already described
in Section 3.7. The area of information retrieval is also explored in Section 7.3.1.
In general, activities of model-analysis (like expression evaluation, query facilities,
and optimization) appear the most suitable to this formalization approach.

Finally, a word is appropriate with regard to the material presented in Chapter
2. On its own, that chapter stands as a source of motivation for the rest of this
work. However, we now suggest (based on experience and without further proof)
that it should be possible to employ the methodologies and techniques shown in
Chapter 3 through 6 to formalize the semantics of AMPL, GAMS, and LINGO,
and to generate tools for those languages.

The balance of this chapter is structured as follows. Section 7.1 provides a
sumimary of the most important contributions made by this dissertation. Section
7.2 then lists some of the limitations of this work. Finally, Section 7.3 concludes

with a description of areas for future research activity.

7.1 Summary of Contributions

Recognized and documented context—sensitive semantics in modeling
languages for OR/MS. Several important languages for mathematical program-
ming, namely AMPL, GAMS, and LINGO, are described from the new perspective
of explicitly identifying static semantics. Chapter 2 exposes the prevalent lack of
formalization of context-sensitive semantics among such languages. It provides ev-

idence that this absence of formalization makes the modeling activity more error—
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prone; thus models written in these languages are more difficult to develop and
maintain.

Pioneered the application of an attribute grammar methodology to
describe the full static semantics of modeling languages for OR/MS.
Chapter 3 shows that it is feasible to provide the complete formal description of
the static semantics of even a complex modeling language like SML via attribute
grammars. We developed an attribute grammar to include the full semantics of
data and schema in SML, and a similar methodology may be adopted for other
modeling languages like AMPL, GAMS, or LINGO. The attribute grammar de-

scription of SML helped to clarify the semantics of difficult areas, increasing the
understanding of the language while it was being designed.

Adapted the attribute grammar methodology to perform inferenc-
ing in modeling languages for OR/MS. Chapter 4 shows that it is feasible to
perform type checking in mathematical modeling languages by inferencing miss-
ing information via attribute grammar equations. Apart from providing a useful
check, our approach to inferencing missing schema information in SML provides
economy to the schema description. A variation of our type checking approach can
be used to automatically deduce other constructs, thereby allowing other mathe-
matical modeling languages to be simplified. These languages should have certain
structures such that those conclusions which are reached about a model from infor-

mation that is explicitly declared might also be implicitly reached from an analysis

of references.
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Initiated research into how to apply the attribute grammar method-
ology for code generation in modeling languages for OR/MS. Chapter 5
builds a tool that generates code which can be later executed to evaluate generic
rules in SML. This generic approach is a first step necessary to support the eval-
uation of expressions in immediate mode in any mathematical modeling language
where evaluation is a well defined task.

Built the first syntax—directed editor in a modeling environment us-
ing the attribute grammar approach. A modeling environment tool has been
built that prevents both syntactic and semantic errors in SML models. Chapter
6 demonstrates how our syntax—directed editor for SMI, models can be generated
automatically. Special attention was paid to presenting error messages in a format
that is clear and useful, and to testing faulty models.

Debugged a large collection of models using the methodology. The
syntactic and semantic correctness of over 100 different models described in the
Library of Structured Models [Geof89¢] and elsewhere has been asserted using the
syntax-directed editor in the environment developed for this dissertation. Feed-
back on each model’s syntactic and semantic errors is made immediately available,

thus making our system a valuable tool for model formulation and testing.

7.2 Limitations

The attribute grammar methodology has proven to be quite powerful for repre-

senting static semantics of SML Schemas (the Schema Properties). We have shown
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that data properties (the Table Content Rules) can also be represented in the at-
tribute grammar framework, but not without difficulties. The primary difficulty
lies in the fact that, in the attribute grammar representation, elements are kept as
values of attributes, and several of them need to be attached to the nonterminal(s)
generating the element. This representation is not a very efficient one since any
(minor) update to a datum requires updating all the attributes of all the affected
attribute equations. An abundance of attributes which ultimately will not change
their values, together with other non-local subtree constructs, need to be consid-
ered before the equations can be updated properly. Hence the attribute evaluator
will perform unnecessary work. It follows that the attribute grammar approach is
more appropriate for maintaining correct schemas with schema-directed editors,
than for maintaining valid element data with data—directed editors.

In our prototype implementation of a semantics—driven modeling environment,
we worked with the full SML language as given in [Geof88]. The only (rather minor)
difference is in the area of keywords. Whereas SML recognizes both upper/lower
and fully lower case spellings for keywords, our implementation only admits the
upper/lower case combination.

In our prototype, syntax errors need to be fixed immediately before the model
can be processed further. A required repair action cannot be delayed by the user,
since the system will continuously point to the syntax error and wait for a fix. This
behavior is rather annoying for some users who prefer to have their model parsed

all at once, with erroneous input discarded temporarily if necessary. Our prototype
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would require a different approach to parsing and error recovery to satisfy these
users.

Another limitation of our implementation approach is its performance. The
main problem with attribute grammars is that they consume large amounts of
storage, as has been noted by others [Reps83]. Computers with large amounts of
memory are required to handle large models (i.e., those with hundreds of para-
graphs). Alternatively, storage improvements can be achieved at the expense of
speed. The attribute evaluators can be modified to consume less storage, but then

they will necessarily run slower because they have to perform more algorithmic

steps [Deme81].

7.3 Further Research

This dissertation has uncovered various opportunities for further research on
the design and application of attribute grammars to modeling environments. Three

of the most important areas are now described.

7.3.1 Answering Queries about Model and Data

A powerful modeling environment should be able to provide some reasoning
capabilities on the objects which it supports. In a modeling environment for SML

models, it would be desirable to be able to reason about the structured models

thernselves.

For models written in SML, it is natural to pose queries such as these about a
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model Schema;
e Which genus calls, or is called by, a given genus?
¢ Which genus introduces a particular symbolic index?
¢ Where is a certain symbolic index used?
o Where is a particular genus introduced?

These queries involve the retrieval of information about the Schema. Similar
queries could be considered about the data contained in Elemental Detail Tables.
The approaches for answering the queries about the Schema and the queries about
the element-data would need to be integrated in a uniform way in the modeling
environment.

Because a language-based editing environment does maintain (implicitly if not
explicitly) all this information about the models being created, it should be possible
to provide capabilities for answering these queries on the model. Provision for this
kind of capability would greatly enhance the modeling environment.

To support the kinds of Schema queries described above, the pure attribute—
grammar formalism on which the Synthesizer Generator is based needs to be ex-
panded to include tables, or relations (which are distinct from Elemental Detail
Tables). Tables would serve to aggregate information about the Schema, and the
answer to queries would also be tables. The model Schema would then be repre-

sented as an attributed abstract syntax tree with an associated database.
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The merging of a relational database model and attributes in the Synthesizer
system has been partially explored in [Horw85] [Horw86). In that scheme, at-
tributes participate as tuples in several relations. The tuples are declaratively de-
fined on a per-production basis. The tuples can depend on values of attributes and,
conversely, attributes can depend on information contained in relations. Computa-
tions which cannot be carried out on the attributes can be carried in the relations.
The relations are kept consistent by the normal attribution scheme. Queries can
be made against the relations using an SQL-like language and a specially designed
editor.

The symbiosis of attributes and tables in the context of an attribute-grammar
based modeling environment should be further investigated. The product of this
aspect of the research should be a design that extends the modeling environment
with attributed tables, and answers queries like those mentioned above. The in-
terface of attributes and tables could be at an internal level, as in Horwitz, or
perhaps at an external level, with some commercial database system. Some query
language would be provided to answer the queries.

The following are some of the topics that need to be covered in this design:

o The editing style. One of the goals of a modeling environment is that it
be built using language-independent features. A “generic” editing style is

needed for querying the Schema.

¢ The data in tables. It is necessary to decide which kind of data will be placed
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in the tables: either static or dynamic data. A close look should be given to

the data in the Schema, and to typical modeling operations.

The environment definition language. To customize the extended environ-
ment, some language needs to be provided. This language should be declar-

ative in nature, not procedural.

The kinds of query evaluation mechanisms that should be provided. Is a

database kept in Prolog more adequate?

Would operations on views (tables derived from other tables) be allowed? If

50, how should the currency of these views be maintained?

The database operators. If the relational model is chosen, queries would be

expressed in a relational algebra. In that case, the basic relational operators

need to be provided.

7.3.2 Support for a Complete Modeling Environment

The integration of various kinds of “modeling in the large” tools, including

configuration managers and version control systems, with the existing “modeling

in the small” tools, like semantics-driven editors and immediate evaluators, would

produce a complete environment for modeling. An example of integration of tools

in the programming language context can be found in UNIX, which provides a

number of tools to assist the design, coding, verification, and maintenance of indi-

vidual programs.
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The development of a complete and consistent model development system
would make for a very advanced modeling environment. The role that attribute
grammars may offer as a formal framework for tool integration is an open question,
and more research is warranted in this area. The first step required to extend the

system in this direction is to evaluate the peculiar demands of model management,

which may be different from those of programming.

7.3.3 Full Support for Immediate Evaluation

We developed a tool to support the code generation phase of expression evalua-
tion. More research is neecied in the area of the actual evaluation of the generated
code. To support this task, improved store and manipulation facilities for model
data are required. Sophisticated data handling facilities can permit the efficient
performance that is required to obtain truly “immediate” evaluation. A possible
approach is to use a commercial relational database management system, such as
ORACLE, to store model data, and to use our attribute grammar approach to
generate special function calls to the database system. The code structure shown
in Chapter 5 would be maintained since it is generic in nature, but it would need
to be specialized to the details of the particular database management system
utilized.

Also, special attention should be paid to providing interfaces that are as user—
friendly as those found in current systems that perform immediate evaluation.

Good interfaces are provided, for example, in spreadsheets like 1-2-3, and in sci-
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entific software packages like Mathematica, Gauss, and MathCAD.
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APPENDIX A

An Abstract Syntax for SML

root schemafile;
schemafile:
SchemaFileList(schema_par EOF opt_element_detail)
optional list schema_par;
schema_par:
SchemaNil()
| SchemaPair(paragraph schema_par)
optional paragraph ;
paragraph:
SubschemaNil ()
| SubschemaPrompt ()
| SubschemaModPar(indent_or_null modparagraph)
| SubschemaGenPar(indent_or_null genparagraph)
optional indent_or_null;
indent_or_null;
IndentOrNullEmpty()
| IndentOrNullPrompt ()
| IndentOrNullNonEmpty(BLANKSPACE)
modparagraph:
ModParNull ()
| ModParNonNull(modname TBAR interp TPERIOD)
modname:
ModNameNull ()
| ModNameNonNull (MNAME)
list interp;
interp:
InterpEmpty()
[ InterpPair(interp_line interp)
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interp_line:
InterpNilKeyPhrase()
| InterpNonKeyPhrase (NON_KEY_PHRASE)
| InterpDefKeyPhrase(DEF_KEY_PHRASE)
| InterpRefKeyPhrase (REF_KEY_PHRASE)
genparagraph:
GenParNull()
| PePar(peparagraph)
| CePar(ceparagraph)
| AVaPar(avaparagraph)
| FPar(fparagraph)
| TPar(tparagraph)
peparagraph:
PeParNull()
| PeNode(gname opindices PE_TYPE_DECL
op.iss op_dom_stat TBAR interp TPERIOD)
ceparagraph:
CeParNull()
| CeNode(gname opindices LPAREN calls RPAREN CE_TYPE_DECL
op.iss op_dom_stat TBAR interp TPERIOD)
avaparagraph:
AVaParNull()
| AVaNode(gname opindices LPAREN calls RPAREN A_VA_TYPE_DECL
op.iss op_dom_stat op_range_stat TBAR interp TPERIOD)

fparagraph:
FParNull ()
| FNode(gname opindices LPAREN calls RPAREN F_TYPE_DECL
op.iss op_dom_stat SEMICOLON modfunexpr TBAR interp TPERIOD)

tparagraph:
TParNull() ‘
| TNode(gname opindices LPAREN calls RPAREN T_TYPE_DECL
op_iss op_dom_stat SEMICOLON modtstexpr TBAR interp TPERIOD)
gname:
GenNameNull ()
| GenNameNonNull(GNAME)
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optional opindices;
opindices:
OpIndNull()
| OpIndPrompt()
| OpIndNonNull{delimindices)
delimindices:
DelimNull()
| IndexLetter(index)
| OpIndices(delimindices COMMA index)
calls:
CallComps{(components)
components:
CompSingle(component)
| CompPair(component COMMA components)
component:
CompSimple(simplecomp)
| CompGeneral(generalcomp)
simplecomp:
SimpleCompNull()
| SimpleComp(GNAME)
generalcomp:
GeneralCompNull ()
| GeneralComp(GNAME indexcells)
indexcells:
IndexCellsUnique(cell)
| IndexCellsPair(cell indexcells)
cell:
CellOptionA(optiona)
CellOptionB(optionb)
CellOptionC(optionc)
CellOptionD(optiond)
CellOptionE(optione)
CellIndex(index)
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optiona:

.
[}

OptionNonNullA(PERIOD)

optionb:

)

OptionNonNullB1(ANG_BR_PINT optsign pinteger GT)
OptionNonNullB2(LT optsign pinteger COLON optsign pinteger GT)

optionc:

I
I
|
I
I

OptionNonNullCi_1(ANG_BR_INDEX_PINT index PLUS_SIGN pinteger GT)

OptionNonNullC1i_2(ANG_BR_INDEX_PINT index MINUS_SIGN pinteger GT)

OptionNonNullC2(LT optsign pinteger COLON index GT)

OptionNonNullC3(LT optsign pinteger COLON index sign pinteger GT)

OptionNonNullC4(LT index COLON optsign pinteger GT)

OptionNonNullC5_1(LT index PLUS_SIGN pinteger COLON optsign
pinteger GT)

OptionNonNullC5_2(LT index MINUS_SIGN pinteger COLON optsign
pinteger GT)

OptionNonNullC6(LT index COLON index PLUS_SIGN pinteger GT)

OptionNonNullC7(LT index PLUS_SIGN pinteger COLON index PLUS_SIGN
pinteger GT)

OptionNonNullC8(LT index MINUS_SIGN pinteger COLON index GT)

OptionNonNullC9(LT index MINUS_SIGN pinteger COLON index sign
pinteger GT)

optiond:

H

OptionNonNullD(fundepname LPAREN delimindices RPAREN)

optione:

3
¥

OptionNonNullE(mvdname LPAREN delimindices RPAREN)

fundepname:

.
¥

FuncDepName (index pinteger)

mvdname:

MvDepNameNull ()

| MvDepName(index pinteger MULT_SIGN)

¥

optsign:

OptSignNull()

| OptSignNonNull(sign)

.
3

sign:

SignPlus (PLUS_SIGN)
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| SignMinus(MINUS_SIGN)
pinteger:
One(STR)
| Pinteger(P_INTEGER)
nzinteger:
NzIntegeri(pinteger)
| NzInteger2(sign pinteger)
nninteger:
NnIntegeri(pinteger)
| NnInteger2(STR)
integer:
Integeri(nninteger)
| Integer2(sign nninteger)
optional op_iss;
op_iss:
OpIssNull()
| OpIssPrompt()
| OpUnindexedIss(unindexed_iss)
| OpSelfIss(self_iss)
| OpExternallss(external_iss)
unindexed_iss:
UnindexedIssNull()
| UnindexedIssNonNull(STR)
self _iss:
SelfIssNull()
| SelfIss1(SIZE GENUS_INDEX_SET EQ pinteger)
| SelfIss2(pinteger LE SIZE GENUS_INDEX_SET)
| SelfIss3(SIZE GENUS_INDEX_SET LE pinteger)
| SelfIss4(pinteger LE SIZE GENUS_INDEX_SET LE pinteger)
external_iss:
ExternalIssNull()
| Externallssi(SELECT)
| Externallss2(rel_alg_expr)
| Externallss3{qualifiers)
| Externallss4(SELECT rel_alg_expr)
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| Externallss5(SELECT qualifiers)
| Externallss6(SELECT rel_alg_expr qualifiers)
| Externallss7(rel_alg_expr qualifiers)
rel_alg_expr:
RelAlgl(unioning)
| RelAlg2(difference)
| RelAlg3(cartesian_product)
| RelAlg4(intersection)
| RelAlgS(natural_join)
| RelAlg6(projection)
| RelAlg7(filtering)
| RelAlg8(index_set)
unioning:
UnionPair(index_set UNION index_set)
difference:
DifferencePairl(index_set MINUS index_set)
| DifferencePair2(index_set MINUS_SIGN index_set)
cartesian_product:
CartesianProductPairi(index_set TIMES index_set)
| CartesianProductPair2(index_set C_P_TOKEN index_set)
H
intersection:
IntersectionPair(index_set INTERSECT index_set)
3
natural_join:
NaturalloinPairi(index_set NJOIN index_set)
| NaturalJoinPair2(index_set MULT_SIGN index_set)
projection:
ProjectionPair(PROJECT LPAREN delimindices RPAREN index_set)

filtering:
FilteringPair(FILTER LPAREN filter_formula RPAREN index_set)
filter_formula:
FilterFormulal(proposition)
| FilterFormula2(LPAREN filter_formula RPAREN)
| FilterFormula3(AT_NOT LPAREN filter_formula RPAREN)
| FilterFormulad(AT_AND LPAREN filter_formula COMMA

172



filter_formula_list RPAREN)
| FilterFormulaS5(AT_OR LPAREN filter_formula COMMA
filter_formula_list RPAREN)
| FilterFormula6(AT_IF LPAREN filter_formula COMMA
filter_formula COMMA filter_formula RPAREN)
filter_formula_list:
FilterFormulalisti(filter_formula)
| FilterFormulalist2(filter_formula_list COMMA filter_formula)
proposition:
PropositionPair(predicate_term relop predicate_term)
relop:
RelopNull()
| RelOpLt(LT)
| RelOpLe(LE)
| RelOpEq(EQ)
| RelOpGt (GT)
| RelOpGe(GE)
| RelOpNe(NE)
predicate_term:
PredicateTermi(nzinteger)
| PredicateTerm2(index)
| PredicateTerm3(unren_func_dependency)
| PredicateTerm4(LPAREN predicate_term RPAREN)
| PredicateTerm5(LPAREN predicate_term sign predicate_term RPAREN)
index_set:
IndexSet1(GENUS_INDEX_SET)
| IndexSet2(LBRACE fundepname RBRACE)
| IndexSet3(LBRACE mvdname RBRACE)
| IndexSet4(LPAREN rel_alg_expr RPAREN)
unren_func_dependency:
FunctionSymbolName (fundepname LPAREN delimindices RPAREN)
qualifiers:
QualifierNull()
| Qualifierl(WHERE qualifier_string)
| Qualifier2(COMMA WHERE qualifier_string)
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qualifier_string:
QualifierStringNull()
| QualifierStringi(qualifier_phrase)
| QualifierString2(qualifier_phrase CUMMA qualifier_string)
qualifier_phrase:
QualifierPhraseNull{)
| QualifierPhrasel (REFLEXIVE)
| QualifierPhrase2(LPAREN delimindices RPAREN REFLEXIVE)
| QualifierPhrase3(SYMMETRIC)
| QualifierPhrase4(LPAREN delimindices RPAREN SYMMETRIC)
| QualifierPhrase5(TRANSITIVE)
| QualifierPhrase6(LPAREN delimindices RPAREN TRANSITIVE)
| QualifierPhrase7 (ITRREFLEXIVE)
| QualifierPhrase8(LPAREN delimindices RPAREN IRREFLEXIVE)
| QualifierPhrased(ASYMMETRIC)
| QualifierPhrasel0(LPAREN delimindices RPAREN ASYMMETRIC)
| QualifierPhrasel1l (ANTISYMMETRIC)
| QualifierPhrasel2(LPAREN delimindices RPAREN ANTISYMMETRIC)
| QualifierPhrase17(index COVERS GENUS_INDEX_SET)
| QualifierPhrase18(LPAREN delimindices RPAREN COVERS GENUS_INDEX_SET)
optional op_dom_stat;
op_dom_stat:
OptionalDomStatNull()
| OptionalDomStatPrompt ()
| OptionalDomStatNonNull(domain_stat)
domain_stat:
DomainStatNull()
| DomainStatInteger (DOUBLE_COLON integer_options)
| DomainStatString(DOUBLE_COLON string_options)
optional op_range_stat;
op_range_stat:
OptionalRangeStatNull()
| OptionalRangeStatPrompt ()
| OptionalRangeStatNonNull(range_stat)
range_stat:
RangeStatNull()
| RangeStatUnqual (COLON unqual_range_body)
| RangeStatQual (COLON qual_range_body)
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qual_range_body:
QualRangeBodyNull()
| QualRangeBodyString(string_type_range UNIQUE)
| QualRangeBodyInteger(integer_type_range UNIQUE)
| QualRangeBodyReal (real_type_range UNIQUE)
| QualRangeBodyLogical(logical_type_range UNIQUE)
| QualRangeBodyList(list_type_range UNIQUE)
| QualRangeBodyUnique(UNIQUE)
unqual _range_body:
UnqualRangeBodyNull()
| UnqualRangeBodyString(string_type_range)
| UnqualRangeBodyInteger(integer_type_range)
| UnqualRangeBodyReal(real_type_range)
| UnqualRangeBodyLogical(logical_type_range)
| UnqualRangeBodyList(list_type_range)
string_type_range:
StringTypeRangeNull ()
| StringTypeRangeSingle(single_string_range)
| StringTypeRangeMultiple(multiple_string_range)
multiple_string_range:
MultipleStringRangeNull ()
| MultipleStringRangeOptioni(pareni_str_range OR parenl_str_range)
| MultipleStringRangeOption2(multiple_string.range OR parenl_str_range)
parenl_str_range:
PareniStrRangeNull()
| PareniStrRangeNonNull (LPAREN single_string_range RPAREN)
single_string_range:
SingleStringRangeNull()
| SingleStringRangeOptioni(string_options)
| SingleStringRangeOption2(QUOTED_STRING 1ltle string options)
| SingleStringRangeOption3(string_options ltle QUOTED_STRING)
;

SingleStringRangeOptiond (QUOTED_STRING ltle string_options 1ltle
QUOTED_STRING)

string_options:
StringOptionsNull()
| StringOptionsi(STRING)
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| StringOptions2(CHARACTER)
| StringOptions3(STRING pinteger)
| StringOptions4(CHARACTER pinteger)
integer_type_range:
IntegerTypeRangeNull()
| IntegerTypeRangeSingle(single_integer_range)
| IntegerTypeRangeMultiple(multiple_integer_range)
multiple_integer_range:
MultipleIntegerRangeNull()
| MultipleIntegerRangeOptioni(pareni_int_range OR pareni_int_range)
| MultipleIntegerRangeOption2(multiple_integer_range OR parenl_int_range)
parenl_int_range:
PareniIntRangeNull()
| PareniIntRangeNonNull(LPAREN single_integer_range RPAREN)
single_integer range:
SingleIntegerRangeNull()
| SingleIntegerRangeOptioni(integer_options)
| SingleIntegerRangeOption2(integer LT_LE_INTEGER optsign)
I SingleIntegerRangeOption3(integer_options ltle integer)
| SingleIntegerRangeOption4(integer LT_LE_INTEGER optsign ltle integer)
integer_options:
IntegerOptionsNull()
| IntegerOptionsi(INTEGER)
| IntegerOptions2(INTEGER sign)

ltle:
LtLeNull()
| LtLeNonNullLT(LT)
| LtLeNonNullLE(LE)
real_type_range:
RealTypeRangeNull ()
| RealTypeRangeSingle(single_real_range)
| RealTypeRangeMultiple(multiple_real_range)
multiple_real _range:
MultipleRealRangeNull()
| MultipleRealRangeOptioni(parenl_real_range OR parenl_real range)
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| MultipleRealRangeOption2(multiple_real_range OR pareni_real_range)
parenl_real_range:
PareniRealRangeNull()
| PareniRealRangeNonNull (LPAREN single_real_range RPAREN)
single_real_range:
SingleRealRangeNull()
| SingleRealRangeOptionl(real_options)
| SingleRealRangeUption2(real_int ltle REALLY optsign)
| SingleRealRangeOption3(real_options ltle real_int)
| SingleRealRangeOption4(real_int ltle REALLY optsign ltle real_int)
real _options:
RealOptionsNull()
| RealOptions1(REALLY)
| RealOptions2(REALLY sign)
real_int:
RealInti(integer)
| RealInt2(NN_REAL)
| RealInt3(sign NN_REAL)
logical_type_range:
LogicalTypeRangeNull()
| LegicalTypeRangeSimple(LOGICAL)
list_type_range:
ListTypeRangeNull()
| ListTypeRangeOption1(QUOTED_STRING)
| ListTypeRangeOption2(QUOTED_STRING COMMA list_type_range)
modfunexpr:
ModFunNull ()
| MFunExpr (funexpr opt_sp_type_decl)
modtstexpr:
ModTstNull ()
| MTstExpr(testexpr opt_sp_type_decl)
testexpr:
TExpNull ()
| LitConst(LITERAL)
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TestPair(expr relop expr)

TestTriple(expr relop expr relop expr)

LogIFc(log_index_sup_fun)

AndPair (AT_AND LPAREN testexpr COMMA testexpr.list RPAREN)
OrPair(AT_OR LPAREN testexpr COMMA testexpr_list RPAREN)

NotPair (AT_NOT LPAREN testexpr RPAREN)

IfTPair(AT_IF LPAREN testexpr COMMA testexpr COMMA testexpr RPAREN)
TParen (LPAREN testexpr RPAREN)

TExist (AT_EXIST LPAREN exist_arg COMMA testexpr COMMA testexpr RPAREN)

testexpr_list:
TExpListi(testexpr)
| TExpList2(testexpr_list COMMA testexpr)
funexpr:
FuncExprNonNull(expr)
>
expr:
ExprNull()
| TermSingle(term)
| TermPair (MINUS_SIGN term)
| PlusPair(expr PLUS_SIGN term)
| MinusPair(expr MINUS_SIGN term)
term:
PowerSingle(power)
| ProdPair(term MULT_SIGN power)
| QuotPair(term DIVIDE_SIGN power)
)
pover:
FactorSingle(factor)
| ExpPair(factor EXP_SIGN power)
factor:
Const(constant)
Var(variable)
ParenExpr(LPAREN expr RPAREN)
IfFTPair (AT_IF LPAREN testexpr COMMA expr COMMA expr RPAREN)
FExist (AT_EXIST LPAREN exist_arg COMMA expr COMMA expr RPAREN)

exist_arg:
ExistArgi(simplevar)
| ExistArg2(functional_dependency)

178



;
constant:
ConstNumi(nninteger)

| ConstNum2(NN_REAL)

| ConstNum3(QUOTED_STRING)
variable:
VarNull()
Variablel(sympar)
Variable2(simplevar)
Variable3(builtin_function)
Variable4(pp_index)
Variable5(functional_dependency)
Variable6(arith_index_sup_fun)

functional_dependency:
FuncDep(index pinteger LPAREN delim_pp_indices RPAREN)
sympar:
SymParNull()
| SymPari(S_P_STEM)
| SymPar2(S_P_STEM sym_par_indices)
sym_par_indices:
SymParIndicesi(index)
| SymParIndices2(sym_par_indices index)
simplevar:
SimpVarConst (GNAME)
| SimpVarName (GNAME grindices)
grindices:
Grindicesl(grule_index)
| GrIndices2(grule_index grindices)
grule_index:
GruleIndexNull()
| Grindi(pp_index)
| GrInd2(replaced_index)
| GrInd3(offset_index)
| GrInd4(functional_dependency)

replaced_index:
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ReplacedIndex1(STR optsign pinteger GT)
offset_index:
OffsetIndexNonNull{STR pp_index sign pinteger GT)
builtin_function:
BuiltinFunctionNonNull (AT_SIGN GNAME expr_pack)
expr_pack:
ExprPackNenNull (expr_head expr RPAREN)
axpr_head:
ExprHeadNull (LPAREN)
| ExprHeadNonNull (expr_head expr COMMA)
optional opt_sp_type_decl;
opt_sp_type_decl:
OptSpTypeDeclNull()
| OptSpTypeDeclPrompt ()
| OptSpTypeDeclNonNull(COMMA WHERE sp_type_decl_clause_list)
sp_type_decl_clause_list:
SpTypeDeclClauseListNull ()
| SpTypeDeclClauselistNonNulll(sp_type_decl_clause)
[ SpTypeDeclClauseListNonNull2(sp_type_decl_clause_list COMMA
sp.type_decl_clause)
g8p._.type_decl_clause:
SpTypeDeclClauseNonNull(S_P_STEM IS sp_type)
sp_type:
SymParTypeUnqual (unqual_sp_type)
| SymParTypeQual(qual_sp_type)
qual _sp_type:
QualSymParTypelInteger(integer_type_range UNIQUE)
| QualSymParTypeReal(real_type_range UNIQUE)
| QualSymParTypeLogical(logical_type_range UNIQUE)
| QualSymParTypeUnique(UNIQUE)
unqual _sp_type:
UnqualSymParTypelnteger(integer_type_range)
| UnqualSymParTypeReal(real type_range)
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| UnqualSymParTypelogical(logical_type_range)
index:
Index1(INDEX)
| Index2(C_P_TOKEN)
pp_index:
PpIndex1(index)
| PpIndex2(S_P_INDEX)
| PpIndex3(D_P_INDEX)
delim_pp_indices:
IndexPpLetter(pp_index)
| OpPpIndices(delim_pp_indices COMMA pp_index)
arith_index_sup_fun:
ArithIndexSupFunctionNonNull(it_arith_fun_unit LPAREN expr RPAREN)
log_index_sup_fun:
LogIndexSupFunctionNonNull(it_log_fun_unit LPAREN testexpr RPAREN)
it_arith_fun_unit:
TteratedArithFunUnitNonNulll (AT_ARITH_FC_NAME pp_index index_range)
| IteratedArithFunUnitNonNull2(AT_ARITH_FC_NAME pp_index index_range
arith_fun_units)
it_log_fun_unit:
IteratedLogFunUnitNonNulll (AT_LOG_FC_NAME pp_index index_range)
| IteratedLogFunUnitNonNull2(AT_LOG_FC_NAME pp_index index_range
log_fun_units)
arith_fun_units:
ArithFunUnitsNonNulli (ARITH_FC_NAME pp_index index_range)
| ArithFunUnitsNonNull2(ARITH_FC_NAME pp_index index_range arith_fun_units)
log _fun_units:
LogFunUnitsNonNull1(LOG_FC_NAME pp_index index_range)
| LogFunUnitsNonNull2(LOG_FC_NAME pp_index index_range log_fun_units)
index_range:
IndexRangeNull()
| IndexRangeOptioni(index_rangel)
| IndexRangeOption2(index_range2)
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| IndexRangeOption3(index_range3)
| IndexRangeOption4(index_range4)
index_rangei:
IndexRangeiOptionl (LT nzinteger COLON nzinteger GT)
| IndexRangelOption2(LT nzinteger COLON pp_index STR)
| IndexRangelOption3(LT nzinteger COLON pp_index sign pinteger STR)
index_range?2:
IndexRange20ption1 (LT pp_index COLON nzinteger GT)
| IndexRange20ption2(LT pp_index COLON pp_index PLUS_SIGN
pinteger GT)
index_range3:
IndexRange30ption1 (LT pp_index MINUS_SIGN pinteger COLON
nzinteger GT)
| IndexRange3Option2(LT pp_index MINUS_SIGN pinteger COLON
pp-index GT)
| IndexRange3Option3(LT pp_index MINUS_SIGN pinteger COLON
pPp-index sign pinteger GT)
index_range4:
IndexRange40Optionl (LT pp_index PLUS_SIGN pinteger COLON
nzinteger GT)
| IndexRange40ption2(LT pp.index PLUS_SIGN pinteger COLCN
pp-index PLUS_SIGN pinteger GT)
optional opt_element_detail;
opt_element _detail:
OptElementDetailNil ()
| OptElementDetailPrompt ()
| OptElementDetailTable(ed_table_list)
ed_table_list:
EDTablelistSingle(ed_table TPERIOD)
| EDTableListCompound(ed_table TPERIOD ed_table_list)
ed_table:
EDTableEmpty(table_struct)
| EDTableFull(table_struct line_list)
table_struct:
TableStructOption (QUOTED_STRING COMMA
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QUOTED_STRING COMMA AN_INTEGER)

line_list:

LineListOptioni(data_line)
| LineListOption2(data_line line_list)

data_line:

DataLineOptioni (QUOTE_BAR_BAR_QUOTE COMMA data_list)
| DatalineOption2(data_list COMMA QUOTE_BAR_BAR_QUOTE)
| DataLineOption3(data_list COMMA QUOTE_BAR_BAR_QUOTE COMMA data_list)

data _list:

DatalistOptioni(data)
| DataListOption2(data_list COMMA data)

optional data;

data:

DataOptionNull()
DataOptionPrompt ()
DataOptionl (QUOTED_STRING)
DataOption2(A_REAL)
DataOption3 (AN_INTEGER)
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