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Abstract

Projections of a moving target on the retina undergo continuous
shifts, especially during egomotion. Without minimal compensa-
tion, such as retinal to egocentric conversion, it would be difficult to
realize a meaningful interpretation of the environment. We present
a model that can perform such a conversion, without resorting to
learning schemes, and we argue that its structure is consistent with
the known anatomy of the visual system. The model preattentively
discounts changes in visual direction, allowing attentive processes
to generate a stable and consistent internal representation of the
surrounding world. Simulation results from the structured model
suggest that the transforrn demands little computational overhead
and is therefore easily reconcilable with visual processing areas that
may be performing other operations, such as motion analysis.

*We sincerely acknowledge support by MICRO-Hughes Research Laboratories grant
#541122-57442 and ARO grant #444251-25519.



1 Introduction

One of the principal aspects of vision is perception of relative changes in the
light stimulation pattern striking retinas. It is from these changes, caused both
by movement of objects and our own motions, that we determine overall object
shape and its location in three-dimensional space. This presents a problem,
namely, how does one build a consistent, stable internal representation 1 of
one’s environment when the input stimuli are changing continuously, as a result
of exploration of the world? Additionally, how does one decide which stimuli
merit special exploratory attention, and what sort of mechanism is used to
direct this attention? Information related to motion can be used in different
computational tasks often indirectly related to the perception of the moving
object itself 2. This motivated many previous studies involving the oculomotor
system 345, direction constancy 67, position constancy 897 and atlention
10,11,12,13,34,15_

Our ability to build an internal model of the world allows us to explore it
— necessary because perception is not just passive interpretation of sensory
data, but active exploration of the environment for the purpose of extracting
information necessary for survival 1718, Exploration, as opposed to passive
interpretation, is the only way to operate in unconstrained environments where
one cannot enumerate a priori all future situations 192021, Thijs capability
is central to “general-purpose vision”, which is a long-term goal of computer
vision research 22,

From an evolutionary point of view, the problem of synthesizing internal
models can be related to the complexities of organisms’ behavioral repertoires
23, A primitive, stationary organism senses any spatio-temporal change in stim-
uli as object motion, and the location of a point in sensor array coordinates
uniquely specifies the stimulus location in environmental coordinates.

More complex behavior requires increased visual acuity, which in turn implies
retinal specializations, such as a fovea and nonuniformity of the sensor array.
Hence the need to reposition the sensor array to gaze in different directions.
Consequently, position on the retina no longer uniquely specifies environmen-
tal coordinates and the position of the eye must be accounted for 2425.26,
This requires a conversion of sensory stimuli from retinocentric to egocentric
coordinates.

A fully mobile animal needs to account for motion of its entire body, in
addition to sensor array motion. This requires the conversion of retinocentric
coordinates into full environmental coordinates, in which objects' position in
space is one of the “constancies” to be extracted from visual stimuli 27. The
increased flexibility in combining exploration, manipulation, and introspection
of the environment implies the need for a general attention mechanism capable
of guiding motor and mental operations in environmental space, 28.

Consequently, we may view visual computation within one or more of three
different coordinate systems — retinal, egocentric, and environmental, In this
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Figure 1: A block diagram of a model visual system, illustrating preatten-
tive/attentive, parallel/serial, and afferent/eflerent dichotomies. The egocentric
transform is the focus of this paper.

paper, we focus on the transformation of visual information from retinal to
egocentric coordinates. Our model is based on connectionist principles, how-
ever, the mechanisms are consistent with current anatomical and physiological
knowledge of biological vision systems.

The functional subdivisions of our model are summarized in Figure 1. This
block diagram contains modules that compute visual direction and position
constancies. It is composed of preattentive processes that operate in parallel
on the entire retinal image and attentive processes that compute detailed shape
information based on some small part of the sensory stimulation. As a model
of a general-purpose vision system, which actively explores its environment, it
can also be divided into afferent systems that sift through sensory data, and the
eflerent output of attentive processes which select new data.

2 Visual Coordinates in Retina and Parietal
Cortex

The retinal coordinate system is defined by the arrangement of photoreceptors
and the geometry and mechanics of the eyeball. Since all retinal cells, including
ganglion cells, are fixed with respect to the photoreceptors, computation within
the retina and the retinal output are in the same retinal coordinate system.
In contrast, it has been suggested that cells in parietal cortex process input
within an egocentric coordinate system. In such a coordinate system, points
in the environment are specified by their location relative to the individual’s
body, rather than relative to their projections upon the retina. In the macagque
monkey, cells in area 7a respond to both retinal stimulation {which may be
the motion of a target on the retina) and eye position, and it is theorized that
such a combination may be used to transform retinal coordinates to egocentric
coordinates 2930, The receptive fields of these cells were mapped out while the



animal was fixating in a constant direction ?°. By systematically changing the
fixation point, and measuring the cells’ response to stimuli at the same retinal
location, the authors found that both retinal and eye position information could
be modeled as a linear combination.

Furthermore, using the back-propagation algorithm, Zipser and Andersen
30 were able to “teach” a three-layer artificial neural network to simulate a
conversion of target retinal position and eye position into target spatial position.
After training, they found that the receptive fields of “hidden” units of the
network resembled those of 7a neurons, suggesting their role as an intermediate
stage in a conversion of visual information from retinal to spatial coordinates.

We developed a model which also translates information from retinal to
egocentric coordinates, without resorting to “learning” or error minimization
schemes. The functionality of our model arises from the structure of intercon-
nections between model neurons and/or between various known visual centers.

Feldman 1 suggested that four different computational domains were suf-
ficient for the synthesis of stable visual perception. In the context of this pto-
posal, our model implements the transformation from Feldman’s “retinotopic
frame” to his “stable feature frame”, with some important differences. Feld-
man’s retinotopic to feature frame mapping required complete, random inter-
connections from each retinotopic neuron to every feature neuron to which it
could possibly map, despite neuroanatomical evidence that suggests cortical
interconnections to be highly specific 3. Furthermore, it appears that pari-
etal cortex is more likely to be the location of a “stable feature frame” 32
than extrastriate cortex (as Feldman had suggested). In contrast, our model is
composed of neurally plausible structures with highly specific interconnection
patterns. The number of these interconnections is nowhere near that required
by complete interconnection between retinocentric to egocentric neurons. This
is a result of a hierarchical organization, which performs the retinocentric to
egocentric transform in stages.

2.1 Anatomical Correlates of Model Function

Several of the vision-related areas of the brain, along with their major intercon-
nections, are schematized in Figure 2, adapted in part from 33.2. We group
these areas into four rough categories (as indicated by different shading): I
low-level motion analysis, IT figure/ground segmentation, IIT detailed three-
dimensional shape analysis, and IV internal representation construction. The
flow of visual information between these areas has been shown to split into two
major pathways: one projects to temporal cortex and is concerned with detailed
analysis of objects, and the other proceeds to parietal cortex, dealing with space
perception and the guidance of operations in space 34.2,3536,37

It seems reasonable to assume that the location of the egocentric transform
would be in the path dedicated to spatial operations. However, the anatomical
localization of the egocentric transform could depend on whether the conver-



sion is computed in a distributed fashion or whether it is accomplished within
one specific visual center. The transform could be distributed across several
preattentive visual areas, such that each area represents one stage of the overall
transform, in addition to performing other operations, such as optic flow, color,
etc. It is also possible that there is only a single area which performs the entire
conversion — an area dedicated to direction constancy. While at present there
is not enough evidence to eliminate either possibility, we can narrow the focus
to include visual cortical areas V3, MT, 7a, and MST 382829 a5 shown in
Figure 2 by the shaded areas.

The results of a complete egocentric transform would then allow attentive
processes to direct attentive motor operations toward targets in spatial coordi-
nates. This notion is supported by recent findings which suggest that targets
are specified to thalamic nuclei in spatial coordinates 4.

3 A Model of the Egocentric Transform

The objective of our model is to simulate the retinal to egocentric coordinate
conversion. To simplify simulations we ignore the many types of wide-area preat-
tentive visual processes that must be operating concurrently. It is assumed that
operations to compute preattentive color, texture, motion, ete. are being per-
formed within the complete visual system, of which our model is just one part,
The model is composed of two-dimensional layers of “neurons”, each of which
receives input from a linear arrangement of neurons in a previous layer. In-
hibitory inputs are taken as all-or-nothing, that is, inhibition on one “dendrite”
blocks any excitatory input from that dendrite. Therefore, a particular visual
input can be either connected or disconnected.

To further simplify simulations, we use discrete frames of visual information
— however, the model’s behavior would be equivalent if it were stimulated by
the “smooth” motion inherent in the real world.

We have been motivated in our efforts by the following observations from
neuroscience. The receptive fields of visual neurons increase in size as we move
towards more central visual areas 32. This suggests that parietal neurons can
potentially receive input from a very large number of photoreceptors. There is
evidence which suggests that parietal neurons can integrate eye position and
visua] information 2, Finally, receptive fields of visual neurons can have their
properties modulated by inputs from other visual areas 39,

3.1 System Architecture

Changes in the retinal location of visual stimulus can be caused by either object
motion or by eye motion. In order to reconstruct the egocentric locations of
objects, one must differentiate between these two possibilities. The transforma-
tion must be information preserving; projections of moving objects on the retina
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Figure 2: A greatly simplified block diagram of the visual system shows major
areas in retina, brain stem, midbrain, and cortex, and their relations to motion
and direction constancy computation. I. low-level motion. II. figure/ground
segmentation. IIL detailed shape. IV. environmental modeling.



must produce moving patterns of activity in the transformed space, in proper
spatial relationship to each other. The transformation must discount artificial
changes in the retinal location of projections of stationary objects.

Figure 1 shows how this egocentric transform fits into the context of bi-
ological vision. The input to the transform (from the retino-geniculo-cortical
pathway) is the result of processing images by neurons with symmetrical re-
ceptive fields with center/surround antagonism — typical of the responses of
the cells in the retina, LGN, and striate cortical areas (for a review, see 3%).
The output of the transform could correspond to either of Treisman’s two hy-
potheses of attentional mechanisms 401041 I the first hypothesis, feature
extraction modules send their outputs to a “master map of locations™, which
indicates only where features are, but not what they are, In the second hypoth-
esis, features are initially combined in the master map, and are later separated
apart. The difference is that, for the latter, preattentive conjunctions of features
can be made (since the features are initially together in the master map). For
the former, features are separated apart before reaching the master map {and,
by extension, attentive processing). Conjuction of features would then require
attentive processing.

The output of our model corresponds to the master map of locations in the
former, and the feature module outputs in the latter. The crucial point is that
our model suggests that either the master map of locations is in egocentric coor-
dinates (in the first case), or that the feature module outputs are in egocentric
coordinates (in the second case).

3.1.1 Principles of Operation

Figure 3 shows a functional block diagram of our model, examining a station-
ary scene. At time t;, the camera fixates on one object. Visual information
that is processed preattentively undergoes a retinal to egocentric transform,
which places the features extracted into their correct locations in a world map.
Attention, acting upon information within this map (and other, nonvisual infor-
mation), decides to shift camera direction to fill in the feature maps with more
information. In the new direction, preattentive feature extraction processes
operate just as they always have — those computations are based on retinal
information, and do not take into account shifts of point of view. However, the
egocentric transform assures the system that the second object’s contribution
to the description of the world is kept distinct from the first object’s.

A block diagram of the architecture that accomplishes the coordinate trans-
form is shown in Figure 4. It is composed of two types of processing layers —
shift layers and control layers. Shift layers process images from the sensor ar-
ray, while control layers process sensor array position information. The sensor
array/shift layer pathway corresponds to the geniculocortical system for pro-
cessing visual information 353337, The control layers correspond to parts of
the brain stem — superior colliculus - thalamus - cortical system for eye position
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Figure 3: A “cartoon” example of the egocentric transform. A moving cam-
era takes two nearly identical images in succession, which, when placed within
egacentric coordinates, are clearly of two different objects.

data 442,

Shift layers are arranged to form a truncated pyramid. Each layer can con-
tain an image at some stage of the transform. The bottom layer is essentially in
sensor array coordinates, perhaps receiving its input from LGN, and more likely
from the early visual cortical areas, such as V1 and V2. The topmost layer is
in egocentric coordinates, providing its output to areas in parietal cortex that
coordinate operation of the visual system with locations of objects. Intermedi-
ate layers perform partial shifts of the images in a single direction at any one
time, with higher layers performing larger magnitudes of shifting. The compos-
ite shift of the shift layers serves to place images in their proper location in the
egocentric map (see also Feldman’s “stable feature frames” 1). Since the sensor
array can be oriented in almost any direction, it must be possible to route the
output of a processing element in the bottommost layer to just about any PE
in the topmost layer. The shift layers accomplish this mapping operation.

Control input to shift layers is equivalent to the eye position information
transmitted to superior colliculus and the thalamic internal medullary laminar
complex 442, and presumably on to the parietal cortex via heavy thalamo-
parietal interconnections 43. Control layers determine the direction and mag-
nitude of image shift for each shift layer. There is one control layer for each
shift layer. Sensor array position is provided to the topmost layer, which de-
termines the shift direction and amount for the topmost shift layer, which is
the largest magnitude shift. Successive control layers break the position into
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Figure 4: A block diagram of a neural network architecture for performing a
retinal to egocentric coordinate conversion. Conirol layers use eye position to
compute image shifts. Shift layers perform successive shifts of a retinal image,
resulting in its placement into the appropriate location in the egocentric map.

smaller magnitude components, corresponding to the smaller magnitude shifts
performed by the corresponding shift layers. Thus, the current sensor position
is decomposed into components which correspond to shifts performed by shift
layers. The net result is to place an image into the location in the egocentric
map dictated by the sensor array orientation.

3.1.2 Shift Layers

A series of shift layers are used to translate the sensor array image to its proper
location in egocentric coordinates. Although this could be simulated as a one-
step process, it would require each PE in the egocentric map to be connected
to almost all of the PEs in the sensor array map. This would be difficult to
realize in a hardware implementation. Additionally, the shift elements are rather
simplistic -— many additional functions, such as sub-pixel resolution, could be
performed by them.

A shift layer can perform a unidirectional shift of an entire image. Since our
architectural paradigm only allows connections over some limited local area,
arbitrary shifts by one layer are not possible. That is why a series of layers
are used, and why successive layers are interconnected so that they perform
increasing magnitudes of shifts. This is comparable to increasing the size of
receptive fields — the increasing shift magnitude is produced by interconnection
between layers and the multiplicative effect of successive shifts. For example,
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if every PE is connected so that it has five inputs, and can perform shifts of
{—2,-1,0,1,2} pixels, the ensemble of shift layers are capable of the following
shifts:

¢ The bottommost layer shifts in increments of 1, within a range of -2 to
+2.

¢ Layer 2 shifts in increments of 3, with a composite range of -8 to +8.
¢ Layer 3 shifts in increments of 9, with a composite range of -26 to +26.

e Layer 4 shifts in increments of 27, with a composite range of -80 to +80.

Subsequent layers follow this pattern of increasing magnitude, corresponding
to powers of 3 in this example. Except for their increasing size, the shift layers
are all identical.

As a more realistic example, consider the human visual system. At the
retina, the field of view is approximately 200° 44, and the resolution (at the
location of the simple cells in the visual cortex) ranges from 0.1° at the fovea to
3° in the periphery 45. If we take the maximum resolution and field of view to
arrive at an upper bound on the size of visual maps, that would be equivalent to
a 2000 photoreceptor by 2000 photoreceptor sensor array. Let us assume that
the egocentric transform is also used to increase maximum acuity through an
interpolation process. In humans, maximum visual acuity (not hyperacuity) is
approximately 0.01° 46. Though eye motion may not cover all space around
an individual, we assume the egocentric map to be 360° in extent to get an
upper bound on map size. Additionally, we will assume that all images are
mapped onto square visual areas, resulting in an upper bound on the size of

the egocentric map of 36,000 cells by 36,000 cells (%ﬂ%‘i). Of course,
0.1 degrees/ce
visual acuity falls off as distance from the fovea increases. Additionally, a 36K

x 36K square has greater area than a spherical 360° egocentric map. For these
reasons, the figures of a 36K x 36K square map will serve as upper limits on
this architecture.

The egocentric transform must then be able to shift a 2K x 2K input image
anywhere within a 36K x 36K egocentric space. It has been suggested that, in
macaque, cells in V1 which receive magnocellular afferents have receptive fields
which cover an area corresponding to 18 receptive fields at the LGN 47. The
parvocellular afferent recipients in V1 are arranged in submodules that exhibit
high cytochrome oxidase activity, and that these submodules could receive be-
tween 10-15 afferents each 47. Let’s assume that each cell in a shift layer is
connected to approximately 10 cells at the previous layer. The first shift layer
would then shift its input one cell at a time. The second layer would perform
shifts in increments of tens of cells, and the third by hundreds. The fourth
and final layer would be capable of effecting composite shifts on the order of
thousands of cells.
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Thus, the egocentric transform can realistically be accomplished by four
shift layers, with cells in each layer connected to a small number of cells in a
previous layer. The total number of cells required would be dominated by the
number of cells used in the final egocentric map. It is not unreasonable, then, to
assume that shift operations performed by each shift layer actually correspond
to separate visnal cortical areas. Each area would perform a stage of the com-
putation of preattentive feature maps, as well as a stage of the transformation
of the map information from retinocentric to egocentric coordinates. In that
case, our model would argue in favor of Treisman’s “late master map of loca-
tions” hypothesis, in which the feature maps feed their outputs to a master map
(corresponding to our egocenttic map).

A “lumped” model of the early geniculocortical system was employed for
gimulation convenience. While the sampling of visual space by the human retina
could be modeled as a roughly 2000 by 2000 photoreceptor image, we have used
64 by 60 pixel input images, so that one pixel (or shift element) corresponds
to 1024 photoreceptors. An additional simplifying assumption is that our input
“retinal™ images are of uniform resolution.

Each processing element within the shift layers is individually capable of
shifts in only one direction, as illustrated in Figure 5. Each shift element receives
a linear arrangement of image inputs, any one of which can be selected to be
that element’s output. Thus, the shift element pictured in Figure 5 is capable
of shifts: {—2,—1,0,1,2} * magnitude, as described above. The actual input
selection is performed by the control layer signals. Active signals from the
corresponding control layer “shuts off” shift layer inputs. By inactivating one
control to a layer’s shift elements, one image input is selected.

To accomplish shifts in arbitrary directions with elements capable of uni-
directional shifts only, multiple shift elements per location are need. Each of
these elements is capable of shifts in a slightly different direction (8 directions
are used in the simulations). By using a sequence of shift element of appropriate
orientations, shifts in arbitrary directions can be accommodated. The bottom
of Figure 5 shows the multiple shift elements at one location in a shift layer.
Selection of the appropriate shift direction and magnitude is done by the control
layers.

The shift elements are arranged in a rectangular array., At each location
in the array, there is a set of shift elements, one for each direction. All of the
shift layers are identical in construction (except for size) and interconnection
(except for the first layer). Later shift layers are closer to the egocentric map,
and each succeeding one must therefore be closer in size to the egocentric map
(ie., larger). The final shift layer corresponds in size to the egocentric map.

The elements in a succeeding layer do not receive input from adjacent el-
ements in a preceding layer. For example, for shift magnitudes that increase
in steps of 3, an element in layer n takes inputs from every third element in
layer n — 1. Its neighboring elements do the same, but with inputs shifted by
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Figure 5: Shift elements receive a linear arrangement of visual inputs from the
previous layer (a). Control inputs selectively inhibit individual visual inputs (b),
so that the output of a shift element is equivalent to one of the visual inputs,
resulting of a shift from -2 to +2, in this figure. At each location in a shift layer,
shift elements exist for 8 different shift directions,

1 with respect to the former element. The exception to the scheme is the first
layer. Elements in this layer receive inputs from adjacent sensor array outputs,
to effect shifts of magnitude 1.

3.1.3 Control Layers

The funetion of control layers has in effect already been defined. There is one
control layer for each shift layer. They receive informatijon about sensor array
location, and send outputs to shift layers. These signals select inputs for shift
elements such that a shift of a particular magnitude is performed in a particular
direction. Successive control layers break the sensor array location into finer
increments, corresponding to the smaller shift magnitudes of the lower shift
layers. Their function is quite similar to the Granger-Lynch model of olfactory
paleocortex 48, in that it is composed of winner-take-all layers (ie, layers
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in which only one node responds at any time), which collectively construct a
hierarchical decomposition of eye position. Unlike that model, however, our
control layers are separate, rather than patches in one layer, and the structure
of layer interconnections is hardwired, rather than learned.

Figure 6 illustrates the organization of the control layers and the receptive
field characteristics of individual control nodes. Control processing elements in
the topmost layer have receptive fields that correspond to some part of visual
space. They are sensitive to position of the sensor array and don’t participate
directly in processing image data. A control element will produce a low output
when the sensor array is pointed in the direction that the element’s receptive
field covers, as determined by the array position inputs. Thus, when one looks
at the entire top control layer, one sees all control elements but one producing
high outputs, with the low output corresponding to the region of space towards
which the sensor array is pointed. The result is that, for any shift element at
that level, all inputs but one are inhibited.

Subsequent control layers break the spatial position of the sensor array into
finer divisions, corresponding to the smaller magnitude shifts produced by the
shift layers. Thus, a receptive field of one element in a control layer becomes
the entire space to which the next control layer is sensitive, as shown in Fig-
ure 6. Elements in that layer are then comparing the direction of the sensor
array in space with the approximation to which the previous control element
corresponds. When a control element produces a low ocutput, that means that
the actual sensor array direction falls within that element’s receptive field. How-
ever, that control element activates a shift by the corresponding shift layer in
a particular direction with a particular magnitude. The difference between the
sensor array location and the shift performed can be thought of as residual error,
to be corrected by subsequent control/shift layer combinations at progressively
finer resolutions. Therefore, the next control layer’s elements operate within the
space represented by the previous receptive field, with the actual shift performed
corresponding to the origin.

For example, if the sensor array is pointed up and to the right at an angle
of 45° from the horizon and 10° from straight ahead, then a control element
corresponding to 45° in each control layer would be inhibited. This means
that inputs to shift elements at an angle of 45° to their location would be left
uninhibited. The result is a 45° shift in each shift layer. The shift magnitude
would be adjusted in each layer to accomplish the 10° cumulative shift.

3.2 Methods and Procedures

The results presented here are all based on simulations at the UCLA Machine
Perception Laboratory. These simulations use a neural network simulation en-
vironment called SFINX (Structure and Function In Neural conneXions) 4950
running on Ardent Titans and other UNIX machines. SFINX allows simulation
of both “randomly™ and regularly interconnected networks, where individual
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(b) Control Layer Organization
Figure 6: Control elements convert eye position into the successive shift direc-
tions and magnitudes required by the shift layers. Each element has a receptive
field which is responsive to a certain range of eye position magnitude and di-
rection (a). control layers provide finer resolution by comparing the coarser
approximations of the previous layer with the input eye position (b).

“neurons” can be simulated at almost any level of detail, from a set of difference
equations to a simplified weighted-sum model. To accomplish this simulation,
functions must be written that simulate individual neurons, with SFINX tak-
ing care of applying that function for each neuron in the net. The functions
define not only the operation of individual elements, but alsc the interconnec-
tion between elements (in the case of regular interconnections). SFINX includes
facilities for displaying the internal state of elements as images, when regular
interconnection is used. Additionally, the state may be saved to a file for further
processing.

To design simulations which would run in reasonable time, and to make in-
terpretation of results easier, certain simplifications were made to the model.
We used a lumped model of the early geniculostriate system, and in some sim-
ulations neglected the inhibitory surrounds of the early system, so that results
could be viewed as normal images. However, simulations that required mea-
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surement of receptive fields did use inputs that had been processed by cells with
center /surround receptive fields. Additionally, in our simulation, the egocentric
transform does not involve the computation of feature maps. Instead of the
output being feature maps, unaltered image intensity information is used.

The proposed vision system is based upon connectionist architectural prin-
ciples — parallel designs with simple processing elements (PEs) which are con-
nected to other processors within some restricted area (for a review, see 51).
Restricting the area of interprocessor connection keeps the number (and com-
plexity) of such interconnections reasonable, as resources required for inter-
connections may grow with the square of the interconnection diameter. The
processors operate individually on smal! parts of the problem — it is only as a
group that they perform a recognizable function. This is a result of the limited
interconnection area, which prevents any processor from having a global view
of the task. It also adds an element of fault tolerance to the design, as losing
individual PEs results in only small degradations in overall performance.

PEs are arranged into layers; two-dimensional arrays of elements. Thus, the
data being processed (images) map directly onto a layer of PEs. These layers
are “stacked” on top of each other to form complete computing structures,
forming a pipeline through which image frames flow — with sequential frames
in sequential stages of the pipe. Adjacent layers may be the same size, as in our
mode}’s control layers, or different sizes, as in the shift layers.

For the simulations performed here, a regular interconnection scheme is used.
In this scheme, two-dimensional buffers are allocated to hold the current state
of each PE. A single function is defined for each buffer, which describes the op-
eration and interconnection of PEs within that buffer. For simulations involving
vision, a SFINX buffer usually corresponds to a layer in the architecture. Thus,
there is a close correspondence between the structure of the simulation and the
structure of the architecture, which makes analysis of its behavior straightfor-
ward.

The simulation results can be presented in two ways. One is as images, with
brightness at each point in the image corresponding to the level of activity of
a PE at that location in the layer. The other is as three-dimensional “terrain
maps”, with terrain height corresponding to PE activity level. Some of the
data is captured by adding layers to the simulation whose only purpose is to
accumulate the output of individual PEs or entire layers over time. This allows
one to see, in one picture, the results of hundreds of test iterations.

The test conditions involve simulation of a static world, where the only
motion is sensor array motion. This is accomplished by adding “world” and
“sensor array” layers before the first shift layer. The world layer consists of
a still image, meant to be taken for the entire visible world (two-dimensional
case). The sensor array layer is much smaller. For a particular sensor array
direction, that layer takes a rectangular piece of the world image. By changing
the sensor array direction, different parts of the world may be “examined” by
the system. In the simulations presented here, the world image is 256 pixels
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across by 240 pixels down, while the sensor array is 64 pixels across by 60 pixels
down.

The contents of the sensor array are presented to the lowest shift layer of the
architecture — a simulation of the retinal ganglion output to the visual cortex.
The sample of the world image taken by the sensor array is passed unchanged,
even though the retinal ganglion cells exhibit center-surround receptive fields.
This is done to clarify the data collected from the simulation, as the final output
is still interpretable as a normal image.

In all simulations, the shift layer simulation code was written to allow for
eight different shift directions (simplest with a rectangular pixel arrangement)
and any number base for shift magnitude. With the world and sensor array
dimensions stated, the most efficient shift magnitude (in terms of memory usage)
is five, ie. a range of [-4,+4]. Three shift layers were used, thus the first layer
shifts in increments of 1, the second in increments of five, and the third in
increments of 25. With a sensor array that is 64 x 60, the first shift layer is 72
x 68, the second is 112 x 107, and the third is 312 x 307. These dimensions
accommodate the maximum shifts at each point. All control layers were 5 by 8
(shift magnitudes from 0 to 4; 8 shift angles).

3.3 Experimental Results

Figure 7 illustrates a typical experimental setup. A simple two-dimensional
scene is constructed, containing the letters ‘O’, ‘X’, *Y’, and ‘Z’. The mode]
retina’s field of view is a small part of this scene, indicated by boxes drawn
upon the scene. Four fixations were made in the test illustrated, corresponding
to the boxes numbered 1 through 4. Below the scene image, the part of the scene
viewed by the retina in each successive fixation is shown. A final data collection
layer was added to the model after the final shift layer, to accumulate shift layer
outputs over time. The bottom image in Figure 7 displays the accumulated
cutput of the model for the time period covering the four fixations.

These accumulated outputs show that the fixations are each registered to
their proper locations in egocentric space. This results in a reconstruction of
those parts of the original scene which were viewed by the retina.

Figure 8 shows a more complex scene. The retina was scanned back and
forth across the entire scene, so that all parts of the scene were observed during
at least one fixation. By accumulating the shift layer outputs as in the previous
experiment, the entire scene can therefore be “reassembled” in egocentric space,
as in Figure 9. Careful examination of Figure 9 reveals that the reconstruction
is not perfect. This is an artifact of the rectangular arrays used for processing
layers, since the diagonal shifts are in increments of \/5 greater than the hori-
zontal and vertical shifts. A hexagonal buffer system would solve this problem,
with a cost of greater simulation complexity and time.
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Fixation1 Fixation2 Fixation 3 Fixation 4

Egocentric Map

Figure 7: Result of model operation for 4 fixations of a simple scene. The top
picture is a simple scene, with numbered fixation areas. The contents of the
retina for the fixations are shown in the middle, and the final egocentric map
contents are on the bottom.
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Figure 8: An example image, representing a complex scene.

Figure 9: The image in Figure 8 was viewed by a small “retina”, which was
scanned back and forth across the image. The outputs of the final shift layer
were collected to form this reconstruction of the egocentric map.
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4 Conclusions

Modeling involves choices: levels of abstraction, generalization, correspondence
with observations, representation of observations, etc 5253, We have chosen
to focus our efforts on building models of biological neural systems, rather than
models of experimental data 54. Our mode] details a computational structure
that can perform the desired function. This is different from the model proposed
by Zipser and Andersen which describes the behavior of parietal visual neurons
in the context of a particular experiment. Since medels of data say nothing
about underlying mechanisms, they are of limited utility in extrapolating the
reaction of real systems to novel experiments %4, Structural models, like the
one described in this paper, in general make much stronger hypotheses about
the system in question, and can therefore be more useful for design of future
experiments and for understanding of system operation.

Zipser and Andersen’s model is based on observations derived from exper-
iments that determine cells’ response to single spots of light 3%. While the
backpropagation-tuned network may be a good model of the “single spot of
light™ type of experiment, its accuracy for more complex stimuli (multiple spots
or pixels) is not clear. In normal operation, the visual system operates on com-
plex patterns of light, Our model certainly works with arbitrary visual input,
and its responses to more complex experimental stimuli can be compared with
similar experiments performed on animals to validate or invalidate the model.

Finally, the Zipser and Andersen model was constructed to work over a
narrow range of eye positions, and with greatly restricted size (or resolution)
of both the retina and the egocentric map. It would be interesting to examine
the responses of parietal neurons to changes in eye position that correspond to
a few hypercolumns in magnitude, to see how results change as we progress to
larger shifts. Even a backpropagation model would no doubt need to include
structural elements to accommodate large changes in eye position and large-
area, high-resolution retinal and egocentric maps.

4.1 Predictions from the Model

It is instructive to examine how many neurons would be necessary to implement
a particular model, to see if that model is plausible. For our model, the number
required is dominated by the number of neurons in the final egocentric map.
If the topographic relationships within the visual data are to be maintained,
then there can be no fewer neurons used in any model. Additionally, even if
we assume that the granularity of the egocentric map is such that it represents
space at the maximum visual acuity achievable by humans, four stages at most
would be required to perform the transform (using the conservative number of
10 cells from one layer providing input to each cell in the next layer). There
is no problem fitting such an architecture within the known neuroanatomy of
visual areas.
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Additionally, since this transform makes such a low demand on the process-
ing power and interconnectivity of neurons, it would not be unreasonable to
assume that cells taking part in the transform would also be doing other pro-
cessing, such as segmenting images based on motion. The result in real terms
would be neurons which not only respond to eye position, but also attribuies
of the visual stimulation (for example, the overall optic fiow). As previously
mentioned, experiments on animals using more complex, realistic stimuli are
needed to test the validity of these predictions.

Finally, with respect to the work of Treisman and others in attention, our
model predicts that the “master map of locations”, within which attention (both
internal and motor) operates, is an egocentric map. It favors a model in which
this map is placed after feature extraction modules.

This model is quite simple, and there is ample room for improvement, both
to add more functionality to the model and to fit the model within the context
of a more complete visual processing system. Within the scope of this model,
it would be interesting to use more realistic neuron models to perform more
processing, such as that required to achieve rough segmentation of scenes ac-
cording to optic flow. Additionally, it would be desirable to integrate binocular
disparity computation, so the final output map would be a three-dimensional
map of the environment.

This model is meant to be part of a visual processing pathway that performs
overall preattentive processing of the entire scene, in order to localize objects and
guide direction of attention (whether visual or motor}. Thus, the output of our
model would be used by higher-level processes which select objects for attentive
exploration and construct the connection between object location (computed in
parietal cortex) and detailed object shape (computed in temporal cortex) 33.
Performing these operations within a spatial map is essential to our perception
of a world with its own objective existence.
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