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Abstract

A modification of the simplified FitzHugh-Nagumo equations is
proposed by incorporating the recovery (restitution) properties of ex-
citable media. The three step-wise approximation of ¢(£) which is
widely used in current publications is replaced in a new model by a
four step approximation. This change is used for studying the effects
of restitution properties independently of the action potential duration
and refractory period on 2-D wave propagation in an isotropic matrix
(made by 128x128 nodes). The transition to the new step (e4) occurs
when the outward current reaches a chosen level {Imin). The method
for fitting the model to the given experimental restitution data (ob-
tained from isolated superfused myocardial cells) is presented. It is
based on a well known exponential approximation of the restitution
curve of action potential duration. Using a computer simulation on a
massively parallel computer (Connection Machine), the existence of a
window of vulnuerability in two dimensional excitable media is shown.
These windows are characterized by the appearance of single and dou-
ble spiral waves in response to premature stimulation applied inside
the window. It is shown that restitution properties affect the size and
location of this window. In particular, it is shown for heart muscle that
under the influence of the drug Quinidine (which slows the restitution
properties) the location of the window of vulnerability is shifted. The
application of premature beats in this case causes the appearance of
nonstationary spiral waves. Restitution properties of APD may have
pronounced effect on the formation of reentrant rhythms.

Keywords: excitable media simulation, FitzHugh-Nagumo simplified model,
2-D wave propagation, heart muscle simulation, recovery properties



1 Introduction

Restitution can be defined as a property of excitable media to fully recover
in time after excitation. For example, a cardiac muscle cell requires a time
equal to several APD’s to recover fully. If stimulation is at shorter cycle
lengths, then the recovery process will result in action potentials of shorter
duration.

McAllister, Noble and Tsien [1] showed that restitution in cardiac Purk-
inje fibers is due to the time dependent component of potassiuzn current
which decays very slowly after the completion of the repolarization phase of
the action potential.

It is evident that the time course of restitution of APD directly affects
the degree of dispersion of repolarization, when stimulation is applied during
the process of restitution. It is known that the greater the dispersion of
repolarization, the easier will be the induction of circus movement reentry
(2].

Over the last 10 years, many valuable contributions have been made
in wave propagation studies using the simplified FitzHugh-Nagumo (F-N)
equations (see [3, 4, 5, 6]). However, the parameters of these equations,
particularly, the function e(E), provide limited, if at all, time dependent
changes in restitution properties. Here we present the results of a computer
simulation of wave propagation in a 2-D piece of an isotropic homogeneous
excitable media (128x128 nodes) with physiologic restitution properties [2].
To reproduce the restitution curves obtained in physiological experiments
using the simplified FitzHugh-Nagumo equations, we use e(E, dI/dt,I) in-
stead of (E). All computer simulation studies were carried out using a
massively parallel computer system, the Connection Machine (CM) [7] .

2 The FitzHugh-Nagumo Simplified Equations And
Their Properties

The basic F-N simplified equations when reduced to dimensionless form [9]
are:

dFE

3¢ = OE+F(E)=I+ Lum (1)
% - «BUE) -1 (2)



E -~ membrane potential displacement between the interior and exterior of
the cell

A = 8%/8z% + 8%/8y? - two dimensional Laplacian operator
F(E) - current-voltage characteristic of the fast inward current
f(E) — current-voltage characteristic of slow outward current

e(E) - small parameter inversely proportional to the time constant of the
slow outward current

The initial and boundary conditions used in the simulation are:
E(mayao)z I(lﬁ,y,O)-_— 0; % |B: %% |B= 0
The piece-wise linear approximation of the functions F(E), f(E) , and
¢(E) is shown on Fig. 1.
The commonly used standard set of parameters is:
Gy=1;G;=1;G,=30; Ey, =0.16

£1 =05 if0.00 < E < 0.01
e=1{ e,=001 if0.01<E<0.95 (3)
e3=05 if E>0.95

The relationships between the action potential duration (APD), refrac-
tory period (R), and the model parameters G, , Gy, and ¢ are presented
in [3] for the model without diffusion (point model). These dependencies
reflect qualitatively the essential properties of heart muscle cells, but do not
correctly express the restitution properties.

The normalized restitution curve for the F-N simplified model with stan-
dard parameters is compared to data obtained in physiological experiments
in Fig. 2. The comparison shows the marked disagreement of the model and
experimental data. We introduced the normalized form of the restitution
curve to facilitate the comparison of computer simulation data obtained in
dimensionless form and data from physiological experiments. Usually, the
restitution curve is presented as a function: APD = f(DI), where APD
designates the duration of the action potential caused by the second stimulus
applied after the specified diastolic interval (DI). The normalized represen-
tation of the restitution curve (RC) has the form:

APD,/APD, = h(DIJAPD,)



A EE® i)
\a B o Y
\/Em { 5 /

F
E

el E( ) e £3

€2 ] -
- E
.OII .9I5 Il

Figure 1: The piece-wise linear approximation of functions F(E), f(E), and
e(E). tana = G, ; tanf = Gy ; tany = G, ; E, — the threshold potential.
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Figure 2: The normalized restitution curve for a) the FitzHugh-Nagumo sim-
plified model with standard set of parameters [3], and b) canine heart muscle
tissue in normal conditions(control), obtained from experimental data [2].
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Figure 3: The E(t), and I(t) for short diastolic interval. DI/APD, = 0.234
; APDy/APD, =1 (in Pertsov model [3]).

where APD) is the duration of the AP obtained after the full completion of
the recovery processes. Hereafter APDy = Dy and APD, = D,.

The transients of E and I in a cardiac cycle with a small DI are shown
on Fig. 3 for the standard parameters of the F-N simplified model. One
can see that the outward current I reaches zero just after the AP returns to
the resting potential. Thus, a stimulus applied after a short DI produces
a subsequent AP approximately of the same duration as the previous one,
because the time course of the restitution is very fast (almost instantaneous).
We therefore modified the characteristics of the transient outward current
I(t), by slowing its time course of recovery, i.e. by causing recovery of this
current to occur over a much extended period of time.

3 Some Approaches To Restitution Curve Fit-
ting

One method of modifying the transient outward current I(t) is to use two
values of ¢ dependent on the sign of dI/dt:



& ifdIfdt>o0
e(dl/dt) = { key if dI/dt <0 (4)

This approach was proposed by Zykov [8] to change the refractory pe-
riod independently of the AP duration in eq.(1,2) with the standard set of
parameters. The increase in the the refractory period to longer than the
duration of the AP contradicts the normal properties of heart muscle tissue.
Changing the parameter k also changes the restitution properties simulta-
neously with the refractory period. The use of only one parameter (k) does
not permit the required shaping of I(t) to fit restitution properties, nor does
it permit the separate investigation of the effect of refractory and restitution
properties on impulse propagation.

Our approach is to use a more complicated logical function to control
the changes of the small parameter £ . Namely :

£ if E < 0.01 and dI/dt > 0
Y B if £ > 0.01 and dI/dt > 0 ()
I i I> Inin and dI/dt < 0

eq4 = ke, otherwise

This leads to a piece-wise exponential approximation of the current func-
tion I(t).

The values for €;, €2, and €3 are chosen to satisfy the requirements of
the given action potential duration and its refractory period. ¢4 is chosen to
meet the required restitution properties. The proper value of ¢4 and I,,,;,, can
be matched to the experimental restitution curve by computer simulation
trial and error or by a direct analytical approach. The normal restitution
curve is commonly approximated by the formula [9):

D = Dy(1—e™PT) (6)

Here D = APD, and D, = the plateau APD after an infinitely long DI; 8
is a constant; and T = APD, + DI.
From (6) follows:
—in(l - D/Dy) = 8T (7)

Thus the relationship between —In(1 — D/D,) and T is linear, and the
experimental data can be represented by a straight line, which can be ob-
tained by the least-squares method of approximation. The results of this
approximation are shown in Fig. 4 for two sets of experimental data [2] from
normal tissue and tissue intoxicated by Quinidine.
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Figure 4: Determination of £4 from experimental data a) control data
(Doo)exp = 198[ms] ; (Deo)sim = 50[units] ; (e4). = 0.018, b) Quinidine
data (Do )esp = 242[ms] ; (Do )aim = 50[units] ; (e4)y = 0.024,



The slope of the line obtained in this manner directly shows the values
of 3 . To reproduce the restitution properties of the experimental data in
the computer model, it is necessary to choose e4 such that:

o= plpe (®)

Where (Do )ezp/{Doc)sim = m is a scale factor.

The results of restitution curve(RC) fitting for heart muscle tissues un-
der normal conditions (control) and with the tissue exposed to Quinidine
are presented in Fig. 5a and Fig. 5b, respectively. In both cases the close
agreement with experimental data was obtained by making ¢4 = #m and
choosing an appropriate value for I,;,. The maximum and RMS error in
the region 0.5 < DI/APD; < 3.0 for the control data are respectively: 0.03
and 0.0066, and for the Quinidine are: 0.038 and 0.010. It was found that a
small decrease of the parameter GGy improved the fitting of the Quinidine ex-
perimental data. This approach also gives a slight increase in the refractory
period in comparison with AP duration.

The temporal changes of E(t) and I(¢) in Fig. 6 correspond to the point
in Fig. 5a with DI/D1 = 0.2. Here the restitution properties are shown
distinctly.

4 'The Influence of Restitution Properties on Wave
Propagation in 2-D Tissue

The study of the influence of heart muscle cell restitution properties on
excitation wave propagation was carried out using the modified FitzHugh-
Nagumo equation of the form of (1),(2), and (5). The equations were imple-
mented in a 128x128 grid of nodes on the Connection Machine (CM-2) [7].
It is worthwhile to begin with two simple cases: propagation of waves with
rectilinear and circular fronts. These two idealized cases facilitate the sepa-
ration of the effect of curvature from the effect of the recovery processes. For
both cases we will consider the propagation of two waves generated succes-
sively with a specified time interval and the propagation of repeated waves
with a specified period.

For rectilinear and circular waves, the initial excitation of the tissue
produces a wave which propagates with a velocity and a wavelength strictly
corresponding to the cell’s parameters, its coupling coefficients and the char-
acteristics of the front curvature. If the next wave is generated after a time



e

oo

D2/D1

o
o

D2/D1

104 aar=O)
0.9+
0 sertsaafpesanne experin]en[al control
87 —¢— gimulation
0.7 - ' y ' ) ) '
5 1 2 DI/D1 3 4
1.1
1.0 e
0.9 -
0.8 4
o -_ J T, S B.xveﬁmcnt Wl[_h Quinidine
77 P —— simulation
0.6 : r ; ' ' . '
0 i 2 DUD1 3 4

Figure 5: Comparison of restitution curve experimental data [2] to simula-
tion results a) normal tissue (control) b) tissue under Quinidine influence.
The model parameters that provide the best coincidence with experimental
data are: For control RC: G, = 30,Gy = 0.7,G, = 1.0,e; = 0.5,¢5 =
0.02,e3 = 0.5,e4 = keg = 0.018, 15, = 0.35 For RC with Quinidine:
G, = 30,G_f = 0.7,G3 = 1.0,5‘1 = 0.5,52 = 0.02,63 = 0.5,54 = kEz =
0.024, I;yin = 0.90. Note that beyond the left portion of the graph is the
refractory period.
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interval when all recovery processes are complete, no changes are observed
in the propagation of the second wave .

However, when the next wave is generated after a time interval when
the recovery process is not yet complete, the wave will propagate through
recovering areas of slow outward current (I) left by the first wave. Thus,
each cell will be excited with nonzero initial conditions with variable (1)
values which grow with decreasing diastolic interval. This decreases the
duration of the generated AP as well as the speed () and wavelength ()
of the propagated waves. The corresponding relationships obtained in the
course of computer simulations of rectilinear wave propagation are shown
in Fig. 7a and 7b . They cover the situations with slightly, normally and
increasingly pronounced restitution properties, corresponding to the stan-
dard F-N model, the ¢4 F-N model fitted to experimental control data, and
the e4 F-N model fitted to Quinidine data [2]. In the case of circular wave
propagation, the & and A values change with wave radius. Therefore, § and
A are averaged over the range from the first appearance of a wave to its
disappearance (Fig. 8a and 8b).

In the case of periodic excitation with a cycle shorter than the full re-
covery period, it is possible to observe the phenomena of wavelength and
speed alternation which resembles the well-known rhythm alternation in cell
activity [10] . The corresponding computer simulation results are presented
in Fig. 9 and 10 for rectilinear propagation.

It is easy to observe that the wavelength and speed of propagation are
decreased by a decrease of stimulation period T. There exists some critical
value of T = Tpnin when only odd waves can propagate (Fig. 9b). Under
the influence of Quinidine, this phenomenon is more distinctly pronounced
(Fig. 10b). In the case of circular wave propagation, similar relationships
were obtained as a function of average values of wavelength and speed of
propagation. In Fig. 11 an example of wavelength alternation is shown.

We conclude that restitution properties lead to the appearance of nonuni-
formities in the excitable characteristics (in time and space) of the otherwise
uniform tissue when periodic stimulation occurs during the recovery process
of the outward current. This fact gives a new insight into formation and
propagation of waves with more complicated forms, in particular, spiral
wave reentry.

Gulko and Petrov [11] and independently Winfree [12] were the first
to show by computer simulation that spiral waves can arise and propagate
in originally homogeneous excitable media (for heart muscle and chemical
reactions). The results in {11] were obtained with the physiologically based

12
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Figure 7: The relationships of speed # and wavelength X to period T between
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concentric wave propagation - theta
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Figure 8: The relationships of speed # and wavelength A to period T between
two successive excitations of concentric waves. a) #(T) b) A(T).
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Figure 9: Alternation of wavelength with periodic generation of rectilinear
waves. a) with normal (control) restitution b) with Quinidine influenced
restitution properties.
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Figure 10: Alternation of propagated wave speed with periodic generation
of rectilinear waves. a) Normal (control) restitution properties, b) Quinidine
restitution properties.
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simplified point model which possessed the restitution properties. Much
later, Chramov [13] obtained qualitatively similar results with a simplified
F-N model which had only negligible restitution properties. Using model
f11] it was impossible to separately show the effect of restitution properties
on spiral wave propagation.

Our modification of the F-N equations makes it possible to observe the
effect of restitution properties on spiral wave generation and propagation.
We found that premature beats can generate single and double spiral waves
rotating in different directions with either weak or strong restitution prop-
erties. The restitution properties determine the size and location in space
(the corresponding times and the levels of the outward current) of the area
in the wake of the propagated wave where the application of appropriate
excitations causes the spiral waves. This area we will term the window of
vulnerability (WV) by analogy with that defined by Quan and Rudy in [14]
where one dimensional AP propagation appeared as a result of unidirectional
block in ring-shaped excitation tissue. The major distinctions from [14] of
the WV in our case are: WV is two dimensional in space, has a geometry
which is similar to that of the previous wave (because there is no diffusion of
the current I), and the stimulation inside the WV leads to the appearance
of double and single spiral wave circulation (see also Winfree [15, 16]). It is
also useful to define the WV in terms of the value of the decreasing outward
current .

The WV for rectilinear propagated waves has a rectangular form. The
area between the two vertical edges {one which is close and ore which is
far from the wake of the wave tail) is the space where double spiral waves
are generated in response to the proper stimulation. The area of single
spiral wave generation is located near the horizontal edges of the WV. The
corresponding computer simulation data are presented in Fig. 12b. With
the decrease of ¢4 (from k& > 1 to k < 1 ) the WV displaces in the direction
opposite to the previous wave front.

The size and location of the WV for the case of circular wave propagation
are presented in Fig. 12a.

The double spiral waves generated as a result of stimuli applied in the
vicinity of the near and far WV edges for rectilinear wave propagation are
shown in Fig. 13a and 13b. Here we simultaneously display the potential
and outward current distributions in space and time (Fig. 14). A single
spiral wave generated in normal tissue with rectilinear wave propagation is
shown in Fig. 15. Fig. 16 shows single and double spiral waves generated
by a premature beat in heart tissue with normal restitution properties. The
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Figure 13: Example of double spiral waves generated by the application of
a premature beat in the window of vulnerability of heart muscle tissue with
normal restitution properties. The initial wave propagation is rectilinear
and to the right of the figure. Note that the left column of pictures in the
time series a) and b) is the action potential and the right column is the
current distribution. The dashed line indicates the WV edges within which
the premature beat is applied. a) The premature beat is applied to the edge
of the WV closest to the previous wave’s tail. Simulation times are here
and in later figures (in dimensionless units): ¢, = 75, t; = 104, t3 = 125,
t4 = 172. b) The premature beat is applied at the far end of the WV.
t; = 106, t; = 119, ¢3 = 133, ¢4, = 161.
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Figure 14: Grey level (color) designations for action potential E and current
I phases.

computer simulation results for double spiral waves in tissue with restitution
properties influence by Quinidine are shown in Fig. 17.

When the stimulation is applied inside the WV, the generated spiral
waves have different properties depending on the distance from the right
edge of the WV and on the rate of current I decay (value of k). That is, if
the restitution properties are weak (k >> 1) as in [6], the generated spiral
waves quickly become stationary — their tip or tips (in the case of double
spiral waves) are rotated along a circle of predetermined radius with a con-
stant angular velocity. In the case of normal restitution properties (control),
the stimulation applied close to the right edge of WV causes the appearance
of nonstationary spiral wave propagation and when applied near the left
edge produces a stationary one. When the tissue of the restricted area is
under the influence of Quinidine (which leads to an increase of AP duration
and of slope of the RC) only the nonstationary spiral waves propagation
could be observed within the restricted area. Depending on the restitution
properties of the tissue, the tip of nonstationary spiral waves could mean-
der along curves forming closed or open loop complex curves resembling
cycloids. This was shown earlier in [17] using an approximate analytical ap-
proach combined with computations and further studied later in [18] by pure
computer simulation with a simplified F-N point model where the changes of
refractory period were tightly connected with those of restitution properties.
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Figure 15: Example of a single spiral wave generated (in normal heart tissue
with rectilinear wave propagation) by the application of a premature beat
in the center of the WV. t; = 106, t; = 125, 13 = 161, ¢4 = 185.
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Figure 16: Generation of spiral waves in normal heart tissue with concentric
wave propagation. The concentric wave was initiated by an excitation stim-
ulus in the upper left corner. a) Single spiral wave caused by a premature
beat applied in the upper center of the WV. t; = 131, £, = 150, t3 = 162,
t4 = 210. b) Double spiral waves caused by a premature beat at the far edge
of the central area of the WV. t; = 86, ¢, = 142, f3 = 180, t, = 206.
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Figure 17: Time series of generation and propagation of double spiral waves
in heart muscle influenced by Quinidine. Initial wave propagation is con-
centric. a) Premature beat is applied at the near edge of the central area
of the WV. ¢; = 133, 13 = 165, t3 = 192, t4 = 220. b) Premature beat is
applied at the far edge of the WV. t; = 140, t; = 159, t3 = 194, t, = 233,
t5 = 285.
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In [18] the restitution properties were chosen arbitrarily. By contrast, in our
computer simulation the restitution properties could be changed without no-
ticeable changes in the refractory period duration and could be adjusted to
fit the given experimental data. The display of the residual outward current
distribution shows the tendency of spiral waves to propagate in the direction
in which the instantaneous minimum of this current is located.

In the light of these observations it is necessary to verify the U- shape
dependencies of radius of tip wave circulation on the duration of the AP and
the dispersion equation previously obtained in the course of simulation [19]
and theoretical studies [17, 20].

5 Conclusion

The restitution properties of excitable media have an important role in the
genesis and the properties of wave propagation. In order to investigate the
influence of restitution properties independently of the refractory period,
we propose to modify the function e(E) in the simplified F-N model. A
method is developed for fitting the model to given experimental restitution
data (from heart muscle). These results provide more realistic simulations
without substantial complications of the simplified model. The proposed
display of the fast and slow variable ( £ and I) distributions simultaneously
is very useful in understanding wave propagation in the presence of recovery
processes.

The results presented in this paper show that the restitution properties
affect (while all other characteristics remain unchanged):

1. The development of alternation of speed and wavelength during peri-
odic stimulation at high rates.

2. The existence in excitable media of a window of vulnerability to
premature stimulation which can result in the formation of single and double
spiral waves.

3. The size and location of the window of vulnerability, and the transition
from stationary to non-stationary propagation of induced spiral waves.

In particular, we have shown that Quinidine induced changes in restitu-
tion properties cause a shift in the location of the WV, and a transition to
non-stationary spiral wave propagation.

These qualitative results for heart muscle require future validation with a
point model which reflects physiological properties better than the simplified
F-N model (for example Beeler — Reuter’s [21]).
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The previous theoretical and simulation studies of excitable media fo-
cused on its refractory properties. These studies lead to the dispersion
equation and the U-shaped relationship between the radius of the tip of spi-
ral wave circulation and the duration of the action potential. In light of the
results presented here, these previous findings should be verified in relation
to the real restitution properties.
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