Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

CAPTURE DATABASE SEMANTICS BY RULE INDUCTION

Wesley W. Chu May 1990
Rei-Chi Lee CSD-900013
Kuorong Chiang






Capture Database Semantics by Rule Induction *
Wesley W. Chu, Rei-Chi Lee and Kuorong Chiang

Computer Science Department
University of California, Los Angeles
Los Angeles, California 90024

ABSTRACT

Database semantics can be classified into database structure and database characteris-
tics. Database structure specifies the inter-relationships between database objects, while data-
base characteristics defines the unique characteristics and properties of each object. To provide
knowledge-based data processing, we need to gather and maintain knowledge about database
characteristics. To capture the database characteristics, a Knowledge-based Entity Relationship
(KER) Model that provides knowledge specification is proposed. A knowledge acquisition
methodology is developed that uses machine learnine to induce the database characteristics
knowledge from the database instances. Using a ship database as a test bed, a knowledge base
has been generated by the proposed methodology. The induced knowledge has been used for se-

mantic query optimization and data inference applications.

* This research is supported by DARPA Contract F29601-87-C-0072.



1. Introduction

The use of knowledge to support intelligent data processing has gained increasing atten-
tion in many database areas. For example, integrity constraints have been used as semantic
knowledge to improve query processing [KING81, HAMMS0]. Most of these works rely on hu-

man specified constraints and very few, if any, tools exist in gathering this knowledge.

In recent years, much effort has been devoted to the development of semantic data
models [HAMMSE1, MCLES82, BORD84]. Most of these works emphasize structure modeling
and allow for describing the database in a more natural way than traditional data models. These
models are used mainly to capture the semantics of the database structure as described in the da-
tabase schema. However, when a database is designed, most database designers use some se-
mantic rules to distinguish among similar objects and specify the database schema according to
these rules. In many cases, objects are often classified into different categories according to cer-
tain characteristics or properties. To distinguish them from the semantics of database structure,
we shall refer to these semantics as database characteristics which are useful in knowledge-

based data processing.

The type of database characteristics that are specified as integrity constraints [HAMM?75]
by human experts is not only time consuming to acquire but also is not too useful for
knowledge-based data processing. To remedy this problem, we propose to use the database
schema to guide the learning process and use the machine learning technique to induce database
characteristics from the database. The database schema is specified in a knowledge-based

Entity-Relationship (KER) Model which provides knowledge specification capability.

In this paper, we shall first discuss the problem of knowledge acquisition in databases.
Next, we propose a model-based knowledge acquisition methodology that is based on the
knowledge-based Entity-Relationship (KER) Model. We then present a rule induction algorithm
and an example. Finally, we present the use of the induced rules for semantic query optimiza-

tion, intensional query answering, and data inference applications.



2. Knowledge Acquisition in Databases
2.1 Knowledge Acquisition

The acquisition of knowledge is one of the most difficult problems in the development of
a knowledge-based system. Currently, the acquisition of knowledge is still largely a manual pro-
cess. The process usually involves a knowledge engineer who uses some expert system tools to
transform the available knowledge into some internal form (knowledge representation) that is

understandable by the expert system. It usually involves [MICH83]:

L. studying application literature to obtain fundamental background information,

2. interacting with the domain expert to obtain the expert level knowledge,

3. translating and encoding the expert knowledge for the system,

4, refining the knowledge base through testing and further interaction with the domain ex-
perts.

Such a manual process is very time-consuming. Further, even if the domain experts have
the expertise, they may often not be able to describe their own expertise to others. As a result,
useful knowledge may not be easy to collect. To remedy this problem, we propose to use the
machine learning technique to construct the knowledge base. Rather than using knowledge en-
gineers learning the application, or the domain experts learning the expert system tools and using
their understanding of the application to construct the knowledge base, we propose to use
machine learning technique to understand the database application and to create the knowledge

base automatically.

2.2 Knowledge Acquisition by Rule Induction

Rule Induction [QUIN79, MICHS83] is a technique of machine learning that has been
used in Al research to induce rules from a set of training examples. For a given concept and a

set of training examples representing the concept, find a description for the concept such that all



the positive examples satisfy the description and all the negative examples contradict the
description. One approach is to examine the training examples simultaneously to determine
which descriptors are most significant in identifying the concept from other related concepts.
This approach recursively determines a set of descriptors that classify each example and selects
the best descriptor from a set of examples based on a statistical estimation or a theoretical infor-
mation content. The set of examples is then partitioned into subsets Sq, S5, ..., S, according to
the values of the descriptor for each example. This technique is recursively applied to each S;
until each subset contains only positive examples so that the set of descriptors describes the ex-
ample set. Although the automated approach speeds up the knowledge acquisition process, it
has been used mainly in applications when the size of training examples is small. To apply this
technique directly to a database would be too costly because the database usually consists of a
very large volume of data. However, since a database schema is created by the designer based
on the semantic characteristics of the application, and since semantic characteristics are the can-
didates for rule induction, we can use the database schema to guide the knowledge acquisition by

machine learning and generate the rules automatically.
3. Model-based Knowledge Acquisition Methodology

3.1 The Knowledge-based Entity-Relationship (KER) Model

To enhance the modeling of such capabilities as type hierarchy and knowledge
specification, we introduce a Knowledge-based E-R (KER) model, an extension of the Entity-

Relationship Model [Chen76). KER provides the following three generic constructs of data

modeling:
1. has/with (aggregation) which links an object with another object and specifies a
certain property of the object (e.g., a CLASS has an instructor);
2. isa/with or contains/with (generalization /specialization) which links an object

type with another object type and specifies an object as a subtype of another ob-

ject (e.g., PROFESSOR is-a subtype of PERSON or PERSON contains PROFES-



SOR, STUDENT, and STAFF),

3. has-instance (classification) which links a type to an object that is an instance of

that type (e.g., "John Smith" is an instance of PROFESSOR).

Note that in addition to the semantic constructs provided by most semantic data models, KER
also provides knowledge specification which is represented by the with-constraint information.
Such knowledge specification associated with each database definition is useful for knowledge-

based data processing.

In KER, an entity is a distinctly identified object, for example, a specific person, a depart-
ment, or a course. An entity set is a collection of entities. Each of these entities is distinguished
by a unique identifier. The set of unique identifiers is called the primary key of the entity set. A
relationship specifies the connections between different entities. Conceptually, both entity type
and relationship type can be considered as an object type and can be modeled using the has/with
construct. For example, Figure 1 shows an object type SUBMARINE represented in KER.

object type SUBMARINE
has key: Shipld domain: char[10]
has: ShipName domain: char([20]
has: ShipType domain: char[4]
has: ShipClass domain: char([4]
has: Displacement domain: integer

with Displacement in [2000..30000]

Figure 1. The KER representation of an object type SUBMARINE,

The object type can also be represented mathematically as:
{lay, a2, ...,a,1la,e Dy,ay€ Dy, a, € D, with ¥}

where each tuple [a, a3y, ..., a,] is an instance of such a type. Note that each g; defines an attri-
bute of the object type, and D; specifies its attribute domain while ¥ states constraints on the al-

lowable values the tuple can have. An attribute domain can also be an entity type. The system



provides a set of basic domains such as integer, real, string, and date. A more complex domain
can be constructed from these basic domains. For example, we can define a domain AGE on the
basic domain INTEGER with the range [0..200]. A BNF description of the KER model is given
in the Appendix A.

A type hierarchy uses specialization/generalization constructs (isa or contains relation-
ships) to define the subtype and supertype relationships. For example, SSBN (Ballistic Nuclear
Missile Submarine) is a subtype of SUBMARINE, and CLASS-0101 is a subtype of SSBN, and
therefore, a type hierarchy consisting of SUBMARINE, SSBN, and CLASS-0101 is formed (see

Figure 2).
SUBMARINE
SSBN SSN
CLASS.0101 |®®&! 1 A55.0103 CLASS-0201 |®*®| (7 ASS-021%

Figure 2. A Type Hierzrchy SUBMARINE

A subtype inherits all the properties of its supertypes, unless some of the properties have been
redefined in the subtype. For example, type SUBMARINE has attributes ShipID ,and Ship-
Name, and type SSBN has attribute TypeID and TypeName; subtype CLASS-0101 will automat-
ically inherit properties ShipID and ShipName from supertype SUBMARINE, and inherit pro-
perties TypeID and TypeName from another supertype SSBN.

A subtype can also be derived from another type by providing a derivation specification.
For example, one can define a subtype SSBN (all the ships with ship type SSBN) of type SUB-
MARINE by specifying:

SSBN isa SUBMARINE with ShipType = "SSBN"



The with-clause defines the derivation specification of the subtype SSBN. It can also be con-

sidered as associating a constraint with this subtype.
The type hierarchy is represented in KER as:
Eqisa E with ¥
E,isa E with ¥,
E, isaE with'¥,

or alternatively, it can also be represented as:
E contains E, £, ..., E,, with'P.

This definition states that the instances of E can be divided into n disjoint subsets £, E», ..., E,,,

with the constraint W. Each E; is a subtype of E.

To provide a graphical representation of the inter-relationships among the entity
types/subtypes, relationship types, and derivation specification, we can extend the ER diagram
by adding the type hierarchy with constraint representation as shown in Figure 3. A representa-

tion of a ship database schema by the KER Diagram is shown in Figure 4.



ENTITY

<> RELATIONSHIP
> ATTRIBUTE
ﬁ TYPE HIERARCHY
> WITH CONSTRAINT
............. HAS-INSTANCE

Figure 3. Components of the KER Diagram

/* X isa SUBMARINE, Y isa SONAR */
If 0208 < X.Class <0215 Then Y isa BQS
If Y Sonar = BQS-04 Then X isa SSN

Sonar
ShipNum

[
SONAR SUBMARINE .

If BQS-04 g Sonar < BQS-15 Name

Then X isa BQS
Type = SSBN Type = SSN
SonarType T
BQQ BQS TACTAS SSBN SSN
sE T, 7250 < Displ < 86000 2145 < Displ < 6955
BQS-4 { % BQS-15 =
BQS-12 BQS-13 Class

. 0101 | ewe] C1301 | | CO201 | gue| CO21S

Figure 4. Representing the Ship Database Schema in KER Diagram

7



3.2 Classification of Semantic Knowledge

Semantic knowledge of a database can be divided into two categories: enterprise
knowledge and database knowledge. Enterprise knowledge is the semantics of the database ap-
plication. For example, the integrity constraint is the enterprise knowledge. Database knowledge
1s an instance of the enterprise knowledge which describes the current database contents. For ex-
ample, enterprise knowledge specifies that the displacement of a ship must be greater than 2,000
tons, while database knowledge specifies that the displacements of the ships are between 2,360

tons to 81,600 tons. Thus, database knowledge is more effective for query optimization.

The semantic knowledge associated with each database are domain knowledge, intra-

object knowledge, and inter-object knowledge as follows:

Domain Knowledge:

Domain knowledge defines specific properties of each entity set such as the attri-
bute domains, value ranges, etc., and restricts the allowable instances of an entity
set. For example, the displacement of a ship is in the range of 2,000 tons -
100,000 tons, and the displacement of an Attack Aircraft Carrier is in the range of
75,700 tons - 81,600 tons.

Intra-Object Knowledge:

Intra-Object knowledge specifies the relationships between attributes within an
object type. For example, the object type submarine has the intra-object
knowledge that if the displacement is less than 7,000 then it is a nuclear subma-
rine (SSBN).

Inter-Object Knowledge:

The inter-object knowledge specifies the constraints that the instances of a rela-

tionship set must satisfy. For example, the relationship VISIT involves entities of



SHIP and PORT and satisfies the constraint that the draft of the ship must be less
than the depth of the port. The inter-object knowledge can be induced from the
interrelationship between SHIP and PORT linked by the VISIT relationship.

3.3 The Knowledge Acquisition Methodology

After classifying different types of knowledge and defining the target attributes for
knowledge acquisition, let us now describe our Knowledge Acquisition Methodology (KAM),
which consists of three stages: schema generation, automared knowledge acquisition, and

knowledge base refinement as follows:

1. Schema Generation:
The DBA uses the KER model to define a database schema. This step includes:
a. Identifying entities and associated attributes.

b. Identifying generalization hierarchies. If the database already exists, use the clus-

tering indexes to define subtype entities. The indexes are the target attributes.

C. Identifying aggregation hierarchy. Designate each of the referential keys as the
target attributes. A referential key is the attribute of a relationship which is a key

to some other entity.

2. Automated Knowledge Acquisition:
a. Determine the domain constraint for each attribute of each entity type.
b. Use the rule induction algorithm (described in the next section) to induce inter-

structure and intra-structure knowledge related to the target attributes from the

database.

3. Knowledge Base Refinement:



Based on the expert’s own knowledge, domain experts can refine the rules in the
knowledge base to improve system performance. Unlike the manual approach to
knowledge acquisition, our methodology uses the database schema to guide the leaming
process to induce knowledge from the database contents. Such an automated process

reduces the time for knowledge acquisition.

3.4 The Rule Induction Algorithm

We have implemented a rule induction algorithm in EQUEL (Embedded QUEL) and C
on top of the INGRES system. Rule induction is performed using the relational operations to
generate semantic rules for pairwise attributes. We shall present the algorithm that induces

correlated relationships of the rule scheme X --> Y for attribute pair (X, ¥).

Rule Induction Algorithm.

1. Retrieving (X, Y ) value pairs

Retrieve into § the instances of the (X, Y) pair from the database. The corresponding

QUEL statement is:

range of r is relation
retrieve into S unique (r.Y, r.X)
sort by r.Y

2. Removing inconsistent (X , Y) value pairs

Retrieve all the (X, Y') pairs that have multiple Y values for the same value of X. Let T

be the result of this relation.

range of r is relation

range of s is S

retrieve into T unique (s.Y, 5.X)
where (r. X =s.X and r.Y !=5s.Y)

Remove all the (X, Y) pairs that have different ¥ values for the same X value from S.

10



range of sis S

range of tis T

delete s

where (s.X =t.X ands.Y =t.Y)

Constructing Rules

For each distinct value of Y in §, say y, determine the value range x of X and create a

rule in the form of
if x1<X <x; then Y =y.

A value range is defined as a consecutive sequence of X values that occur in the data-
base. The rules generated for the same attribute pair (X, Y) consist of the rule set desig-

nated by the rule scheme X --> Y. Note that when x| = x, then the rule reduces to
ifX=x then Y =y.
Pruning the Rule Set

Although storing more rules in the knowledge base provides more opportunities for infer-
ence, it also increases the overhead for storing and searching these rules. Therefore,
when the number of rules generated becomes too large, the system must reduce the size

of the rule set. In general, there are two criteria for rule pruning:

L. Coverage Measure.

Each rule is satisfied by a certain number of database instances. Coverage

specifies the number of database instances where the rule is satisfied.

For applications such as semantic query processing, the higher the cover-
age measure of a rule, the higher the probability that this rule will be used.
Thus, we keep these rules that have a coverage measure higher than a

prespecified number N,, which is a cut-off point for pruning the rules.

11



Based on this criteria, we remove rules from the knowledge base when the
coverage measure is less than N.. Selecting the N. depends on the tra-
deoff between the applicability of the rules and the overhead for storing

and searching these rules.

2. Completeness Measure.

Each rule scheme (X -->Y') contains a set of rules specifying the relation-
ship between the attributes X and Y. The completeness measure is the
sum of the coverage of the rules of the same scheme divided by the total
number of (X, Y) value pairs in the database. If the completeness measure
is equal to 100%, that means we can always find a rule (and Y’ s value) for

each X’ s value.

For data inference applications, higher completeness measure enable us to
infer more accurate answers. Therefore, for such applications, we want to
keep the completeness measure of rule schema higher than a prespecified
number C,, which is a cut-off point for pruning the rules. Thus, we re-

move all the rule schema where completeness measure are less than C,.

4. A Rule Induction Example

To experiment the proposed knowledge acquisition methodology, we shall use a ship da-
tabase which was created by the System Development Corporation (now UNISYS) to provide a
generic naval database based on [JANE81]. The database is currently running on INGRES on a
Sun 3/60 machine. We shall use the nuclear submarine portion of the database which consists

the following relations (a sample database instance is given in the Appendix C):

SUBMARINE = (Id, Name, Class)
CLASS = (Class, ClassName, Type, Displacement)
TYPE = (Type, TypeName)

12



SONAR = (Sonar, SonarType)
INSTALL = (Ship, Sonar)

The database consists of five entity types: SUBMARINE, CLASS, TYPE, SONAR,
SONAR_TYPE and one relationship type: INSTALL. The three entity types SUBMARINE,
TYPE, and CLASS form a ship hierarchy and the entities SONAR and SONAR TYPE form
another hierarchy as shown in Figure 4. Each submarine type contains a set of submarine classes
and each submarine class contains a set of submarine instances. For example, submarines are di-
vided into two types: SSBN (Ballistic Nuclear Missile Submarine) and SSN (Nuclear Subma-
rine}). The SSBN ships contain three classes of ships: 0101 (Ohio), 0102 (Benjamin Franklin),
and 0103 (Lafayette), and there are three ships that belong to the ship class 0103 (Lafayette).

Each ship class has its specific characteristics such as displacement, length, beam, etc..
For tactical or strategic reasons, different sonars are installed on different ships. The relationship
INSTALL indicates the sonars installed on the different ships. A textual representation of the

database schema is given in Appendix B.

Applying our knowledge acquisition technique to the ship database generates 17 rules as

shown below (rules are grouped by object types):

(1) SUBMARINE

Rq:if SSN623 </d < SSN635 then x isa C0103
R, if SSN648 < 1d < SSN666 then x isa C0204
Ry if SSN673 </d < SSN686 then x isa C0204
R 4:if SSN692 <1d < SSN704 then x isa C0201

(2) CLASS
Rs:if 0101 £ Class £0103 then x isa SSBN
Rg:if 0201 £ Class £0215 then x isa SSN
R if Skate < ClassName < Thresher then x isa SSN

Rg: if 2145 £ Displacement < 6955 then x isa SSN
Ry if 7250 < Displacement < 30000 then x isa SSBN

(3) SONAR
Rqo: if BQQ-2 £ Sonar < BQQ-8 then x isa BQQ

13



Ry:if BQS-04 < Sonar < BQS-15 then x isa BQS
(4) INSTALL (x isa SUBMARINE and y isa SONAR)

Ry if SSN582 < xJd = SSN601 then y isa BQS

R 13:if SSN604 < xJd = SSN671 then y isa BQQ

R14:if x.Class = 0203 then y isa BQQ

R st if 0205 < x.Class <0207 then y isa BQQ

R4 if 0208 < x.Class <0215 then y isa BQS

R 17t if y.Sonar = BQS-04 then x isa SSN

For the intra-object relationships, we have found rules about the relationships between
Ship Id and Ship Class; Ship Class and Ship Type; Class Name and Ship Type, and Displacement
and Ship Type. The classification of the submarines into different classes and types is fairly
stable, thus, these rules are stable as well. For the inter-object relationships, the following typi-
cal rules have been found: the submarines of the classes from 0205 to 0207 carry only the
"BQQ" type of sonars (R ;5); and the sonar "BQS-4" is only carried by the SSN (Nuclear Subma-

ring) type of submarines (R 17); etc.

5. Applications

In this section, we shall illustrate the use of induced rules in such areas as semantic query

optimization, intensional query processing, and data inference applications.
5.1 Semantic Query Optimization

Semantic query optimization uses the semantics to transform a given query to a new
query. The transformed new query produces the same results as the original query but is more
efficient to process [KINGE&1, HAMMS0]. Integrity constraints are commonly used as semantic
knowledge for query transformation. However, due to the generality of the integrity constraints
that describe all the valid states of the database instances, they are not effective for semantic

query optimization.

Using the proposed rule induction, the relationships between the attributes as well as the
inter-relationships between relations can be captured as semantic rules. These semantic rules

provide more efficient semantic query transformation than the integrity constraints.

14



It is well-known that using a clustering index provides faster access to relations than that
of a segment scan. Therefore, a clustering index is often used to answer the queries. Due to
similar data characteristics, objects are often clustered together. If we select the clustering index
as the target autribute during rule induction, useful classification rules representing the charac-
teristics of each cluster can be induced. For example, using ShipType as a clustering index, we

obtained the induced rules in Section 4. Based on R g, the following query
Q: "List the names of the submarines with displacement greater than 8,000."
can be transformed to
Q’: "List the names of the SSBN submarines with displacement greater than 8,000."

Processing Q” is much faster than Q, since processing Q requires a scan of the entire relation,

while Q" can use ShipType as a clustering index.

5.2 Intensional Query Processing

Conventional query processing provides answers in the form of an enumeration of data-
base instances retrieved from the database. Intensional query processing provides answers that
characterize the instances satisfying the query rather than listing all the instances [SHUMBSS,
MOTRS9]. Traditionally, the knowledge about the database structure such as type hierarchy is

used to derive intensional answers.

However, due to the limited semantics in database structure, using the type hierarchy
alone can only generate very limited forms of intensional answers. The induced rules can be
used to derive much more specific intensional answers. Based on the database schema, inten-
sional answers can be derived from the induced rules by traversing down the type hierarchies of
the object types as specified in the query. Such a technique is called type inference [CHU 90a].

For example, considering the query

"List the submarines with displacement greater than 8,000."

15



Since the condition "Displacement > 8000" is subsumed by "Displacement 2 7250", based on
the induced rule Rg, we can traverse down from the submarine hicrafchy to derive an intensional

answer for the query which is "SSBN",

5.3 Data Inference Applications

In a distributed database system, databases are often partitioned into fragments and repli-
cated and stored at several sites. However, during network partition, the data fragments may be
inaccessible which reduces data availability., Since database attributes are often related to each
other, the values of certain attributes often can be inferred from other attributes. To improve
data availability, we can use data inference to infer inaccessible data from accessible data [CHU

90b].

Using the proposed knowledge acquisition approach, correlated knowledge between attri-
butes can be extracted from the database contents. Since these rules represent summarized infor-
mation, the storage size of these rules is much less than that of the replicated copies of the data.
Such induced rules can then be replicated at each site or certain critical sites to improve data

availability during network partitions. For example, given the query,
"Which submarines carry the BQS type of sonar?"

To process the above query, we need the INSTALL relation. However, due to network partition-
ing, the INSTALL relation (See Section 4) is no longer available. As a result, we are unable to
answer the query by conventional query processing. However, using the induced rule R, we
can derive that the Id of the ships are in the range from "SSN582" to "SSN601". Then, from the
SUBMARINE relation we can derive the following answer for the query:

{SSNS582, SSN584, SSN592, SSN601}.

For more discussion on this, the readers should refer to [CHU 90b].

16



6. Conclusions

Database semnantics can be classified into database structure and database characteris-
tics. Semantic data models emphasize the modeling structural aspects of the database, while the
database characteristics define the unique characteristics and properties of objects which are im-
portant to knowledge-based data processing. A Knowledge-based Entity-Relationship (KER)
Model is proposed to provide knowledge specification capability and to maintain the database
semantic knowledge. A knowledge acquisition methodology is developed that is based upon the
KER Model and machine learning techniques to acquire the database characteristics from the da-
tabase. These database characteristics are useful for semantic query optimization and data infer-

ence applications.

17



[BRODS4]

[CHEN76]

[CHU 90a]

[CHU 90b]

[HAMMY75]

[HAMMS0]

[HAMME1]

[JANES1]
[KINGS81]

[MCLES2]

[MICH&3]

[QUIN79]

REFERENCES

Brodie, M., Mylopoulos, J., and Schmidt, J. W., (eds.) On Conceptual
Modelling. Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages, Springer, New York, 1984.

Chen, P.P.S., "The Entity-Relationship Model: Toward a Unified View of
Data,” ACM Transaction on Database Systems, Vo. 1, No. 1, March 1976.

Chu, W. W, and Lee, R, “UsinE '_I’)Se Inference and Induced Rules to Pro-
vide Intensional Answers," Technical Report CSD-9000006, Computer Sci-
ence Department, UCLA, Los Angeles, 1990,

Chu, W. W, and et al, "An Inference Techn;?uc for Distributed Query Pro-
cessing in a Partitioned Network," Technical Report CSD-9000005, Com-
puter Science Department, UCLA, Los Angeles, 1990.

Hammer, M., and McLeod, D., "Semantic integrity in a relational data base
system," In Proceedings ‘o}f the First International Conference on Very Large
ata Bases, IEEE, New York, pp. 25-47, 1975.

Hammer, M. and Zdonik, S. B., Jr., "Knowledge-based query processing,” In
Proceedings of the 6th International Conference on Very Large Data Bases
(Montreal, Oct. 1-3). IEEE, New York, pp. 137-147, 1980.

Hammer, M., and McLeod, D., "Database Description with SDM: A Seman-
tic Database Model,” ACM Transactions on Database Systems, Vol. 6, No.
3, September 1981.

Jane's Fighting Ships, Jane’s Publishing Co., 1981.

King, J. J., "QUIST: A system for semantic query optimization in relational
databases,” In proceedings of the 7th International Conference on Very
Large Data Bases (Cannes, Sept. 9-11). IEEE, New York, pp. 510-517.
McLeod, D., and Smith, J. M., "Abstraction in Database," Proc. Workshop
on Data Abstraction, Databases, and Conceptual Modelling, SIGMOD
Record, Vol. 11, No. 2, February 1981.

Michalski, R. S., et al, (eds.) Machine Learning: An Artificial Intelligence
Approach, Tioga Press, Palo Alto, 1983.

Quinlan, J. R., "Induction Over Large Data Bases", STAN-CS-79-739, Stan-
ford University, 1979.

18



Appendix A. A BNF definition of the KER Model

We will use the following BNF conventions:

<..> non-terminal symbol

{x} xappears O or more times

[x] xappearsQorl time
x11x21...1xn xlorx2or...or xn

1 literal symbol

A.l Data Definition Statements

<KER definition> ::=
<domain definitions> |
<object type definitions> |
<type hierarchy definitions>

A.2 Domain Definition Statements

<domain definitions> ::=

<domain definition> {, <domain definition> }

<domain definition> ::=
domain <domain name> is <domain description>

[ <domain sepcification> ]
<domain name> ::= identifier

<domain description> ::= <standard domain> | <object domain>

19



<standard domain> ::= string | integer | real | date

<domain specification> ::=
<range specification> |

<set specification>

<range specification> ::=

range <lower boundary> <value> °,” <value> <upper boundary>
<lower boundary> ::="[" 1’
<upper boundary> ::="]"1")’

<set specification> ::=

L]

set of *{’ <value> {, <value> } '}
<value> ::= identifier | <integer> | <real>
<object domain> ::= <object type name>

<object type name> ::= identifier

A.3 Object Type Definition Statements

<object type definition> ::=
object type <object type name>
<attribute list>

<with constraints>

<attribute lst> :=

<attribute> {, <attribute> }

<attribute> ::=

has [key] '’ <attribute name> domain <domain name>

20



<with constraints> ::=

with <constraints>

A.4 Type Hierarchy Definition Statements

<type hierarchy definition> ::=
<object type name> contains <sub-type list>
[ <attribute list> ]

[ <with constraints> ]
<sub-type list> ::=

<object type name> {, <object type name> }
A.5 Constraint Definition Statements

<constraints> ::=

<constraint> {, <constraint> )

<constraint> ;=
<domain range constraint> |

<semantic rule>

<domain range constraint> ::=

<attribute name> in <domain sepcification>

<semantic rule> ::=
<constraint rule> |

<structure rule>

<constraint rule> ::=

if <premise> then <consequence>

<premise> ;=

21



<conjuntives>

<conjunctives> ::=

<clause> { and <clause> }

<clause> ;1=

<attribute> <operator> constant

<consequence> =

<attribute> =" constant

<structure rule> ::=
if <role definitions>
and <conjunctives>

then <variable> isa <object type name>

<role definitions> :: =

<role> { and <role> }
<role> ::= <variable> isa <object type name>

<variable> ::= identifier

22



Appendix B. A KER Representation of a Naval Ship Database Schema.
B.1 Domain Definitions

domain: NAME isa CHAR[20]

domain: CLASS_NAME isa NAME
domain: SHIP_NAME isa NAME

domain: TYPE_NAME isa CHAR[30]
domain: SONAR_NAME isa CHAR[{]

B.2 Object Type Definitions

ohject type CLASS
has key: Class domain: CHAR[4]
has: Type domain: type
has: ClassName domain: CLASS_NAME
has: Displacement domain: INTEGER

with /* constraint rules */

if "0101" < Class < "0103" then Type = "SSBN"
if "0201" < Class < "0216" then Type = "SSN"

CLASS contains SSBN, SSNs
Bwith /* x isa CLASS */

if 2145 < x.Displacement < 6955 then x isa SSN
if 7250 < x.Displacement < 30000 then x isa SSBN

object type SUBMARINE

has key: Id domain: CHAR([7]

has: Name domain: SHIP_ NAME

has: Class domain: class
SUBMARINE contains C0101, ..., C1301
object type TYPE

has key: Type domain: CHAR[4]

has: TypeName domain: TYPE_NAME
object type SONAR

has key: Sonar domain: CHAR[8]

has: SonarType domain: SONAR-NAME

SONAR contains BQQ, BQS, TACTAS

23



with /* x isa SONAR */

if BQQ-2 <x.Sonar < BQQ-8 then x isa BQQ
if BQS-04 < x.Sonar < BQS-15 then x isa BQS
if x.Sonar="TACTAS" then x isa TACTAS

object type INSTALL
has key: Ship domain: SUBMARINE
has: Sonar domain: SONAR

with /* x isa SUBMARINE and y isa SONAR */

if x.Class = 0203 then y isa BQQ

if 0205 < x.Class < 0207 then y isa BQQ
if 0208 <x.Class <0215 then y isa BQS
if y.Sonar = BQS-04 then x isa SSN

24



Appendix C. A Ship Database and Its Induced Rules

A Ship Database:
Relation SUBMARINE
1d Name Class
SSENT30 | Typhoon 1301
SSBN623 | Nathaniel Hale 0103
SSBN6&29 | Daniel Boone 0103
S8SBN635 | Sam Raybum 0103
SSBN644 | Lewis and Clark 0102
SSBN658 | Mariano G. Vallejo | 0102
SSBN730 | Rhode Island 0101
SSN582 Bonefish 0215
SSN584 Seadragon 0212
SSN592 Snook 0209
SSN601 Robert E. Lee 0208
SSN6ed Haddo 0205
SSN610 Thomas A. Edison 0207
SSN614 Greenling 0205
SSN648 Aspro 0204
SSN660 Sand Lance 0204
SSN666 Hawkbill 0204
SSN671 Narwhal 0203
SSN673 Flying Fish 0204
SSN6T9 Silversides 0204
SSN686 L. Mendel Rivers 0204
SSN692 Omaha 0201
SSN698 Bremerton 0201
SSN704 Baltimore 0201
Relation TYPE
Type TypeName
SSBN | ballistic nuclear missile sub
SSN nuclear submarine
Relation CLASS
{lass ClassName Type | Displacement
101 Ohio 5SSBN 16600
0102 | Benjamin Franklin SSBN 7250
0103 | Lafayette SSBN 7250
0201 | LosAngeles SSN 6000
0203 | Narwhal SSN 4450
0204 | Stwrgeon SSN 3640
0205 | Thresher SSN 3750
0207 | Ethan Allen SSN 6955
0208 | George Washington | SSN 6019
0209 | Skipjack SSN 3075
0212 | Skate SSN 2360
0215 | Barbel SSN 2145
1301 Typhoon SSBN 30000

Relation INSTALL
Ship Sonar
SSBNTI0 | BQQ-2
SSBN623 | BQQ-S
SSBN629 | BQQ-5
SSBN63S | BQS-12
SSBN644 | BQQ-5
SSBN658 | BQS-12
SSBN730 | BQQ-5
SSN582 BQS-04
SSN584 BQS-04
SSN562 BQS-04
SSN60O1 BQS-04
SSNo(4 BQQ-2
SSN610 BQQ-5
SSN614 BQQ-2
SSN648 BQQ-2
SSN660 BQQ-5
SSN666 BQQ-8
SSN671 BQQ-2
SSN673 BQS-12
SSN679 BQS-13
SSN686 BQQ-2
SSN692 BQS-15
SSN698 TACTAS
SSNT704 BQQ-5
Kelation SONAR
Sonar Sonarlype
BOQ-2 BQQ
BQQ-5 BQQ
BQQ-8 BQQ
BQS-04 BQS
BQS-12 BQS
BQS-13 BQS
BQS-15 BQS
TACTAS | TACTAS

25




