Computer Science Department Technical Report
Artificial Intelligence Laboratory
University of California
Los Angeles, CA 90024-1596

A NEURAL NETWORK MODEL OF SCRIPT
PROCESSING AND MEMORY

Risto Miikkulainen April 1990
CSD-900011

A Neural Network Model of Script Processing and Memory
Risto Miikkulainen
March 1990

Technical Report UCLA-AI-90-03

A NEURAL NETWORK MODEL OF SCRIPT PROCESSING AND MEMORY "~

Risto Miikkulainen
Artificial Intelligence Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024
risto@cs.ucla.edu

Abstract

DISCERN is a large-scale Al system built from distributed

neural networks. It reads short narratives about stereotyp-
ical event sequences, stores them in episodic memory, gen-
erates fully expanded paraphrases of the narratives, and
answers questions about them. Processing is based on hi-
erarchically organized backpropagation modules, commu-
nicating through a central lexicon of word representations.
The lexicon is a double feature map, which transforms the
physical word symbeol into its semantic representation and
vice versa. The episodic memory is a hierarchy of feature
maps, where memories are stored “one-shot” at different
locations. Several high-level phenomena emerge automati-
cally from the special properties of distributed neural net-
works., DISCERN plausibly infers unmentioned events and
unspecified role fillers, and exhibits plausible lexical access
errors and memory interference behavior. Word semantics,
memory organization and the appropriate script inferences
are extracted from examples.

1 Introduction

Scripts [Schank and Abelson, 1977] are schemas of often
encountered, stereotypical event sequences, such as visit-
ing a restaurant, traveling, shopping etc. Each script di-
vides further into tracks, or established minor variations.
A script can be represented as a causal chain of events
with a number of open roles. Script-based understanding
means reading a script-based story, identifying the proper
script and track, and filling its roles with the constituents
of the story. Events and role fillers which were not men-
tioned in the story but are part of the script can now be
inferred. Understanding is demonstrated by generating an
expanded paraphrase of the original story, and by answer-
ing questions about the story.

DISCERN (DIstributed SCript processing and Episodic
memoRy Network), is a neural network model of script-
based story understanding. The primary motivation for
this work is (1) to demonstrate that neural networks can
be used to build a large-scale Al system, which performs

*This research was supported in part by an ITA Foundation
grant and by fellowships from the Academy of Finland, the Emil
Aaltonen Foundation, the Foundation for the Advancement of
Technology and the Alired Kordelin Foundation (Finland}. The
simulations were carried out in part on the Cray Y-MP8/864
at the San Diego Supercomputer Center.

at the level of symbolic Al models, and (2) to show that
the special properties of distributed neural networks, such
as learning from examples, automatic generalization and
graceful degradation, can be put to use in a high-level cog-
nitive task. More specific goals are (3) to account for learn-
ing the appropriate inferences for script processing from
experience, (4) to show how the hierarchical structure of
scripts, tracks and role bindings can be extracted from ex-
amples and used to organize the story memory, and (5)
to show how word semantics can be extracted from exam-
ples of word use, and coded automatically into distributed
representations.

The following is an I/O example of DISCERN. The input
stories are based on the fancy-restaurant, plane-travel and
electronics-shopping tracks:

John went to MaMaison. John asked the waiter
for lobster. John left the waiter a big tip.

John went to LAX. John checked in for a flight
to JFK. The plane landed at JFK.

John went to Radio—-Shack. John asked the
staff questions about CD-players. John chose
the best CD-player.

The system reads the stories one at a time, word by
word. An internal representation of each story is formed,
where all the inferences are made explicit. The represen-
tations are stored in an episodic memory. The system can
now answer questions about the stories:

What did John buy at Radio-Shack?

John bought a CD-player at Radio-Shack.
Where did John fly to?

John flew to JFK.

How did John like the focd at MaMaison?
John thought the food was good at MaMaison.

After reading each question, the appropriate story rep-
resentation is retrieved from the episodic memory, and the
answer is generated word by word. DISCERN also gener-
ates full paraphrases of the stories. For example, it gener-
ates the expanded version of the restaurant story:

John went to MaMaison. The waiter seated Johm.
The waiter gave John the menu. John asked the
waiter for lobster. The waiter brought John the

lobster. John ate the lobster. The lobster
tasted good. John paid the waiter. John left a
big tip. John left MaMaisonm.

The answers and the paraphrase show that DISCERN
has made a number of inferences beyond the original story.
For example, it inferred that John ate the lobster, the lob-
ster tasted good, etc. The inferences are not based on spe-
cific rules but are statistical and learned from experience.
The system has seen a number of similar stories in the
past and the unmentioned events and role bindings have
occurred in most cases. They are assumed immediately
and automatically, and have become part of the memory
about the story. In a similar fashion, human readers often
confuse what was mentioned in the story with what was
only inferred [Bower ef al., 1979].

The system extracts the appropriate inferences automat-
ically, based on statistical correlations in the input ex-
amples. This differs from the symbolic models of script
processing, where the inferences are based on handcrafted
rules and representations of the script {Schank and Abel-
son, 1977; Cullingford, 1978].

Story processing is a higher level task than what neu-
ral networks have been applied to before, and in this
work, a number of new network mechanisms for dealing
with the complexity and structure of higher-level cognitive
modeling are proposed. The general approach is to build
from hierarchically organized modules which communicate
through a central lexicon.

2 Overview of DISCERN

DISCERN can be divided into parsing, generating, ques-
tion answering and memory subsystems, two modules each
{figure 1). Each module is trained in its task separately
and in parallel. During performance, the modules form a
network of networks, each feeding its output to the input
of another module.

The sentence parser reads the input words one at a time,
and forms a representation of each sentence. The story
parser combines the sequence of sentences into an inter-
nal representation of the story, which is then stored in the
episodic memory. The story generator receives the inter-
nal representation and generates the sentences of the para-
phrase one at a time. The sentence generator outputs the
word sequence for each sentence,

The cue former receives a question representation, built
by the sentence parser, and forms a cue pattern for the
memory, which retrieves the appropriate story represen-
tation. The answer producer receives the question and
the story and generates an answer representation, which is
output word by word by the sentence generator.

3 Lexicon

The input/output of DISCERN consists of physical rep-
resentations of words. These stand for the phonological
or orthographic symbols, i.e. the phoneme strings or vi-
sual patterns of written characters. The physical represen-
tations remain fixed throughout the training and perfor-
mance.

Communication within the system is based on semantic

Output text

input text

Figure 1: Block diagram of DISCERN (performance
configuration). A dark square indicates a memory module, a
light square indicates a processing module.

representations, which stand for the meanings of words.
They encode how the words are used in different contexts.
The semantic representations are developed by the system
while it is learning the processing task.

The lexicon stores the physical and semantic represen-
tations and translates between them [Miikkulainen, 1990a]
(figure 2). Both the physical and semantic words are rep-
resented distributively, i.e. as vectors of gray-scale values
between 0 and 1 . In the lexicon, each high-dimensional
representation space is laid out on a 2-D topological fea-
ture map, and the two representations of each word are
connected,

A 2-D topological feature map [Kohonen, 1984] consists
of an array of processing units, each with N weight param-
eters. Each unit produces one output value, proportional
to the similarity of the map’s current input vector and the
unit’s weight vector. The total response of the map is a
localized pattern of activity (figure 2). In other words, an
N-D input vector is mapped onto a location in the 2-D
map. The weight vectors are tuned to specific items of
the input space so that topological relations are retained:
nearby vectors in the input space are mapped onto nearby
units in the map. The organization of the map, i.e. the
assignment of weight vectors, is formed in a self-organizing
process, by presenting the map with randomly drawn ex-
amples of input vectors and gradually changing the weight
vector values.

The lexicon is implemented as two feature maps, physi-
cal and semantic. Words whose physical forms are similar,
e.g. house, mouse are represented by nearby units in the
physical map. In the semantic map, words with similar
semantic content, e.g. girl, boy are mapped near each
other.

The two maps are densely interconnected with winnetr-
take-all -type associative connections. A localized activity
pattern representing a word in one map will cause a local-
ized activity pattern to form in the other map, representing
the same word (figure 2). The lexicon thus transforms a

Physical rep. of John
Maximally responding
samantic unit

Maximally responding
physical unit

Figure 2: The lexicon. The physical input word "John"
is transformed into the semantic representation of John. The
size of the unit indicates the strength of its response. Only
the excitatory connections from physical to semantic John are
shown.

physical input vector into a semantic output vector, and
vice versa. Both maps are organized and the associative
connections between them are formed simultaneously, at
the same time as the whole script paraphrasing system is
being trained.

The lexicon architecture facilitates interesting behavior.
Localized damage to the semantic map results in category-
specific lexical deficits similar to human aphasia [Miikku-
lainen, 1990a]. Dyslexic performance errors can also be
modeled. If the performance is degraded e.g. by adding
noise to the connections, two types of parsing errors and
two types of generation errors occur. In parsing, (1) a
physical input pattern may be mapped incorrectly to a
nearby unit in the physical map. This corresponds to
reading (or hearing) the word incorrectly. Or, (2) activity
in the physical map may be propagated incorrectly to a
nearby unit in the semantic map. E.g. lion is understood
semantically as tiger. Analogously in generation, (1) a
semantic input pattern can be recognized incorrectly, and
a word with a similar but incorrect meaning is produced.
Or, (2) activity may be propagated to an incorrect unit in
the physical map, and a word with a similar surface form
but different meaning is output.

Using associative connections it is also possible to im-
plement multiple meanings for the same physical word
(homonyms), and have several different physical words cor-
respond to one semantic word (synonyms). Priming in-
formation from the context is necessary to make a choice
between alternatives. This has not been implemented in
the model, but it is an interesting direction for future de-
velopment [Miikkulainen, 1990a}.

4 FGREP -processing modules

The processing in DISCERN is carried out by hierarchi-
cally organized FGREP modules. Each module performs
a specific subtask, such as parsing a sentence or generating
an answer to a question. All these modules have the same
basic architecture.

The FGREP mechanism {Forming Global Representa-
tions with Extended backPropagation) [Miikkulainen and
Dyer, 1989a) is based on a basic three-layer backward error

New representations

Inpul_‘pattern

Input layer:

:"'-.\-E-:: 3 :%:'5.' 03 Faaaant :i::‘:‘ N .
S TR RO RS Modify representations

Previous hidden layer:

o Sequence memory

Hidden layer Emye

A Qutput layer:
] Form error signal

Teaching' pattern

Figure 3;: The FGREP module. With sequential input or
output, the hidden layer pattern is saved afier each step in the
sequence, and used as input to the hidden layer during the next
step, together with the actual input.

propagation network, with the I/O representation patterns
stored in an external lexicon (figure 3). The input and out-
put layers of the network are divided into assemblies. A
routing network forms each input pattern and the corre-
sponding teaching pattern by concatenating the semantic
lexicon entries of the input and teaching items.

The network learns the processing task by adapting the
connection weights according to the standard backpropa-
gation equations [Rumelhart et al., 1986, pages 327-329].
At the end of each cycle, the current input representa-
tions are modified at the input layer based on the error
signal. The modified representations are put back to the
lexicon, replacing the old ones and thereby changing the
next teaching pattern for the same input. In other words,
backpropagation is shooting at a moving target in a reac-
tive training environment.

The representations that result from this process have a
number of interesting properties [Miikkulainen and Dyer,
1989a; Miikkulainen and Dyer, 1989b]. Since they adapt
to the error signal, the representations end up coding prop-
erties most crucial to the task. Representations for words
which are used in similar ways in the examples become
similar. Thus these profiles of continuous activity values
can be claimed to code the meanings of the words as well.

Single representation components do not usually stand
for identifiable microfeatures. Instead, the representation
is extremely holographic. Word categories can often be
recovered from the values of single components, making the
system very robust against damage. Performance degrades
approximately linearly as components become defective.

The representation for a word is determined by all con-
texts where that word has been encountered, and conse-
quently, it is also a representation of all these contexts.
Expectations emerge automatically and cumulatively from
the input word representations. Also, the system never has
to process very novel input patterns, because generaliza-
tion has already been done in the representations.

Three types of FGREP modules are used in the system:
non-recurrent (the cue former and the answer producer),

B

Y

ID-part | Content-part
—unique — same for all instances
—arbitrary| — meaningful, developed by FGREP

John

Mary

Bill

Figure 4: Cloning word instances. Instances John, Mary
and Bill are created from the prototype word human.

sequential input (the parsers), and sequential output mod-
ules (the generators). In recurrent modules the previ-
ous hidden layer serves as sequence mermory, remermbering
where in the sequence the system currently is and what
has occurred before [Elman, 1988] (figure 3). In a sequen-
tial input network, the input changes at each time step,
while the teaching pattern stays the same. The network
is forming a stationary representation of the sequence. In
a sequential output network, the input is stationary, but
the teaching pattern changes at each step. The network is
producing a sequential interpretation of its input.

It is possible to extend the FGREP vocabulary by cre-
ating a number of distinct word instances from the same
semantic word, e.g. tokens John, Mary, Bill from the
type human (figure 4). The representation now consists of
two parts: the content part, which was developed by the
FGREP process and which encodes the meaning of the
word, and the ID part, which is unique for each instance
of the same word. The ID part has no intrinsic meaning
in the system, but it distinguishes the word from all other
instances of the same word. The technique can be thought
of as an approximation of sensory grounding, where the ID
part stands for the sensory referent of the word.

The ID technique can be applied to any word in the
training data, and in principle, the number of instances
per word is unlimited. This allows us to approximate a
large vocabulary with only a small number of semantically
different representations at our disposal. Word discrimi-
nation degrades approximately linearly as a function of in-
stances, which is remarkable since the number of different
input/output patterns grows polynomially [Miikkulainen
and Dyer, 1989b].

5 Episodic memory

The episodic memory is a hierarchical feature map system
[Miikkulainen, 1990b] combined with the trace feature map
mechanism [Miikkulainen, 1990c]. The map hierarchy pro-
vides the organization for the memory, and the trace map
technique is used to implement the memory traces.

Scripts

]
Tracks

Figure 5: The hierarchical feature map classification of
script-based stories. Labels indicate the maximally respond-
ing unit for each script, track and role binding.

5.1 The feature map hierarchy

The feature map hierarchy is a pyramid organized accord-
ing to the hierarchical taxonomy of script-based stories
(figure 5). The highest level of the hierarchy is a single
feature map, which lays out the different script classes. Be-
neath each unit of this map there is another feature map,
which lays out the tracks within the script. At the bottom
level, the different role bindings within each track are sep-
arated, The map hierarchy receives a story representation
as its input and classifies it as an instance of a particular
script, track and role binding. In other words, the map hi-
erarchy provides a unique memory representation for each
script-based story.

Let us follow the classification of John’s visit to MaMai-
son. The top-level map receives the complete representa-
tion vector and maps it onto the unit labeled REST (fig-
ure 5). This unit compresses the vector by removing the
components whose values are the same in all restaurant
stories. The representation now consists of information
which best distinguishes between the different restaurant
stories. The REST-unit passes the compressed representa-
tion down to its submap, which classifies it as an instance
of the fancy-restaurant track. Again, the FANCY-unit re-
moves the components common to all fancy-restaurant
stories, and passes the highly compressed vector to its
submap. The representation is now limited to informa-
tion about the role bindings, and it is mapped onto the
unit representing customer=John, food=lobster.

A higher-level map in the hierarchy acts as a filter, (1)
choosing the relevant input items for each lower-level map
and (2) compressing the representation of these items to
the most relevant components. The maps lower in the hier-
archy form finer and finer distinctions between the stories.

The hierarchical script taxonomy is extracted from ex-
amples of story representations. The pyramid structure is
predetermined and fixed, and the maps are self-organized
one level at a time from top to bottom. Each unit inde-

Figure 6: A trace feature map. Line segments indicate
positive lateral weights originating from each unit. The trace
on the right has partially obscured an earlier trace.

pendently determines how to compress its input vectors,
by finding the components with the least variance. The
organizing process is very efficient, because it employs hi-
erarchical subgoals. The maps are small at all levels, and
they receive only selected, condensed input vectors.

Hierarchical feature maps have a number of properties
which make them useful for memory organization: (1) the
maps visualize the data very nicely, with the hierarchy
displaying the script taxonomy and the maps laying out
the topology at each level, (2) the most salient aspects
of the input data are separated and most resources are
concentrated on them, (3) the organization is formed in an
unsupervised manner, extracting it from input examples,
(4) the classification is very robust, and usually correct
even if the input vector is noisy or incomplete,

5.2 Trace feature maps

An ordinary feature map is a classifier, mapping an input
vector onto a location on the map. A trace feature map,
in addition, creates a memory trace on that location. The
map remembers that at some point it received an input
item that was classified there. The traces can be stored
one at a time, as stories are read in, and retrieved with a
partial cue,

A trace feature map is a single ordered feature map, with
modifiable lateral connections between units (figure 6).
Initially the lateral connections are all ichibitory. When
an input vector is presented to this map, a localized ac-
tivity pattern forms as a response. A trace is created by
modifying the lateral connections of the units within this
response. A connection to a unit with a higher activity is
made excitatory, while a connection to a unit with a lower
activity is made inhibitory, both proportional to the activ-
ity level of the source unit. The units within the response
are now ’pointing’ towards the unit with the highest activ-
ity (figure 6).

A stored vector is retrieved by presenting the map with
an approximation of the vector. The initial response is
again a localized activity pattern. If the response is close

enough to a stored trace, the lateral connections pull the
activity to the center of the trace, and the weights of this
unit give to the stored vector. If the cue is too far, the
response does not reach the *basin’ of the trace, and the
activity oscillates between nonactivity (caused by the in-
hibitory lateral connections) and the initial response. In
other words, the trace map can complete a partial cue, and
indicate when there is no appropriate trace in the memory.

The trace map exhibits interesting memory effects which
result from interactions between traces. Later traces steal
units from earlier ones, making later traces more likely to
be retrieved (figure 8). The extent of the basins deter-
mines the memory capacity. The smaller the basins, the
more traces will fit in the map, but more accurate cues
are required to retrieve them. If the memory capacity is
exceeded, older traces will be selectively replaced by newer
ones. Traces which are unique, i.e. in a sparse area of the
map, are not affected, no matter how old they are.

5.3 Storage and retrieval

The episodic memory represents a story by the maximally
responding units at each level. However, a trace needs
to be created only at the bottom level. The script and
the track level are ordinary feature maps, while the role
binding level consists of trace feature maps.

When a representation is stored in the episodic memory,
the map hierarchy determines the appropriate role binding
map and the location on that map. The trace feature map
mechanism then creates a memory trace at that location.

A story is retrieved from the memory by giving it a par-
tial story representation as a cue. Unless the cue is highly
deficient, the map hierarchy is able to recognize it as an
instance of the correct script and track, and form a par-
tial cue to the role binding map. The trace map mecha-
nism then completes the role binding. The complete story
representation is retrieved from the weight vectors of the
maximally responding units at the script, track, and role
binding levels.

6 Connecting the modules in DISCERN

6.1 Performance phase

Let us follow DISCERN (figure 1) as it processes the story
about John’s visit to MaMaison. The physical represen-
tations for each word are presented to the physical map
of the lexicon, which produces the corresponding semantic
representation as its output (figure 2). These are fed one
at a time to the sentence parser, which gradually forms
a stationary case-role representation of each sentence (fig-
ure 7) at its output layer. After a period is input, ending
the sentence, the final case-role pattern is copied to the
input of the story parser.

In a similar manner, the story parser receives a sequence
of sentence case-role representations as its input, and forms
a stationary slot-filler representation of the whole story
(figure 8) at its output layer. This is a representation of
the story in terms of its role bindings, and constitutes the

Agent Act | Recipnt |Pat-atte| Patient |Locatlon] Case roles
John left | waiter| big tip Words

T EEN T EE IR EEHET LI word representations

Figure 7: Case-role representation of the sentence John
left the waiter a big tip. The word representations equal
the semantic lexicon representations,

Script | Track |R/Cstmr| R/Food | R/Restr | R/Taste| R/Tip | Roles
big Fillers

$restr | §fancy

#Ed HEL

Figure 8: Representation of the story by its role bind-
ings. The assemblies are not role-specific, but their interpreta-
tion depends on the pattern in the script and track slots. The
role names R/... are specific for the restaurant script.

Word
representations

final result of the parse.

The story representation is fed to the episodic memory,
which classifies it as an instance of a script, track, and role
binding and creates a trace in the appropriate trace map
(figure 5).

The generator subsystem reverses the parsing process.
The story generator network receives the story representa-
tion as its input and generates a sequence of sentence case-
role representations. Each of these is fed to the sentence
generator, which outputs the semantic representations of
the output words one at a time. Finally, the lexicon trans-
forms these into physical words.

The sentence parser and the sentence generator are also
trained to process question sentences and answer sen-
tences. The cue former takes the case-role representation
of the question (figure 9), produced by the sentence parser,
and generates a partial story representation as its output
(figure 10). This pattern is fed to the episodic memory,
which classifies it as an instance of a script, track, and role
binding. The trace map settles to a previously stored mem-
ory trace, and the complete story representation (figure 8)
is retrieved from the weights of the maximally responding
units.

The answer producer receives the complete story repre-
sentation, together with the case-role representation of the
question, and generates a case-role representation of the
answer sentence (figure 11), which is then output word by
word by the sentence generator.

6.2 Training phase

A good advantage of the modular architecture can be made
in training the system (figure 12). The tasks of the six
processing modules are separable, and they can be trained
separately as long as compatible I/O material is used. The
modules must be trained simultaneously, so that they de-
velop and learn to use the same semantic representations.
The hierarchical organization of the episodic memory can
be developed at the same time.

The lexicon ties the separated tasks together. FEach
FGREP network modifies the representations to improve
its performance in its own task. The pressure from other

Agent Act | Recipnt [Pat-attr] Patlent |Location] Case roles

John liked hom Malscrg Words

I EEITEER Y

Word reprasentations

Figure 9: Case-role representation of the question How
did John like the food at MaMaison? Questions are repre-
sented as sentences, but processed through different pathways.

Script | Track |A/Cstmr| R/Food | A7Restt |A/Taste] RI/Tip | Roles
§restr | $fancy | John ? Maisor ? ? Fillers

MENE HElE

Figure 10: Memory cue. Most of the story representation is
complete, but the patterns in Food, Taste and Tip slots indicate
averages of all possible alternatives.

Word _
reprosentations

Agent Act
John [thought| gt

L LR 3

Figure 11: Case-role representation of the answer John
thought food was good at MaMaison.

Ascipnt |Pat-atir| Patlent |Location] Case roles
food Maisof Words
B |58 word ropresentations

networks modifies the representations also, and they evolve
slightly differently than would be the most efficient for
each network independently. The networks compensate
by adapting their weights, so that in the end the repre-
sentations and the weights of all networks are in harmony.
The requirements of the different tasks are combined, and
the final representations reflect the total use of the words.

After training is complete, the output patterns produced
by one network are exactly what the next network learned
to process as its input. But even if the learning is less than
complete, the networks perform well together. Erroneous
output patterns are noisy input to the next network, and
neural networks in general tolerate, even filter out, noise
efficiently.

7 Discussion

The complete system performs very well in the task. Miss-
ing events and role fillers are plausibly inferred, and at the
output, about 99% of the words are correct (tested with 72
three sentence stories, instantiated from three scripts, each
with three tracks, each with three open roles, and two in-
stances cloned for each filler word). If there is not enough
information to fill some role, the most likely role binding is
selected and maintained throughout the paraphrase gener-
ation. Thus, DISCERN performs plausible role bindings -
an essential task in high-level inferencing and postulated
as very difficult for PDP systems to achieve [Dyer, 1989].

The episodic memory for the script processing system
has two requirements, which are not met by most neu-
ral network models of associative memory, e.g. [Kohonen,
1984; Hopfield, 1982): (1) memories need to be stored one-
shot, with only a single presentation, without knowledge
about future memories to be stored, and (2) a few compo-
nents in the representation, i.e. the IDs, need to be stored
and retrieved with extreme accuracy. The first problem
was solved with the trace map mechanism by using dif-

Figure 12: Training configuration. Each module is trained
separately and simultaneously with compatible I/O data, de-
veloping the same lexicon.

ferent areas of the network to store different memories.
The solution to the second problem was provided by the
hierarchical feature maps, which employ abstractions to
separate crucial information (IDs, mapped at the bottom
level) from information which is more widely distributed
and where accuracy is not as critical (components common
to the script and track, at higher levels).

The connectionist models typically have had very little
internal structure. They produce the statistically most
likely answer given the input conditions, in a process which
is opaque to the external observer. This suits modeling
well-defined, isolated low-level tasks, such as learning past
tense forms or the pronunciation of words. Our results
suggest, in the spirit of [Minsky, 1985], that a plausible
approach for higher level cognitive modeling is to compose
the model from several simple submodules, which work
together to produce the higher level behaviour.

8 Conclusion

The distributed neural network approach is quite effective
in script processing. Scripts are regular event sequences,
and their structure can easily be extracted by a neural
network system. Script inferences are intuitive, immediate
and occur without conscious control, a process which auto-
matically arises from generalization and graceful degrada-
tion in distributed networks. Also significantly, DISCERN
processes both semantic (general, statistical) and episodic
(specific, one-shot) information and is able to produce se-
quential high-level behaviour. We see this as a promising
beginning in tackling complex cognitive tasks with neural
networks.

References

[Bower et al., 1979] Gordon H. Bower, John B. Black, and
Terrence J. Turner. Scripts in memory for text. Cog-
nitive Psychology, (11):177-220, 1979.

[Cullingford, 1978] R. E. Cullingford. Script Application:
Computer Understanding of Newspaper Stories. PhD
thesis, Department of Computer Science, Yale Uni-
versity, 1978. Technical Report 116.

[Dyer, 1989] Michael G. Dyer. Symbolic NeuroEngineer-
ing for natural language processing: A multilevel re-
search approach. In J. Barnden and Jordan Pollack,
editors, Advances in Connectionist and Neural Com-
pulation Theory, Ablex Publ., 1989. (in press).

[Elman, 1988] Jeffrey L. Elman. Finding Structure in
Time. Technical Report 8801, Center for Research in
Language, University of California, San Diego, 1988.

[Hopfield, 1982] John J. Hopfield. Neural networks and
physical systems with emergent collective compu-
tational abilities. In Proceedings of the National
Academy of Sciences, USA, pages 2554-2558, 1982,

[Kohonen, 1984] Teuvo Kohonen. Self-Organization and
Associative Memory. Springer-Verlag, Berlin; New
York, 1984.

[Miikkulainen, 1990a] Risto Miikkulainen. A Distributed
Feature Map Model of the Lexicon. Technical Re-
port UCLA-AI-80-04, Artificial Intelligence Labora-
tory, Computer Science Department, University of
California, Los Angeles, 1990.

[Miikkulainen, 1990b] Risto Miikkulainen. Script recogni-
tion with hierarchical feature maps. Connection Sci-
ence, 1990. (In press).

[Miikkulainen, 1990c] Risto Miikkulainen. Trace feature
map: A one-shot learning associative memory. 1990,
In preparation.

[Miikkulainen and Dyer, 1989a] Risto Miikkulainen and
Michael G. Dyer. Encoding input/output representa-
tions in connectionist cognitive systems. In David 5.
Touretzky, Geoffrey E. Hinton, and Terrence J. Se-
jnowski, editors, Proceedings of the 1988 Connection-
ist Models Summer School, Morgan Kaufmann Pub-
lishers, Inc., Los Altos, CA, 1989.

[Miikkulainen and Dyer, 1989b] Risto Miikkulainen and
Michael G. Dyer. Natural language processing with
modular neural networks and distributed lexicon.
1989. Submitted to Cognilive Science.

[Minsky, 1985] Marvin Minsky. Sociely of Mind. Simon
and Schuster, New York, 1985.

{Rumelhart et al., 1986] David E. Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. In David E.
Rumelhart and James L. McClelland, editors, Par-
allel Distributed Processing: Ezplorations in the Mi-
crostruclure of Cognition. Volume I: Foundations,
MIT Press, Cambridge, MA, 1986.

[Schank and Abelson, 1977] Roger Schank and Robert
Abelson. Scripts, Plans, Goals, and Understanding
- An Inquiry into Human Knowledge Structures. The
Artificial Intelligence Series, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1977.

