Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

RECONCILING PARTIALLY REPLICATED NAME SPACES

Richard G. Guy April 1990
Gerald J. Popek CSD-900010






Reconciling Partially Replicated
Name Spaces

Richard G. Guy and Gerald J. Popek

Department of Computer Science
University of California Los Angeles

March 30, 1990
Abstract

This paper considers the problem of reconciling (keeping consistent) par-
tially replicated name spaces used by distributed file systems. The solution pre-
sented here supports independent (unsynchronized) update of non-communi-
cating filesystem replicas by adopting an optimistic, non-serializable, ad hoc
correctness definition. The algorithms have been implemented in the FICUS
replicated file system. (companion paper)

The ability to reconcile replicated name spaces is fundamental to providing
a highly available distributed file system service. Our novel policy, one-copy
availability, provides equivalent read and update availability: if any replica is
physically available, it is available for any purpose; no artificial restrictions are
imposed. The definition of correctness we adopt is sufficiently strict, though
not serializable, to make the reconciliation task decidedly non-trivial.

The algorithms here originated to support a replicated filing service, and
we therefore draw terminology and examples from that particular domain. The
general results, however, apply to arbitrary replicated DAGs with similar (or
weaker) consistency constraints and requirements.



1 Introduction

As networked computer systems increasingly
dominate the landscape and cooperating users
work on separate machines, the importance
of assuring access to shared information in an
efficient manner increases. Automatic and
selective replication of files on storage near
expected users is a potentially attractive aid to
both increase availability in the face of fail-
ures and improve performance by increasing
the ratio of fast local to slower remote access.

Typically, a replicated file system
strives to deliver to its clients the image of a
single logical copy of each file. So long as
all copies are stored at communicating sites,
this goal is easily achieved through a variety
of means. When a new version of a file is
created, it is transmitted to all storage sites,
and some form of a synchronization protocol
is used to assure that all requests for the file
see the most recent copy.

Management of replication is compli-
cated by failures, and in many common in-
stallations occasional loss of immediate ac-
cess to copies is a fact of life. Such failures
can occur in numerous ways. Locally, a
storage site may fail or a shared LAN may
become inoperative. When a user is geo-
graphically distant from the data, the problem
becomes much more difficult. A wide area
network is subject to multiple sources of dis-
ruption which often occur in third party fa-
cilities not under control of the user. Relay
services at intermediate points may have pri-
ority low enough (or congestion high
enough) to induce delays that are equivalent
to failure. Communications tariffs that vary
widely with time of day may effectively re-
quire that transmission be delayed until a
lower cost period, creating the effect of a
communications outage. Institutional bound-
aries often dictate that communications be
batched, disallowing data exchange in the in-
tervals between batches. We call such com-
munications outages partitions, in the sense
that when such a failure occurs only subsets
of sites may be able to communicate with one
another.

1.1 Partitioned update

Problems arise in a replicated file system
when any of these failure modes prevent
storage sites for a data object from communi-
cating. In particular, if updates to an object
are permitted during partition, then conflict-
ing versions of the object will exist and con-
fusion results when communication is
reestablished. On the other hand, if updates
are blocked, then either the user cannot per-
form his work, or he must make private
copies of information, perform the update in
a customized way, and remember to merge
the new version back into its proper place
later when update is re-enabled. None of
these situations is especially attractive.

A variety of systems architectures
[Stone79, Bloch84, Noe86] have used very
simple replication disciplines among their
copies to maintain mutual consistency and
avoid the conflicts that can occur when, by
chance, two users wish to update the same
logical data item in disconnected partitions. In
contemporary systems, significant restric-
tions are usually imposed. For example, one
copy may be designated as primary: all up-
dates must be done to it, or it must at least be
present in the updating partition [Alsb76].
Updates under other conditions are disal-
lowed. Alternatively, each copy has a
weight, and the majority of weights must be
present for an update to be allowed [Thom78,
Giff79, Herl86]. In any case, update avail-
ability can be seriously reduced or entirely
eliminated under such conditions. In all of
these cases, one generally gets reduced up-
date availability as the number of copies is in-
creased.

Consider the situation when the primary
site fails, or when a LAN outage prevents
many sites from communicating. Then, even
when a copy of the replicated data is local to
the user's workstation (where the update
originates), the update cannot proceed. That
situation is especially unfortunate, for exam-
ple, when the object being updated is merely
a directory and the changes are simply the in-
sertions of two different file names. One
could easily anticipate that a more resilient
name service would be important, whether
contemplating a nationwide file system or a



small, private work group, one portion of
which was located in Los Angeles and the
other in London.

When selecting an appropriate solution
to management of replicated files, it is useful
to have a view of typical usage patterns. Itis
widely recognized that in a general filing
environment a statistically large proportion of
data in use among cooperating work group
members remains read-mostly, even though
that data is subject to update and those up-
dates may be quite important to accomplish.
Often the updates are originated by one or a
few parties, rather than coming from many
sources and needing active database-style
synchronization. Further, many of the
“conflicts” that occur in such a replicated fil-
ing environment may not really be conflicting
updates at all, such as when a shared direc-
tory is independently updated by users creat-
ing different files.

Interestingly enough, for certain classes
of updates it is possible to reconcile automati-
cally the differing versions of the data object,
generating a result which satisfactorily cap-
tures the changes that took place during parti-
tioned operation. An example is a mailbox
file of electronic messages, into which mes-
sages are delivered by the mail system and re-
moved by the user. It is easy to specify the
desired result of merging two versions of
such a mailbox, even if each version had
been subject to arrivals and removals: the re-
sult should be the union of the two versions
minus any messages that had been removed
from either version.

In our view, it would be quite attractive
if the basic directory system and supporting
data structures of a general purpose filing
environment could be selectively replicated,
and automatically reconciled when partitioned
updates occur. This would allow distributed
filing systems to operate in a far more flexible
and transparent manner than they do today.
In fact, in order for a common, global name
service in a very large scale filing environ-
ment to operate effectively, replication of the
service is essential. So called “lazy” update
schemes such as Clearinghouse [Schr84]
which eventually come to agreement, but
which may lose updates and may remain out
of synch for some time even though com-
munication has been reestablished, are not
suitable for computer based directory services

which programs as well as people interrogate
and update, Other work addressing the repli-
cated directory problem [Fisc82, Allcg3,
Wuu84] fails to exploit the full range of
directory structure and semantics.

A resilient service is also very useful in
the small, when a private work group is
spread geographically. Since most files can
often be expected to be updated from a single
location, automatic propagation and reconcil-
iation of updates in the directory system is
quite convenient.1

This paper describes a selective repli-
cated file system service which automatically
propagates and reconciles directory updates.
A companion paper [Page90] describes the
file system implementation in which the rec-
onciliation algorithms are embedded. The fo-
cus here is on the robust reconciliation algo-
rithms we have developed to support a novel
optimistic concurrency control policy, one-
copy availability. Although our discussion is
motivated by file system directory services,
the algorithms are applicable to graph struc-
tures that share similar consistency con-
straints.

The next section presents filesystem,
reconciliation, and graph models, including
discussions of robustness and correctness.
Section three describes the directory reconcil-
iation algorithm, in terms of edges in a graph.
Section four presents a distributed garbage
collection algorithm for general graph struc-
tures that is used to reclaim file storage, and
lays out how conflicting updates to files are
detected. The method is applicable to updates
to any vertex in a graph. Concluding
remarks comprise section five.

2 Model

In this section we present our models of
filesystems, replication, reconciliation, and
our definition of correct operation in the face
of partitions.

1Commercial PC work group packages such as Lotus
Notes contain a simple version of such a facility.



2.1 File system

In our model, a filesystem client sees a con-
nected, singly-rooted, directed acyclic graph
of directories and files. All interior vertices
are directories; each file is a leaf. Both files
and directories may have more than one name
(labeled edge).2 A client “names” a file by
specifying a path of names from the root to
the file.

Directory updates are limited by several
semantic constraints. A name may be added
to a directory provided cycles are not intro-
duced and the name does not already appear
in the directory. New files and directories
may be created and named in any existing di-
rectory. A name for a file may be deleted at
any time; a file with no names is permanently
inaccessible.3

Specific filesystem operations exist for
file and directory creation, and name creation
and deletion. A generic operation for updat-
ing a file is assumed to exist; a directory is
updated only by the name creation and dele-
tion operations. No explicit file removal op-
eration is required; removal (via garbage col-
lection) is simply a potential side-effect of
name deletion.

2.2 Replication and reconciliation

The logical (“one-copy”) filesystem model
presented to a client is supported physically
by one or more filesystem replicas, each
containing the root directory and a subgraph
of some or all of the files and other direc-
tories of the logical filesystem. An operation
(e.g., create a name) is applied to a single
physical replica and then followed by the
execution of a reconciliation algorithm to
propagate the effects of the operation to other
replicas.4

20ne distinguished directory is called the root and has
no labeled edges pointing to it.

3Exceptions to this are noted in section 4.

4Q0ur algorithms are orthogonal to synchronization.
A set of replicas within a LAN could be tightly syn-
chronized such that a reconciliation algorithm con-
siders them to be a single replica. The reconciliation
algorithms could then be used simply to propagate

Each filesystem replica is maintained by
an instance of a filesystem reconciliation al-
gorithm.5 A reconciliation algorithm consults
with other filesystem replicas regarding their
current state and (partial) histories of the
operations that have been applied to their
replica, and attempts to determine the
“reconciled union” of the replicas. If no
conflicting replica states or operation histories
are discovered, the (single) replica being
maintained by the algorithm instance is
“brought up to date” if necessary — “up to
date” being the reconciled union of the repli-
cas just consulted. The replica is not brought
up to date if a conflict among replicas is
discovered that requires additional semantic
context to resolve. A conflict resolution pro-
cedure must be employed (perhaps at a later
time) to resolve the conflict and establish a
reconciled descendant of the conflicting repli-
cas.

A filesystem reconciliation instance de-
cides on its own how much of the filesystem
is to be reconciled. As little as a single file or
directory may be reconciled in response to a
notification of update activity at another
replica, or the entire directory graph may be
reconciled when disrupted communications
have been restored.

2.3 Robustness

Reconciling an entire filesystem directory
hierarchy (containing perhaps 10,000 or
more files and directories) is likely to span a
significant period of time. Unfortunately, as
the distribution of failures tends to be bursty,
the point at which a full filesystem reconcilia-
tion is most likely to be initiated (restoration
of communication) falls within a period char-
acterized by a high probability of further fail-
ures. In order to guarantee termination, a
reconciliation algorithm must therefore be ex-
traordinarily tolerant of mid-reconciliation
failures.

updates between clusters of replicas, rather than
within a cluster.

5A filesystem replica is always accompanied by an
instance of the reconciliation algorithm: they “fail”
together.



Tolerance of failures takes several
forms. First, reconciliation work accom-
plished up to the point of a failure should, for
the most part, not be lost as a result of the
failure. In terms of directories and files, this
suggests that each file and directory should
be (largely) separately reconcilable. Second,
filesystem reconciliation should be able to
make progress in between multiple errors
during a complete filesystem reconciliation,
since a sufficiently long failure-free period
may never occur.8 The reconciliation algo-
rithm should be able to start reconciling any-
where in the filesystem hierarchy, and pro-
ceed.

A reconciliation algorithm should also
be robust in terms of the requirements it
places on underlying communications ser-
vices. For example, an algorithm that must
communicate with other replicas in a specific
order may have great difficulty making
progress if communications links are not
avatlable in the order and at the times the al-
gorithm desires. Or, an algorithm that ex-
pects direct communication with any particu-
lar {or all) replicas requires either very pow-
erful store-and-forward support, or very ro-
bust communications links between itself and
other replica(s).

In our view, a robust reconciliation al-
gorithm should tolerate the permanent ab-
sence of direct communications links between
arbitrary replicas. Links must still, of
course, form a connected graph of communi-
cating replicas over time, but the connections
may be disjoint in time; simultaneous full
connectivity is not required. The reconcilia-
tion algorithm must, therefore, provide any
necessary intermediate communications be-
tween replicas.

A filesystem reconciliation algorithm
should coexist satisfactorily with normal
filesystem service to applications and users.
Normal service should not be blocked while a
filesystem is reconciled, nor should reconcil-
iation activity need to wait for a quiescent
filesystem. Reconciliation algorithms should
also be sparing in their use of resources such

6Imagine reconciling two replicas connected through
several dozen gateways and low-bandwidth, high-delay
intermediate links. The probability of some form of
communications failure during full filesystem recon-
ciliation s rather high.

as cpu time, disk space, and network band-
width.

Our algorithms are robust in all of these
senses. Each file and directory is atomically
reconciled, and the algorithm may be started
(or restarted) at any point in the directory
graph. The graph may be traversed in any
order (even random), although some orders
make progress faster than others. Our algo-
rithm also tolerates any underlying communi-
cations service that provides a connected
topology of replicas over a finite period of
time. No ordering of filesystem replicas is
assumed or required.

2.4 One-copy availability

In the literature, serializability is often as-
sumed to be the “only” correctness definition
worth considering. We propose that a
weaker criterion, which we call one-copy
availability, is sufficient for managing con-
current access to, and updates of, a filesys-
tem directory structure,

OCA guarantees that the effects of ev-
ery operation are incorporated by every rep-
lica, and not that every operation is applied to
every replica. For example, suppose the
same name is concurrently deleted in separate
partitions. OCA accepts this situation, based
on its effects: the name is deleted. (The sit-
uation is clearly not serializable, as one of the
deletions would have been rejected because a
single name cannot be deleted twice.)

File updates are managed by OCA in an
optimistic, serializable fashion. In the ab-
sence of knowledge about file semantics,
QCA allows concurrent partitioned update of
file replicas and detects non-serializable up-
dates.” Upon detection of (non-serializable)
concurrent updates, the file's owner is noti-
fied and is expected to take action to resolve
the conflict. Non-serializable file updates re-
sult in an update/update conflict.

The order of directory updates is not
preserved by OCA: each replica learns of
every update, but in an arbitrary order.
Immediate propagation is used to assist other

7This applics 10 a single file; mulii-file transaction
support could be provided by a higher level mech-
anism.



communicating replicas in becoming aware of
updates from a particular replica in the order
originally applied.

Concurrent creation of the same name
in distinct partitions is allowed by OCA; the
(similar) names are propagated to each replica
even though the internal consistency of a di-
rectory has been violated. The existence of a
name conflict is indicated by marking the
non-unique names to block translation of the
name until the conflict is resolved.

Filesystems that use OCA detect and
tolerate remove/update conflicts, which occur
when a file is concurrently updated in one
partition, and removed in another. Our
filesystem reconciliation algorithm is able to
detect and handle remove/update conflicts
even though the filesystem model does not
include an explicit file removal operation,

A file with no names in any filesystem
replica is involved in a remove/update conflict
unless some name for the file was deleted in a
filesystem replica containing the latest version
of the file. If such a name deletion operation
has not occurred, or there is no latest version
of the file (because of an update/update
conflict) a remove/update conflict exists.

One-copy availability (OCA) provides
equivalent read and update availability: if any
copy of a file or directory is present, an up-
date proceeds in accordance with the concur-
rency control policy being enforced among
communicating replicas. Since conflicts are
likely to be rare, a considerable improvement
in availability is achieved at low cost.

2.5 Graph model

Describing filesystem reconciliation algo-
rithms is aided by transforming the discus-
sion into graph terminology and working
with graph formalisms, while translating
back into filesystem language as needed to
maintain an intuitive feel for what is happen-
ing and why.

The filesystem model of section 2.1 de-
scribed a rooted DAG of directories and files.
The graph mode! contains a rooted DAG of
vertices and edges: directories correspond to
interior vertices, files to leaves, and names to
edges.

A directory vertex is interesting only in
that it provides a source vertex for edges; it
is the edges themselves (singly or grouped by
source vertex) that are important to us. In the
sequel, a “directory” is the collection of edges
emanating from a particular vertex.

Restating from section 2.2, a logical
graph is represented by one or more physical
graph replicas, each containing the root ver-
tex and a subgraph of some or all of the other
vertices and edges of the logical graph. A
graph operation (e.g., insert_edge or up-
date_leaf) is applied to a single physical
graph replica, and followed at some point by
the execution of a graph reconciliation algo-
rithm.

Our graph reconciliation algorithm is
composed of edge reconciliation and leaf rec-
onciliation algorithms. The edge algorithm is
a distributed two-phase algorithm that rec-
onciles the effects of edge replica creation and
removal operations. The leaf reconciliation
algorithm is composed of several algorithms,
most of which are two-phase and may be ex-
ecuted in parallel.

2.6 Two-phase algorithms

Distributed two-phase algorithms (without
single coordinator sites) are at the heart of our
reconciliation algorithms, Each graph replica
“executes” an instance of an edge (or leaf)
reconciliation algorithm for each edge (leaf) it
contains. The collection of algorithm in-
stances for a particular logical edge (leaf) op-
erate together in phases, such that a) all in-
stances have either not yet begun the algo-
rithm or are in phase one; or, b) all instances
are in phase one or two; or ¢), all are in phase
two or have completed execution of the al-
gorithm,

The first phase of our two-phase algo-
rithms typically ascertains that some interest-
ing global stable state [Chan83] exists, €.g.,
“all file replicas are inaccessible.” The sec-
ond phase verifies that every replica is in-
formed that the global stable state of phase
one has been established, and provides the
foundation for ensuring termination of the
collection of algorithm instances: the second
phase is normally followed by destruction of



a replica, which could otherwise confuse
algorithm instances for other replicas.

One should note that guaranteeing cor-
rect operation of these algorithms is far more
difficult that it may at first appear. For ex-
ample, it is not sufficient for a replica to be
deleted as soon as it knows that all replicas
have been notified of the delete operation;
there are conditions under which the algo-
rithm would never terminate.

In some of our algorithms, “phase one”
is itself a two-phase algorithm. This is nec-
essary when the collected state information
has the potential to become out-of-date and
must be reconfirmed by a second phase, as in
the case of file replica inaccessibility. A zero
reference count for a vertex replica is not a
stable state: additional vertex names which
exist in other graph replicas may yet be
propagated into a replica currently containing
no names.

The instances of an algorithm for a par-
ticular edge (leaf) cooperate largely by shar-
ing global state information. The state data is
usually a bit vector (for edges) or an integer
vector (for leaves) with a component corre-
sponding to each replica. The data in a vector
component is initially supplied by the corre-
sponding replica algorithm instance, and then
is freely passed among the entire set of repli-
cas.

Sharing state vectors both promotes ef-
ficient reconciliation and is necessary to tol-
erate (i.e., make progress despite) the
permanent absence of communications links.
For example, suppose a set of replicas is con-
nected in a linear topology, in which each
replica can only communicate directly with its
(one or two) neighbors. To make any
progress at all in reconciling replicas, state
data must be shared.

3 Directory Reconciliation
Algorithm

The directory reconciliation algorithm is re-
sponsible for reconciling and propagating the
effects of insert_edge and delete_edge
operations. Such effects include creating and
deleting edge replicas, and incrementing and
decrementing reference counts of the target

directory or file. A new file or directory
replica may also be created in the process of
creating an edge replica.

3.1 Log-less reconciliation

A reconciliation algorithm that purports to un-
derstand the semantics of operations and rec-
oncile updated replicas must somehow de-
termine what operations have actually oc-
curred. Rather than maintain a log of opera-
tions for each replica, our algorithm com-
pares two replicas and infers what operations
have occurred and what action should be
taken to make the local replica reflect remote
activity.

A fundamental difficulty of the “log-less”
approach is the insert/delete ambiguity prob-
lem noted in [Fischer82]: simply comparing
two object replicas whose operations are
insert and delete does not yield sufficient data
to correctly determine if an item present in
just one of the replicas has been newly cre-
ated or recently removed. We address this
difficulty by logically, but not physically,
deleting an edge in a graph replica when a
delete_edge operation occurs. The edge
reconciliation algorithm is then able to distin-
guish a logically deleted edge from a non-
existent one, and so the insert/delete ambi-
guity is eliminated.

3.2 Garbage collection

The differentiation between logical and
physical deletion substitutes a garbage collec-
tion problem in place of the ambiguity
problem. While several distributed garbage
collection algorithms have appeared, none is
both inexpensive and sufficiently robust for
our requirements. We therefore developed a
low-overhead, robust, two-phase distributed
garbage collection algorithm to dispose of
logically deleted edge replicas.

The algorithm has two important proper-
ties: monotonicity and low-cost indirect
communication. The monotonicity property
is both global (to ensure termination) and lo-
cal (to prevent repeated sequences of deallo-
cation/allocation of a physically deleted edge
replica). Indirect communication is a neces-
sary property for distributed algorithms in



systems in which all-pairs communication is
not guaranteed.

The two-phase distributed garbage col-
lection algorithm is executed by each logically
deleted edge replica. Each instance of the
algorithm maintains two bit-vectors (V1 and
V2) of length equal to the replica list attribute.
A bit vector component V[i) corresponds to
the i-th edge replica.

Vector V1 is used by the first phase of the
algorithm. A bit set in this vector indicates
that the corresponding edge replica is marked
logically deleted. Vector V2 is used in the
second phase to indicate with a set bit that the
corresponding edge replica has completed
phase one.

3.2.1 Phase One

The first phase of the algorithm begins when
a delete_edge operation occurs. The edge
reconciliation algorithm instance for the
replica to which the operation was applied
sets the bit in the V1 vector corresponding to
its local replica. Further bits in vector V1 are
set as the algorithm consults with other
replicas, obtains a copy of their phase one
vectors, and pair-wise logically ORs the
remote vector components into the local
vector. Phase one is complete when V1 has
all bits set.

At this point in the execution of an in-
stance of the edge reconciliation algorithm,
the local edge replica knows that all edge
replicas have been marked logically deleted.
This fact will be used later to prevent non-
monotonic re-creation of edge replicas. Note
that all other edge replicas have at least begun
phase one of the algorithm, but little is
known about their progress.

3.2.2 Phase Two

An instance of the edge reconciliation al-
gorithm begins the second phase upon its
completion of phase one by setting V2[self].
The remaining unset bits in the second vector
are set by ORing the contents of remote V2
vectors into the local vector. Phase two is
complete when all bits in V2 are set.

When V2 is complete, the local instance
of the edge reconciliation algorithm knows
that “every other replica knows my replica
(and all others) are marked logically deleted.”
This sets the stage for physically deleting the
local replica, without risking non-monotonic
re-creation of the local, logically deleted edge
replica.

Upon completion of phase two, the local
logically deleted edge replica is physically
removed, and the local instance of the two-
phase garbage collection algorithm termi-
nates.

Frequently, when a remote replica is con-
sulted during phase two, the remote replica
does not physically exist: it has finished
phase two quicker than the local replica, and
has been physically deleted. The local edge
reconciliation algorithm is able to infer this
fact immediately because its complete V1
vector guarantees that the remote replica once
existed and was marked logically deleted.
Since the remote replica does not currently
exist, it must have already completed phase
two. In response, the local edge algorithm
declares itself completed with phase two, and
physically removes the local edge replica.

3.3.3 Discussion

The quantity of information maintained by
each edge reconciliation algorithm instance is
linear in the number of replicas, as is the
amount of data passed between replicas. The
low storage overhead is achieved by carefully
structuring the meaning of the information:
the context is always implicit. For example,
a bit set in V1 means “edge replica 1 is logi-
cally deleted” and a bit set in V2 means “edge
replica i knows all replicas have been logi-
cally deleted.”

An alternative approach is to maintain
(and share) a bit matrix, in which the mean-
ing of a set bit is “replica i knows that replica
j is logically deleted.” In some circum-
stances, the more detailed information would
enable an edge replica to be physically deleted
more quickly than with the bit vector ap-
proach. The tradeoff is quadratic versus lin-
ear storage and message length costs,
although fewer messages may be exchanged.



In this algorithm, logical deletion is a
local stable state: there is no way to reverse
or undo the logical deletion of an edge
replica. The first phase determines that logi-
cal deletion is a global stable state, and the
second phase ensures that storage allocation
and reclamation occurs only once per edge
replica.

In other applications, such as file stor-
age reclamation, the global stable state of in-
terest (zero-valued reference counts) does not
have a local analog. A local zero reference
count is not a stable state, as another graph
replica may well contain new edges
(references) about which the local replica as
yet has no knowledge. For this kind of sit-
uation, a more complex method is required.
The next section presents a solution to the file
reclamation problem which is based upon a
two-phase algorithm.

4 File reconciliation
algorithm

The file (leaf) reconciliation algorithm is
actually a composite of three algorithms: leaf
version reconciliation, global inaccessibility
determination, and remove/update conflict
detection. Although the algorithms logically
must execute in the order listed with no
overlap, in practice they tend to execute in
parallel.

The parallel execution occurs even though
it does not seem necessary at the time. For
example, a remove/update conflict cannot be
determined until after global inaccessibility is
established, but the data necessary to declare
a removefupdate conflict can be collected
while data for global inaccessibility is being
obtained.

This overlap is essential for reasonable
termination of the leaf reconciliation algo-
rithm, as the component algorithms are
mostly two phase, and in one case composed
of two-phase sub-algorithms.

4.1 Leaf version reconciliation al-
gorithm

The leaf version reconciliation algorithm
is based upon the version vector concurrent
partitioned update detection scheme of
[Parker81]. A version vector is a multidi-
mensional version number, with one compo-
nent for each dimension (replica). Each leaf
replica maintains a complete version vector as
a mutable attribute.

When an update_leaf Operation occurs
on a replica, the corresponding version vector
component is incremented. The leaf
reconciliation algorithm compares two ver-
sion vectors to determine if they are equal (no
concurrent updates occurred), domi-
nant/subordinate (one, but not both, of the
replicas was updated), or in conflict (both
replicas were updated).

If the remote replica's version vector
dominates the local one, the local replica is
made to be equivalent to the remote replica,
including the version vector. If the vectors
are equal, or the local vector dominates, no
action is taken. If the version vectors con-
flict, the local replica is marked in conflict,
and the client is notified. Pending conflict
resolution by the client, access to a conflicted
replica is denied. Conflict resolution sets the
local version vector to be strictly greater than
the version vectors of all replicas consulted in
the resolution activity.

4.2 Global inaccessibility algorithm

In our graph model, the absence of edges
to a leaf implies that the leaf needs to be
garbage collected, as there is no further way
for a client to access a label-less leaf. Repli-
cation introduces several complications not
present in traditional graph management: lo-
cal inaccessibility does not imply global inac-
cessibility, and a significantly greater oppor-
tunity exists for updates to be inadvertently
lost as a result of unsynchronized, concurrent
delete_edge and update_leaf Operations.

A leaf replica becomes locally inacces-
sible when no available graph replica contains
a logically existing edge to the leaf. It is
possible that additional edges have been cre-
ated in a graph replica that is not currently
available, or that an unavailable leaf replica
has been updated. Either possibility suggests
that garbage collecting a locally inaccessible



leaf replica is premature, at least until global
inaccessibility has been established. In the
first case, extra effort will have to be ex-
pended to recreate the leaf replica--burden-
some, but not incorrect. In the second case,
updates will have been quietly lost, with no
mechanism by which the clients involved
could possibly have ascertained the impend-
ing situation.

Determining global inaccessibility is a
stable-state detection problem [Chan85]. We
exploit knowledge of how edges are created
to obtain a lower-cost algorithm than the
general algorithms previously published.

Our model utilizes the current reference
counter attribute (cref) of a leaf replica to
determine whether the replica is locally ac-
cessible. In addition, the history reference
counter attribute (href) is maintained as a
monotonically increasing counter. The href
counter is incremented in parallel with the
cref counter. The global inaccessibility task
is to determine that every leaf replica's cur-
rent reference counter is simultaneously zero,
even when not all graph replicas can be si-
multaneously available.

The globally inaccessibility algorithm is
executed on behalf of each leaf replica when
its cref drops to zero. Two vectors (V1 and
V2) are maintained, each containing an href
for each replica. Vector V1 is used in the
first phase to record the history reference
counter of each replica that, when consulted,
also has a zero current reference count. The
first phase is complete when vector V1 has an
entry for each replica in the replica list.

When phase one is complete, the local
instance of the global inaccessibility algo-
rithm knows that every other leaf replica has
had a zero current reference count at some
point in the past, and it knows what each
replica’s href value was at one of those times.
Note that the local algorithm has no
knowledge of the current state of affairs at
any other replica; the V1 vector is strictly in-
formation about the past.

The second phase verifies the validity of
vector V1 by checking to ensure that none of
the history counters have changed. The new
href values are stored in V2. However,
values are only obtained from leaf replicas

10

that have completed phase one. Phase two is
complete when V2 is complete, and so the
global inaccessibility algorithm is complete,

If at any time during phase one a replica
is encountered whose reference count is non-
zero, the algorithm initializes itself and begins
anew. During the second phase, any non-
zero reference count or changed history count
causes the algorithm to initialize itself, and
phase one (not two) begins anew. And, of
course, if the local reference count becomes
non-zero the algorithm terminates immedi-
ately.

The historical reference counter values
collected in phase one establish a landmark
by which the creation of new edges to the leaf
can be detected. Creation of a new edge
causes some leaf replica's href attribute to be
incremented; the new value is guaranteed to
be noticed during the second phase, which
(possibly indirectly) re-consults each href
value.

The creation of a new edge requires the
existence of another edge replica to the target
leaf. This condition allows the second phase
of the global inaccessibility algorithm to
steadily narrow down the set of graph
replicas that might be capable of creating new
edges and thereby prevent the determination
of global inaccessibility.

As with the previous algorithms, the
global inaccessibility algorithm instances ex-
change data. In this case, the href vectors are
shared.

4.3 Remove/update conflict detection
algorithm

The remove/update detection algorithm is
executed in parallel with the global inacces-
sibility algorithm, in the hope that global
inaccessibility will be established. The re-
move/update algorithm attempts to determine
the greatest version vector of all leaf replicas,
and the greatest removal vector amongst all
replicas.

The removal vector is a copy of a
replica's version vector made at the time of a
delete_edge operation. (It is overwritten
by a succeeding delete_edge operation on



the same leaf replica.) The removal vector
records the version visible to the initiator of
the delete_edge operation.

If the dominant removal vector is equiva-
lent to the dominant version vector, no re-
move/update conflict exists; otherwise, a
conflict exists, and an edge from the orphan-
age directory to the leaf will be created.

A replica determines the dominant version
vector by comparing its version vector with
each of the other version vectors, and replac-
ing its local vector with the dominant vector
from each comparison. After comparing with
each replica, the local version vector is domi-
nant.

Two problems arise: lack of direct com-
munications with each other replica, and the
possibility that no dominant vector exists.
(Vectors are partially, not totally, ordered.)

Indirect comparison of version vectors is
accomplished by maintaining a bit vector
indicating which replicas have been con-
sulted. The bit vector and version vector are
shared among replicas; when the bit vector is
complete, all replicas have been consulted. If
a dominant vector exists, the local vector
contains that value.

It is possible that no dominant version
vector (or removal vector) exists if any up-
date/update conflicts arose in the course of a
file's usage. If the conflict still exists, no
dominant version vector will exist. Even if
the conflict was resolved, the removal vectors
may still contain conflicting vectors, since
they record past state. In either case, the
above algorithm to determine a dominant
vector must be augmented to tolerate the non-
existence of a dominant vector.

The “conflict tolerant” algorithm executes
in two phases. The first phase operates as
indicated above. The local vector is replaced
only by a dominant vector; subordinate,
equal, or conflicting vectors are ignored.
However, the bit vector continues to record
which replicas have been consulted.

The second phase consults replicas which
have completed the first phase, and compares
version vectors again. Two bit vectors are
maintained: one indicates which replicas
have been consulted in phase two, and the

11

second indicates whether the vectors are
equal. At the completion of phase two (the
“consulted” vector is complete) the “equality”
vector is checked for “unequal” indications.
If all replicas have equal vectors, the local
vector is already set to the value of the domi-
nant vector. Any “unequal” indication im-
plies that no dominant vector exists.

The above two-phase dominance-detec-
tion algorithm is executed in parallel for both
the version vector and the removal vector. A
remove/update conflict exists if either vector
was not determined to be dominant over its
replicas, or if the dominant removal vector
does not equal the dominant version vector.

5 Conclusion

In this paper, we have motivated a loosely
coupled approach to replicated file systems
that is decentralized enough to have the po-
tential to scale to very large systems. We
have argued that in order for update availabil-
ity not to decrease as replication increases, a
single copy availability policy must be sup-
ported. The framework for the algorithms
necessary to make such loosely coupled
replicated file systems operate successfully
has been outlined in terms of a general DAG
structure,

We presented algorithms for managing
directory replicas, in particular a new dis-
tributed garbage collection algorithm for read-
only objects. We also described algorithms
for managing replicated graph structures.

Some of the algorithms, such as a gen-
eral distributed garbage collection method,
may have applicability outside this particular
context.



References

[Allc83] J. Allchin, "A Suite of Robust Al-
gorithms for Maintaining Replicated
Data Using Weak Consistency Condi-
tions," Proceedings of the Third Sym-
posium on Reliability in Distributed
Software and Database Systems, Octo-
ber, 1983.

[Alsb76] P. A. Alsberg and J. D. Day, "A
Principle for Resilient Sharing of Dis-
tributed Resources," Proceedings of the
Second International Conference on
Software Engineering, October, 1976.

[Bloch84] J. Bloch, D. Daniels, A. Spector,
"Weighted Voting for Directories,"
CMU Technical Report CMU-CS-84-
114, 1984.

[Chan85] K. M. Chandy and L. Lamport,
"Distributed Snapshots: Determining
Global States of Distributed Systems,"
ACM Transactions on Computer
Systems, February, 1985.

[Fisc82] M. Fischer, A. Michael,
"Sacrificing Serializability to Attain
High Availability of Data in an Unreli-
able Network,” Proceedings of the
ACM Symposium on Principles of
Database Systems, March, 1982,

[Giff79] D. K. Gifford, "Weighted Voting
for Replicated Data," Proceedings of
the Seventh Symposium on Operating
Systems Principles, December, 1979.

[Herl86] M. Herlihy, " A Quorum-Consensus
Replication Method for Abstract Data
Types,” ACM Transactions on Com-
puter Systems, February, 1986.

[Noe861 J. Noe, A. Proudfoot, C. Pu,
"Replication in Distributed Systems:
The Eden Experience," Proceedings of
Fall Joint Computer Conference,
November, 1986.

[Page90] T. Page, G. Popek, R. Guy, J.
Heidemann, "The Ficus File System:
Replication for NFS via Stackable Lay-
ers,” submitted to 1990 Symposium on
Reliable Distributed Systems.

{Park83] D. Parker, G. Popek, G. Rudisin,
A. Stoughton, B. Walker, E. Walton,
J. Chow, D. Edwards, S. Kiser, C.
Kline, "Detection of Mutual Inconsis-
tency in Distributed Systems,” IEEE
Transactions on Software Engineering,
May, 1983.

[Stone79] M. Stonebraker, "Concurrency
Control and Consistency of Multiple
Copies of Data in Distributed
INGRES," IEEE Transactions on
Software Engineering, May, 1979.

[Thom78] R. Thomas, "A Majority
Consensus Approach to Concurrency
Control for Multiple Copy Databases,"
ACM Transactions on Database
Systems, June, 1979.

[Wuu84] G. Wuu, A. Bernstein, "Efficient
Solutions to the Replicated Log and
Dictionary Problems," Proceedings of
the Third Annual ACM Symposium on
Principles of Distributed Computing,
August, 1984,



