Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE FICUS DISTRIBUTED FILE SYSTEM:
REPLICATION VIA STACKABLE LAYERS

Thomas W. Page, Jr. April 1990

Gerald J. Popek CSD-900009
Richard G. Guy

John S. Heidemann






The Ficus Distributed File System:
Replication via Stackable Layers*

Thomas W. Page, Jr.

Gerald J. Popek

Richard G. Guy

John S. Heidemann

Department of Computer Science
University of California Los Angeles

Abstract

Selective file replication is a key component of any
highly reliable, large scale distributed file system.
This paper describes the design and implementation
of a file replication mechanism which is unique in
at least two important ways. First, the service is
provided via a stackable layers architecture. This
structure permits replication to coexist with other
extended filing environment features. Further, it im-
plements the replication facility in a way that is in-
dependent of the underlying file system implementa-
tion, permitting a high degree of configuration flexi-
bility and portability. Second, the system supports a
very high degree of availability for write by allowing
updates during network partition provided at least
one replica is accessible. Conflicts are reliably de-
tected and directory updates are automatically rec-
onciled via algorithms described in [5]. A prototype
of the Ficus replicated file system is operational at

UCLA.

1 Introduction

This paper proposes a general stackable structuring
approach to distributed file systems, that allows in-
dependent developers to produce value added mod-
ules for operating system filing environments, and to
incorporate them without disturbing or recompiling
other parts of the operating system. The approach is

*This work is sponsored by DARPA under contract number
F29601-87-C-0072.

analogous to the streams service [11] used for struc-
turing protocols in UNIX System V!, and draws on
object oriented approaches for its details. As a case
study, we describe the design and implementation of
an extensive selective file replication service in stack-
able form. The Ficus file system allows update when-
ever any copy of the needed data object is available,
provides accurate detection of conflicting updates to
files, and automatically reconciles independent di-
rectory updates where possible. This work has been
done both in a general framework, and with com-
promises that allow the stackable architecture and
the replication service to be embedded in any system
which contains the Network File System (NFS?) [12]
and its vnode [8] interfaces.

We argue below that such a modular architecture,
as well as the flexible, decentralized replication ap-
proach, are valuable components of any very large
scale distributed filing system, and also has substan-
tial application in a smaller workgroup to provide
increased availability and performance improvement.

1.1 The Extensible Stackable Archi-

tecture

It is widely recognized that there are great poten-
tial benefits to be had from structuring an operating
system so that services can be easily added by in-
dependent third parties. The Mach approach [1] is
a fine example of the application of that philosophy

1UNIX is a trademark of AT&T
2NFS is a trademark of Sun Microsystems, Inc.



to produce an interface at the virtual memory and
process layer that permits multiple and independent
operating system designs and implementations to be
provided on top. The Unix System V streams design
provides an environment and a set of interfaces by
which network and device protocols may be added to
an operating system at run time, stacking new layers
on existing ones [11].

The filing service is a key component of most op-
erating systems. The definition and support of well
defined, internal interfaces in this area would allow
a variety of services to be introduced to many sys-
tems without re-implementation of the rest of the
file system. For example, one supplier might pro-
vide an extent based storage system; replicated stor-
age might be available from another source; sophis-
ticated multiuser synchronization, including manda-
tory controls could be built by a third party, and
secure encryption with key management could be in-
cluded for those sites thai wished it. Clearly, the
ability to snap such components together depends
on an architecture which provides effective interfaces,
both in terms of assuring that necessary character-
istics are present, and doing so in a manner that al-
lows superior quality implementations without fore-
ing significant compromises.

In this paper we propose a stackable layer archi-
tecture and set of interfaces that we believe achieve
these goals. We have evaluated the stackable layers
approach by designing, building, and using several
new layers. The work uses NFS as a point of depar-
ture. Below, we summarize the selective replication
layer, both to illustrate the approach, and because
we view that service, like stackable file system lay-
ers, as valuable components in general distributed
file system design.

1.2 Approach to Replicated File Stor-
age

We wish an approach to replication that is suitable
both to small work groups, and at the same time can
scale to very large environments. The user should
retain considerable selective control over replication
parameters (what, where, etc.) and availability of
data should strictly increase with the number of

copies. Costs should be low, in terms of introduc-
ing and administrating the service, explication of any
new user interfaces, and actual execution overhead.
Decentralized operation is essential in order to scale.

A critical aspect of most replication solutions is
how they handle updates to replicated objects when
copies are stored on sites which are unable to com-
municate. Most approaches to replication avoid this
problem through a variety of means. The primary
copy strategy [2] marks one copy as primary; all up-
dates are sent to it, and other copies are updated as
backups. Voting [14], weighted voting [4], and quo-
rum consensus [6] methods require a subset of stor-
age sites to be available, using methods to assure that
only one subset of communicating sites will decide
that update is permitted. Upon reconnection, the
update is propagated to the other storage sites. All
of these approaches increase read availability at the
cost of decreasing availability of the replicated ob-
ject for update. Imagine a replicated file on multiple
workstations in a local Ethernet where a terminator
is accidentally removed; network communication is
widely disrupted. Under previous approaches, de-
spite the presence of a local copy, the file 1s unavail-
able for update. In a wide area network, there are
many sources of communications outages; see [5] for
a more thorough discussion.

Note that all of these filing system methods use
“no lost updates”, a weaker definition of correctness
than strict serializability, the common approach for
databases. In the general filing environment, it is
often recognized that the weaker semantic model is
very attractive from a practical point of view, since
it allows much more flexibility while still providing a
satisfactory service. Conflicting updates are viewed
as occurring reasonably rarely in practice, since there
are frequently very few sources of updates to any par-
ticular data item. The replication service described
here is oriented around this looser and more opti-
mistic approach. Update is allowed whenever the
necessary data is available, conflicting updates to
files are accurately detected (using version vectors
[10]), and directory updates are automatically inte-
grated if possible. The actual reconciliation algo-
rithms are discussed in a companion paper [5]; here
we concentrate on the means by which such a repli-
cation service may be packaged as a stackable layer.



Several prior efforts with regard to replicated file
management deserve mention. Locus [15] provided
replication and permitted partitioned update. How-
ever, that work was done in the context of an inte-
grated distributed operating system as opposed to
a stackable file system. In addition, while they too
detected conflicting updates, there was no mecha-
nism to reconcile conflicting directory rephicas. The
Andrew project [7] takes a rather different view of
replication, employing a single central copy of a file
located on a server, with multiple copies cached
on workstations with check-out/check-in semantics.
The ISIS environment’s Deceit file system [13], like
ours, is built on top of NFS. It does not support
further extensibility, and while it has a mode which
permits partitioned update, 1t does not support au-
tomatic directory reconciliation.

1.3 Organization of the Paper

The next section is principally devoted to the general
architectures that we espouse for file system design,
together with their use in replicated storage services.
Details of the implementation of the Ficus layers us-
ing UNIX and NFS follow in Section Three. We con-
clude with a summary of the design principles for a
layered distributed file system implementation which
we hope have been illustrated by the discussion to
which we now turn.

2 Architecture of Ficus:

Stackable Layers

The architecture of the Ficus Replicated Filesys-
tem is based on the philosophy of stackeble layers.
Filesystems should be designed so that it is feasible
to add new services by “slipping in” new transparent
layers. With a symmetric interfaces for entering and
leaving each layer, the presence of a new layer may
be invisible to its neighbors.

Figure 1 shows the layers in a Ficus replicated file
system architecture. In brief, the stack is rooted by
a standard file system layer which provides the ac-
tual storage of individual copies of files on the media.

System Calls

3

Ficus
Logical

NFS

Ficus
Physical

UFS

Figure 1: Ficus Stack of Layers

While we currently use the UNIX File System (UFS)
exclusively, multiple implementations of the lowest
layer can coexist. That is, file storage can be pro-
vided by multiple types of machines even running
different operating systems or file managers.

The NFS layer facilitates access to remote
filesystems® and is built on top of the various lo-
cal file systems. It should be noted that in Sun OS
the UFS interface is already identical to that of NFS.
These first two layers predate this work and are un-

modified.

Ficus provides replication in a pair of layers: the
Ficus logical (FL) and the Ficus physical (FP) mod-
ules. For every logical file at the upper Ficus layer,
there may be one or more files (replicas) at the Fi-
cus physical layer. These physical files are actually
stored by the UFS layer and made remotely accessi-

3 We use the word “filesystem” in the UNIX sense: a subtree
of files that can be mounted as a unit. We use the term “file
system"” (two words) to denote a file management system in
general.



ble by NFS.

In the configuration displayed in Figure 1, the NFS
layer is shown inserted between the logical and phys-
ical modules, permitting them to reside on different
machines. Of course there are actually multiple in-
stances of the lower levels of the stack connected to
the FL layer, one for each replica. For any local file
replica, the logical layer is connected directly to an
instance of the physical layer without an interven-
ing NFS module. An NFS layer could equally well
be inserted above the logical layer (allowing access
to a replicated filesystem from a site on which Ficus
modules do not run), or below the physical layer (al-
lowing sites on which Ficus does not run to act as
replica storage sites).

2.1 Motivations for Stackable Layers

When we set out to implement our ideas about repli-
cated file services, we desired to maximize the use of
existing work. Considerable work has been done on
fast local filesystems (see for example [9]) and we
did not want to reimplement code to which we had
little to add. Neither did we want to undertake a
major redevelopment each time a new and improved
filesystem is produced. Instead, it would be more
attractive if our replication facility could easily be
added to a wide set of other file system services.
Similarly, it made sense to build on top of a stan-
dard facility for accessing remote files. Many sites
already run NFS, and compatibie implementations
exist for many types of machines.* Together, these
dictated an architecture for the replication service
which is strictly separated from standard file system
services, yet exploits the existing UFS and NFS mod-
ules. The concept of a stackable layered filesystem
gives us a methodology for extensibility and code
reuse which was previously lacking in operating sys-
tem technology.

Transparency is also an important goal; in the
same way that NFS makes the location of a file trans-
parent in normal use, users and programs should not

4Other distributed file systems were considered (AT&T's
RFS, AFS [7], Locus [15]). However, none besides NFS were
widely used, had source code available to us, and ran on our
Sun-3 family hardware.

need to be aware of the existence of replication in
the course of normal operations.® If transparency
is maintained, the increased fault tolerance due to
replication is achieved without the cost of increased
complexity in the user model of the environment. In
fact, if the potential for fault tolerance is to be re-
alized, replication must be transparent so that other
copies of a resource can be substituted for an inacces-
sible one. The replicated file service must accept the
same interface as the existing filesystem if programs
which access files are to run unmodified.

The need for a transparent interface leads directly
to the concept of a value-added layer. We add the
replication service in a transparent layer which “slips
in” below the kernel’s interface to files and above the
underlying filesystems. The replication service gives
the illusion of a single local copy of a file; all replica
selection, remote communications, and update prop-
agation are handled internally.

Because the interface both above and below the
replication service is identical, it is much easier to
generalize to multiple layers. Another layer with the
same interface characteristics can potentially be in-
serted on either side of the replication service trans-
parently to users, the replication layers, or the under-
lying physical file systems. For example, an encryp-
tion facility could be provided which would encrypt
{or decrypt) the data on read (or write) before call-
ing the read {or write) function in the next layer of
the stack. All other operations would be passed on
unmodified by the encryption layer.

This stackable structure has been especially useful
in the integration of our replication service into a dis-
tributed environment. It is this aspect we examine
next.

2.2 Layered Architecture in a Dis-
tributed System

The major function of the replication layer is to map
between the single copy file model provided to the

5NFS does not provide identical semantics for remote files
as for local files but the trade off of “80% of the transparency
for 20% of the cost” has, judging from its widespread use,
proven “good enough” for many cases in practice.



layer above and the multiple physical storage files
provided by the layer below. However, the replica-
tion layer and the UFS layer will frequently be sepa-
rated by a communications network, as each replica
may well be stored on a different site. Further, for
configuration flexibility, it should be possible for any
pair of layers in the stack to reside on different phys-
ical sites. Thus, there must be a mechanism which
maps calls from one layer, across the network, to the
next layer down. This mapping must be done ab-
solutely transparently as no layer should have to be
concerned about where the layers above or below are
located.

Following the stackable architecture philosophy,
this transport mechanism which maps the interface
across a network is itself a layer in the stack. The
transport layer accepts the same interface both from
above and below, mapping calls transparently across
a commmunications channel to the next layer. A trans-
port layer can then be inserted as desired between
any pair of layers.

Permitting the insertion of a transport layer re-
quires an interface definition that enables adjacent
layers to execute in separate address spaces. How-
ever, in order to avoid associating layers of perfor-
mance degradation with each layer of architecture, it
is important that crossing layer boundaries be very
inexpensive. Consequently, using a full remote pro-
cedure call mechanism to cross every layer boundary
is unattractive; it should be possible to call functions
from the layer below by address and to pass data
structures via pointers when the layers are colocated.
It is clear, however, that when a layer spans machine
boundaries, as in the case of the transport layer,
multiple address spaces are involved. The trans-
port layer might not only span address spaces, but
may also cross heterogeneous machine type bound-
aries, necessitating data conversion. We must en-
sure in any implementation that the need to pack-
age up data structures and function calls for trans-
mission between address spaces or across machine
boundaries does not dictate expensive data copying
between purely local layers.

Sun’s NFS provides an approximation of such a
transport facility, It’s existence is relatively trans-
parent to the calling layer on the client side as it
provides the same interface as local filesystems. The

caller need not be aware that it is talking to NFS
rather than a local user filesystem. On the server
side, NFS communicates with the local filesystem
via the same interface. The low level filesystem is
unaware that the request is criginating from across
a network.

Unfortunately, NFS is not a transparent transport
mechanism. It was not intended to be used in a
stackable layers architecture. Rather, it was meant
to implement access to remote filesystems and hence,
its designers’ opinions about the semantics of remote
file access are built into NFS. Specifically, NFS was
designed around the notion of stateless servers in or-
der to simplify failure recovery. Certain interface
operations which have no meaning in the context
of the designer’s view of remote file access (such as
open, a stateful concept) are not transmitted across
the network to the next layer in the stack. The
operations are handled (or ignored) internally, and
not passed through. In a stackable architecture, the
transport mechanism should be truly transparent,
with the desired behavior for remote access seman-
tics implemented in a pair of layers on either side of
the transport layer. What is needed amounts to an
RPC mechanism with the same interface character-
istics described for file system layers.

2.3 Pairs of Cooperating Layers

Sometimes a facility cannot be implemented totally
within a single layer. It needs, instead, to be config-
ured as a pair of cooperating layers with one or more
layers providing other services in between. In Ficus,
for example, one layer deals with a replicated file at a
logical level, performing replica selection, reconcilia-
tion, ete. This layer is most conveniently associated
with the client site. There is another per replica,
or physical level, generally associated with the file
storage site. These two layers which cooperate to
provide replication service are sometimes separated
by a transport layer. The intervening layer(s) must
transmit uninterpreted information so that cooper-
ating layers can communicate. This uninterpreted
information may need to be packaged up for trans-
mission across a network. Consequently, the format
of this information must be self-describing.



2.4 Local State and Object-Oriented
Programming

Any layer holding a pointer to a file object can per-
form any one of the set of generic operations defined
on files. This set of operations makes up the com-
mon layer interface. However, the level performing
the operation on an abstract file object does not nec-
essarily know the identity (or type) of the next layer
in the stack. Similar to operator overloading in pro-
gramming languages, we can call an operation on
a file object without knowing what code will actu-
ally run to perform that operation. This situation
is quite analogous to object-oriented programming
with inheritance.

Each layer in the stack may need to keep some
information about the state of objects in its ab-
stract filesystem. Further, the local state informa-
tion needed by each layer may be different. The log-
ical level, for example, may maintain a bit map of
storage sites for the file, while at the UFS level, such
a map would be meaningless as a file is purely a local
object. Conversely, the set of data page pointers in a
UFS-level file representation would be meaningless at
the logical level. This situation is again quite rem-
iniscent of object-oriented programming where the
private state and public interface are encapsulated
in an object.

Only the lowest level of the stack, the UFS in our
case, actually stores file data pages and state infor-
mation on disk. Higher layers are only abstractions.
Thus, not only must uninterpreted data be transmit-
ted between pairs of cooperating layers, it must also
be passed all the way down the stack to be stably
stored, and back up the stack when it is retrieved.

Consequently, each layer must support an “unin-
terpreted data” portion of the object representation
which represents the local state information of the
other layers which must be passed down for storage
and up on retrieval. Each layer must also provide
the full set of interface operations. It is often the
case that a layer is not concerned with a particular
operation; as with uninterpreted data, it must pass
that operation through to the next lower layer un-
modified. In this way both the state representation
and the set of operations are extensible. New layers

can be inserted and their new operations and state
information remain transparent to existing layers.

2.5 The Vnode Interface

A key element in achieving a stackable architecture
for a filesystem is the interface between layers. The
virtual node or vnode interface within the Sun UNIX
kernel provides the basis for our implementation and
goes a fair way towards achieving an appropriate
layer interface.

The motivation for creating the vnode interface
was primarily to accommodate multiple filesystem
implementations which could be “plugged into the
kernel through a well defined interface” [8] It per-
mits access to remote UNIX and even non-UNIX
filesystemns via the same interface as local access. It
can, in fact, be viewed as a two level stack: the NFS
layer is inserted transparently between the kernel’s
vnode interface on the using site and the vnode in-
terface to a local filesystem on the storage site.

The vnode interface is implemented using an
object-oriented programming style. A file is repre-
sented as a vnode which is an encapsulated object
containing data and a pointer to a vector of opera-
tions on the object. The data part of the vnode has
a set of generic file information (in a well-defined for-
mat) plus a pointer to an area of layer specific private
data. For example, the private data in a UNIX file-
system layer is an inode. The vnode behaves like
a typed object with overloaded operators; the vector
of operations on the vnode contains pointers to func-
tions which behave correctly for the vnode “type”
and understand the format of the implementation
specific data.

The vnode interface serves for us as a first approx-
imation of a transparent interface between filesys-
tem layers. Each layer in the stack is represented
by a vnode type (and hence a virtual mounted file-
system). The function called by a vnode operation
at any given layer can implement the desired func-
tionality directly, pass it through to the next level,
modify the arguments before passing it to the next
layer, or implement it in terms of one or more other
vhode operations at the next layer.



It will be seen that, as it was originally conceived
to support only a two-level, non-extensible stack of
layers, the vnode interface is not entirely suitable
and should be extended. For example, the set of vn-
ode operations are meant to be exhaustive; there is
no provision for passing on to the next layer opera-
tions which have no definition locally. Consequently,
if a feature is implemented via a pair of cooperating
layers, any communications between these two layers
must be implemented by overloading existing vnode
operations rather than by adding additional ones. It
is important to ensure that any intervening layers be-
tween the cooperating pair simply pass through the
overloaded operation. Having to ensure this charac-
teristic of intervening layers violates the abstraction
and transparency that should exist between levels.

2.6 Configuring Ficus Layers

Figure 1 showed an example conceptual configura-
tion for a stack of modules in a layered file system.
However, Figure 2 more accurately shows the archi-
tecture, with each module at the same level, and
a vnode interface both above and below. The vn-
ode interface functions as a “switch” calling the ap-
propriate function implementation depending on the
type of the target vnode. This section examines how
the mount protocol, whose original purpose was to
“glue” filesystems into the naming hierarchy, is now
overloaded to configure modules into a stack.

There are two seperable aspects to the UNiX file
naming service. The first occurs within a filesystem
where the name hierarchy is connected by entries in
directories. Then, the sub-tree within an individ-
ual filesystem is linked into the global hierarchy by
mounting its root directory on top of a leaf (known
as a mount point) in another filesystem.

Just as there is an abstract object associated with
each file (the vnode), there is an object, known as
a vfs, for each filesystem. Like the vnode, the vfs
contains implementation specific data and a vector
of pointers to functions which perform operations on
the filesystem. Recall that in UNIX when a filesystem
is mounted, the mounted_here field in the vnode for
the mount point is set to point to the vfs structure
for the newly mounted filesystem. Qperations on the

mount point are then redirected to the vnode of the
root of the mounted filesystem (pointed to by the
vfs).

In addition to the filesystem being mounted and
the point at which to mount it, the arguments to the
mount system call include the type of the mounted
filesystem. In Sun OS, the type can be UFS or NFS.
We have added FL and FP filesystem types. The
type specified in the mount dictates the type of vis
node created for the filesystem and hence the type
of vnode created for each file which, in turn, controls
the behavior of operations on the file. Let us now
examine how the unordered layers shown in Figure
2 become stacked as in Figure 1.

A mount operation performs three actions. First,
it creates an instance of a filesystem of the specified
type. That is, it creates the correct vfs structure
and links it in to the list of filesystems. Second, by
making a leaf file in another mounted filesystem into
a mount point, it creates the name by which the new
filesystem will be addressed. Third, it links the new
filesystem to an instance (or instances as in the case
of the logical layer) of a level below.

The stack of layers is therefore created bottom up.
First, (assuming a root directory is already mounted)
a disk partition or device is UFS-mounted (mounted
with type UFS) at a point in the root, creating an
instance of a UFS, a name for it, and linking it to
a lower layer (the raw disk). Then that UFS is FP-
mounted creating a new instance of an FP filesystem,
a new name for that filesystemn, and linking the new
FP filesystem to the mounted UFS. Any operations
to files named via the new name are applied to FP-
type vnodes and inherit their behavior from the FP
layer.

This FP filesystem can then be FL-mounted on
the same site, A remote FP filesystem can be NFS-
mounted and that NFS filesystem subsequently FL-
mounted to provide access to a remote replica.

When an operation, say a read, is performed on
the replicated file, the corresponding operation is
performed on the FL vnode. The FL vnode has
pointers in its private data to the vnodes for each
of the replicas. Once a particular replica is selected,
a corresponding vnode operation is performed on the



|

System Calls

£ vnode

N
l

' | }

!

UFS NES Ficus Ficus
client Logical Physical
NFS
Server
¥ 1
S = ynode

Figure 2: Layered Architecture Using Vnodes

lower level (NFS or FP) vnode. If the storage site
is remote, the lower level vnode is of type NFS and
it, in turn, transmits the operation via RPC to the
next level vnode at the storage site. If it is local, the
next vnode is in the FP layer. The physical layer has
a pointer to the corresponding UFS vnode which in
turn has access to the actual data.

2.6.1 Configuration Flexibility

The NFS layer may, in addition, be inserted trans-
parently either above the logical layer, or hetween
the physical and UFS layers. The former gives us
the flexibility to access a replicated filesystem on a
site which does not run the Ficus code, perhaps be-
cause it is of an unsupported cpu type. The latter
lends the capability of using such an unsupported
machine type as a storage site for a replica of a Fi-
cus file. For example, an NFS client implementation
exists for DOS on PCs allowing them to access re-
mote Ficus filesystems. An NFS server implemen-
tation for MVS is available, immediately permitting
use of large IBM “disk farms” to support replicated
data storage. This configuration flexibility is an im-
mediate payoff of the stackable architecture.

2.6.2 Name Hiding

While a mount of any type creates a name in the
name hierarchy for the instance of the filesystem be-
ing mounted, users ordinarily interact with only the
highest layer in the stack; the names of the inter-
mediate virtual filesystems should be invisible in the
course of normal operations. However, special pro-
grams (eg. reconciliation) or users occasionally need
to bypass higher layers and access to the lower level
interfaces directly. This capability 1s currently pro-
vided by mounting all but the top level on mount
points whose name begins with “.” (such names are
normally hidden by UNIX but access to them is per-
mitted). A more sophisticated solution is no doubt
called for and will be pursued.

2.7 Scaling Considerations

Our goal is to achieve a very large scale, network
transparent, replicated file system. One aspect of
transparency is that each site should see the same
global name hierarchy. Thus logical file systems
should be mounted at the same point in the hierarchy



on every site. However, this amounts to a globally
consistent replicated mount table with an entry for
every filesystem in the network. This is clearly not
viable on a large scale; a workstation being switched
on in Washington should not cause a mount to be
executed on every other computer in America.

We instead employ an automout protocol which
dynamically mounts a filesystem at the correct point
in the name hierarchy when its mount point is ac-
cessed. This mechanism effectively distributes the
mount table information at precisely those points
where it is used. Further, the very large scale trans-
parent name space is maintained without devoting
resourses to portions of the hierarchy which are not
in use.

The vnode for a mount point contains a pointer to
the vnode of the root of the filesystem to be mounted
at that point. Operations on the vnode of the mount
point are passed on to the root vnode of the filesys-
tem. If the referenced filesystem has not yet been
mounted, the vnode pointer is NULL. In that case,
the file corresponding to the mount point contains
the location and identity of all replicas for the file-
system. Each replica may then be NFS-mounted and
the new filesystemn subsequently FL-mounted. Thus
filesystems are only mounted when needed, but they
are always mounted at the same point in the hierar-
chy.

3 Implementation of the Ficus
File System

This section describes an implementation of the Fi-
cus replicate file system layers. The particular de-
sign was developed to operate within existing NFS
and UNIX environments without change to them. As
we shall see, these constraints required choices that
can be more effectively made when there are fewer
constraints.

The design of Ficus identified several new types
of information that must exist in a replicated file

8Note that NFS permits filesystems to be mounted arbi-
trarily on a site by site basis,

system. An important issue in the implementation of
the Ficus replicated file system is how this additional
information can be organized and stored on top of
existing file systems. New information is kept for
each logical file, existing file replica, file name, and
for the file system as a whole. Let us examine how
each layer in the replicated file system manages its
data.

3.1 Logical and Physical File Level
Information

In UNIX, each file is represented by a data struec-
ture called an inede. There is exactly one inode per
file. It contains page pointers to the file data, own-
ership and protection information, link count, and
other file-specific data. In a replicated file system,
the notion of what constitutes a file is more com-
plicated, since there are now both the logical and
physical file levels. For each replica there is a UFS
file” with an inode containing the traditional incde
information, and thus several inodes per logical file.

There are two significant implications for our im-
plementation. First, since there are multiple UFS
files for each Ficus logical file, each with a separate
inode, the inode number is no longer a untque iden-
tifier for a file. A new, logical level file identifier is
needed as an unique internal file name. Second, Fi-
cus must store additional information at both the
per replica and at the per logical file levels. Follow-
ing the principles of a layered architecture, we must
store this added information without modifying the
underlying inode or file storage structure.

The first problem is addressed by the invention
of a new identifier called a filezd. Fileids provide a
system-wide level of naming that is one-to-one with
logical files. However, they create a problem with
directory entries. UFS level directories map from a
path name component to the inode number of the
directory or file associated with that name. How-
ever, in a replicated file system, directory entries
must map name components to logical level fileids,
not UFS level inodes. Then a particular replica stor-

7Of course, given the independence provided by the stack-
able architecture, the lower layer could be provided by rather
different means; even through a non-UNIX file service.



age site must be selected. Finally, the Ficus physical
level associated with the selected replica maps the
fileid to the corresponding UFS file and inode.

Each Ficus physical level implements this mapping
using the UFS level directory mechanism. UFS di-
rectories with entries mapping each fileid to an inode
number are stored at every replica site.® To take ad-
vantage of the locality of reference typically exhibited
in UNix among files in the same directory [3], our
implementation clusters mapping information based
on the directory in which the Ficus logical file re-
sides. While two additional disk page reads may be
required to obtain the information to perform the
mapping for the first file opened in a directory, sub-
sequent opens in that directory will incur no addi-
tional page reads over standard Unix.®

The second problem of additional storage exists
because there is extra information that must be kept
with each replica beyond what the underlying UFS
implementations provide. The Ficus physical level
requires information such as the version vector [10]
in order to perform conflicting update detection and
reconciliation. The Ficus logical layer must also store
a list describing where each physical copy of the file
is located. In order to avoid a single site failure pro-
hibiting access to the logical level information, our
implementation replicates this information at each
site which stores the physical level information.

Conceptually, this logical and physical level infor-
mation is part of the file-specific data traditionally
stored in the UNIX inode. However, existing UFS
implementations make no provisions for storing un-
interpreted data needed by higher layers. Instead,
we place this information in an auxiliary file, in ef-
fect creating a parallel set of inodes. Like the fileid
to UFS file mapping, the additional inode informa-
tion is clustered by directory so no additional I/O
cost is typically incurred beyond the first file open in
a directory.

B This design is forced onus by the lack of an inode interface
to files in current implementations of UNIX filesystems. If such
an interface existed, a more efficient in memory data structure
could be employed. This same problem prompted the addition
of an inode interface for UNIX files by the Andrew Filesystem
project [7].

9Note that this assumes that additional space is devoted
to directory entry and buffer caching. Given current trends in
memory prices, this should pose no problem.

10

3.2 Filename Information

In UNIX, = file at the user level can have more than
one name, corresponding to multiple hard links to a
single file. Each UNIX directory entry maps a user-
level name to a systern-level inode number. When
two directory entries map to the same inode, the
file has multiple “names”, all equally valid. Ficus’
automatic reconciliation of directory updates made
during partitioned operation requires changes to the
traditional UNIX directory structure.

Ficus, unlike UNIX, permits a general DAG struc-
ture in the directory hierarchy. While UnNiX allows
files to have multiple names, it permits only a single
name for each directory. Qur optimistic concurrency
control strategy allows updates to directories dur-
ing a network partition. In particular, a directory
might be renamed in two non-communicating parti-
tions. When the two partitions come back together,
two names exist for the same directory.

Automatically reconciling conflicting versions of a
replicated directory requires that additional informa-
tion be kept with each directory entry. For example,
consider trying to reconcile two copies of a directory,
one in which a filename “foo” exists and the other in
which it does not. Without the additional informa-
tion there is no way to decide if the file was newly
created on the first site and so should be propagated
to the second, or if the file which previously existed
on hoth sites was removed from the second, and so
should now be deleted on the first. Fortunately, ad-
ditional information can resolve these problems and
permit almost completely automatic resolution of in-
dependent directory updates. A complete descrip-
tion of the algorithms this requires can be found in

[5].

Qur need to store additional information in each
directory entry and the requirement to manage a
general DAG structure means that Ficus cannot sim-
ply make use of the existing UFS directory service.
Because of this, we re-implement directories at the
Ficus physical layer, storing our extended directory
information in standard data files on the underlying
UFS.

We recommend that future implementations of the



UFS layer will provide uninterpreted data storage
facilities in both inodes and directory entries, ob-
soleting the need for our parallel inode tables and
directory facility.

3.3 File System Granularity

Finally, there is a small amount of information that
must be stored at the Ficus filesystem level. Repli-
cas for a file system may be stored at a set of sites.
Placing this information at the file system level al-
lows a simple bitmap to identify replica locations
for each file, facilitating partial replication.!® Some
other bookeeping information must be kept at the
file system level, such as a record of the last-used
fileid.

Traditional UNiX stores filesystem information in
the superblock. In keeping with our desire not to
change the UFS, we keep a small auxiliary file in the
root of the UFS. This information is read and cached
when the Ficus file system is mounted.

4 Conclusions and Experience

This paper proposes stackable layers as an architec-
tural paradigm for future distributed file systems.
Today’s file management systems are exceedingly
complex pieces of software and the challenges pre-
sented by the globalization of computer networks
will make them all the more so. Many features will
have to be added: selective replication, data secu-
rity, user anthentication, and type conversion among
heterogeneous storage conventions are but a few ex-
amples. The stackable layers architecture provides a
methodology for extensibility which is crucial for the
advancement of distributed file system technology.

The Ficus replicated file system has been imple-
mented and is in use at UCLA. As a case study,
Ficus demonstrates that the stackable architecture
is logically feasible and can, with care, be made to
perform satisfactorily. Both to increase portability

10Partial replication is supported; not every file is replicated
at every site which stores the file system.

11

and to ease our initial implementation burden, we
elected not to modify the underlying UNIX file sys-
tem or NFS. We devised short term solutions to map
the requirements of a stackable architecture into the
functionality provided by UNIx and NFS. This effort
led us to derive a number of design principles for a
stackable architecture to guide future implementa-
tions of distributed file management mechanisms.

4.1 Interface Design

The primary problem we encountered in using Sun’s
vnode interface as the basis for cur layer interface
implementation is the lack of provision for extensi-
bility. While the set of vnode operations was orig-
inally intended to be exhaustive, new layers which
add features to the file system will typically support
a supersel of the original operations. The interface
needs to be extensible in several dimensions. [t must
allow for the addition of new operations on files. As
some features need to be implemented in pairs of co-
operating layers which may be separated by other
modules (and run on different sites), there must be
a way for one layer to call functions in its partner,
even though the intervening layers do not implement
the corresponding function. This implies that layers
must pass on, transparently, any operations which
they do not explicitly intercept. Finally, the need
in intermediate layers for stable storage of their pri-
vate information necessitates a facility to pass un-
interpreted data between layers. We are continuing
work on an extensible file system interface with these
characteristics.

4.2 The Transparent Network Layer

The current version of Ficus makes use of an un-
modified Sun NFS as the network transport protocol.
NFS was chosen both to ease our initial implementa-
tion burden and to increase the portability of Ficus.
In building replication on top of NFS, we came to a
number of conclusions regarding the use of a layered
architecture in a distributed system.

Any pair of layers should, in principle, be able to
execute on different physical sites, transparently to



those layers. This necessitates an RPC mechanism
which adheres to the same interface as the other
modules in the stack. NFS is ideal in this respect
as it uses the same vnode interface as the UFS. Our
problem is that NFS is not semantically transparent;
the stateless server semantics are built into NFS. In
particular, NFS does not transmit open and close op-
erations as they are meaningless to a stateless server.
This makes it difficult to alter the semantics, say to
implement a commit on close. In our initial imple-
mentation, we have had to overload certain opera-
tions that are transmitted transparently in order to
avoid modifying NFS. We propose that the semantics
of remote file access be implemented in a replaceable
pair of layers on either side of a transparent trans-
port layer. Our ongoing work will investigate such a
Tacility.

4.3 The Base File System

As with the layer interface and network transport
module, we have chosen to use unmodified existing
code (the UNIX file systemn) as the base of the stack
of layers. As a result, UNIX systems can make use
of the Ficus replication facility without modifying
their filesystems. However, several modifications to
the UFS design would make it a more suitable base
for an extensible layered file system architecture.

First and foremost, the major data structures
should be extensible. Each layer in a file system
stack may need to store some information with the
file, and the only way for higher layers to store data
on a disk is through the UFS. Without the luxury of
an extensible inode, we have had to store the extra
data needed for replication in auxiliary files, neces-
sitating additional I/O to open a file, in some cases.
Some layers also require additional information in
directory entries. The lack of an extensible direc-
tory entry prompted us to build our own directory
mechanism. However, UNIX’s lack of an inode inter-
face to files, means that we have to employ a UNIX
directory mechanism underneath our own, again at
the expense of occasional added I/O cost. Future
versions of the base file system should provide other
layers with extensible basic storage structures and
an inode-level interface.

12

4.4 Development Strategy

Developing code to run inside an operating system
keruel is many times more difficult than developing
application programs. A bug in a kernel program
produces a crash rather than a core dump. Kernel
debugging tools, when available at all, are very much
less convenient to use than application level debug-
gers. Recompiling and retesting a kernel is very time
consuming and involves rebooting a machine.

The layered architecture permitted a development
strategy which significantly reduced the time re-
quired to implement Ficus. As the first step, we built
scaffolding which permitted any layer in the stack to
be pulled outside the kernel. This was accomplished
using a client and server protocol, much like NFS, to
map the vnode interface across a socket to a program
outside kernel address space.

New layers can be debugged as an application pro-
gram using available debuggers. Calls from the ex-
ternal layer to the next layer below (running within
the kernel) are achieved by adding a system call in-
terface to vnode operations. Once a layer is de-
bugged in user mode, it is trivial to pull it back inside
the kernel. This methodology significantly reduces
the cost of debugging and testing new layers.

While experience using the Ficus replication facil-
ity is limited, it is also quite positive. Selective repli-
cation is an essential capability if high availability is
to be achieved in large scale distributed file environ-
ments. We conclude that selective replication can be
effectively provided in this manner. Morcover, the
methodology for extensible file system services using
stackable layers is extremely attractive,

Acknowledgements

The authors wish to acknowledge the contributions
of Dieter Rothmeier and Wai Mak to the implemen-
tation of the Ficus replicated file system.



References

(4]

(2]

[5]

[10]

Mike Accetta, Robert Baren, David Golub,
Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A new kernel foundation for
UNIX development. In USENIX Conference
Proceedings, pages 93-113, June 1986.

P. A. Alsberg and J. D. Day. A principle for re-
silient sharing of distributed resources. In Pro-
ceedings of the Second International Conference
on Software Engineering, pages 562-570, Octo-
ber 1976.

Rick Floyd. Directory reference patterns in a
UNIX environment. Technical Report TR 179,
University of Rochester, August 1986.

D. K. Gifford. Weighted voting for replicated
data. In Proceedings of the Seventh Sympo-

sium on Operating Systems Principles, Decem-
ber 1979,

Richard Guy and Gerald Popek. Reconciling
partially replicated name spaces. Submitted
concurrently to Ninth Symposium on Reliable
Distributed Systems, 1990.

Maurice Herlihy. A quorum-consensus repli-
cation method for abstract data types. ACM
Transactions on Computer Systems, 4(1):32-53,
February 1986.

John Howard, Michael Kazar, Sherri Menees,
David Nichols, M. Satyanarayanan, Robert
Sidebotham, and Michael West. Scale and per-
formance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81,
February 1988.

S. R. Kleiman. Vnodes: An architecture for
multiple file system types in sun UNIX. In
USENIX Conference Proceedings, pages 238-
9247, Atlanta, GA, Summer 1986.

Michael McKusick, William Joy, Samuel Leffler,
and R. Fabry. A fast file system for UNIX. ACM
Transactions on Compuler Systems, 2(3):181-
197, August 1984.

D. Stott Parker, Jr., Gerald Popek, Gerard Ru-
disin, Allen Stoughton, Bruce J. Walker, Eve-
lyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. Detection

13

(11]

[12]

[13]

(14]

[15]

of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering,
9(3):240-247, May 1983.

D. M. Ritchie. A stream input-output sys-
tem. ATFT Bell Laboralories Technical Jour-
nal, 63(8):1897-1910, October 1984.

Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Wa Ish, and Bob Lyon. Design
and implementation of the sun network filesys-
tem. In USENIX Conference Proceedings, pages
119-130, Portland, OR, Summer 1985.

Alex Siegel, Kenneth Birman, and Keith
Marzullo. Deceit: A flexible distributed file sys-
tem. Technical Report TR 89-1042, Cornell Uni-
versity, November 1989.

R. H. Thomas. A solution to the concurrency
control problem for multiple copy databases. In
Proceedings of the 16th IEEE Computer Society
International Conference. JEEE, Spring 1978.

Bruce Walker, Gerald Popek, Robert English,
Charles Kline, and Greg Thiel. The LOCUS dis-
tributed operating system. In Proceedings of the
Ninth ACM Symposium on Operating System
Principles, pages 49-70. ACM, October 1983.



