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ABSTRACT

An intensional answer provides characteristics rather than listing all the instances that
satisfy a query. This paper presents a new approach that uses knowledge induction and type
inference to provide intensional answers. Machine learning techniques are used to analyze data-
base contents and induce a set of If-then rules. Database type hierarchies are used to derive the
intensional answers to query. A prototype intensional query processing system that uses the pro-
posed approach has been implemented. Using a ship database as a test bed, we demonstrate the

use of type inference and induced rules to derive specific intensional answers.
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Using Type Inference and Induced Rules to Provide Intensional Answerers

1. Introduction

Conventional database systems provide answers in the form of an enumeration of data-
base instances retrieved from the database. Although such an answer conveys information to the
users, a general description of the answer or summarized or approximate answers are often more
useful. Meta-data of the database such as integrity constraints and semantic rules can be used to
infer information hidden within the database. For example, integrity constraints were used to
improve query processing performance [KING81, HAMMS(] and to derive intensional answers

[MOTR&9].

Type hierarchies specify the subtype and supertype relationships in a database applica-
tion domain and can be used to improve query processing [CHU90] and also to provide an ag-
gregate response to queries [SHUMS8]. Using type hierarchy without database intensional
knowledge can only generate very limited forms of intensional answers. To remedy this prob-
lem, we propose to use knowledge induction to analyze database contents to derive a set of If-
then rules. Based on the type hierarchy, these generated rules can be used to derive much more

specific intensional answers. We shall refer to this process as fype inference.

In this paper, we first present the knowledge-based entity relationship data model to
represent type/subtype and with constraint information. Next, we propose a methodology that
uses knowledge induction techniques to extract useful meta-data from the database. Then, we
present the use of type inference to derive intensional answers. We then describe a framework
and the implementation of our proposed intensional query processing system. Finally, we
present examples that use type inference to derive intensional answers from an example ship da-

tabase.



2. The Knowledge-based (KER) Data Model

To enhance modeling of such capabilities as type hierarchy and knowledge specification,
we introduce a Knowledge-based E-R (KER) model, an extension of the Entity-Relationship

Model [Chen76]. KER provides the following three generic constructs of data modeling:

1. has/with (aggregation) which links an object with another object and specifies a

certain property of the object (e.g., a CLASS has an instructor);

2. isa/with or contains/with (generalization /specialization) which links an object
type with another object type and specifies an object as a subtype of another ob-
ject (e.g., PROFESSOR is-a subtype of PERSON or PERSON contains PROFES-
SOR, STUDENT, and STAFF);

3. has-instance (classification) which links a type to an object that is an instance of

that type (e.g., "John Smith" is an instance of PROFESSOR).

Note that in addition to the semantic constructs provided by most semantic data models, KER
also provides knowledge specification which is represented by the with-constraint information.
Such knowledge specification associated with each database definition is useful for knowledge-

based data processing.

In KER, an entity is a distinctly identified object, for example, a specific person, a depart-
ment, or a course. An entity set is a collection of entities. Each of these entities is distinguished
by a unique identifier. The set of unique identifiers is called the primary key of the entity set. A
relationship specifies the connections between different entities. Conceptually, both entity type
and relationship type can be considered as object type and can be modeled using the has/with

construct. For example, Figure 1 shows an object type SUBMARINE represented in KER.



object type SUBMARINE

has key: Shipld domain: char[10]
has: ShipName  domain: char([20]
has: ShipType domain: char[4]
has: ShipClass domain: char[4]
has: Displacement domain: integer

with Displacement in [2000..30000]
Figure 1. The KER representation of an object type SUBMARINE,
The object type can also be represented mathematically as:
{la,ay ....a,11a1€ Dy,a2€ Dy, a, € D, with ¥ )

where each tuple (a1, @y, ..., a,] is an instance of such a type. Note that each a; defines an attri-
bute of the object type, and D; specifies its attribute domain while ¥ states constraints on the al-
lowable values the tuple can have. An attribute domain can also be an entity type. The system
provides a set of basic domains such as integer, real, string, and date. A more complex domain
can be constructed from these basic domains. For example, we can define a domain AGE on the
basic domain INTEGER with the range {0..200]. A BNF description of the KER model is given
in the Appendix A.

A type hierarchy uses specialization/generalization constructs (isa or contains relation-
ships) to define the subtype and supertype relationships. For example, SSBN (Ballistic Nuclear
Missile Submarine) is a subtype of SUBMARINE, and CLASS-0101 is a subtype of SSBN, and
therefore, a type hierarchy consisting of SUBMARINE, SSBN, and CLASS-0101 is formed (see

Figure 2).
SUBMARINE
SSBN SSN
CLASS-0101 |***®| CLASS-0103 CLASS-0201 |**®**| cLASS-021%

Figure 2. A Type Hierarchy SUBMARINE



A subtype inherits all the properties of its supertypes, unless some of the properties have been
redefined in the subtype. For example, type SUBMARINE has attributes ShipID ,and Ship-
Name, and type SSBN has attribute TypeID and TypeName; subtype CLLASS-0101 will automat-
ically inherit properties ShipID and ShipName from supertype SUBMARINE, and inherit pro-
perties TypeID and TypeName from another supertype SSBN.

A subtype can also be derived from another type by providing a derivation specification.
For example, one can define a subtype SSBN (all the ships with ship type SSBN) of type SUB-
MARINE by specifying:

SSBN isa SUBMARINE with ShipType = "SSBN"

The with-clause defines the derivation specification of the subtype SSBN. It can also be con-

sidered as associating a constraint with this subtype.
The type hierarchy is represented in KER as:
Eqisa E with ¥,
E,isa E with'¥;
E, isa E with'¥,

or alternatively, it can also be represented as:
E contains E 1, E», ..., E, with V.

This definition states that the instances of E can be divided into n disjoint subsets £, Eo, ..., E,,

with the constraint ¥, Each E; is a subtype of E .

To provide a graphical representation of the inter-relationships among the entity
types/subtypes, relationship types, and derivation specification, we can extend the ER diagram
by adding the type hierarchy with constraint representation as shown in Figure 3. A representa-

tion of a ship database schema by the KER Diagram is shown in Figure 4.
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Figure 3. Components of the KER Diagram

/* X isa SUBMARINE, Y isa SONAR */
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Figure 4. Representing the Ship Database Schema in KER Diagram



3. Knowledge Induction

3.1 Database Semantics

To construct the database schema, objects with similar characteristics or properties are
grouped into object types and subtypes. These semantics, referred to as classification semantics
or classification characteristics, are useful in knowledge-based data processing. Table 1
presents an example of the navy battleship characteristics that classify ships into ship types with

different displacement ranges.

Category | Type Type Name Displacement {in tons)
Subsurface SSBN | Ballistic Nuclear Missile Submarine 7250 - 16600
SSN Nuclear Submarine 1720 - 6000
CVN Atiack Aircraft Carrier 75700 - 81600
cv Aircraft Carrier 41900 - 61000
BB Battleship 45000 - 45000
CGN Guided Nuclear Missile Crusier 7600 - 14200
Surface CG Guided Missile Crusier 5670 - 13700
CA Gun Cruiser 17000 - 17000
DDG Guided Missile Destroyer 3370 - 8300
DD Destroyer 2425 - 7810
FFG Guided Missile Frigate 3605 - 3605
FF Frigate 2360 - 3011

Table 1, Classification Characteristics of Navy Batileships

Such characteristics, if maintained in the database, can be useful to provide intensional
answers to queries. These characteristics knowledge are database semantics which are followed
by instances of the database. Using these database instances as training examples, these charac-
teristics are the candidate knowledge that can be derived from the database. To induced this

knowledge, we propose to use a model-based learning methodology.

3.2 Model-based Learning Methodology

The acquisition of knowledge is one of the most difficult problems in the development of
a knowledge-based system. Currently, knowledge acquisition is still largely a manual process
which is very time-consuming. Further, it is often not possible for domain experts to describe

their expertise to others. To remedy this problem, machine learning techniques can be used to



construct the knowledge base. Inductive learning [QUIN79, MICHS83] is a machine learning
technique that has been used in Al research. For a given concept and a set of training examples
representing the concept, it finds a description for the concept such that all positive examples
satisfy and all negative examples contradict the description. One approach is to examine the
training examples to determine which descriptors are most significant in identifying the concept
from other related concepts. This approach recursively determines a set of descriptors that classi-
fy each example and selects the best descriptor from a set of examples based on a statistical esti-
mation or a theoretical information content. The set of examples is then partitioned into subsets
S1, 82, ..., S, according to the values of the descriptor for each example. This technique is recur-
sively applied to each S; until each subset contains only positive examples so that the set of
descriptors describes the example set. Therefore, using the database contents as the set of train-
ing examples, object classification characteristics embedded within the database can be induced
using the rule induction technique. Although the automated approach speeds up the knowledge
acquisition process, it has been used mainly in applications where the size of training examples
is small. For a database that consists a very large volume of data, we need to identify a set of
candidates for rule induction. Since a database schema is created by the designer based on the
semantic characteristics of the application, such semantic characteristics can be used as the can-
didates for rule induction. Therefore, we propose to use machine learning to acquire database

characteristics and use the database schema to guide the rule induction process.

The Knowledge-based Entity Relationship (KER) model will be used to facilitate rule in-
duction. The KER model consists of entity sets and relationship sets. The semantic knowledge
associated with each database are: intra-object knowledge and inter-object knowledge. Intra-
object knowledge defines specific properties of each entity set such as the attribute domains,
value ranges, relationships between attributes, etc., and restricts the allowable instances of an en-
tity set. For example, the displacement of an Attack Aircraft Carrier is in the range of 75,700

tons - 81,600 tons.



The inter-object knowledge specifies the constraints that the instances of a relationship
set must satisfy. For example, the relationship VISIT involves entities of SHIP and PORT and
satisfies the constraint that the draft of the ship must be less than the depth of the port. The
inter-object knowledge can be induced from the interrelationship between SHIP and PORT
linked by the VISIT relationship.

4. Deriving Intensional Answers by Type Inference

A relational database is made up of the extension database (EDB) and the intension data-
base (IDB) [GALL78, NICO78]. The EDB is the set of tuples contained in the relations. It is ex-
pressed in relations over domain values. The IDB is the set of general laws (i.e., meta-data)
about data stored in the EDB. It is expressed in closed well-formed formulas in the first-order

predicate calculus.

An answer to a query is the set of data values that satisfy a qualification specified in the
query. Generally, query answers are retrieved from the EDB. An intensional answer to a query
provides the characterizations of the set of data values that satisfies the query [MOTR&9]. In
many applications, users are satisfied with or prefer to obtain summarized answers rather than
the answers from the EDB. Such summarized or abstract answers can be represented as inten-
sional answers. In the following, we shall show that the rules that we induced from the database

contents can be used for deriving intensional answers,

The intra- and inter-object knowledge specifies the inter-relationships between the data-
base objects which are the essential components of the intensional database. This knowledge
can be induced by our model-based knowledge acquisition methodology. Using these induced
rules and based on the database schema, the condition, and object types specified in the query,
the inference processor derives the intensional answers by traversing the type hierarchies of the
object types as specified in the query. We call this technique fype inference. For example, the
entities SUBMARINE, SSN (Nuclear Missile Submarines), and SSBN (Ballistic Nuclear Missile
Submarines) forms a type hierarchy where the set of SUBMARINES can be divided into two



disjoint subsets: SSBN and SSN. Representing this type hierarchy associated with the induced

rules in KER, we have the intensional knowledge as shown in Figure 5.

SSBN isa SUBMARINE with ShipType = "SSBN"
SSN isa SUBMARINE with ShipType = "SSN”
object type SUBMARINE
has key: Shipld domain; char[20]
has: Displacement domain: integer
with /* x isa SUBMARINE */
if x.Displacement 2 7250 then x isa SSBN
if x.Displacement < 6955 then x isa SSN

Figure 5. A Type Hierarchy with Induced Rules for Submarine.

This knowledge can be used to provide intensional answers to queries that involve SUBMA-

RINE or SSBN type ships.

Intensional answers can be derived by forward inference (Modus Ponens) and backward
inference. Forward inference uses the known facts to derive more facts, i.e., given a rule "if X
then Y", and a fact "X is true", we can conclude "Y" is true. Using forward inference, we can
traverse the type hierarchies of the object types specified in the query based on the query condi-
tion and the with constraints to derive intensional answers. For example, consider a query ask-
ing the submarines with displacement greater than 8,000. Using the intensional knowledge of
Figure 5, We can traverse down from the submarine hierarchy (Figure 4) to derive an intensional
answer "SSBN" since the condition "Displacement > 8000" is subsumed by "Displacement =

7250".

Backward inference uses the known facts to infer what must be true according to the in-
duced rules. For example, given a rule "if x isa SUBMARINE and x.Displacement 2 7250, then
x isa SSBN", and a fact "x isa SSBN", we can conclude that "x.Displacement = 7250" must be

true, otherwise if "x.Displacement" is not true and "x isa SSBN" is true, then we will not have



such induced rule in the knowledge base. The backward inference described here is different
from the backward chaining in logic programming such as PROLOG which uses backward rea-
soning to prove goals. Using backward inference, we can only derive descriptions of a subset of
the extensional answers. For example, there might have some SSBN ships with displacements

less than 7250.

Using forward inference, the intensional answer gives a description of a set of instances
that includes the answers. Therefore, the intensional answers derived from forward inference
characterize a set of instances containing the extensional answer. Using backward inference, the
intensional answer gives only a description of partial answers. There may be other extensional
answers that satisfy the query condition but are not included in the intensional answer derived
from the backward inference. Therefore, the intensional answer derived from backward infer-
ence characterizes a set of answers contained in the extensional answer. The forward and back-

ward type inference can be combined to derive a more specific intensional answer.

5. Intensional Query Processing System
5.1 System Architecture

Let us now describe an intensional query processing system which consists of three com-
ponents: a traditional query processor, an intelligent data dictionary, an inductive learning sub-

system, and an inference processor as shown in Figure 6.

The intelligent data dictionary is a knowledge base containing meta-data which includes
database schema and semantic knowledge. The database schema describes the inter-
relationships among database objects in terms of entities and relationships as specified in the
KER model. Semantic knowledge is the semantic characteristics of the database objects such as
domain ranges, induced semantic rules, etc. Using the rule induction techniques, the inductive
learning subsystem induces semantic rules by analyzing database schema and contents. Based

on the database knowledge stored in the intelligent data dictionary, the inference processor
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derives intensional answers from the given query.

User

Extensional An§wers QUERY Instances
- PROCESSOR
. | EDB
Intensional Ansivers INFERENCE Rules/Schema !
ENGINE
Datab " INTELLIGENT
atabase Scherha DATA ﬁ
DICTIONARY IDB
INDUCTIVE Rules
.E LEARNING Schema
- SUBSYSTEM
Instances

Figure 6. An Intensional Query Processing System

5.2 The Inductive Learning Subsystem (ILS)

Inductive learning involves determining a set of characterizations to classify objects into

similar classes. In this section, we describe our Model-based Inductive Leaming Subsystem

(ILS), detailing the use of database schema to form a classification. The inductive leaming ap-

proach uses database schema information with the following inputs:

- object instances,

- schema describing object types and object hierarchy, and

- criteria to evaluate the quality of a classification.

11



The output is the characterization of classes. In our implementation, the set of object instances
is represented as relations and the database schema is represented in the KER model. The ILS

uses the object hierarchy to generate the classification characteristics for each class.

5.2.1 The Rule Induction Algorithm

We have implemented a prototype of the proposed intensional query processing system
in EQUEL (Embedded QUEL) and C on top of the INGRES system. Rule induction is per-
formed in the ILS which uses the relational operations to generate semantic rules for pairwise at-
tributes. Let us now present the algorithm that induces correlated relationships of the rule

scheme X --> Y for attribute pair (X, Y).

Rule Induction Algorithm.

1. Retrieving (X, Y) value pairs

Retrieve into S the instances of the (X, Y) pair from the database. The

corresponding QUEL statement is:

range of r is relation
retrieve into S unique (r.Y, r.X)
sortbyr.Y

2. Removing inconsistent (X , Y ) value pairs

Retrieve all the (X, Y) pairs that for the same value of X has multiple values of

Y. Let T be the result of this relation.

range of r is relation

range of s is S

retrieve into T unique (8.Y, s.X)
where (r.X =s.X and r.Y !=5.Y)

Then, remove all the (X, Y) pairs that have different ¥ values for the same X

value from S'.

12



range of sis §

rangeof tis T

delete s

where (s.X =t.X and s.Y = t.Y)

Constructing Rules

For each distinct value of Y in §, say y, determine the value range x of X and

create a rule in the form of
if x;<X <x; then Y =y.

A value range is defined as a consecutive sequence of X values that occur in the
database. The rules generated for the the same attribute pair (X, ¥) consist of the

rule set designated by the rule scheme X -->Y. Note that when x; = x», then the

rule reduces to
ifX =x then Y =y,
Pruning the Rule Set

Although storing more rules in the knowledge base provides more opportunities
for inference, it also increases the overhead for storing and searching these rules.
Therefore, when the number of rules generated becomes too large, the system
must reduce the size of rule set. In general, we keep the rules that are satisfied by
many database instances and drop those rules that are satisfied by only a few data-
base instances. We remove these rules from the knowledge base when the
number of instances satisfied is less than a prespecified number N, , which can be
a percentage of the total number of instances of a relation. N, provides a tradeoff
between the applicability of the rules and the overhead of storing and searching

these rules for providing intensional answers.

13



5.2.2 Rule Relations

Since knowledge is induced from the database, it is necessary that knowledge be vound
to the data in some way. Therefore, in our implementation, rules are represented in relations re-
ferred to as rule relations. A database and its associated rule relations can be relocated together.
When the database is used in a location, the associated schema and rules are loaded into the sys-
tem. The rule relations are then converted into the KER representation and stored in the intelli-
gent data dictionary. Rule relations are added to the database as meta-relations. In our represen-
tation, each rule consists of the Lefi-Hand-Side (LHS, also called premise) and the Right-Hand-
Side (RHS, also called consequence) as follows:

LHS --> RHS.

or
if LHS then RHS

Each portion is represented as a conjunctive form which contains one or more clauses as:
if Cr, and ... and C; then Cp

where each C’s is a clause. In our implementation, we only deal with Horn Clause, that is, the
RHS portion contains at most one clause. However, the LHS portion can contain many clauses.

Each clause defines an attribute value range and is represented as an expression in the form:
(lvalue, attribute, uvalue)

where Ivalue is the lower value limit (inclusive) and uvalue is the upper value limit (inclusive) of

the attribute value range which is equivalent to "Ivalue < attribute < uvalue". For example,
(18, Employee.Age, 65)
means that the Employee.Age is in the range 18 to 65; and

("ENGINEER", Employee.Position, "ENGINEER")

14



means that the Employee.Position is equal to "ENGINEER". To store the clauses in relation,
both Ivalue, rvalue, and the attribute are encoded as integers and a mapping between the encod-
ed numbers and the real values are provided in an attribute value mapping relation and a system

table provided by INGRES.

Therefore, each rule is represented as a set of clauses {Cg, Cyr,, ..., Cr, }. The relational

schema of R’ is defined as:
R’ = (RuleNo, Role, Lvalue, AttributeNo, Uvalue).

where RuleNo is an index to the rule relation. Each rule has a unique rule number. Role indi-
cates whether the clause is in LHS (L) or RHS (R). Lvalue and Uvalue are the lower value limit

and upper value limit of the attribute value range of the clause.
For example, given the following rule:
if al <R.A<a2 then RB=bl

where R is a relation and A and B are two attributes of R. The rule relation for this rule is

RuleNo | Role | Lvalue | Att_no | Uvalue
1L 1.00 0 2.00
1| R 1.00 1 1.00

and the attribute value mapping relation is

Att no | Value | RealValue
0 1.00 | at
0 2.00 | a2
1 1.00 | bl

Using the rule relation representation, the knowledge can be relocated to different locations with
the database. The knowledge is stored in the extended data dictionary and used by the inference

engine to derive intensional answers.
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5.3 The Extended Data Dictionary

The extended data dictionary is a knowledge-based data dictionary which includes data-
base schema and semantic knowledge represented in KER. The knowledge representation com-
bines both frame-based and rule-based knowledge representation. The database schema,
describing the inter-relationship between database objects, is represented by frame-based
knowledge representation. Each object type is represented as a frame and the object hierarchy is
represented as a hierarchy of frames. The semantic rules are translated into rule-based

knowledge representation for inference.

6. Intensional Answers Derived From a Ship Test Bed

We shall now use type inference to derive intensional answers. The ship database was
created by the System Development Corporation (now UNISYS) to provide a generic naval data-
base based on [JANE81]. The database is currently running on INGRES on a Sun 3/60 machine.
These examples use the nuclear submarine portion of the database which consists the following

relations (a sample database instance is given in the Appendix C):

SUBMARINE = (Id, Name, Class)

CLASS = (Class, ClassName, Type, Displacement)
TYPE = (Type, TypeName)

SONAR = (Sonar, SonarType)

INSTALL = (Ship, Sonar)

The database consists of five entity types: SUBMARINE, CLASS, TYPE, SONAR,
SONAR_TYPE and one relationship type: INSTALL. The three entity types SUBMARINE,
TYPE, and CLASS form a ship hierarchy and the entities SONAR and SONAR TYPE form
another hierarchy as shown in Figure 4. Each submarine type contains a set of submarine classes
and each submarine class contains a set of submarine instances. For example, Submarines are

divided into two types: SSBN (Ballistic Nuclear Missile Submarine) and SSN (Nuclear Subma-

16



rine). The SSBN ships contain three classes of ships: 0101 (Ohio), 0102 (Benjamin Franklin),

and 0103 (Lafayette), and there are three ships that belong to the ship class 0103 (Lafayette).

Each ship class has its specific characteristics such as displacement, length, beam, etc.

For tactical or strategic reasons, different sonars are installed on different ships. The relationship

INSTALL indicates the sonars installed on the different ships. A textual representation of the

database schema is given in Appendix B.

Applying our knowledge acquisition technique to the ship database generates 17 rules as

shown below (rules are grouped by object types):

(D

)

3

4

SUBMARINE

Rli
Ry
Ra:
R4Z

if SSN623 <1d < SSN635 then x isa C0103
if SSN648 < Id < SSN666 then x isa C0204
if SSN673 <Jd <SSN686 then x isa C0204
if SSN692 </d <SSN704 then x isa C0201

CLASS

1if 0101 < Class <0103 then x isa SSBN

+if 0201 < Class <0215 then x isa SSN

. if Skate < ClassName < Thresher then x isa SSN
. if 2145 < Displacement < 6955 then x isa SSN

. if 7250 < Displacement < 30000 then x isa SSBN

SONAR

R 10 if BQQ-2 < Sonar £ BQQ-8 then x isa BQQ
R y:if BQS-04 < Sonar < BQS-15 then x isa BQS

INSTALL (x isa SUBMARINE and y isa SONAR)

:if SSN582 < x.Jd = SSN601 then y isa BQS
: if SSN604 < x.Jd = SSN671 then y isa BQQ
1 if x.Class =0203 then y isa BQ

+if 0205 < x.Class <0207 then y isa BQQ
:if 0208 < x.Class £ 0215 then y isa BQS
:if y.Sonar = BQS-04 then x isa SSN

These induced rules are used by the inference engine to derive intensional answers.
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Let us consider the following examples:

Example 1: Find the Ids, Names, Classes, and Types of the SUBMARINE with Displacement

greater than 8000.
SELECT SUBMARINE.ID, SUBMARINE.NAME
SUBMARINE.CLASS, CLASS.TYPE
FROM SUBMARINE, CLASS
WHERE SUBMARINE.CLASS = CLASS.CLASS
AND CLASS.DISPLACEMENT > 8000

The extensional answer of the above query is:

id name class | type
SSBN730 | Rhode Island | 0101 | SSBN
SSBN130 | Typhoon 1301 | SSBN

Using forward inference with the induced rule Rg and the definition of SSBN in the database

schema, we derive the following intensional answer:

Ay = "Ship type SSBN has displacement greater than 8000"
which provides a summarized answer for the query.
Example 2: Find the names and classes of the SSBN ships.

SELECT SUBMARINE.NAME, SUBMARINE.CLASS
FROM SUBMARINE, CLASS

WHERE SUBMARINE.CLASS = CLASS.CLASS
AND CLASS.TYPE = "SSBN"

The following is the extensional answer to the above query:

name class
Nathaniel Hale 0103
Daniel Boone 0103
Sam Rayburn 0103
Lewis and Clark 0102
Mariano G. Vallejo | 0102
Rhode Isiand o101
Typhoon 1301

Using backward inference with the induced rule R, the following intensional answer can be

derived for this query:

18



A = "Ship Classes in the range of 0101 to 0103 are SSBN."

Note that ship class 1301 is also a SSBN (see Appendix C), but is not included in the answer.
This is because backward inference is used to derive the intensional answer which yields only a

partial answer. As a result, the answer is incomplete. Note the following rule
Rpew ¢ if x.Class = 1301 then x isa SSBN.

is satisfied only by a single instance. For efficiency reasons, R, is not maintained in the
knowledge base. However, if this rule is maintained by the system, then the derived intensional

answer will be complete.

Example 3: List the names, classes and types of SUBMARINES equipped with sonar BQS-04.

SELECT SUBMARINE.NAME, SUBMARINE.CLASS, CLASS.TYPE
FROM SUBMARINE, CLASS, INSTALL

WHERE SUBMARINE.CLASS = CLASS.CLASS

AND SUBMARINE.ID = INSTALL.SHIP

AND INSTALL.SONAR = "BQS-04"

The extensional answer of the above query is:

name class | type
Bonefish 0215 | SSN
Seadragon 0212 | 8SN
Snook 0209 | SSN
RobertE.Lee | 0208 | SSN

Using forward inference, from rule R 17, we know the ship type must be SSN; and from rule Ry,
we know the sonar type is BQS. Next, using backward inference with the rule R 15, we conclude
that the answers must contain ships with class from 0208 to 0215 (See Figure 4). We therefore

have the following intensional answer:
A; = "Ship type SSN with class 0208 1o 0215 is equipped with sonar BQS-04."

In this example, we combine forward and backward inferences to derive the specific intensional

answer from two object types (SUBMARINE and SONAR) that are related by the INSTALL re-

lation.
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7. Conclusions

In this paper, we present an approach using type inference and induced rules to provide
intensional answers to queries. An inductive learning technique is developed to induce
knowledge from the database contents. Using the induced knowledge, inference can be per-
formed on the type hierarchies to derive intensional answers for queries. An architectural frame-
work of an intensional query processing system consists of an intelligent data dictionary, an in-

ductive learning system, and an inference engine is presented.

A prototype system has been implemented on top of INGRES using a naval ship database
as a test bed. A machine learning technique is used to acquire the rules from database contents.
These rules are stored in rule relations. Forward and backward type inferences can be used indi-

vidually or combined to derive intensional answers.

Our experiments reveal that induced rules can play an important role in type inference in
providing intensional answers. Further, type inference with induced rules is a more effective
technique to derive intensional answers than using integrity constraints when the database sche-

ma has strong type hierarchy and semantic knowledge.
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Appendix A. A BNF definition of the KER Model

We will use the following BNF conventions:

<..> non-terminal symbol

{x} xappears 0 ormore times

[x] xappearsQorl time
x11x21..1xn x1 or x2 or ... or xn

1 literal symbol

A.1 Data Definition Statements

<KER definition> ::=
<domain definitions> |
<object type definitions> |
<type hierarchy definitions>

A.2 Domain Definition Statements

<domain definitions> ::=

<domain definition> {, <domain definition> }

<domain definition> ::=
domain <domain name> is <domain description>

[ <domain sepcification> |
<domain name> ::= identifier

<domain description> ::= <standard domain> | <object domain>
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<standard domain> ::= string | integer | real | date

<domain specification> ::=
<range specification> |

<set specification>

<range specification> ::=

range <lower boundary> <value>’,” <value> <upper boundary>
<lower boundary> ::="["1’(
<upper boundary> ::="]" 1)’

<set specification> ::=

set of ’{’ <value> {, <value> } '}’
<value> ::= identifier | <integer> | <real>
<object domain> ::= <object type name>

<object type name> ::= identifier

A.3 Object Type Definition Statements

<object type definition> ::=
object type <object type name>
<attribute list>

<with constraints>

<attribute list> ;1=

<attribute> {, <attribute> }

<attribute> ;=

has [key] ’:’ <attribute name> domain <domain name>
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<with constraints> 1=

with <constraints>

A.4 Type Hierarchy Definition Statements

<type hierarchy definition> ::=
<object type name> contains <sub-type list>
[ <attribute list> ]

[ <with constraints> ]
<sub-type list> ::=

<object type name> {, <object type name> }
A.5 Constraint Definition Statements

<constraints> ::=

<constraint> {, <constraint> }

<constraint> ::=
<domain range constraint> |

<semantic rule>

<domain range constraint> ::=

<attribute name> in <domain sepcification>

<semantic rule> ::=
<constraint rule> |

<structure rule>

<constraint rule> ;=

if <premise> then <consequence>

<premise> ::=
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<conjuntives>

<conjunctives> ::=

<clause> [ and <clause> }

<clause> ;=

<attribute> <operator> constant

<consequence> ::=

<attribute> ’=" constant

<structure rule> ;=
if <role definitions>
and <conjunctives>

then <variable> isa <object type name>

<role definitions> :: =

<role> { and <role> }
<role> ::= <variable> isa <object type name>

<variable> ::= identifier
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Appendix B. A KER Representation of a Naval Ship Database Schema.
B.1 Domain Definitions

domain: NAME isa CHAR|[20]

domain: CLASS_NAME isa NAME
domain: SHIP_NAME isa NAME

domain: TYPE_NAME isa CHAR[30]
domain: SONAR_NAME isa CHAR[8]

B.2 Object Type Definitions

object type CLASS
has key: Class domain: CHAR[4]
has: Type domain: type
has: ClassName domain: CLASS_NAME
has: Displacement domain: INTEGER

with /* constraint rules */

if "0101" £ Class < "0103" then Type = "SSBN"
if "0201" < Class < "0216" then Type = "SSN"

CLASS contains SSBN, SSNs
Bwith /* x isa CLASS */

if 2145 < x.Displacement < 6955 then x isa SSN
if 7250 < x.Displacement < 30000 then x isa SSBN

object type SUBMARINE
has key: Id domain: CHAR[7]
has: Name domain: SHIP_ NAME
has: Class domain: class

SUBMARINE contains C0101, ..., C1301

object type TYPE

has key: Type domain: CHAR[4]

has: TypeName domain: TYPE NAME
object type SONAR

has key: Sonar domain: CHAR[8]

has: SonarType domain: SONAR-NAME

SONAR contains BQQ, BQS, TACTAS
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with /* x isa SONAR */

if BQQ-2 <x.Sonar £ BQQ-8 then x isa BQQ
if BQS-04 <x.Sonar £ BQS-15 then x isa BQS
if x.Sonar="TACTAS" then x isa TACTAS

ohject type INSTALL
has key: Ship domain: SUBMARINE
has: Sonar domain: SONAR

with /* x isa SUBMARINE and y isa SONAR */

if x.Class = 0203 then y isa BQQ

if 0205 < x.Class < 0207 then y isa BQQ
if 0208 < x.Class £0215 then y isa BQS
if y.Sonar = BQS-04 then x isa SSN
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Appendix C. A Ship Database and Its Induced Rules

A Ship Database:
Relation SUBMARINE

Id Name Class
SSBNT30 | Typioon 1301
SSBN623 | Nathanicl Hale 0103
SSBN629 | Daniel Boone 0103
SSBNG635 | Sam Rayburn 0103
SSBN644 | Lewis and Clark 0102
SSBN658 | Marano G. Vallejo | 0102
SSBN730 | Rhode Island 0101
SSNS582 Bonefish 0215
SSN584 Seadragon 0212
SSN592 Snook 0209
SSN601 RobertE. Lee 0208
SSN604 Haddo 0205
SSN610 Thomas A. Edison 0207
SSN614 Greenling 0205
SSN648 Aspro 0204
SSN660 Sand Lance 0204
SSN666 Hawkbill 0204
SSN671 Narwhal 0203
SSN673 Flying Fish 0204
SSN679 Silversides 0204
SSN686 L. Mendel Rivers 0204
SSN692 Omaha 0201
SSN698 Bremerton 0201
SSN704 Baltimore 0201

Relation ITPE
Type TypeName
SoBN | ballistic nuclear missile sub
SSN nuclear submarine
Relation CLASS

Class ClassName Type | Displacement
CI0T | Ohio SSBN 16600
0102 | Benjamin Franklin SSBN 7250
0103 | Lafayette SSBN 7250
0201 | LosAngeles SSN 6000
0203 | Narwhal SSN 4450
0204 | Sturgeon SSN 3640
0205 | Thresher SSN 3750
0207 | Ethan Allen SSN 6955
0208 | George Washington | SSN 6019
0209 | Skipjack SSN 3075
0212 | Skate SSN 2360
0215 | Barbel SSN 2145
1301 | Typhoon SSBN 30000
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Relation INSTALL
Ship donar
SSBNI30 | BQQ-2
SSBN623 | BQQ-5
SSBN629 | BQQ-5
SSBN635 | BQS-12
SSBN644 | BQQ-5
SSBN658 | BQS-12
SSBN730 | BQQ-5
SSN582 BQS-04
SSN5&4 BQS5-04
SSN592 BQS-04
SSN601 BQS-04
SSN604 BQQ-2
SSN610 BQQ-5
SSN614 BQQ-2
SSN648 BQQ-2
SSN660 BQQ-5
SSN666 BQQ-8
SSN671 BQQ-2
SSN673 BQS-12
SSN679 BQS-13
SSN686 BQQ-2
SSN692 BQS-15
SSN698 TACTAS
SSN704 BQQ-5
Relation SONAR
Sonar Sonar t ype
BQQ-2 BOQQ
BQQ-5 BQQ
BQQ-8 BQQ
BQS-04 BQS
BQS-12 BQS
BQS-13 BQS
BQS-15 BQS
TACTAS | TACTAS




