Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN INFERENCE TECHNIQUE FOR DISTRIBUTED QUERY
PROCESSING IN A PARTITIONED NETWORK

Wesley W. Chu February 1990
Andy Y. Hwang CSD-900005
Qiming Chen

Rei-Chi Lee

Table of Contents

5.1 Infernece Engine L bbbt s a s s s e s re bbb eneeo v sesmenassrsasesensnesseeresesoes 16D
5.2 A Data Inference EXAMPIEcoccovvceruemmmmmmmecnerroesseeessesssenessossssseseeesoes oo oeeoeoeeemeeseee.. 18
REFERENCE ..ooovmmaie sttt onas amasisssasissssssssssesossoas o s s s sesesesssssseseseseesseseeessoseeeseesseee e 22
APPENAIX A oot sssss et ssessss e st st ettt s et oo e et ee e eseeesese e 24
ADPRIAIX Bu......ooeoirctcrriissisrisss s esce s esssssesssssss5 11 em e oottt et e s seseseenee . 26

An Inference Technique for Distributed Query Processing

in a Partitioned Network*

Wesley W. Chu, Andy Y. Hwang, Qiming Chen and Rei-Chi Lee
Computer Science Department

University of California, Los Angeles
Abstract

A new knowledge-based approach to query processing during network partitions is pro-
posed. The approach uses available domain and summary knowledge to infer inaccessible data
to answer the given query. A rule induction technique is used to extract correlated knowledge -
between attributes from the database contents. This knowledge is represented as rules for data’
inference. Correlated knowledge between attributes may be incomplete; as a result, the inferred
answer may be exact (complete or incomplete) or approximate. To evaluate inference results
under incomplete knowledge, a weaker correctness criterion, called toleration, is introduced.

New algebraic tools are also developed to support such inference,

The architecture of distributed database system with data inference is presented. A pro-
totype distributed database system that uses the proposed inference technique with correlated at-
tributed knowledge from a ship database has been implemented at UCLA. Our experience re-
veals that the proposed rule induction technique is capable of obtaining useful correlated
knowledge for data inference. As a result, data inference can be viewed as virtual replication

and can significantly improve the availability of distributed database during network partitions.

This research is supported by DARPA contract F29601-87-C-0072 and ONR contract N0O0014-88-K(434

1. INTRODUCTION

To improve reliability and response time in distributed database systems, databases are
often partitioned into fragments which are replicated and stored at several sites. Such fragment
replication requires additional communication and processing overhead for maintaining con-
sistency among the replicated copies. Further, due to channel and node failures, a network may
be partitioned into two or more isolated parts. Since fragments may not be fully replicated at all
sites, certain fragments may be inaccessible during network partitions. Most prior work use syn-
tactic information to handle operations during network partitioning which leads to blocking or a
partial operable system [GARC87]. However, in many real time applications, the availability of
data is of primary importance. It is often not acceptable for a site to suspend processing when it
cannot communicate with other sites. Because database attributes are often correlated and con- -
tain redundant information (e.g., salary and rank, ship type and cargo), we propose to use data’
inference technique to infer inaccessible data from accessible dara. Such knowledge-based ap-

proach can greatly increase the availability of distributed database systems.

Knowledge acquisition is a key element for providing successful data inference. In this
paper, we shall first introduce a rule induction technique for knowledge acquisition. Next, we
present the architecture of a DDBMS with data inference and a technique for inference with in-
complete information. Finally, we present the prototype inference system implemented at
UCLA based on the proposed knowledge acquisition and inference technique for a naval ship

database.
2. KNOWLEDGE ACQUISITION BY RULE INDUCTION

Because database attributes are often correlated and contain redundant information, data
inference can be used to infer inaccessible data objects from other accessible and correlated data

objects. In particular, two different levels of correlated knowledge are used for inference. At the

schema level, correlated knowledge between objects is represented as inference paths. Inference
paths suggest proper objects and directions that the system should select for data inference. This
depends on such criteria as : target objects in the query, object availability status, database sche-
ma and degree of correlations between objects. At the instance level, correlated rules are used
to represent their detailed correlations. In our approach, machine learning techniques are used to
induce correlated rules from the database contents. The total space for rule base should be much
smaller than its original data since rules are represented as summarized information. The in-
duced rules represent the current state of the database instance which may contain both static and
dynamic parts of the database characteristics. Static rules such as integrity constraints do not
change while dynamic rules may change as data value updated. However, the induced rules are
less volatile than the original data since rules are summarized as range values such as "If '0209’

< Shipclass < ’0215’ then Sonar = *BQS-4"".

Although different forms of rules may exist in a database, we shall only acquire the pair-
wise relationship among attributes. Relational operations are to generate correlated rules for
pairwise atﬁ'ibutes. To induce rules between attributes X and Y, the method retrieves the in-
stances of the (X,Y) pair from the database, and then selects those pairs that X has unique

corresponding Y value. The acquired rules can then be summarized in the range form :
Rule: if x; <X <x; then Y=y

or in the set form :
Rule : if Xin { x1, X3,...X, } then Y =y

To reduce the size of rule base, we can discard the rules which cover too few pairs of in-
stances. For example, in the ship database, ship name can uniquely determine its ship type.
However, the volume of correlated rules between ship name and ship type are too large since

each rule covers only one pair instance of ship name and ship type. Storing such correlated rules

will require at least the same size as data replication. Further, the overhead of maintaining the
rules will be reduced since such rules are more volatile than others which cover more instance
pairs. We shall use a naval ship database to illustrate the knowledge acquisition approach. The
ship database was created by the System Development Corporation (SDC, now UNISYS) to pro-
vide a fairly realistic naval database based on [JANES81]. For illustration purposes, we use a por-
tion of the ship database which only contains the following relations (the database instances are

given in Appendix A):

SHIP = (Id, ShipName, Class)
TYPE = (Type, ss, TypeName)
CLASS = (Class, Type, MaxSpeed)
INSTALL = (Weapon, ShipId)

The result of applying the rule induction algorithm to an instance of this database is
given in Appendix A. Depending on the database schema, intra-object and inter-object
knowledge can be identified. Intra-object knowledge defines correlated rules between attributes
within one object while inter-object knowledge defines rules between different objects. For in-
stance, correlated rules between ship class and ship type can be categorized as intra-object
knowledge since they represent semantic relationship within the same ship object. On the other
hand, rules about installed weapons on specific ship types can be categorized as inter-object

knowledge since they represent correlation between ship objects and weapon objects.

For intra-object knowledge, the algorithm finds rules about the relationships between
Ship Id and Ship Class; Ship Class and Ship Type; Ship Class and its maximum speed, Ship type
and surface, or subsurface. These rules are fairly stable since the classification of ships into
different classes and types does not change often. Further, shiptype can also be used to deter-
mine whether the ship is a surface or subsurface ship. For inter-object knowledge, we have found

rules indicating that the characteristic of surface or subsurface can also be determined by the

ship’s class. Further, the acquired correlated rules also indicate that certain weapons are only in-

stalled on specific shiptypes or shipclasses.

Due to the limitation of the correlated knowledge between attributes, the rules for infer-
ring the required object may not be complete. For instance, the correlated rules we acquired
does not cover all the pair instances between shiptype and the weapons installed on the ships,
To infer inaccessible objects using such knowledge, several paths may be selected. Each path
may provide partial information and these intermediate results will be extracted or merged to
derive the answer. To accommodate such incompleteness, the conventional semantic notions
and their algebra in the relational model cannot be adopted directly. Therefore, new algebraic
tools are introduced to extract and merge intermediate results to derive inaccessible objects.

They will be discussed in the Section 4.
3. THE ARCHITECTURE OF A DDBMS WITH DATA INFERENCE

A distributed database system with inference capability consists of a query parser and
analyzer, an information module, and an inference system as shown in Fig. 1. Information
module provides allocation and availability information of all the attributes in the system. Infer-
ence system consists of a knowledge base and an inference engine. The correlated knowledge
between attributes is represented as rules and stored in the knowledge base. During normal
operations, queries can be processed by the query processor since all the database fragments are
accessible. When network partition occurs, information module and inference system will be in-
voked if aﬁy of the required attributes is inaccessible. Based on the query operations and corre-
lated knowledge between attributes, inference engine modifies the original query to a new one so
that all the required data for the query is accessible from the requested site. Depending on physi-
cal allocation of the database fragments and domain semantics, the modified query may provide
the exact, approximate or summarized answer of the original query. In the following section, we

shall present data inference technique used in our inference system.

DDBMS with Data Inference

Query Input Information Module

atabase Fragments
Allocation
Availability

Query Parser

i
and
Anal +
et Inference System
Inference Engine
—>
Knowledge Base
DDBMS

Query Output

Figure 1

4. DATA INFERENCE

In this section, we discuss the characteristics of our inference approach. Further, new
algebraic tools are presented to underlie the data modeling and inference semantics involving in-

complete objects.
4.1 Characteristics of Data Inference

We refer to a program, which contains facts (source data) and rules, as a Data Inference
Program (DIP) and refer to the execution of a DIP as a derivation. Our inference approach is
designed to derive inaccessible data objects from other correlated and accessible data objects in
the network. However, due to volatile nature of the network and incompleteness of the correlat-

ed knowledge, our data inference approach is characterized by the following :
(a) Incomplete Knowledge

Our inference approach takes advantage of the correlated knowledge between inaccessible
objects and other accessible objects. To infer the missing data, we start from certain corre-
lated database objects by deriving and merging certain intermediate objects. However, due
to the limitation of the correlated knowledge, the rules for a derivation may be incomplete.
Since the rules may not be fully provided, both intermediate and final results may also be in-
complete. To accommodate incomplete knowledge for data inference, the conventional se-
mantic notions and their algebra in the relational model cannot be adopted directly. There-
fore,. the aigebra of incomplete object reasoning is required to underlie the data modeling
and inference semantics involving incomplete objects. We shall refer to this technique as

open data inference.
(b) Dynamic inference plan

The merging of intermediate results from different derivations may depend on goals, net-

work partition status and response time requirement. Since we cannot predict the availabili-
ty status for each site, it is not reasonable to predefine a complete set of inference paths for
each object. Therefore, execution of Data Inference Program may have to be planned
dynamically. The resulting inference plan consists of a set of paths, each representing a
derivation from certain available data objects to an intermediate or final data inference
result. The data inference is then carried out via those sequential and/or parallel derivations

that are scheduled in the above plan.
(c) Toleration

In logic programming, the correctness of a program execution is determined by testing if the
resultant interpretation satisfies all the rules and facts specified in that program. However,
due to the incompleteness of correlated knowledge, both intermediate and final results may |
be incomplete. Therefore, the execution of an open data inference may not yield a model
containing complete and exact information but rather a rolerant interpretation that contains
partial information. To accommodate this, we introduce a weaker correctness notion, called

loleration, for evaluating the data inference results.
4.2 Open Inference and Reasoning

An open data inference consists of one or more statically or dynamically planned deriva-
tions. Each derivation is the execution of a Data Inference Program. In the following, the alge-
bra of incomplete object reasoning and two levels of correctness criteria are discussed. Formal
descriptions are given in Appendix B. We shall use --> and <-- to represent logical implications,

and — to represent mappings.

4.2.1 Variable Null, Open Range-Object and Valuation

In order to handle incomplete and dynamically reconstructed database objects, we need
to formally distinguish the two types of objects : closed objects which do not contain unknown

components, and open objects which contain unknown components.
Variable Null

The treatment of “incomplete” information in the relational model has been addressed
based on the Closed World Assumption (CWA) and Open World Assumption (OWA) [REIT78].
Under CWA, only the facts expressed by the database are true. Thus, a null may be interpreted
either as an existing but "unknown" fact [CODD79][BISK81], or as a "non-existing” one
[VASS79]{ZANI84][CODDS86]. Under OWA, besides the facts specified in the database, no
further information is available, thus things are left open [RKS 85]{GOTT88][OLA 89]. Since
our goal is to develop a model theory for open inference, we concentrate on the impact of in- |

complete information on the inference process and classify nulls as :
- variable-null uniquely denoted as ’ _’ may be substituted for by different actual values, or
- an actual "non-exist" value, called undefined and denoted as ’ | °.

Open-Range Object

To model database objects formally, the existence of some finite sets of values referred to
as domains is assumed, and the special value ’ |’ (called undefined) is introduced. The product
over domains Dy, Dy,..., Dy, denoted as Dy x D, ... x D,,, is the set of all tuples [xq, Xs,..., X,] such
that Vi e {1,..,n} x; € D;. A relation schema, called a range, consists of a list of attributes Ay,

Aj,....Ap, where each A, is a subset of a domain. Unique Name Assumption (UNA) on attributes

1s assumed.

Tuples and relations are generally called range-objects where an atribute valye is al-
lowed to be * | * or * _ *. The definition of range-objects is given in Appendix B. In general, a
closed range-object is free of variable-nuils. An open range-object contains variable-nulls.
Thus, a tuple is open if at least one of its attribute values is variable-null. A relation is open if it
contains at least one open tuple. An open range-object cannot be compared with other range-
objects. For example, assuming A,B,C are attribute names, we cannot determine whether [A:1,
B:2, C:_] and [A:l, B:2, C:_] are equal since both range-objects are left open, and the
variable-nulls in each tuple may stand for different actual values. To define relationships and
operations on open range-objects, it is necessary to extend the notion of equality to represent
syntactically identical objects. Therefore, we adopt the notion of symbolic equality , denoted as
==, as described in {CODD 86]){GZC 87)[GOTT 88]. Under this notion, all the variable-nulls
represented by the same notation * _ * are symbolically equal. Further, two tuples are symboli- |
cally equal if the values of each attribute are symbolically equal. Two relations are symbolically
equal if their tuples are pairwise symbolically equal.

The notion of closed and open objects is related to the notion of closed formula in logic
programming. A non-closed formula may contain one or more specific variables such as X, Y,
etc. However, in the framework described here, all the unknown components in the open objects

are syntactically specified by the same variable-null notation.
Valuation

In order to define the notion of satisfaction for open data inference, the concept of valua-
tion is introduced. Valuation plays the role of instantiation of variables and variable-nulls by ac-
tual values under attribute type constraints. The formal definition of valuation is given in Appen-
dix B. For instance, as shown below, the relation "SHIP" is a valuation of another relation

"ship" according to the given rule setrl and r2 :

rule rl : IF "BO!” < battle_group < ’B02’ THEN radar = SPS’,
rule r2 : IF "S120°< ship_id < °S150’ THEN battle _group = "B03’,

ship SHIP
ship_id battle_group radar ship_id battle_group radar
S100 BO1 - S100 BO1 SPS
§$122 _ S122 BO3 I

4.2.2 Algebra For Open Inference

Data inference consists of mappings between range-objects. Open data inference in-
volves open range-objects. In order to study its interpretation semantics, appropriate algebraic
tools are required. This includes special set membership and set containment between range ob- -
jects, and the extension of these notions for dealing with open range-objects. We first define the’
sub-tuple relationship between tuples. We say tuple t is the sub-tuple of another tuple t’, denoted
as t <* ', if any attribute value of t either equals to the same attribute value of t’ or is a "non-

exist” (i.e. !). For example, we have the following sub-tuple relationships :

[a,b] <* [a,b,c]
[a,b] <* [a,b,_]
(a,] <*[a,b,_].

The third sub-tuple relationship holds since the first tuple contains the special non-exist
value (i.e.). We then define a special set membership and set containment [CHEN 89a][CHEN
89b], called s-Membership and s-Containment, denoted as € * and c* respectively. The formal
definitions for s-Membership and s-Containment are given in Appendix B. Let t be a tuple and
R be a relation, we say t e * R if t is a sub-tuple of any tuple in R. Further, let R and S be two re-
lations, we say R <* S if every tuple in R is a s-Member of S. In this case, R is also called the

sub-relation of S. For example, given the following relations “shipl" and "ship2", we have

10

shipl ¢* ship2

shipl ship2
ship_id battle_group ship_id battle_group radar
S100 B0l S100 BO1 SPS
S122 BO3 S122 BO3 I
S130 BO1

We call a relation as s-reduced if no other tuple in this relation is the sub-tuple of another
tuple. For the set of s-reduced relations, it can be proved that the c* relationship is reflexive,
transitive, and antisymmetric. We can further show that the set of s-reduced relations form a
partial order lattice under the C* relationship. This property is used to underlie s-union and s-
intersection operations which we used in our inference process. The least upper bound (lub) and -
the greatest lower bound (glb) of two relations under the c* relationship are referred to as their’

s-union (U*) and s-intersection ("*) respectively as illustrated below.

A B A C A B C A
a 1 a 3 a 1 3 a
b 2 c 4 b 2 _
¢ _ 4
R, R, R, U* R, R "* Ry

The above sub-relationships are not restricted to closed range-objects. They also exist
between closed range-objects and open range-objects. In general, a closed object R is a sub-
range-object of another open object S when R is the sub-range-object of all the valuations of S.
Such sub-relationships are definite and thus closed. Relationships associated with open range-

objects may be indefinite or open.

11

Now let us extend the above notions to open range-objects. By using symbolic equality
==, we can develop the notions of open sub-tuple <, open s-Membership € and open s-
Containment <" (see Appendix B). In short, sub-tuple relationship t <* ¢’ is extended to t <° ¢’

by allowing t to contain variable-nulls (i.e.). For example :

(a,_]1<"[ab]. [{a,_]<" [a,_].

Consequently, we can also introduce open s-Membership € * and open s-Containment <"
similar to the s-Membership and s-Containment shown above. Further, the least upper bound
(lub) and the greatest lower bound (glb) of two relations under the <* relationship are referred to
as their open s-union (") and open s-intersection (") respectively. As illustrated in the follow-

ing example, while R is the open s-union result of relations R; and Ry, it also shows R; <" R and

R2 & R:

A B A C A B C

a 1 a 3 a 1 3

b 2 _ 4 b 2 _
_ _ 4

Rl R2 R=R1 UARZ

It is easy to see that <*, € *, C* relationships are special cases of the corresponding open
relationships, and the operations * and ~* are special cases of the corresponding open opera-

tions. In fact, when we say that relation R is openly contained in relation S under <" or " rela-

tionship, we mean that
- S contains R, or
- 8 contains a valuation of R, or

- S contains a partial valuation of R.

12

The reason <" is weaker than C* can be explained as follows : let R and S be two rela-
tions; R " § implies that there exists valuations from R to R’ and from S to S’ such that R’ <*

S’. Conversely, if R <" S does not hold, no such valuations exist.

The notions introduced in this section provide us with the necessary mathematical tools
for handling the interpretation semantics of data inference involving open objects, as shown in

the next section.
4.2.3 Satisfaction and Toleration

An open data inference consists of one or more statically or dynamically planned deriva-
tions. Each derivation is the execution of a Data Inference Program which contains source data

{facts) and rules. The basic actions of a derivation are :
- performing rule based deduction of data,
- updating data to match summary information (knowledge), and
- merging intermediate results,

In logic programming, the model of a program is the interpretation which satisfies all the
rules and facts specified in that program. In open data inference, since rules may not be
sufficient for inducing all the necessary data, both intermediate and final results may be left
open. Since intermediate results can be used as base objects for further inferencing, the base data
objects in a DIP may be open. This requires us to study the interpretation semantics in which

both source and target data may be incomplete.

In our system, a DIP consists of relations and rules (tuple or relation oriented). The in-

terpretation of a DIP is a set of relations R;,..,R,, with the following form :

I={Rj,..,Ry)}

13

An interpretation is closed if it contains only closed relations; an interpretation is open if
it contains at least one open relation. There exist valuation mappings from open interpretations
to closed interpretations. In the following discussions, interpretations are handled at the relation

level rather than at the tuple level.

The inference results can be evaluated in terms of two levels of correctness criteria : sa-
tisfaction and toleration. The notion of satisfaction is usually applied to handle closed objects.
We shall now extend the meaning of satisfaction for open data inference involving open range-
objects. In general, the satisfaction of a possibly open range-object in a DIP by an interpretation
I means I contains an appropriate valuation of that range-object, and all the rules specified in that
DIP are satisfied by that valuation. We denote the notion of satisfaction as I=. (For a formal
definition, see Appendix B.) For example, as shown below, range-object "SHIP" is correctly -
derived from another range-object "ship” based on the rule r. For the given DIP containing

range-object "ship" and rule "r", we say this DIP is satisfied by the interpretation I = {SHIP}.

rule r: IF ’S120° < ship_id £ ’S150° THEN battle_group = "B03’.

ship : SHIP
ship_id battle_group ship_id battle_group
S100 BO1 S100 BO1
S122 _ S122 B03

For a Data Inference Program P and an interpretation I of the above program, we say I is
the model of P iff I I= P. Therefore, (SHIP} is a model of the above DIP.

The execution of an open data inference may not yield a model containing complete and
exact information but rather a tolerant interpretation containing partial information. To accom-

modate this, we introduce a weaker correctness notion, called toleration, denoted as !-. Its formal

14

definition is given in Appendix B. In general, a derivation is tolerated by an interpretation if the
known facts and rules are not violated and there exist valuations of the open objects involved in
the interpretation that makes it satisfy the derivation. Therefore, let P be a data inference pro-

gram and [be an interpretation of P. If I satisfies P, then I tolerates P, that is
I=P->11-P

Now let us observe the following example, where range-object "SHIP," is partially

valuated from another range object "ship," based on the rule r :

rule r: IF 'S120° < ship_id £ *$150" THEN battle_group = *B03’.

Shipl SI"ﬂPl
ship_id battle_group ship_id battle_group
S100 BO1 S100 BO1
S122 . S122 BO3
S300 _ S300

Let I, = {SHIP,} be an interpretation. For the given DIP containing rule r and range ob-
ject ship;, we cannot say that I, satisfies the DIP since I, is still open. However, SHIP, is indeed
a reasonable derivation of ship, although it is still open. In general, when a possibly range-object
in a DIP is tolerated by an interpretation I, then I contains an appropriate partial valuation of that
range-object and the rules in the DIP are not violated. We cannot say interpretation I satisfies
the given DIP since I is still open and may or may not be valuated to satisfy the given DIP. For
instance, in the above example, the execution of the given DIP containing rule r and range object
ship; generates a tolerant interpretation I; = {SHIP,}. We can say range object ship, is tolerant
by the interpretation I, since I; contains an appropriate partial valuation of ship, and I; does not

violate rule r.

15

S. IMPLEMENTATION

In this section, we discuss the implementation of a data inference engine based on the ar-
chitecture proposed in Section 3. An example based on a ship database is also included to illus-

trate the inference process.
5.1 Inference Engine

An experimental data inference system has been implemented for a distributed database
running on a set of Sun 3/60 workstations interconnected by an Ethernet at UCLA. The system
is based on the relational model where all the source and target data objects are relations. The
inference actions are extensions of the relational operations which allow us to build the inference

engine on top of Sybase, a relational database system. Currently, two types of rules are available -

1) Deductive rules specified in terms of relational operations.

2) Correlated rules which are specified as summarized knowledge. This consists of condi-

tion and action parts such as "if *$120’ < ship_id < *S150’ then battle _group = 'BO3"",
Consider the following two derivations proceeded by * :
*DERIVATION select ship_id, type from SHIP, CL.ASS

*DERIVATION CLASS(type) --> INSTALL(weapon)
RULE : IF type in "CG,CV,DD" THEN weapon = 'AAMO1’
RULE : IF type in "SSBN,SSG" THEN weapon = 'ASW07’

The first represents a deductive rule, but is expressed by a view definition, where a natur-
al join is implicit due to the Unique Name Assumption of attributes. The second derivation

represents the inference path from the type attribute in the CLASS relation to the weapon atri-

16

bute in the INSTALL relation. It indicates the correlated knowledge between ship types and the

weapon installed on each type.
The inference system operates in the following way :

2) When a network partition renders required data objects inaccessible, the inference system

develops an inference plan based on the given query, object availability status, database

schema and correlated knowledge stored in the rule base.

b) Data inference is then carried out via the inference plan which consists of a set of derivations
and the execution sequence of those derivations. Each derivation process represents a
derivation from certain available data objects to an intermediate or final data inference

result. Three general types of derivations are implemented in the system :

1) Derive new relation based on certain source relations. It is specified as relational views

and implemented through the view generation mechanism.

2) Valuations of incomplete relations based on summary information and correlated
knowledge. The valuation process is implemented through the relation alteration

mechanism.

3) Combining intermediate results in terms of appropriate system operations (viewed as
meta-rules). The combination of two relations can be implemented similar to relational
outer-join. The usual relation join is not a proper operation for merging intermediate
results since certain open tuples may be dropped during the join operation. Those tu-
ples may be valuated through other derivations or combined with the data obtained

from other derivations.

c¢) Select the required data objects from the final result. In the current implementation, since the

target objects to be inferred are relations, the inference process is designed to infer as much

17

of the missing relations as possible. The required attribute information is then selected from

the final result.
For instance, consider the following derivation :
*DERIVATION class(type) --> instali(weapon)

We first create a temporary relation with all the target values filled by variable-nulls.
Those variable-nuils are then replaced by actual values according to the correlated rules. The
results from different derivations can then be extracted or merged to get the final results. Such a
merging process either replaces open tuples with closed ones in the same relation according to
the correlated rules or it creates a temporary open relation for each derivation, valuates them,

and finally combines them via an s-union operation.
5.2 A Data Inference Example

Consider a distributed database that consists of three database fragments
SHIP(sid,sname,class), INSTALL(sid,weapon), CLASS(class,type,tname) which are stored at
sites LA, SF and NYC respectively. When the site SF is partitioned, the following query cannot

be answered since relation INSTALL is not accessible :
Q1 : " Find the ship names that carry weapon ’AAMO1’ "

Since the target objects are relations, our inference engine needs to make an inference plan,
selecting relevant inference paths for inferring the missing relation INSTALL. We have not yet
implemented a dynamic inference plan. To infer the missing relation, the inference engine
currently exhaustively searches all the derivations in the knowledge base and selects the relevant
derivations. In this example, the following two derivations are used to infer the missing IN-

STALL relation :

18

DERIVATION 1 : select ship_id, type from SHIP, CLLASS
DERIVATION 2 : CLASS(type) --> INSTALL(weapon)

Derivation 1 represents the first type of derivation where deductive rule is expressed by a
view definition. This derivation creates a temporary relation which contains ship_id and type in-
formation. Derivation 2 illustrates the second type of derivations, where derivation is performed
from [type] to [type,weapon]. This derivation also creates a temporary relation with shiptype
and weapon information. While information of shiptype is filled by accessing CLASS object,
weapon information is filled based on the provided correlated rules between shiptype and
weapon. The above two intermediate results are then combined by the third type of derivation,

via open s-union operation, as shown in the following :

R1 va R2 - > INSTALL_INF

ship_id type type weapon ship_id type weapon

The result relation, INSTALL_INF, is used to replace the inaccessible INSTALL rela-
tion. Query Q1 can be answered by joining SHIP relation with the INSTALL INF relation, A

detailed script of the inference process is given in Appendix C,
6. DISCUSSION

To reduce the overhead in maintaining replicated data, it is desirable to minimize the
number of replicas of database fragments yet satisfy the response time and reliability. Since
inference can be view as virtual replication, with data inference, the number of replicas may be
reduced. Further, since the induced rules can be summarized in range values, the total storage
space will be less than full replication. As a result, data inference provides an alternative to data

replication for increasing availability. Therefore, with selective database fragment replication

19

and the use of data inference, the availability of distributed database system can be significandy

improved particularly during network partitioning.

It is well known that the allocation strategy of the database fragments has impact on
response time and reliability. The optimal allocation for normal operations may be different
from that required to provide high availability during network partition. When two database
fragments are often referenced together, allocating them at the same site reduces communication
cost and thus response time. However, from the data inference point of view, allocating two un-
correlated database fragments on the same site and strongly correlated database fragments at
different sites provide higher inferential capability and thus increase virtual replication of that
database fragment. Since locality and correlation may be dependent, we need to consider both

factors in allocating database fragments to different sites in distributed database design.
7. CONCLUSION

A new knowledge-based approach is proposed to improve data base availability for query
processing during network partitions. The approach uses available domain and summary
knowledge to infer inaccessible data to answer the query. A rule induction algorithm is used to
acquire correlated knowledge for data inference application. Since the correlated knowledge
between objects may be incomplete, a weaker correctness criterion is introduced to evaluate the
inference results. New algebraic tools are developed to support such open inference. A proto-
type inference system has been implemented on a network of Sun 3/60 workstations at UCLA.
Our implementation cipcricnce reveals that the proposed rule induction technique is capable of
obtaining useful correlated knowledge for data inference. As a result, data inference can

significantly improve the availability of the distributed database during network partitions.

Acknowledgements

20

The authors would like to thank Brian Boesch of DARPA ISTO for his encouragement

and support for implementing the prototype system. We also thank G. Popek and T. Page of

UCLA for their stimulating discussions.

21

[BISK83]

[CHENS89a]

[CHEN89b]

[CODD79]
[CODDS86]
[GARCE7]

[GOTTS88)

[GZC87)

[JANES1]

[KINGS81]

REFERENCE

Biskup, J, "Foundations of Codd’s Relational Maybe operations”, ACM Transac-

tions on Database Systems, Vol. 8(4) 1983 pp. 608 - 636.

Chen, Qiming "A High Order Logic Programming Framework for Complex Ob-
jects Reasoning”, International Computer Software & Applications Confer-
ence (COMPSAC 89), 1989, USA.

Chen, Qiming & Chu, Wesley "A High Order Logic Programming Language
(HILOG) for NON-INF Deductive Databases", Proc. of 1st International
Conference on Deductive and Object-Oriented Databases, 1989, Japan.

Codd, E. F. "Extending the Database Relational Model to Capture More Mean-
ing", ACM Transactions on Database Systems, Vol. 4(4) 1979 pp. 397 - 434.

Codd, E. F. "Missing Information (Applicable and Inapplicable) in Relational
Databases, SIGMOD RECORD, Vol. 15, no. 4 December 1986.

Garcia-Molina, H. and Abbott, R. K. ‘‘Reliable Distributed Database Manage-
ment’’, Proc. of the IEEE, May 1987, pp. 601-620.

Gottlob, Georg and Zicari, Roberto "Closed World Databases Opened Through
Null Values", Proc. of 14th VLDB Conference 1988, pp. 50 - 61.

Gueting, R. H. Zicari, R. Choy, D. M. "An Algebra for Structured Office Docu-
ments", IBM Almaden Research Report RJ 5559 (56648), San Jose, CA
1987.

Jane's Fighting Ships, Jane’s Publishing Co., 1981.

King, J. J., "QUIST: A system for semantic query optimization in relational da-
tabases,” In proceedings of the 7th International Conference on Very Large
Data Bases (Cannes, Sept. 9-11). IEEE, New York, pp. 510-517.

22

[OLA 89]

[REIT84]

[RKS85]

[VASS79]

[ZANIg84]

Ola, Adegbemiga and Ozsoyoglu, Guitekin, "A Family of Incomplete Relational
Database Models", Proc. of 15th VLDB pp. 23 - 31.

Reiter, R. "Towards a Logical Reconstruction of Relational Database Theory", in
On Conceptual Modeling, pp 191-234, Springer- Verlag Ed ., 1984,

Roth, M. A. Korth, H. F. Silberschatz, "Null Values in Non 1NF Relational Data-
bases"”, Report TR-85-32, University of Texas at Austin, July 1985.

Vassiliou, Y. "Null Values in Database Management : A Denotational Semantics
Approach”, ACM-SIGMOD 1979, pp. 162 - 169.

Zaniolo, C. "Database Relations with Null Values", Journal of Computer and Sys-
tem Science, Vol 28, No. 1, 1984 pp. 142 - 166.

23

Appendix A

The Ship Database and Its Induced Rules:

Relation SHIP Relation CLASS Relanion INSTALL
id name class class type | maxspeed weapon sid

§$101 | Wisconsin co2 Cn | CG 32 SAMOL | S106
5102 | Dale Co3 co3 CG 32 SAMO1 | S107
S103 | America cn Cl1 | cv 30 SAMO2 | S107
5104 | Bamry cu C12 |cv 30 SAMO3 | s107
S105 | Texas Cl12 D02 | DD 34 SAMO3 | s108
5106 | John_Hancock | DO2 D04 | DD k7 SAMO3 | S109
$107 | Peterson D02 DI2 | DDG 34 SAMO3 | Si10
$108 | Nicholson D04 D14 | DDG 28 SAMO3 | s111
S109 | John_Rodgers D12 D1S | DDG 28 SAMO3 | S112
S110 | Paut D14 S02 SS 20 SAMO03 | s113
5111 | Donald_Berry D15 503 SS 20 SAMO3 | S1l4

S112 | Clark D15 SNO2 | SSN 24 AAMO1 | S101
5113 | Thomas_Han D12 SNO3 | SSN 30 AAMOL | S102
S114 | Towa D12 SNO4 | SSN 30 AAMOL | 5103
S115 | John_Hall 502 SN11 | SSBN 24 AAMO1 | S104
2 : llg Rszhmérse s ;gg SN12 | SSBN 24 AAMO1 | 5105
sis | o oNOS 515 SSG 26 ASW02 | S11S
o115 | oo Nod S16 SSG 2 ASW02 | S116
5120 | oo S18 SSG 2 ASWO03 | S116

ta_II SN11

S121 | Batfish SN12 . g | S
$122 | Bluefish S15 ASWO3 | sus
$123 | Adanta S15 ASWO3 | s119
S124 | LaJolla S16 ASWO7 | $120
Lsm Skate S18 ASWOT | S1al
ASWO07 | S122
ASWO7 | S123
Relation TYPE ASWO7 | S124
- mame ASWO07 | S125

type
G surface guided missile carrier
cv surface aircraft carrier
DD surface destroyer
DDG | swface Buided missile destroyer
S8 subsurface | patrol submarine
SSN subsurface | nuclear submarine
SSBN | subsurface | ballistic nuclear missile submarine
SSG subsurface | guided missile submarine

24

Intra-Object Rules
Entity IF THEN

SHIP (1d —> Class) §103 S Id < S1Md Class = C1t

SHIP (Id --> Class) S$106 < Id < 5107 Class = D02

SHIP (Id —> Class) S111 € Id < s112 Class = D15

SHIP (Id ~> Class) 511} € Id S Ss114 Class = D12

SHIP (Id --> Class) S132 s Id < S123 Class = S15

TYPE (Type --> s5) CG S Type < DDG | ss=surface

TYPE (Type --> s8) 8§ £ Type < SSG $3 = subsurface

CLASS (Class --> Type) co2 £ Class £ Co03 Type = CG

CLASS (Class --> Type) C11 £ Class < C12 Type=CV

CLASS (Class --> Type) DIZ < Class € D04 | Type=DD

CLASS (Class --> Type) D12 £ Class < D15 Type = DDG

CLASS (Class --> Type) 502 £ Class < s03 Type 2 8§

CLASS (Class --» Type) SN02 < Class < SNO4 Type = SSN

CLASS (Class --> Type) SNI1 € Class < SNI2 | Type=SSBN

CLASS (Class --> Type) SIS < Class < SI18 | Type=SSG

CLASS (Class --> Maxspeed) | C02 € Class S (03 Maxspeed = 32

CLASS (Class --> Maxspeed) | C1l < Class < CI2 | Maxspeed = 30

CLASS (Class --> Maxspeed) | D02 < Class < DM Maxspeed = 34

CLASS (Class --> Maxspeed) | D14 € Class £ D15 Maxspeed = 28

CLASS (Class --> Maxspeed) | S02 S Chass < 503 Maxspeed = 20

CLASS (Class --> Maxspeed) | SNO3 < Class < SNO4 Maxspeed = 30

CLASS (Class --> Maxspeed) | SN11 € Class < SNi12 | Maxspeed =24

CLASS (Clas --> Maxspeed) | S16 < Class < S18 Maxspeed = 22

Inter-Object Rules
Relationship IF THEN

SHIP{class) --> TYPE(ss) Cco2 S cass £ DIS ss = surface
SHIP(class) -.> TYPE(ss) $02 S class < SNI2 = subsurface
SHIP(class) --> CLASS(type) co2 S dass S CO) type = CG
SHIP(class) --> CLASS(type) Cll € class € CI2 | type=CV
SHIP{class) > CLASS(type) D02 S class £ D4 type =DD
SHIP(class) --> CLASS(type) D12 S ¢cass < DIS type = DDG
SHIP(class) -> CLASS(type) 502 S cass <S03 | type=SS
SHIP(class) --> CLASS(type) SNO2 € cass < SNO4 type = SSN
SHIP(ctass) --> CLASS(type) S§N11 S «class S SN12 type = SSBN
SHIP(class) —> CLASS(type) S15 S class £ SIS type = S8G
CLASS(class) --> TYPE(ss) co2 € cass £ DI ss = surface
CLASS(claws) --> TYPE(ss) S02 S cass X SNI12 | ss=subsurface
CLASS(type) —> INSTALL(weapon) CcG S type S CV weapon = AAMOI
CLASS(type) ~> INSTALL(weapon) | DDG < type < DDG | weapon = SAMO3
CLASS(type) -> INSTALL(weapon) | SSN £ type < SSN weapon = ASW03
CLASS(type) --> INSTALL(weapon) | SSBN < type < SSG weapon = ASWQ7
CLASS(class) --» INSTALL(weapon) | C02 € chass < C12 weapon = AAMO1
CLASS(class) --> INSTALL{weapon) { D04 £ class S DIS weapon = SAMO)}
CLASS(class) --> INSTALL(weapon) | S02 € class £ S02 weapon = ASW02
CLASS(class) --> INSTALL(weapon) | S1S§ € «class < SIS weapon = ASW07
CLASSI(class) --> INSTALL(weapon) | SNO2 < cass <€ SNO4 weapon = ASW03
CLASS(class) --> INSTALL(weapon) | SN11 S cass € SNI2 | weapon = ASWO7

25

Appendix B

Formal Definitions and Algebraic Operations
for Open Inference

Range-Objects
Forarange R=A; x Ay X .. X A,,
a)Vie {1,..n}¢g € Aiu {1} U} t=[Apt, .., At € Ris called a tuple of R
and can be abbreviated as [t;, ..., t,]. The attribute value of t on A; can be denoted as
LA;.
b)Vie {l,..n} ;€ R 5 {1y, ..., t;} R is called a relation.

A closed range-object is free of variable-nulls. An open range-object contains variable-nulls.

Valuation

The set Q of valuation mappings from the set of objects to the set of closed objects are
defined as follows :

(a) For a constant value on attribute A,ae A,a—aec Q.

(b) For a variable x on attribute A, (Vae A)x 5 ae Q.

(c) For a null-variable _ on attribute A, (Vae AU {l})_—ae Q.
(d) For atuple t = [Ay:ty, ..., Apita], ' = [Apty’, ..., Agity '],

Vie {l,..n}t;=2t’e Q ->tot'e Q.

(e} ForarelationR = {t;, .., tp}, Vie {1,..,n} Ite R’ (; o te W)-->RoR'e Q.

Sub-tuple relationship <*

Let t, t’ be tuples with attribute list S and S’, t is the sub-tuple of t’, denoted as t <* ', is
defined as :

t<*t" iff SC8" A VXeS(tX=lvtX=tX)

s-Membership € * and s-Containment C*
Let tbe a tuple and R be arelation te* R iff (3’ e R) t<* t”,
Let R and S be two relations R ¢* § iff (Vte R)te* S. Ris called the sub-relation of S.

26

Open sub-tuple

Lett, t* be tuples with attribute sets S and S’ respectively, t is the sub-tuple of t’, denoted as t
£ t’, is defined as :

"0 M ST AVXe St X==_At'Xz2|v tX=t'Xv tX= 1)

Open s-Membership €~ and s-Containment <
Let t be a tuple and R be arelation, te" R iff (3t’ ¢ R)ts t’.
Let R and S be two relations, R < § iff (Vt e R)te"S.

Satisfaction
Let I be an interpretation. The notion of satisfaction, denoted as I=, is defined as
a)Foratuplet, Il=t if GReDt>1t"'e Q A 'e*R.
Forarelationr, [l=r iff GRe Dr—1r'e Q A ' c*R.

b) For arule h <-- by,....b,, Il=(h <-- by,...,by)
iff for a substitution €y, I I=b;6y, ..., I 1= by8; implies I I=h6.

¢) For a data inference program P, I I= P iff Vpe P (Il=p).

Toleration
Let I be an interpretation. The notion of toleration, denoted as |-, is defined as
a)Foratwplet, Il-t if GRe)t e"R.
Forarelationr,Il-r if GRe Dr<™R.
b) For a rule h <-- by,...,by,
I'l- (h <-- by,...,by) iff I|=(h <-- by,...,by).
c) For a data inference program P,I|- P iff Ype P (I} p).

27

Appendix C

UCLA FAULT TOLERANT DISTRIBUTED DATABASE PROJECT

Expearimental Inference Engine
Varsion 0.0
March 1990

*%% This Database is Distributed at 3 Sites in the Network :
site 1 : LA
site 2 : NYC

site 3 : SF

>> action 1 : select sname from ship,install where install.weapon = "AAMOi;

Wisconsin
Dale
Amarica
Barzy
Taxzas

>> action 2 : turnoff SF

** Site SFr is DOWN !
>> action 3 : select sname from ship, install where install.weapon = "AAMO1l"
** Relation install not available aince natwork partition!

** Site 8F is not accessable.

** Try (1) Automatic, or (2} Interactive Infarence (1/2/m) : 1

** Intermediate Result from Database Access : select sid, type from ship,class

28

8109 DDG
8110 DDG
S111 DDG
8112 DDG
8113 oDG
8114 DDG
8115 88

8116 S8

8117 SSN
S118 SSN
s119 S8N

s122 838G
5123 S8G
5124 858G
S125 S5G

** Intermediate Result from Inference Path : class(type) --> install (weapon)

e . " o - " ——

sid type waapon
8101 cG AAMO1

5102 CG AAMO1

5103 cv AAMO1 .
5104 cv AAMO1

S105 cv AAMO1

S106 DD -

8107 DD -

5108 DD -

S109 DDG SAMO3

S110 DDG SAMO3

$111 DDG SAMO3

Sl1l12 DDG SAMO3

§113 DDG SAMO3

S114 DDG SAMO3

8115 14 -

5116 S8 -

8117 SSN ASW03

S118 SSN ASWO03

S119 SSN ASwWO03

8122 38G ASWO7
$123 S3G ASW07
5124 885G ASWO07
§125 S3G ASWO7

aid type waapon
5101 CcG AAMO1
s102 CG AAMO1
5103 cv AAMO1
5104 cv AAMO1
8105 cv ARMO1
5106 DD -

8107 DD -

29

5109 DDG SAMO3
81190 DDG SAMO3
s111 bDG SAMO3
8112 DDG SAMO3
5113 DDG SAMO03
8114 DRG SAMO3
8115 88 -

5116 ss -

5117 SSN ASWO03
5118 SSN ASWO03
s119 SSN ASW03

s122 SsG ASWO7?
s123 S5G ASWO07?
5124 585G ASWO0?
5125 SSG ASWO0?

- g v e -

** Modified Query : select ship.sname from ship, install_inf where
install inf . weapon = "AAMO1"

-

Wisconsin
Dale
Amarica
Barry
Texas

30

