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Abstract

An architecture for connectionist natural language pro-
cessing is presented, which is based on hierarchically or-
ganized modular subnetworks together with a central lex-
icon of distributed input/output representations. Using
the FGREP method, the backpropagation error signal is
utilized to develop the representations automatically while
the system is learning the processing task. The represen-
tations end up reflecting the properties of the input items
which are most crucial to the task, facilitating excellent
generalization and expectations about possible contexts.
The lexicon can be extended by cloning new instances of
the items, i.e. generating a number of items with the
same properties but with distinct identities. The recurrent
FGREP module, together with a central lexicon, is used
as a basic building block in modeling higher-level natural
language tasks. A single module is used to form case-role
representations of sentences from word-by-word sequential
natural language input. A hierarchical organization of four
modules is trained to produce fully expanded paraphrases
of script-based stories, where unmentioned events and role
fillers are inferred.

1 Introduction

Connectionist models have recently emerged as an alterna-
tive to symbolic modeling in cognitive science. Their ma-
jor appeal is that processing can be learned from examples,
based on statistical regularities in the data. The gradual
evolution of the system performance as it is learning often
resembles human learning in the same task [Rumelhart and
MeClelland, 1987; Sejnowski and Rosenberg, 1987).

The models typically have very little internal structure.
They produce the statistically most likely answer given
the input conditions, in a process which is opaque to the
external observer. This suits well into modeling well-
defined, isolated low-level tasks, such as learning past tense
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forms or pronunciation of words. A plausible approach
for higher-level cognitive modeling would be to compose
the model from several simple submodules, which work
together to produce the higher-level behaviour [Minsky,
1985]. Some of the central issues in this approach are how
the interactions between the modules are organized and
how communication between modules is accomplished.

The modules need to have a common set of terms, a
common language to effectively work together. In a large
system consisting of many modules, with many commu-
nicating pairs, the most efficient way to establish this is
through a global vocabulary, a central lexicon. Communi-
cation between each pair of modules is established by using
the terms from this giobal symbol table, instead of having
a separate set of terms for each communication channel.

In a connectionist high-level model, the communication
(i.e. input/output of each module) could take place using
distributed representations. This is a major advantage of
the connectionist approach in general. Distributed repre-
sentations can reflect the meanings of the concepts they
stand for. Similar concepts have similar representations,
which results in several interesting processing enhance-
ments. Neural network modules can perform their task in
less than perfect conditions, e.g. under noise or damage,
and generalize their processing knowledge into previously
unseen situations and perform reasonably well even when
the input is incomplete or somewhat conflicting,

One way to establish a central, global table of mean-
ingful distributed representations is to compose them be-
forehand from a predefined set of microfeatures [Hinton,
1981; McClelland and Kawamoto, 1986). The microfea-
tures are chosen relevant to the task and the coding is a
way to inject external knowledge into the system. Alter-
natively, the representations can be developed automati-
cally by the system itself while it is learning the process-
ing task. These representations reflect the regularities in
all subtasks, extracted without external supervision [Miik-
kulainen and Dyer, 1988; Miikkulainen and Dyer, 198%a).

This article examines the properties of global distributed
representations of the latter kind, and the prospects of
building models of complex cognitive systems based on
modules communicating with these representations. We
concentrate on natural language processing tasks, where
the lexicon consists of distributed representations of words.
The mechanism of forming global representations with ex-
tended backpropagation (FGREP) is first intreduced in



the context of sentence processing, i.e. in the task of as-
signing roles to sentence constituents. We also show how
the lexicon can be extended by creating several distinct
words with the same properties (e.g. John, Mary, Bill
from the word human).

The FGREP-method is then extended to sequential in-
put. The word representations are developed in the task of
mapping a sequence of input words into the case-role rep-
resentation of the sentence. Finally, we show how an order
of magnitude more complex system can be built from hier-
archically organized recurrent FGREP modules, together
with a central lexicon of words. This system learns to
produce fully expanded paraphrases of script-based input
stories, where unmentioned events are inferred, and un-
specified fillers are inferred. Discussion of the general plau-
sibility of the approach and future prospects concludes the

paper.

2 Methods for forming distributed
representations

Sentence case-role assignment is an example of a cognitive
task which is well suited for modelling with connectionist
systems. Case-role assignment requires taking into account
all the positional, contextual and semantic constraints si-
muitaneously, which is what the connectionist systems are
particularly good at. An important issue is how the input
and output to such systems should be encoded.

In the distributed approach, the input/output items are
represented as different patterns of activity over the same
set of units. Desirable properties achieved are: (1) it is
possible to associate similar items and generalize proper-
ties by sharing the same activity subpatterns, and (2) the
systern is robust against noise and damage [Hinton et al.,
1986).

One approach for forming distributed representation
patterns is semantic microfeature encoding, used e.g.
by McClelland and Kawamoto in the case-role assignment
task [McClelland and Kawamoto, 1986] (see also {Hinton,
1981]). Each concept is classified along a predetermined set
of dimensions such as human-nonhuman, soft-hard, male-
fernale ete. Each microfeature is assigned a processing unit
{or a group of units, e.g. one for each value), and the clas-
sification becomes a pattern of activity over the assembly
of units (figure 1).

This kind of representation is meaningful by itself. It
is possible to extract information just by examining the
representation, without having to have a trained network
to interpret it. Several different systems can directly use
the same representations and communicate using them.

On the other hand, the patterns must be pre-encoded
and they remain fixed. Performance cannot be optimized
by adapting the representations to actual task and data.
Because all concepts must be classified along the same di-
mensions, the number of dimensions becomes very large,
and many of them are irrelevant to the particular concept
{e.g. gender of rock). Deciding what dimensions are ad-
vantageous to use is a hard problem. There is also the
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Figure 1: Semantic microfeature encoding of the
word rock (after [McClelland and Kawamoto, 1986}). A
group of units is assigned to each semantic microfeature.
The units stand for different values (bottom of figure) of
the semantic dimensions (top). Black unit indicates that
the value is on, white off.
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Figure 2: Developing internal representations in
hidden layers. The activity of a single unit in the in-
put layer is propagated through the input weights to the
first hidden layer. The resulting pattern (indicated as grey-
scale values) constitutes the input representation for this
input item. The pattern in the third hidden layer, which
results in a single unit being turned on in the output layer,
is the output representation for that item. These represen-
tations are in general different even if the input and output
items are the same.

epistemological question of whether the process of deciding
what dimensions lo use is justifiable or not. Hand coded
representations are always more or less ad hoc and biased.
In some cases it is possible to make the task trivial by a
clever encoding of the input representations.

Developing internal representations in hidden
layers of a backpropagation network avoids these
problems (see e.g. the family tree example in [Hinton,
1986]). A network of this type usually consists of input,
output and three hidden layers (figure 2). The input and
output layers are localist, i.e. exactly one unit is dedi-
cated to each item. The hidden layers next to the input
and output layers contain considerably fewer units, which
forces these layers to form compressed distributed activity
patterns for the input/output items. Developing these pat-
terns occurs as an essential part of learning the processing
task, and they end up reflecting the regularities of the task
[Hinton, 1986].

This approach does not address the issue of encoding
input/output representations. The systern does not deal
with the representations per se; they develop as a side
effect of modifying the weights to improve the task per-
formance. The patterns are not available outside the net-
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Figure 3: Basic FGREP architecture. The system
consists of a three-layer backpropagation network and an
external, global lexicon containing the input/output rep-
resentations. At the end of each backpropagation cycle,
the current input representations are modified at the in-
put layer according to the error signal. The new represen-
tations are loaded back to the lexicon, replacing the old
ones.

work, and they are not used in communication with the
network. Moreover, since both penultimate layers develop
their activity patterns independently, each item has two
different representations: one as an input and another one
as an output item. These activity patterns are local, in-
ternal processing aids more than input/output representa-
tions which can be used in a larger environment.

In the FGREP approach [Miikkulainen and Dyer, 1988;
Miikkulainen and Dyer, 1989a] the representations are also
developed automatically while the network is learning the
processing task, by making use of the backpropagation
error signal. However, the representations are global in-
put/output to the network and they are stored in an ex-
ternal network (a lexicon), which guarantees unambiguity

and makes communication using these representations pos-
sible.

3 FGREP: Forming Global
Representations with Extended
backPropagation

3.1 Basic architecture

The FGREP mechanism is based on a basic three-layer
backward error propagation network {figure 3). The net-
work learns the processing task by adapting the connection
weights according to the standard backpropagation equa-
tions [Rumelhart ef al., 1986b, pages 327-329]. At the same
time, representations for the input data are developed at
the input layer according to the error signal extended to
the input layer. Input and output layers are divided into
assemblies and several items are represented and modified
simultaneously.

The representations are stored in an external lexicon net-
work. A routing network forms each input pattern and the
corresponding teaching pattern by concatenating the lex-

icon entries of the input and teaching items. Thus the
same representation for each item is used in different parts
of the backpropagation network, both in the input and in
the output.

The process begins with a random lexicon containing no
pre-encoded information. During the course of learning,
the representations adapt to reflect the implicit regularities
of the task. It turns out that single units in the resulting
representation do not necessarily have a clear interpreta-
tion. The representation does not implement a classifica-
tion of the item along identifiable features (as in microfea-
ture encoding). In the most general case, the representa-
tions are simply profiles of continuous activity values over
a set of processing units. This representation pattern as a
whole is meaningful and can be claimed to code the mean-
ing of that word. The representations for words which are
used in similar ways become similar.

3.2 Extending backpropagation to the
representations

Standard backpropagation produces an error signal for
each hidden layer unit. By propagating the signal one
layer further to the input layer, the representations can be
changed as if they were weights on connections coming in
to the input layer.

In a sense, the representation of an item serves as input
activation to the input layer., The activation of an input
unit is identical to the corresponding component in the
representation. In this analogy, the activation function of
an input unit is the identity function and its derivative is
one. The error signal can now be computed for each input
unit as a simple case of the general error signal equation
[Rumelhart et al., 1986b, Eq.14]:

b1 = Zézjwnj- (1)
i

where &, stands for the error signal for unit y in layer z,
and w,;; is the weight between unit { in the input layer
and unit j in the first hidden layer.

Imagine a localist (:th layer before the input layer, with
one unit dedicated to each input item in each assembly.
In this layer at most one unit per assembly is active with
value 1 at any time (the one corresponding to the current
input); the rest of the units have zero activity. Each local-
ist unit is connected to all units in the input assembly with
weights equal to the input representations. Extending the
back propagation weight change to these weights can be
interpreted as changing the representations themselives:

Are = nbyire, (2)

where r.; is the representation component i of item c, 6y,
is the error signal of the corresponding input layer unit
and 7 is the learning rate, Using this analogy, represen-
tation learning is implemented as an ertension of the back
propagation elgorithm. While the weight values are un-
limited, the representation values must be limited between
the maximum and minimum activation values of the units.
The new value for the representation component i of item



¢ is obtained as
rei(t+1) = mazfoy, minfoy, ra(t) +4ra]],  (3)

where o is the lower limit and o, is the upper limit for
unit activation.

Note that the backpropagation “sees” the representa-
tions simply as an extra layer of weights. By separating
the representations from the network and treating them as
global, external objects (instead of local, internal weights)
we can develop a single, concrete representation for each
item. Since the representations adapt according to the
error signal, there is reason to believe that the resulling
representations will effectively code properties of the input
elements which are most crucial 1o the task.

3.3 Reactive training environment

The process differs from ordinary backpropagation in that
both the input and the teaching patterns are changing. An
input pattern is formed by drawing the current representa-
tions of the input items from the lexicon and loading them
into the input assemblies (figure 3). The activity is propa-
gated through the network to the output layer, where the
error signal is formed by comparing the output pattern to
the teaching pattern, which is also formed by drawing the
current representations from the lexicon. The error signal
is propagated back to the input layer, changing weights
and the input item representations along the way. Next
time the same input occurs, the output will be closer to
the same teaching pattern. The modified representations
are now put back to the lexicon, replacing the old cnes and
thereby changing the nert teaching paltern for the same
input. The shape of the error surface is changing at each
step, i.e. backpropagation is shooting at a moving target
in a reactive training environment.

It turns out that as long as the changes made in the
process are small, the process converges nevertheless. The
learning time appears to be about the same as in the or-
dinary case. The modifiable input patterns form an addi-
tional set of parameters which the system can use to learn
the task, The changes in the error surface are a form of
noise (a noisy error signal), which backpropagation in gen-
eral tolerates very well.

4 An example task: Assigning case roles
to sentence constituents

Case-role representation of sentences is based on the the-
ory of thematic case roles [Fillmore, 1968], adapted for
computer modeling in the conceptual dependency theory
[Schank and Abelson, 1977; Schank and Riesbeck, 1981).
In the basic version of the case-role assignment task the
syntactic structure of the sentence is given and consists of
e.g. the subject, verb, object and a with-clause. The task
is to decide which constituents play the roles of agent, pa-
tient, instrument and patient modifier in the act (figure 4).
This requires forming a shallow semantic interpretation of
the sentence.

For example, in The ball hit the girl with the

INPUT: Syntactic Subj, | Verb |Object| With

constituents |ball | hit | girl| dog

LU

Agent | Act | Patient| Instr. | Modif.
- hit | girl | ball| dog

OUTPUT: Case-role
assignmaent

Figure 4: Assigning case roles to sentence con-
stituents. The example sentence is The ball hit the
girl with the dog.

dog, the subject ball is the instrument of the hit-act, the
object girl is the patient, the with-clause, dog, is a mod-
ifier of the patient, and the agent of the act is unknown.
Role assignment is context dependent: in The ball moved
the same subject ball is taken to be the patient. Assign-
ment also depends on the semantic properties of the word.
In The man ate the pasta with cheese the with-clause
modifies the patient but in The man ate the pasta with
a fork the with-clause is the instrument. In yet other
cases the assignment must remain ambiguous. In The boy
hit the girl with the ball there is no way of telling
whether ball is an instrument of hit or a modifier of girl.

In [McClelland and Kawamoto, 1986] the authors de-
scribe a systern which learns to assign case roles to sentence
constituents. The same task with the same data was used
to test FGREP, partly because it provides a convenient
comparison to a systemn using fixed microfeature encoding.
The task was restricted to a small repertoire of sentences
studied in the original experiment. The sentence gener-
ators are depicted in table 1 and the noun categories in
table 2.

The sentence frames and the noun categories are not
visible to the system: they are only manifest in the com-
binations of words that occur in the input sentences. To
do the case-role assignment properly the system has to fig-
ure out the underlying relations and code them into the
representations.

In this particular task, the teaching input is made up
from the input sentence constituents (figure 5). This is by
no means necessary for learning the representations. The
required output of the network could be anything and the
FGREP method would work the same. A discriminatory
or “pigeonholing” task is actually harder than a general
task because of the reactive training effect.

5 Properties of FGREP-representations

5.1 Simulations

The learning is fairly insensitive to the simulation parame-
ters and the system configuration parameters. The on-line
version of backpropagation (weights and representations
are updated after each presentation instead of after each
epoch) without momentum turns out to be the most effi-
cient training method. Best results are obtained by pre-
senting the sentences within each epoch in different ran-



{sen. Sentence Frame

Correct case roles

Category  Nouns

12, The human hit the thing.
13. The human hit the human with the possession.
ig The human hit the thing with the hitter.

hitter hit the thing.

human moved.

human moved the object,
animal moved.

ocbject moved.

. s human ate. agent hunan BAN WOmAN bog girl
2. The human ate the food. agent-patient animal bat chicken dog sheep
3. The human ate the food with the food. agent-patient-modif wolf licn
4. The human ate the food with the utensil. agent-patient-instr| [predator wolf lion
5. The animal ate. agent groy chicken shesp
6. The predatoxr ate the prey. agent-patient ood chzckzn cheese pasta
carxo
7. The human broke the fragileobj. agent-patient utensil fork spoon
8. The human broke the fragileobj with the breaker. agent-patient-instr fragileobj plate window vase
9. The breaker broke the fragileobj. instr-patient hitfer at ball hatchet hammer
10. The animal broke the fragileobj. agent-patient vase Daperwt Iock
11. The fragileobj broke. patien breaker bat ball hatchet hammer

agent-patient
agent-patient-modif
agent-patient-instr
instr-patient

agent-patient
agent-patient
agent-patient
patisn

ga.g-r't rock
possession bat ball hatchet hammer
vase dog doll

bat ball hatchet hammer
pPaperwt rock vase plate
window fork spoon pasta
chease chicken carrot
desk doll curtain
human animal object

object

thing

Table 1: Sentence generators.

Table 2: Noun categories.

The generators are presented as sentence frames, with one to three noun slots. Each slot can be filled with any of the nouns
in the specified category (table 2), and each slot has a predetermined case role. For instance, The human ate the food generates
4 % 4 different sentences, all with the case-role assignment human = agent, food = patient.

dom order, and by gradually reducing the learning rate.
The results reported in the following three sections are
from the run with the learning rate 5 = 0.1 for the first
200 epochs, 0.05 until 500, and 0.025 until 600.

The number of units in the representation and the num-
ber of hidden units are not crucial either: as few as 5 and as
many as 100 were tried. If more hidden units are used, the
task performance and damage resistance improve slightly
and the learning in general is faster. Decreasing the num-
ber of hidden units on the other hand places more pressure
on the representations, and they become more descriptive
faster. In general, the best results are obtained when the
number of hidden units is about half the number of units
in the input layer. In the example simulation, 12 units
were used for each representation and 25 for the hidden
layer. The representation components were initially uni-
formly distributed in the interval [0,1} and the connection
weights within [-1,1]. Figure 5 shows a snapshot of the
simulation after a real-time display on an HP 9000/350
workstation. Of the 1475 sentences produced by the sen-
tence generators, 1439 were used for training and 38 were
reserved for testing.

5.2 Final representations

Starting from random representations, the similarity of
the nouns belonging to the same category first increases
rapidly until the changes begin to cancel out. The catego-
rization is in a dynamic equilibrium (i.e. representations
change but categorization does not improve) while the task
performance improves. The decreasing error signal and
learning rate eventually allow fine tuning the representa-
tions and they converge into a stable, descriptive catego-
rization. Figure 6 displays the final noun representations,
organized according to the categories. With different ini-
tial configurations, the final set of representations would
look different, but the overall similarities of the represen-
tations and the performance of the system would be the

Subject| Verb | Object | WIith s . .
boy it girl ball yntactic constituents
i HIEIE Input layer
Hidden layer
Output layer

: [ § i Teaching pattern
boy hit girl ball c | N
Agent Act Patlent| Instrum | Modlifler ase-role assignment

Figure 5;: Snapshot of basic FGREP simulation. The
input and output layers of the network are divided into as-
semblies, each of which holds one word representation at a
time. Each unit in an input assembly is set to the activity
value of the corresponding component in the lexicon entry.
The input layer is fully connected to the hidden layer and
the hidden layer to the output layer. Connection weights
are omitted from the figure. If the network has successfully
learned the task, each output assembly forms an activity
pattern which is identical to the lexicon representation of
the word that fills that role. The correct role assignment
is shown at the bottom of the display. This pattern forms
the teaching input to the network. Grey-scale values from
white to black are used in the figure to code the unit ac-
tivities in the range [0,1].
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Figure 6: Final representations. The representations for the synonymous words {man, woman, boy, girl}, {fork, spoon}, {wolt,
lion}, {plate, window}, {ball, hatchet, hammer}, {paperwt, rock} and {cheese, pasta, carrot} have become almost identical.

sarne.

Some words belong exactly to the same categories and
consequently occur exactly in the same contexts. They
are indistinguishable in the data and their representations
become identical. {man, woman, boy, girl} forms one such
group, {fork, spoon}, {wolf, lion}, {plate, window},
{ball, hatchet, hammer}, {paperwt, rock} and {cheese,
pasta, carrot} others. If there is at least one difference
in the usage of two nouns, their representations become
different. The discriminating input modifies one of the
representations while the other one remains the same.

Since each noun belongs to several categories its rep-
resentation can be seen as evolving from the competition
between the categories. This is clearest on the part of the
ambiguous nouns chicken and bat, which on one hand
are both animals, but chicken is also food and bat is
a hitter. The representation is a combination of both,
welghted by the number of occurrences of each meaning.
On the other hand, the fact that there is a commeon ele-
ment in two categories tends to make all representations
of the two categories more similar. The properties of one
word are generalized, to a degree, to the whole class.

Note that the categorization of a word in figure 6 is
formed outside the system and is independent of the task,
other categories and other words. The system itself is not
attempting categorization, it iz forming the most efficient
representation of each word for a particular task. Interest-
ingly, if one runs a merge clustering algorithm [Hartigan,
1975) on the representations, the optimal clusters turn out
to be quite similar to the noun categories (figure 7).

Inspection of the representations in figure 6 suggests that
a single unit does not play a crucial role in the classification
of items. The fact that a word belongs to a certain category
is indicated by the activity profile as a whole, instead of
particular units being on or off. The representations are
also extremely holographic. The whole categorization is
visible even in the values of a single unit (figure 8).
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Figure 7: Merge clustering the representations. At
each time step, the clusters with the shortest average Eu-
clidian distance were merged.

hammer
hatchet
vase cheass
ball plate pasta lion man 1.0
0.0 bat window carrot dog wolf woman
M P ra 11 I
L L LI ™ 1
paperwt apoon dall chicken shaep boy
rock ork girl

Figure 8: Categorization by unit 11. The words are
placed on a continuous line [0,1] according to the value of
the last unit in their representations.
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Figure 9: Categorization by units 10 and 11. The
words are mapped on the unit square according to the
values of the last two units in their representations.

Each unit provides a unique perspective into the words,
by coding slightly different properties of the word space.
Combining the values of two units thus provides an even
more descriptive categorization {figure 9), and the com-
plete representation can be seen as a combination of twelve
slightly different viewpoints into the word space.

To obtain insight into this combined categorization, we
first have to map the 12 -dimensional representation vec-
tors into two dimensions. One way to do this is Kohonen’s
self-organizing feature mapping [Kohonen, 1984]. This
method is known to map clusters in the input space to
clusters in the output space. The map is topological, i.e.
the distances in the map are not comparable (more dense
regions are magnified), but the topological relations of the
input space are preserved. The feature map shows the
same clusters that were used in generating the input (fig-
ure 10). Note that the ambiguous nouns chicken and bat
are mapped between their two possible categories animal
and food and animal and hitter, and also vase is mapped
between fragile-obj and hitter,

It is very hard to name the properties which the in-
dividual units are actually coding. In [Hinton, 1986] the
author was able to give interpretation for some of the units
in the hidden layer representation, although he points out
that the systermn develops its own microfeatures, which may
or may not correspond to ones that humans would use
to characterize data. Our results suggest that the micro-
features in the resulting representation in general are not
identifiable. With complex input data, the individual units
will become sensitive to a combination of several features
which is very unlikely to match an established term.
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Figure 10: 2-D Kohonen-map of the representa-
tions. Labels indicate the maximally responding unit in
the 10 x 10 feature map network for each representation
vector. The map was formed in 15,000 epochs, where the
neighborhood radius was decreased from 4 to 1 and the
learning rate from 0.5 to 0.05 in the first 1,000 epochs,
and to zero during the remaining epochs.

5.3 Performance in the task

The performance in the role assignment task was tested
with two test sets. The first one consisted of two sentences
from each generator which had been used in the training,
and the second one consisted of the test sentences which
the network had not seen before. Tables 3 and 4 show the
results for each sentence.

The system learns the correct assignment of most sen-
tences, Note that perfect performance is not possible with
this data, because some of the sentences are ambiguous. In
these cases the system develops an intermediate output be-
tween the two possible interpretations, indicating a degree
of confidence in the choices. One such case is presented in
the snapshot of figure 5. Ball can be either the instrument
of hit or & possession of girl. In mest similar occasions
it is the instrument, and the network develops a slightly
stronger representation in the instrument assembly. The
system also performs poorly with the animal meaning of
bat. Because a vast majority of the occurrences of bat
are hitters, its pattern becomes more representative of
hitter than animal.

5.4 Damage resistance

The robustness of the representations against damage was
tested by eliminating the last n units from each input as-
sembly, These units were fixed at 0.5, the “don’t care”
value. Figure 11 shows the decline in performance as more
and more units are eliminated. The decline is very gradual,
and approximately linear. This is partly due to the general
robustness of hidden-layer networks but also partly due to
the fact that the representation is not coded into specific
microfeature-units, but is distributed over all units in a
holographic fashion. Eliminating a unit means removing



Gen. Input £ < U.10 Egy
1. man ate .

1. girl ate 88 . 068
2. woman ate cheese 190 .018
2. woman ate pasta 160 .018
3. woman ate <chicken pasta 160 .016
3. man ate pasta chicken 100 .021
4, girl ate pasta spoon 100 .023
4. boy ate chicken fork 160 .02b6
5. dog ate 83 .068
6. sheep ate . 82 .066
6. lion ate chicken 97 .037
6. licn ate shesp 98 .034
7. woman broke window 100 .014
7. boy broke plate 100 .014
8. man broke window bat 100 .018
8, boy broke plate hatchet 100 .014
9. Ea exrwt broke vase 100 .023

7 9. ba broke plate 10¢ .028
710. bat broke window €8 .182
10. wol? broke plate 100 .023
11. vase broke 93 .039
1i. window broke 100 024
12. man his asta 100 .009
12. girl hit oy 100 .023
713. nan hit girl hatchet 77 .093
?13. man hit woman hammer 77 .092
14. woman hit  bat hanmer 100 .008
14. girl hit vase bat 100 011
15. hatchet hit pasta 100 .008
15, hammer hit _ vase 100 014
16. man moved 93 .064
16, woman moved 93 .064
17. woman moved plate 100 .010
17. girl moved pasta 100 .010
?18. bat moved 80 .118
18. doE noved 87 .047
19. doll noved 100 .025
19, desk moved 100 .020
Average: 21 .038

Table 3: Performance, familiar sentences.

en. Input Ei <015 Lay
1. boy ate 88 . 066
1. womran ate . a8 .066
2. woman ate chicken 100 .018
2. man ate chicken 100 .018
3. woman ate chicken carrot 1900 .015
3. boy ate carrot pasta 100 .012
4. man ate chicken fork 100 .026
4, woman ate carrot fork 100 .023
6. bat ats 67 .186
5. chicken ate 68 .116
8. wolf ate chicken 98 .036
6. wolt ate sheep 8 .034
7. girl broke plate 100 .014
7. woman broke plate 100 014
8. man broke vase ball 100 .016
8. girl broke vase hatchet 100 .016
9. hammer broke vase 100 .018
9. ball broke vase 100 .018
710, bat broke vase 68 .192
10. dog broke plate o8 .032
11. plate broke 100 .026
11. plate ©broke 100 .026
12. boy hit girl 100 .023
12, girl hit carrot 100 .009
?13. man hit  boy hammer 77 .092
13. boy hit woman doll 100 .026
14. girl hit curtain ball 100 011
14, girl hit sapoon rock 100 .007
15. paperwt hit chicken 100 .014
156, rock hit plate 100 .014
16. boy moved 93 . 054
16, girl moved 93 055
17. man moved window 100 011
17. girl aoved hanmer 100 011
i8. wolt noved 82 .062
18. sheep moved 82 .082
19. paperwt moved 88 .066
19. hatchet moved 98 - .024
Average: 94 . 040

Table 4: Performance, unfamiliar sentences.

The leftmost entry in each row identifies the generator which produced the sentence (referring to table 1). The first figure after
each sentence indicates the percentage of output units whose values were within 0.15 of the correct output value (which ranged
from 0 to 1). The second figure indicates the average error per unit. Ambiguous sentences are marked with “?”. The test sentence
sets are identical to those used in [McClelland and Kawamoto, 1936].

one classification perspective, and these perspectives are
apparently additive.

With a third of the input units removed, the system still
gets 77% of the output within 0.15 of the correct value.
The output patterns are still mostly recognizable at this
level. Note also that even with all input units eliminated,
i.e. without any information at the input layer the system
still performs above chance level. Information about the
input space distribution has been stored in the weights,
and the network produces a best guess, i.e. an average of
all possible outputs.

5.5 Generalization

The term generalization commonly means processing in-
puts which the system has not seen before. In most cases
this means extending the processing knowledge into new
input patterns, which are different from all training pat-
terns. The generalization in FGREP has a different char-
acter. The network never has fo extend ils processing into
very unfamiliar patierns, because the generalization has al-
ready been done on the representations.

If an unfamiliar sentence is meaningful at all, its rep-
resentation pattern is necessarily close to something the
network has already seen. This is because FGREP devel-
ops similar representations for similarly behaving words.

—u—  Familiar
=0 nfamiliar

50

% of output within 0.15

° r y +

4 L] l' |'D 12
Number of damaged units

Figure 11: Damage resistance. The Familiar and Unfa-
miliar data sets are listed in tables 3 and 4. The horizon-
tal axis indicates the number of units eliminated from the
12-unit representation, and the vertical axis indicates the
percentage of output units which were within 0.15 of the
correct value.



For example, the network has never seen The man ate the
chicken with a fork, but its representation is very close
to the familiar sentence The girl ate the pasta with
a spoon, since the representation for girl is equivalent to
man, fork to spoon, and chicken is very much like pasta.
In more general terms, the system can process the word x
in situation S, becanse it knows how to process the word
¥y in situation S, and the words x and y are used similarly
in a large number of other situations.

If the pattern is far from familiar, the sentence cannot
be meaningful in the microworld of the training data. E.g.
The hammer ate the window with the boy would have
a drastically different pattern. Given the experience the
network has about hammers, eating, windows and boys,
this sentence would be very unlikely to occur, and the net-
work would have difficulty processing it. A sentence like
this could not be generated by the sentence generators (ta-
ble 1). It does not belong to the input space the system is
trying to learn, i.e. it makes no sense in the microworld.

As a result, the FGREP system processes both the fa-
miliar and unfamiliar test sentences at the same level of
performance (tables 3 and 4). This is in contrast to sys-
tems using representations with precoded, fixed microfea-
tures, such as McClelland and Kawamoto’s. Even though
two words are equivalent in the input data, their microfea-
ture representations remain different, and the same level
of generalization is much harder to achieve.

An interesting question is, how well FGREP can learn
the representations and how well does it generalize if it is
trained with only a small subset of the input data? This
was tested in a series of simulations. Equal number of sen-
tences from each generator were selected randomly for the
training, including all sentences in the Familiar set and
excluding all in the Unfamiliar set. When a generator pro-
duced fewer sentences than needed, multiple copies were
used.,

The performance as a function of the training set size is
plotted in figure 12. With very small training sets the sys-
tem learns the idiosyncronies of the training sentences, and
generalizes poorly. Generalization improves very fast as
more training data is included. A critical mass is reached
at around eight sentences per generator, which covers ap-
proximately 10% of the input space. At this point the
system gets 96% of the unfamiliar sentence output within
0.15, and adding more training data does not significantly
improve performance.

Even with the very incomplete training data, the final
representations end up reflecting the similarities of the
words very well. Only the fine tuning of the equivalent
words is lost, simply because there are no equivalent words
in the training data. The conclusion is that as long as
the training data constitutes a good statistical sample of
the I/O space, FGREP will develop meaningful represen-
tations. The similarities are more and more coarse the
smaller the training set, because the asymmetries in the
data are coded in. In this particular task and data, a sam-
ple of 10% was large enough to develop meaningful repre-
sentations, which allowed the system to generalize correcily
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Figure 12: Performance as a function of the training
set size. The Familiar and Unfamiliar data sets are listed
in tables 3 and 4. The horizontal axis indicates the number
of sentences per generator that were used in the training,
and the vertical axis indicates the percentage of output
units which were within 0.15 of the correct value. The
networks were trained for 380,000 input sentence presen-
tations with 0.1 learning rate and another 190,000 presen-
tations with 0.05. This is a total of 375 to 15,000 epochs,
depending on size of the training set.

to the last 90% of the input space.

The resuits in figure 12 are actually better than those
presented in tables 3 and 4, because the training data
was selected differently. In the generalization experiment,
the approach was to train the system with all generators
equally. In the baseline simulation (section 5.1), where the
training set was almost complete, the system was effec-
tively trained with the actual senlence distribution. Since
some generators produce 3 different sentences while others
generate 728, different performance figures were obtained
for the two cases. A more appropriate test for the baseline
system is to test it on the complete set of sentences: the
average error is 0.023, while 97% of the input units are
within 0.15 (table 5). Both types of tests will be used in
later sections.

5.6 Creating expectations about possible
contexts

The whole pattern in the input and teaching layers has an
effect on how each input item is modified during the back-
propagation cycle. The context of an input item can there-
fore be defined operationally as the whole input-output
representation.

The representation for an item is determined by all the
contexts where that item has been encountered. Conse-
quently, the lexicon entry for that item is also & represen-
tation of all these conlexts. The more frequent the context,
the stronger is its trace in the representation. When a word
is input inte an FGREP module, a number of expectations
about the context are automatically created at the output
with different degrees of confidence. The expectations of



Subject| Verb | Oblect | With
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Figure 13; Expectations embedded in the word ate.
The bottom layer show the lexicon entry which is closest to
the output generated by the network (Euclidian distance of
normalized vectors). The effect is more pronounced when a
small hidden layer is used. In this example a network with
12 hidden units was trained for 50 epochs with a learning
rate 0.1.

different input words are combined to produce the total
output pattern.

Expectations embedded in a single word are displayed
when that word is used alone as the input (figure 13). The
resulting pattern at the output layer indicates the most
likely context. As can be seen from the figure, the repre-
sentations and the network have captured the fact that a
likely agent for ate is human, patient is food, instrument
is utensil, and that food can be eaten with another food.

Being able to create expectations automatically and cu-
mulatively from the input representations turns out to be
useful in building larger language understanding systems.
The distributed expectations could replace the symbalic
expectations traditionally used in natural langnage con-
ceptual analyzers, e.g. [Dyer, 1983].

6 Cloning synonymous word instances

6.1 Meaning and identity

The FGREP approach is based on the philosophy that the
meaning of a word is manifest in how it is used. Learning a
language is learning the use of the language elements: lan-
guage is a skill. An FGREP representation is defined by
all the contexts where the word has been encountered, and
it determines how the word behaves in different contexts.
The representation evolves continuously as more experi-
ence about the word is gained. In other words, FGREP
extracts the meaning of the word from its use, and encodes
it into the representation.

However, knowledge about the use of the words alone
cannot constitute a complete semantic system. If every
word in our system is defined only in terms of other words,
the system has no grounding. Some words also need to
have sensory content of their own, i.e. a distinct identity,
a referent. Even when modeling natural language process-
ing at a higher level, without direct sensory input, it turns
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Data All | Synon. | E; <015 F,,y
Famihar 75 46 95 038
Unfamiliar | 75 41 94 040
Complete 7 59 97 .023

Table 5: Performance of basic FGREP. The Familiar -
and Unfamiliar data sets are as before, Complete contains
all sentences produced by the generators. The first column
indicates the percentage of correct words out of all output
words, the second shows the percentage for words with
synonyms. The third column indicates the percentage of
output units which were within 0.15 of the correct value,
and the last column shows the average error per output
unit,

out that an approximation of the sensory grounding is nec-
essary to maintain distinct identities for the words.

No two words are used exactly in similar ways in real
world situations, and in principle, the meanings of two
words are always distinguishable by their use. If there
is any difference in the usage, the FGREP process will
develop different representations for the words. An arti-
ficial intelligence system can be exposed only to limited
experience, and keeping the representations separate be-
comes a problem. It is unwieldy to try to generate training
sets which would allow enough differences to develop be-
tween similar word representations. For example, when the
FGREP system reads The boy hit the girl with the
ball (figure 5), it produces an output pattern which is
very close to correct, but it is impossible to tell just by
locking at the patterns at each output assembly, whether
the humans in the actor and patient slots are man, woman,
boy or girl, and whether the instrument/modifier is ball,
hatchet or hammer. Their representations are almost ex-
actly the same.

Word discrimination of the systemn was measured by
finding the closest lexicon representation (in Euclidian dis-
tance) for each output assembly and counting how often
this was the correct one. The results are shown in table 5.

Even though the system has learned the mapping task
very well (97% of the output units within 0.15), it pro-
duces a pattern which is closest to the correct output word
only about 77% of the time. Counting only the words
which have synonyms (i.e. equivalent words such as man,
woman, boy, girl), this is only 59%. The best word dis-
crimination was achieved at around the 100th epoch during
training, when the network had learned the case-role as-
signment task fairly well but the representations had not
yet completely converged, providing for enough differences
to keep the representations separate. Even in the end the
discrimination between synonymous words remains above
chance level, because the training data was not completely
symmetric, and minute differences remain in their repre-
sentations. Also, the generalization networks of figure 12,
which were trained with even more incomplete data, can
separate the words much better.
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Figure 14: Cloning word instances. Instances John,
Mary and Bill are created from the prototype word human.

We arrive at the curious conclusion that the more ex-
tensively the system has experienced the use of the input
itemns, the worse it can keep track of the identities of items
which have similar meaning. It seems necessary to comple-
ment the meaning of the item, as extracted from its use,
with an approximation of its sensory grounding.

6.2 Composing instances from ID and Content

The simplest way to maintain distinct identities for each
word is to designate a subset of representation components
for this purpose. The representation now consists of two
parts: the content part, which is developed in the FGREP
precess and which encodes the meaning of the word, and
the ID part, which is unique for each instance of the same
word (figure 14), The ID part has no intrinsic meaning
in the system, but it distinguishes the word from all other
similar words. The technique can be thought of as an
approximation of sensory grounding, where the ID part
stands for the sensory referent of the word.

Before training, a set of profotype words is selected,
i.e. the words that we later want to make clones of (e.g.
human). During training, the units within the ID part of
the prototype words are set up randomly for each input
presentation, and the network is required to produce the
same ID pattern at its output. In effect, the network is
trained to process any 1D pattern in a prototype word.

After training, a number of separate instances of the
prototype words are created by concatenating a unique ID
with the content part of the developed prototype. These
new words (e.g. John, Mary, Bill) are then added to the
lexicon, and they can be used for input/output. This tech-
nique makes it possible to deal with a large and open-ended
set of semantically equivalent human names, foods, hitters,
etc. without confusing them. This capability seems to be
a prerequisite for modeling symbolic thought and logical
reasoning (section 11.3).

6.3 Performance with cloned synonyms

The technique was tested by developing a prototype word
for each of the word equivalence classes: human for {man,
woman, boy, girl}, utensil for {fork, spoon}, predator
for {woltf, lion}, fragilel for {plate, window}, hitter!
for {ball, hatchet, hammer}, hitter2 for {paperwt,
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Data All | Synon. | E; <0.15 | Eouy
Familiar 96 96 95 .043
Unfamiliar | 97 a8 94 .045
Complete | 97 98 96 .038

Table 6: Performance of FGREP with cloned syn-
onyms. The network was trained with 0.1 learning rate
for 2000 epochs and with 0.05 until 5000, which took ap-
proximately the same time as training without cloning.
The same test sets were used as in table 5. The aver-
age errors are higher partly because the ID components
consisted of extreme values 0 and 1, which are harder to
achieve than midrange values.

rock} and food1l for {cheese, pasta, carrot}. These
words were replaced by their prototype in the training data
and the identical sentences were removed. The new train-
ing set consists of 207 different sentences.

After training, each prototype was cloned to cover the
original vocabulary, choosing binary values for the two ID
units. The resulting set of representations is shown in fig-
ure 15. The representations reflect the categorization like
before, and have the same processing characteristics, How-
ever, the members within each category are now more dis-
tinct.

Using the cloned representations the system is able to
keep the equivalent words separate, as can be seen from
table 6. The error in the output layer has not increased
significantly, but 97% of all output words are now correct,
with 98% of the words with synonyms.

With this particular task and data, the representations
of words in neighboring categories, such as hitterl and
hitter2 become very similar. If the ID-patterns within the
categories are very dissimilar, items are sometimes con-
fused with items in close-by categories having the same
ID-pattern. In other words, there is a danger that the ID
is used as a basis for generalization. This can be avoided
by keeping the ID part small and the ID-patterns different
for different prototypes, e.g. random.

6.4 Extending the vocabulary

The ID technique can be applied to any word in the train-
ing data, and in principle, the number of clones per word
is unlimited, This allows us to tremendously increase the
size of the vocabulary while having only a small num-
ber of semantically different words at our disposal. Even
though in principle each word has a unique meaning, this
allows us to approzimate the meanings of a large number of
words by dividing them into equivalence classes. For exam-
ple, the system can process sentences like Mary ate the
chicken-soup with a silver-spoon and John downed
the lasagna with a plastic—fork, which all have the
same meaning: A human ate food with a utensil.

Figure 16 shows the performance data with an increasing
number of clones for each word. The system was trained
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Figure 15: Final representations {cloned synonyms). The representations for the synonymous words {man, woman, boy,
girl}, {fork, spoon}, {wel?, lien}, {plate, window}, {ball, hatchet, hammer}, {paperwt, rock} and {cheess, pasta, carrot}
were formed by clening a single prototype word. The first two units of the representation were used for the ID.

with the same data as before, but this time all words (ex-
cept the blank) were cloned. In this experiment the ID val-
ues were spaced out evenly in the unit square. Uniformly
distributed random values produced similar, only slightly
weaker results. The space around each ID decreases in-
versely proportional to the number of clones. In other
words, as the number of clones increases, the IDs become
more and more similar, making the discrimination harder.

As can be seen from the figure, discrimination degrades
approximately linearly as a function of clones. With six-
teen different clones represented in 2-unit IDs the system
still produces correct words 93% of the time. This is re-
markable since the number of different seniences grows
polynomially, proportional to the fourth power of the num-
ber of clones. For a single clone, there are 210 different sen-
tences, four clones produce 27,024, sixteen 5,495,040 and
thirty-six clones give us 134,401,680 different sentences.

Cloning word instances is very much like generating new
symbols with the LISP gensym. In addition, the instances
automatically have intrinsic meaning coded in them. The
processing knowledge is separate from the symbols that
can be processed. With linear cost, the system can process
combinatorial number of inputs [Brousse and Smolensky,
1989] in a nontrivial task.

7 Processing sequential input/output:
The recurrent FGREP module

The sentence processing architecture presented in the pre-
ceding sections relies on highly preprocessed input. An
external supervisor determines the syntactic constituents
of each sentence, which is a nontrivial task in itself, and
the sentence is represented in terms of these constituents
in a fixed assembly-based representation.

In this section we show how these requirements can be
relaxed. A recurrent extension of the FGREP architecture
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Figure 16: Word discrimination of basic FGREP
with extended vocabulary. The horizontal axis shows
the number of clones created for each word, and the verti-
cal axis indicates the percentage of correct output words.
The Random -data set consisted of 1000 sentences selected
randomly among the set of all sentences, while the 50 per
generator -data set consisted of an equal number of ran-
domly chosen sentences from each generator. 0.1 learning
rate was used for the first 3,000 training epochs and 0.05
for another 3,000. The error average is not affected by the
number of clones. The average error for the Random -data
set was 0.035, with 97% of the output within 0.15, and for
the 50 per generator -data set 0.040 and 95%.



is presented, allowing us to efficiently deal with sequential
input data. The architecture is used to form case-role rep-
resentations directly from word-by-word sequential natural
language input without the need for preprocessing.

7.1 Encoding constituency in sequences

The system input/output can sometimes be made more
efficient by representing complex data with higher-order
structure as a sequence of constituents. In an assembly-
based representation, the constituents of a complex data
item can be correctly interpreted only in their appropri-
ate assemblies. An assembly must be reserved for each
possible constituent, whether it is actually present in the
input or not. For example, there is an “object” section
and a “with” section in each sentence representation, even
though all sentences do not have these elements. Repre-
sentation structure becomes a serious problem when we
want to scale up and represent, e.g., stories. The number
of different constituents is enormous although only a few
of them are present at any one time. Separate assemblies
have to be reserved for each one of them. This leads to
combinatorial explosion in the size of the representations.

On the other hand, assembly-based representation pre-
serves the high-dimensional relations of the constituents,
because assemblies are role-specific. The relation of a con-
stituent to all other constituents is well-defined as soon as
it is placed in a specific assembly. In many cases the rela-
tions are much simpler and all this representational power
is not needed. For example, information about partial oz-
dering of the elements might be enough.

If there is a plausible way to linearize the data struc-
ture, representing it as a sequence is an efficient solution.
There is no need to represent missing constituents, and
structural information is conveyed by the order of con-
stituents. In other words, I/O of complex data takes place
exactly as in natural language, where complex thoughts
are transformed into a sequence of words for transmission
through the communication channel. Consequently, natu-
ral language input/output is most naturally and efficiently
reptesented in this manner.

7.2 Recurrent FGREP module

In recurrent FGREPF, the extension of FGREP to sequen-
tial input and output, the basic network architecture is
similar to the one proposed in [Elman, 1988; Elman, 1989]
(see also [Jordan, 1986; Servan-Schreiber ef al.,, 1989; 5t.
John and McClelland, 1989]). A copy of the hidden layer
at time step t is saved and used along with the actual in-
put at step t + 1 as input to the hidden layer (figure 17).
The previous hidden layer serves as a sequence memory,
essentially remembering where in the sequence the system
currently is and what has occurred before. During learn-
ing, the weights from the previous hidden layer to the hid-
den layer proper are modified as usual according to the
backpropagation mechanism.

The recurrent FGREP module can be used both for
reading a sequence of input items into a stationary out-
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Figure 17: Recurrent FGREP-module. The hidden
layer pattern is saved after each step in the sequence, and
used as input to the hidden layer during the next step,
together with the actual input.
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Figure 18: Snapshot of recurrent FGREP simula-
tion. The system is in the middle of reading The boy
hit the window with the hammer.

put representation, and for generating an output sequence
from a stationary input. In a sequential input network, the
actual input changes at each time step, while the teaching
pattern stays the same. The network is forming a station-
ary representation of the sequence. In a sequentia! outpul
network, the actual input is stationary, but the teaching
pattern changes at each step. The network is producing a
sequential interpretation of its input. The error is back-
propagated and weights are changed at each step. Both
kinds of recurrent FGREP networks are also developing
representations in their input layers.

7.3 Case-role assignment from sequential input

Recurrent FGREP was tested with the same case-role as-
signment task and data as before, with cloning of synony-
mous words. The network architecture is listed in figure 18.
More resources are required to assign case-roles from se-
quential input than were from syntactic constituents. The
hidden layer now serves also as a sequence memory, and
more capacity is needed. The size of the hidden layer was
increased to 75 units. Training times are longer, because
the sequences must be learned also, and backpropagation
is done after each item in the sequence.



Data All'] Synon. | £, < 0.15 [ E,y,
Familiar 96 96 94 042
Unfamiliar | 97 97 94 .043
Complete 97 95 93 .045
Table 7: Average performance with cloned syn-

onyms from sequential input. 0.1 learning rate was
used during the first 1500 epochs, 0.05 until 2000 and 0.025
for another 100 epochs.

The input consists of the actual words of table 1, in-
cluding words the and with. Word by word, the represen-
tations are fetched from the lexicon and loaded into the
single input assembly. The activity is propagated to the
output layer. The activity pattern at the hidden layer is
copied to the previous-hidden-layer assembly, and the next
word is loaded into the input layer. The case-role represen-
tation of the sentence thus gradually forms at the output.
Each sentence is ended with a period, which has its own
representation in the lexicon. The case-role representation
is complete after the period is input.

The performance figures are presented in table 7. Pro-
cessing sequences does not significantly degrade the perfor-
mance: the system now outputs 95% of the synonymous
words correctly, with 93% of the output values within 0.15.
The representations look very much like in the stationary
case, with the same processing properties.

7.4 Sequential expectations

When the input is sequential, expectations embedded in
the word representations become clearly demonstrated.
The expectations arise in the assemblies for unspecified
case-roles (figure 18). These patterns are averages of all
possible bindings at that point, weighted by how often they
have occurred. When the next word is input, some of the
ambiguities are resolved and correct patterns are formed
in the corresponding assemblies. Often the sentence repre-
sentation is almost complete before the sentence has been
fully input.

In figure 18, the network has read The boy hit the
window, and has unambiguously assigned these words to
the agent, act and patient roles. The instrument and mod-
ifier slots indicate expectations. At this point it is already
clear that the modifier slot is going to be blank, because
only human patients can have modifiers in the data (ta-
ble 1). Most probably an instrument is going to be men-
tioned later, and a strong expectation of a hitter is dis-
played in the instrument slot. If with is read next, a hitter
is certain to foliow, and only the ID part will display an av-
erage pattern. Reading a period next instead would clear
the expectation in the instrument slot, telling the system
that the sentence is complete without this constituent.

The expectations emerge automatically and cumulatively
from the input word representations. This can be used e.g.
to fill in missing input information (section 9.8), or to guess
the meaning of an unfamiliar word (section 10.3).
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John went to Leone's,
John asked the waiter for lobster.

John left a big tip.
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U

John went to Leone's.

The walter seated Jchn,

John asked the waiter for lobster.
Jehn ate a good lobster.

John paid the waiter.

Jehn left a big tip.

John left Leone's,

Figure 19: Generating a full paraphrase of an in-
complete script-based story. This story is an instance
of the fancy-restaurant track of the restaurant script. The
input story is read word by word into the internal repre-
sentation, where all the inferences are made explicit. The
paraphrase is generated word by word from this internal
representation.

8 A composite task: Paraphrasing
script-based stories

The recurrent FGREP modules have been used as building
blocks in more complex cognitive systems. An obvious
task is the scale-up of sentence processing into the next
higher level, e.g. processing stories. The goal here is to
train a neural network system to produce full paraphrases
of incompletely specified script-based input stories. An
example is given in figure 19.

The input story mentions only three events about John’s
visit to Leone’s, A human reader can fill in a number of
events which certainly or most likely must have occurred,
and he can paraphrase the story in more detail. In doing
this, he uses his general experience about events that occur
during a visit to a restaurant.

Schank and Abelson suggested that this kind of knowl-
edge about everyday routines could be organized in the
form of scripts [Schank and Abelson, 1977]. Scripts are
schemas of often encountered, stereotypical sequences of
events, Common knowledge of this kind makes it possi-
ble to efficiently perform social tasks such as visiting a
restaurant, visiting a doctor, traveling by airplane, shop-
ping groceries, attending a meeting, etc. People have hun-
dreds, maybe thousands of scripts at their disposal. Each
script may divide further into established minor variations,
or tracks. For example, there is a fancy-restaurant track,



RESTAURANT SCRIPT
FANCY-RESTAURANT TRACK

Causal Chain: { Roles:

Entering Customer = John
Seating Restaurant = Leona’s
Ordering Food = lobster
Eating Taste = good
Paying Tip = big
Tipping

Leaving

Table 8: Representation of a script-based story as a
causal chain and role bindings.

a fast-food track and a coffee-shop track for the restaurant
script,

In symbolic artificial intelligence a script is represented
as a causal chain of events with a number of open roles
[Schank and Abelson, 1977; Cullingford, 1978; Delong,
1979; Dyer et al., 1987]. A script-based story is an instan-
tiation of the script with specific role bindings (table 8).
Applying knowledge about scripts to a story requires iden-
tifying the relevant script and filling in its roles with the
actual words in the story. Once the script has been recog-
nized and the roles have been instantiated, the sentences
are matched against the events in the seript. Events which
are not mentioned in the story but are part of the causal
chain can be inferred, as well as certain fillers of roles which
were not specified in the story. For example, it is plausi-
ble to assume that John ate the lobster, the lobster tasted
good, etc. The story can then be paraphrased in full from
its representation.

The causal chain is a sum of all restaurant experiences
and remains stable, whereas the role bindings are different
in each application of the script. This distinction suggests
a neural network approach for representing stories. The
causal chain of events is learned from exposure to a number
of restaurant stories, and is stored in the long-term mem-
ory of the network, i.e. in the weights, The role bindings

are represented as activity patterns in role-specific assem-
blies.

9 Connecting the building blocks in
DISPAR

9.1 System architecture

The DISPAR system (DIStributed PARaphraser) [Miik-
kulainen and Dyer, 1989b] consists of two parts (fig-
ures 20 and 21). The first part reads in the story, word
by word, into the internal representation, and the sec-
ond part generates a word-by-word fully expanded para-
phrase of the story from the internal representation. Each
part consists of two recurrent FGREP-modules, one for
reading/producing the word representations and the other
for reading/producing sentence representations. We call
these modules the sentence parser/sentence generator and
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the story parser/story generator networks. During perfor-
mance, the whole system is a chain of four networks, each
feeding its output into the input layer of the next net-
work. The input and output of each network consists of
distributed representations of words, which are stored in a
global lexicon.

9.2 Performance phase

Let us present the system with the first sentence of the ex-
ample story, John went to Leone’s (figure 20). The task
of the sentence parser network is to form a stationary case-
role representation of this sentence, as has been described
in previous sections. Words are input to this network one
at a time, and the representation is formed at the output
layer. After a period is input, ending the first sentence,
the final activity pattern at the output layer is copied to
the input of the story parser network. The story parser
has the same structure as the sentence parser, receiving
a sequence of the sentence case-role representations as its
input, and forming a stationary slot-filler representation of
the whole story at its output layer.

The final result of reading the story is the slot-
filler assignment at the output of the story parser
network., This is the representation of the story in
terms of its role bindings, with two additional assem-
blies specifying the script and the track. The role
assemblies stand for different roles depending on the
script. In our example, the representation consists of
script=restaurant, track=fancy, customer=John, restau-
rant=Laone’s, food=lobstar, taste=good and tip=big.
This technique is making the best use of the fixed-size
assembly-based representation. The assemblies are not
role-specific, but their interpretation varies with the daia.

The internal representation completely specifies the
events of the script. The second part of the system is
trained to paraphrase the story from the internal repre-
sentation. The idea is simply to reverse the process of
reading in.

The story generator network (figure 21) receives the
complete slot-filler representation of the story as its input,
and generates the case-role assignment of the first sentence
of the story as its output. This output is fed into the sen-
tence generator network, which produces the distributed
representation of the first word of the first sentence as its
output. Again, the hidden layer of the sentence generator
network is copied into the previous-hidden-layer assembly,
and the next word is output.

After the last network produces a period, indicating that
it has completed the sentence, the hidden layer of the story
generator network is copied into its previous-hidden-layer
assembly, and the story generator network produces the
case-role representation of the second sentence. The pro-
cess i repeated until the whole story has been output.

9.3 Training phase

A good advantage of the modular architecture can be made
in training these networks (figure 22). The tasks of the
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Figure 20: Networks parsing the story. The figure presents
a snapshot of the simulation after the first sentence of the exam-
ple story has been read. The script and the track have already
been identified and a number of expectations about the role
bindings are active at the output of the story parser. The role
names (R/...) are specific for the restaurant script.
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previous hidden layers are blank during the first output.
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Training configuration.
is trained separately and simultaneously, developing the
same lexicon.

four networks are separable, and they can be trained sep-
arately (e.g. on different machines) as long as compatible
I/O material is used. The networks must be trained simul-
taneously, so that they are always using and developing the
samme representations,

The lexicon ties the separated tasks together. Each net-
work modifies the representations to improve its perfor-
mance in its own task. The pressure from other networks
modifies the representations also, and they evolve slightly
differently than would be the most efficient for each net-
work independently. The networks compensate by adapt-
ing their weights, so that in the end the representations and
the weights of all networks are in harmony. The require-
ments of the different tasks are combined, and the final
representations reflect the total use of the words,

If the training is successful, the output patterns pro-
duced by one network are exactly what the next network
learned to process as its input. But even if the learning
is less than complete, the networks perform well together.
Erroneous output patterns are noisy input to the next net-
work, and neural networks in general tolerate, even filter
out noise very efficiently.

9.4 Training data

The DISPAR system was trained to paraphrase stories
based on restaurant, shopping and travel scripts. There
are three tracks to each script, with four to five open roles.
The story skeletons for each track are listed below, together
with the role bindings.

Words in upper case are prototype words. The actual
stories are formed from these skeletons by specifying the
ID part for each prototype. In the training, the IDs for
these words are assigned randomly for each story, but con-
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sistently throughout the whole story. The test stories were
generated by creating two instances from each prototype.
The system was tested with two test sets: (1) complete
stories, which included all sentences in the skeleton, and
(2) incomplete stories, containing only the three sentences
marked with “**,

RESTAURANT SCRIPT
Slots: script, track, customer, food, restaurant, taste, tip

Fancy-restaurant track

Fillers: $restaurant, $fancy, PERSON,
FANCY-FOOD, FANCY-REST, good,
big/small

PERSOR went to FANCY-REST.*

The waiter seated PERSOFN.

PERSON asked the waiter for FANCY-FOOD.=*
PERSON ate a good FANCY-FOOD.

PERSON paid the waiter.

PERSON left a big/small tip.*

PERSCHE left FARCY-REST.

Coffee-shop-restaurant track

Filiers: $restaurant, $coffee, PERSON,
COFFEE-FOOD, COFFEE-REST, good/bad,
big/small

PERSON went to COFFEE-REST.=*
PERSON zeated PERSON.

PERSON asked the waiter for
COFFEE-FOOD. *

PERSON ate a good/bad COFFEE-FDOD.*
PERSON left a big/small tip.

PERSON paid the cashier.

PERSON left COFFEE-REST.

Fast-food-restaurant track
Fillers: $restaurant, $fast, PERSON,
FAST-FDOD, FAST-REST, bad, none

PERSON went to FAST-REST.=»

PERSON asked the cashier for FAST-FOOD.*
PERSON paid the cashier.

PERSON seated PERSON.

PERSON ate the small FAST-FOOD.=*

The FAST-FOOD tasted bad.

PERSON left FAST-REST.

SHOPPING SCRIPT

Slots: script, track, customer, item, store

Clothing-shopping track
Fillers: $shopping, $clothing, PERSON,
CLOTH-ITEM, CLOTH-STORE

PERSON went to CLOTH-STORE.=*
PERSON looked for good CLOTH-ITEM.=*
PERSON tried on several CLOTH-ITEM.
PERSON took the best CLOTH-ITEM.*
PERSON paid the cashier.

PERSON left CLOTH-STORE.




Electronics-shopping track
Fillers: $shopping, $electronics, PERSON,
ELECTR-ITEM, ELECTR-STORE

PERSON went to ELECTR-STORE.=*

PERSON looked for good ELECTR-ITEM.*
PERSON asked the staff questions about
ELECTR-ITEM.

PERSON took the best ELECTR-ITEM.*
PERSON paid the cashier.

PERSON letft ELECTR-STORE.

Grocery-shopping track
Fillers: $shopping, $grocery, PERSON,
GROCERY-ITEM, GROCERY-STORE

PERSON went to GROCERY-STORE.*
PERSON took a big shopping-cart.
PERSON compared GROCERY-ITEM prices.*
PERSON took several GROCERY-ITEM.=*
PERSON waited in a big line.

PERSON paid the cashier.

PERSON left GROCERY-STORE.

TRAVEL SCRIPT
Slots: script, track, traveler, origin, destination, distance

Plane-travel track
Fillers: $travel, $plane, PERSON,
PLANE-ORIGIN, PLANE-DEST, big

PERSON went to PLANE-ORIGIN.*

PERSON checked-in for a flight to
PLANE-DEST.*

PERSON waited at the gate for boarding.
PERSON got-on the plane.

The plane took-off from PLANE-ORIGIN.
The plane arrived at PLANE-DEST.=*
PERSON got-off the plane.

Train-travel track
Fillers: $travel, $train, PERSON,
TRAIN-ORIGIN, TRAIN-DEST, big/small

PERSON went to TRAIN-ORIGIN.=*

PERSCN bought a ticket to TRAIN-DEST.=»
PERSON got-on the train.

The conductor punched the ticket.
PERSON traveled a big/small distance.
PERSON got-off at TRAIN-DEST.=*

Bus-travel track
Fillers: $travel, $bus, PERSON, BUS-ORIGIN,
BUS~DEST, small

PERSON went to BUS-ORIGIN.=*
PERSON waited for the bus.=*
PERSON got-on the BUS-DEST bus.
PERSON paid the driver.

The bus arrived at BUS-DEST.=*
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PERSON got-off the bus.

The need for the script and track assemblies in the in-
ternal representation is obvious from the data. The script
is used to specify how the patterns in the role assemblies
should be interpreted, i.e. what the roles are. The track is
necessary because the order of events is slightly different
in different tracks. Without seript and track slots it would
be necessary to represent the differences as additional role
bindings, which would be inefficient and unnatural. The
script and track patterns are treated just like words in the
system. Their representations are stored in the lexicon and
modified by FGREP during training.

The restaurant tracks contain some interesting regu-
larities: the food is always good in a fancy-restaurant,
and always bad in a fast-food restaurant. In coffee-shop-
restaurant, the size of the tip correlates with the food:
good food < big tip, bad food & small tip. The system
should be able to use these regularities to fill in unspecified
roles.

9.5 Simulations

The four networks were trained separately and simultane-
ously with compatible I/O data. Each story was processed
as if the networks were connected in a chain, but the out-
put patterns, which are more or less incorrect during train-
ing, were not directly fed into the next network. Instead,
they were replaced by the correct patterns, obtained by
concatenating the current word representations in the lex-
icon. This way each network was trained the same number
of epochs. (For an alternative training method, where the
networks are actually trained on separate machines, see

[Miikkulainen and Dyer, 1989b].)

The learning rate was gradually reduced from 0.1 to
0.0025 over a total of 20,500 epochs (0.1, 0.05 and 0.025 for
5,000 epochs each, then 0.01 for 2,500 epochs, and 0.005
and 0.0025 for 1,500 epochs each). Word representations
consisted of 12 units and each network’s hidden layer of
75 units. Two units were used for the IDs. Most of the
training effort was expended on preparing the system for
the different IDs. Without IDs a satisfactory error level
would have been achieved in about 2,000 epochs.

9.6 Representations

There are very few similarities in the resulting represen-
tations. The vocabulary in the example stories is quite
large and consists mainly of words which have a very spe-
cific use. As a resuit, their representations also become
distinct. Only the words for different types of restaurants,
foods, shops, shopping items and travel destinations are
faintly similar. The system has no trouble keeping the
words separate with this data:

The system learns to output the period quite early in
the training. Very seldom is a sentence produced without
a period in the end. On the other hand, in the early stages
of training, sentences are often ended prematurely with a
period, and after that, only periods are output. This hap-



Network All'| Synon. T E; <0.15 | E,,,
Sentence parser | 99 99 99 .017
Story parser 99 99 96 .023
Story gener 99 99 97 .021
Sentence gener | 99 99 96 .037

Table 9: Average performance of DISPAR networks
with complete input stories, Two instances for each
prototype word were cloned, generating a total of 96 dif-
ferent test stories.

pens because the representation for the period is modified
at the end of every sentence, where reading it in should
have very little effect on the output. Its representation
becomes the most neutral representation, i.e. it contains
many components cloge to 0.5 (see e.g. figure 20). This
representation makes the period a default output when the
network does not know what word to generate next.

The period is treated tn the system just like 6 word, with
a semantic representation of its own, extracted from the
input examples. It seems that this approach could be used
to deal with punctuation in general. The network develops
a representation for each punctuation symbol according to
how it is used. The representation encodes information
about possible contexts, and affects how the rest of the
input is interpreted.

9.7 Role binding

In the performance phase two instances were created from
each prototype word. The set of test stories was put to-
gether from all combinations of the instances, 96 stories al-
together (including the two different versions of tip and dis-
tance for the fancy-food, coffee-shop-food and train-travel
tracks). The performance of the system was tested with
these completely specified stories. Table 9 presents perfor-
mance figures for each network. Even when the networks
are connected in a chain (output of one network feeding
the input of the next), the errors do not cumulate in the
chain. The noise in the input is efficiently filtered out, and
each network performs approximately at the same level.

In the output story, 99% of the words are correct, in-
cluding 99% of the cloned words. In other words, the
systemn produces the right customer, food, store, destina-
tion ete. 99% of the time. Especially interesting is, that
once a role binding (e.g. customer=John) is selected in
an earlier event, even if it is incorrect it is usually main-
tained throughout the paraphrase generation. Thus, DIS-
PAR performs plausible role bindings - an essential task in
high-level inferencing and postulated as very difficult for
PDP systems to achieve [Dyer, 1989)].

9.8 Paraphrasing incomplete stories

The training corpus consisted of complete stories, and the
system was trained to reproduce a story exactly as it was
input. An interesting question is how well the system can
fill in the events of a story which consists of only a few
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Network All T Synon. T E; < 0.15 | Fayg
Sentence parser | 99 99 98 .019
Story parser 96 97 93 .041
Story gener 99 97 97 027
Sentence gener | 99 97 95 .044

Table 10: Average performance of DISPAR net-
works with incomplete input stories. The same set
of stories were used as in table 9, but only the sentences
marked with “*” in the story skeletons were included.

sentences.

The system performs very well in this respect (table 10).
There is very little degradation in performance compared
to the complete stories. Stories of “natural” length, like
our example, are paraphrased correctly to their full extent.
The quality of the food {(good or bad) is inferred if the size
of the tip is mentioned in the story, and vice versa. If
there is not enocugh information to infer the filler for some
role, an activity pattern is produced which is intermediate
between the possible choices. This follows directly from
the tendency to generate expectations.

For example, if the story consists of only the sentence
John went to Leone’s, the food quality can be inferred
(good, because Leone’s is a fancy-restaurant), but an in-
termediate representation develops in the food-slot (fig-
ure 20). In paraphrasing the story it seems as if one of
the possible fancy-foods is chosen at random. This choice
is usually consistent throughout the story, because all sen-
tences are generated from the same pattern in the food-
slot.

In general it seems that a network which builds a station-
ary representation of a sequence might be quite sensitive
to omissions and changes in the sequence. Each input is
interpreted against the current position in the sequence by
combining it with the previous hidden layer. If items are
omitted from the sequence it seems that the systern could
very easily lose track. But this is not the case in the script
reader. The network was trained to always shoot for the
complete output representation, and the hidden layer pat-
tern stabilizes very early in the sequence. Reading subse-
quent input items has very little effect on the hidden layer
pattern, and consequently, omissions are not critical.

Filling in the missing items is a form of generalization.
A similar generalization in a non-sequential network {e.g.
such as described in the earlier sections) would be required
when a number of input assemblies are fixed at 0.5, the
“don’t care” -value. The strong filling-in capability of DIS-
PAR is due to the fact that there is very little variation
in the training sequences. But it is exactly this lack of
variety in the sequence which makes up scripts - they are
stereotypical sequences of events. Interestingly, it follows
that filling in the unmentioned eventls is an easy task for
a sequential network system such as DISPAR.

Once the seript has been instantiated and the role bind-
ings fixed there is no way of knowing which of the events



were actually mentioned in the story. What details are
produced in the paraphrase depends on the training of the
output networks. This result is consistent with psycholeg-
ical data on how people remember stories of familiar event
sequences [Bower et al., 1979). The distinction of what
was actually mentioned and what was inferred becomes
blurred. Questions or references to events which were not
mentioned are often answered as if they were part of the
original story.

9.9 Extensions to script processing architecture

Pronoun reference is not a particularly hard problem in
understanding script-based stories. People do not get con-
fused when reading e.g.: The waiter seated John. He
asked him for lobster. He ate the lobater. The
events in the story are stereotypical and once the role bind-
ing has been done, the reference of the pronoun is unam-
biguous. It should be possible to train the network to deal
with pronouns in the stories. Some of the occurrences of
the referents can be replaced by hae, she or it, and very
likely the representation for these words will develop into
a general actor, food etc.

A mechanism should be developed for representing mul-
tiple scripts and their interactions {e.g. a telephone script
or robbery script occurring within a restaurant script).
One approach would be to use distributed representations
for the roles and the scripts, instead of fixed, designated
assernblies [Dolan and Smolensky, 1989]. Instantiation of a
script would now have the form of a tensor product “cube”
[Dolan, 1989). One face of the cube would stand for the
script and track, one for the role, and one for the filler.
It would be possible to represent multiple simultaneously
active scripts in the same cube. Scripts could be partially
activated and their boundaries would be less rigid.

It might be possible to model learning new scripts and
tracks with a self-organizing system, where often encoun-
tered sequences of events gradually become rigid stereo-
typical memories. It seems that hierarchical feature maps
could be used for this task {Miikkulainen, 1989}. Combin-
ing the feature map mechanism with the current architec-
ture is a very interesting research direction.

10 Towards more advanced models

10.1 Making use of modularity

Most of the parallel distributed processing (PDP) models
have relied on capabilities of homogeneous architectures,
such as simple backpropagation networks. It seems that
in more complex domains, division into subtasks could be
a useful approach [Minsky, 1985; Ballard, 1987; Waibel et
al., 1988].

For example, it might be possible to treat the script
paraphrasing task as a pattern completion problem, and
use a single, flat backpropagation network without teach-
ing at the intermediate levels {see e.g. [Harris and Elman,
1989]). Building the system from hierarchically organized
separable modules provides two major advantages: (1) the
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ystem Time | Words | E; < 0.156 | £y,
DISPAR parsers L5 96 98 022
Single Rec. FGREP | 3.5 91 98 .021
Single Rec. FGREP | 7.5 93 99 013

Table 11: Reducing complexity with hierarchical
modules. The training data consisted of restaurant script
based stories, without IDs. Training time is shown in days
on an HP 9000/350 workstation, Learning rate was 0.1 at
first, and 0.05 after 3.5 days.

task is effectively divided into subgoals, which is an effi-
cient way to reduce complexity [Korf, 1987], and (2) the
system is forced to develop meaningful internal representa-
tions, which can be used by other systems, e.g. a question
answering network,

A simple comparison of hierarchical networks and a
flat network was devised to demonstrate the first point.
The hierarchical system consisted of the parser networks
of DISPAR, with sentence case-role assignment as an in-
termediate representation. The flat network consisted
of a single recurrent FGREP module with 126 hidden
units, giving approximately the same number of connection
weights. Both systems were trained to read script-based
stories word by word into the internal slot filler representa-
tion. The hierarchical system achieved a satisfactory level
of error about twice as fast as the simple system (table 11).
The flat network never reached the same level of correct
output words, although it was trained five times longer
than the hierarchical one.

To be most effective, the division into submodules should
take place in a natural way, based on the properties of the
task. This makes it possible to change the function of the
system in a modular fashion. If the intermediate represen-
tation is meaningful, it is likely that additional modules
can be added to the system with little modification, using
the intermediate level as input or cutput.

In reading and generating stories, the sentence level pro-
vides a natural subgoal. The story networks of DISPAR
contain the general semantic and scriptal knowledge which
is needed for inferencing, while the sentence networks form
the specific language interface. After a story is read into
the internal representation, the only information that is ac-
tually stored are the role bindings. The knowledge about
the events of the script is in the weights of the generator
networks. Different networks can be trained to paraphrase
the story from the same role bindings in a different style
or detail, even in a different language.

Question answering could be implemented as a separate
module which receives as its input the slot-filler represen-
tation of the story, together with the representation of the
question which has been read in sequentially by the sen-
tence parser network. The question answering module gen-
erates a case-role representation of the answer sentence,
which is then output word by word with the sentence gen-
erator network. Using the previous hidden layer of the




System Time | Words | E; < 0.15 | £,y
DISPAR. parsers 1.5 96 98 .022
Without FGREP 1.5 96 99 022

Table 12: Effect of FGREP on training time. The
“Without FGREP” -system uses the final representations
of the DISPAR parsers, without modifying them. The
same training data was used as in table 11,

System Time | Words | £; < 0.15 | E,yy
DISPAR. parsers 1.0 96 97 .025
Full DISPAR 0.7 96 99 014

Table 13: Effect of more modules on training time.
The same training data was used as in table 11, but each
network was trained on separate workstations.

answer-producing network as the context to the question,
context effects on question answering [Lehnert, 1978] could
be modeled. Propagating the question to the slot-filler rep-
resentation could have an effect on the ambiguous slots, i.e.
the questions could modify the memory [Loftus, 1975].

10.2 The role of the central lexicon

Developing the input/output representations in a central
lexicon does not seem to incur an extra cost on the train-
ing time. The lexicon of the hierarchical script reader sys-
tern (section 10.1) was fixed at its final state, and the sys-
tem was trained again from random initial weights without
FGREP. Learning was faster at first, apparently because
meaningful representations made the task easier. But the
fine tuning of performance took longer, because the system
could not modify the representations to its advantage. The
overall learning time turned out to be about the same as
with FGREP (table 12).

Adding more modules to the system, all developing the
same lexicon, does not seem to make learning any harder
either. The parser part of the paraphraser system (4 mod-
ules on 4 workstations) reached a satisfactory level of per-
formance 30% faster than the mere script reader system
(2 modules on 2 workstations) (table 13). Apparently, in
a system with more modules, the representations become
descriptive faster, speeding up the total learning.

In the experiments discussed in this article, the lexicon
consists of word representations - it is a lexicon in the tra-
ditional sense of the word. The lexicon could play the role
of a more general symbol table, containing representations
for hierarchically more complex structures as well. This
is essential in modeling formation of new concepts. A re-
duced description (see e.g [Pollack, 1988]) could be formed
for a complex structure, and placed in the lexicon. A ref-
erence to the structure could be made using this lexicon
entry, and communicated between modules like a word. A
first step into this direction has already been taken in the

DISPAR system. The internal representation for a story
contains script and track slots, which are filled with dis-
tributed representations of the different script and track
types. These representations stand for higher-order strue-
tures (coding information about event order and specific
roles), although they are processed like words by the sys-
tem.

The FGREP representations encode general semantic
knowledge, extracted as regularities over a number of ex-
amples. In a more complex model, other kinds of informa-
tion need to be stored also. For example, we might want to
save representations of specific stories in an episodic mem-
ory. These memories cannot be addressed directly with
a unique index like words in the lexicon. Fach episode
(i.e. story) is different and a unique experience, and the
only handle to the episode is its content. The story mems-
ory must be content-addressable, an associative memory
-type architecture. Possible implementations include Hop-
field networks [Hopfield, 1982], brain state in a box (BSB)
-model [Anderson and Mozer, 1981], Boltzmann machine
[Ackley et al., 1985] and sparse distributed memory [Kan-
erva, 1988]. Some modules in the system, like the gues-
tion answerer, could use both lexicon representations and
the representations from the associative memory as their
input/output. The episodic memory would exhibit inter-
ference effects from similar stories, spurious memories etc.
This is desirable, as long as the memory errors are plausi-
ble in terms of human performance.

10.3 Extending the lexicon

The system could extend its lexicon dynamically when
needed. For example, the word bat has two meanings in
our data, yet the system is trying to code both in a single
representation. There should be a way to recognize a situ-
ation like this and replace bat with two entries, 1ive-bat
and bb-bat. When the word bat is encountered in the
text, a choice must be made on which of the representa-
tions to access. The expectations generated by the network
could be used to outline the representation, and the one
closest to it then fetched from the lexicon.

The same mechanism could be used to acquire new
words. Each time a new word is encountered, a new entry
would be created in the lexicon. Expectations generated
by the network could be used to come up with an initial
guess for the representation. The expectation pattern in
the appropriate slot (specified by the teaching data) is first
matched against the lexicon. If there are no words with a
similar representation, the expectation itself could be used
as the initial pattern for the word. If there is a prototype
close to the expectation pattern, a new instance of that
prototype would be created and assigned to the new word.
Because the expectation for Leone’s (as a new word)
would probably be very much like fancy-restaurant, the
initial lexicon entry for Leone’s would be an instance of
fancy-restaurant.

The initial entry for the new word would be modified
through experience, and it would acquire content of its
own. The instance would gradually become a prototype



itself. Eventually there would be several different fancy
restaurant names in the vocabulary, each with an estab-
lished unique meaning. The original fancy-restaurant rep-
resentation would still be in the lexicon, standing for a
generalized form of these specific instances. This mecha-
nism of learning new words could thus model forming of
subclass hierarchies, i.e. more specific terms from general
terms.

10.4 Cumulative representations

The lexicon representations adapt to the task and data.
If the training data is changed, the representations will
adapt, and reflect the new requirements. What was pre-
viously learned will gradually fade away. In some applica-
tions this is appropriate, but in others (e.g. in learning the
meaning of words) the effect should be mostly cumulative.
The old information should become gradually more rigid.

One possible way to achieve this is to use weights with
different learning rates [Hinton and Plaut, 1987]. Another
possibility would be to let the size of the representation
grow as more data comes in. The fastest learning would
occur in the new area, while older areas changed slower.
New information would be learned in terms of what is al-
ready known. If the input is familiar, the representation
would be changed within the current area and would inter-
fere with the previously learned. If the input is very differ-
ent from the previous ones, new units would be acquired
to prevent unlearning previous information. Periodically
the representation could be reorganized to use the units
more efficiently.

10.5 Implementing control with networks

In our simulations an external symbolic system took care
of the control of execution. Nothing very complicated is
involved in it, and control could well be implemented with
simple networks.

The sensory form of the word (i.e. letters or sound) is
a unique index to its lexicon representation. A network
could be trained to obtain the lexicon entry for each input
word. If the lexicon is implemented as a list of word assem-
blies, the task reduces to activating the correct assembly.
Simple routing networks could copy this pattern to the
appropriate input and teaching assemblies, and transport
the modified representations back into the lexicon. At the
output, a winner-take-all network would select the lexicon
entry which is nearest to the output pattern. Attached to
the lexicon entry there would be a network which outputs
the corresponding sensory form of that word.

In the performance phase of DISPAR, input and output
segmentation is based on the period at the end of each
sentence, Special networks could be trained to recognize
the period, and control the gateways with multiplicative
connections [Rumelhart et al., 1986a; Pollack, 1987].

As soon as the sentence parser has read the period, one
such gating network could open the pathway from the out-
put of the sentence parser to the input of the story parser,
which can then execute one output cycle. Similarly, an-
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other gating network would recognize the period at the
output of the sentence generator, and send a signal back
to the story generator. This signal would open the path-
way from the hidden layer to the previous hidden layer,
allowing the network to produce the next case-role repre-
sentation.

11 Discussion

11.1 PDP vs. symbolic AI

The main goal of the experiments was to demonstrate that
modular FGREP networks are a plausible approach for
modeling high-level cognitive tasks such as story para-
phrasing and script recognition. The main advantage of
this approach is that processing is learned from exam-
ples. The same architecture can learn to process a wide
variety of inputs, depending on the training data. A net-
work which was trained to paraphrase restaurant scripts
can learn to paraphrase travel stories, shopping stories etc.
just as weil.

This contrasts with the traditional symbolic artificial in-
telligence models, where the processing instructions must
be hand-crafted with particular data in mind. These sym-
bolic models cannot learn from statistical properties of the
data, they can only do what their creator explicitly pro-
grammed them to do.

For example, symbolic expectations must be imple-
mented as specific rules for specific situations [Dyer, 1983;
Schank and Abelson, 1977]. Generalization into previously
unseen inputs is possible only if there exists a specific rule
that specifies how this is done. Representations of these
rules and their applicability is often very complex. This
seems unnatural, given how immediate and low level such
operations as expectation and generalization are for peo-
ple.

In the neural network approach, expectations and gener-
alizations emerge automatically from the distributed char-
acter of processing. Knowledge for this is based on statisti-
cal properties of the training examples, extracted automet-
ically during training.

11.2 Connections to biological systems

The modular FGREP architecture was not developed with
direct biological plausibility as a goal. Whether there ex-
ists a separate lexical memory in neural tissue, as a list of
word representations or as an associative memory, remains
an open question, although there are some indications in
this direction. Recent recording results [Heit ef al., 1989]
suggest that neurons in the human hippocampus respond
to visually presented individual words similarly to the rep-
resentation units (figure 8).

What neural mechanisms could be responsible for mod-
ifying the representations, and how processing with them
could be learned, is a completely open question. It is far
from clear what neural mechanisms backpropagation itself
could correspond to. Some connections can be made at
higher level: the error signal could represent some unspec-



ified form of feedback, teaching patterns could be formed
from related sensory and memory inputs, the lexicon and
modules could correspond to processing centers, etc.

The fact that processing emerges collectively from a
large number of simple units operating in parallel, and is
based on distributed representations, is obvicusly neurally
inspired and is aimed at explaining how higher-level be-
haviour can emerge as a result of such processes. Another
level of models is needed, explaining the current models in
more plausible terms, before any direct correspondence to
neural mechanisms can be claimed.

11.3 Symbolic processing in PDP

The mechanism of sensory-level 1Ds is a first step towards
grounding symbolic reasoning in parallel distributed pro-
cessing. Any symbolic system needs to be able to deal with
two kinds of information: (1) semantics of symbols, i.e.
knowledge about the properties of symbols and relation-
ships between them, and (2) identities of symbols, based
on some arbitrary surface-level tag, e.g. sensory percep-
tion of the referent (see also [Harnad, 1989]). The seman-
tic knowledge is necessary for guiding the processing in a
meaningful way, and the identities are necessary for logical
reasoning and manipulation.

For example, suppose the system has the semantic
knowledge that for some class of objects C, if A €
C, propertyi(A) A propertys(A) = propertys(A), and
it knows the facts property;(A;) for A; € C and
propertys(A,) for A; € C. Even if this knowledge is statis-
tical (i.e. is not exact but is true with a high probability),
to draw the conclusion, the system must be able to ver-
ify that in fact A; = As exactly, not just that they have
similar statistical properties.

A common approach to symbolic modeling is to explic-
itly separate the two kinds of information. The semantic
knowledge is maintained in “types”, and each symbol is
created as a “token”, an instance of some type. The in-
stances inherit the properties of types, and also accumulate
specific properties of their own during processing. Whether
implemented in a symbolic semantic network ([Quillian,
1967)) or in a semantic network/PDP hybrid [Sumida and
Dyer, 1989], in effect there are two separate systems with
a very complex interaction.

In the sensory-ID approach the identity and semantic
content are kept fogether in a single representation and
processed through the same pathways and structures. Part
of the representation is treated as the logical ID, and the
rest is interpreted as the semantic content. The system
is trained to process both parts simultaneously. However,
it turns out that processing identities is much harder than
processing content. In the script paraphrasing experiment,
90% of the training time was expended on the IDs. Pro-
cessing the IDs is hard because the rest of the input pattern
provides no cue about what the ID should be, To produce
a correct ID pattern in the output, the network must copy
it from the input exactly as it is, without any help from
the context.

An interesting compatison can be made to human learn-
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ing of logical thought [Inhelder and Piaget, 1958; Osherson,
1974). It seems that children pick up statistical semantics
very fast, but are incapable of simple logical inference for
a long time. Attributing properties to specific instances
only seems to be a hard task for young children.

Maintaining a single, fixed ID for each object cannot
be but a first crude approximation of actual identity. In
reality, there are several different levels of identities for
each object, varying in time and scope. For example, the
person John today is not exactly the same as John two
years ago, even though at another level John is a unique
person over time. What is an appropriate identity depends
on the processing context, and the boundary between ID
and content is less well defined.

11.4 Parallel distributed inference

Inference is often modeled in artificial intelligence systems
based on probabilistic formalisms ([Pearl, 1988; Duda et
al., 1977; Buchanan and Shortliffe, 1985]. Events are
known with certain probabilities and they provide evidence
for other events. Inferences are drawn using conditional
probabilities. Sound estimates of the certainty of the in-
ferences are obtained, and coherent belief systems can be
maintained. Unfortunately, this level of accuracy and rigor
is very hard to achieve in high-level cognitive moedeling, as
in natural language understanding. The conditional prob-
abilities are not well defined and dependencies are very
complex. Finding the relevant data is the main problem.
On the other hand, obtaining accurate measures of the re-
liability of the inference is not crucial. The task is to find
the most relevant data from an enormous collection of in-
formation, and build a hypothesis based on that, knowing
that this is only an approximation of the best inference
that could be drawn mathematically.

It seems that people have two fundamentally different
mechanisms at their disposal for inferencing. The relevant
data can be searched for using a sequential symbolic strat-
egy, an algorithm. One does not have an immediate answer
to the question, but the answer is sequentially constructed
from stored knowledge by a high-level goal directed pro-
cess, i.e. by reasoning. Another type of inference occurs
through associations immediately, in parallel, and without
conscious control, i.e. by intuition. Large amounts of in-
formation, which may be incomplete or even conflicting,
are simultaneusly brought together to produce the most
likely answer.

Neural network systems fit well into modeling intuitive
inference (see also [Touretzky, 1989]). The network ex-
tracts statistical knowledge from the input data, and these
statistics are brought together to generate the inference.
The amount of the tip in the restaurant story is inferred
from the whole story, not just by looking at some part and
applying a specific rule. If the food was bad, the network
usually infers that the tip was small, but if the customer
ate a hamburger, the representation in the tip slot will be
closer to no-tip, because hamburgers are usually eaten in
fast-food restaurants. In other words, neural networks are
able to perform probabilistic inference, not by coming up



with a specific answer and its probability, but by produc-
ing an answer which is the average of all possible answers,
weighted by their probabilities.

12 Summary

An architecture for connectionist natural language process-
ing is presented which consists of hierarchically organized
independent subnetworks and a central lexicon. The 1/O
of the subnetworks consists of distributed representations
stored in the lexicon, and the modules communicate using
these representations.

The representations are developed automatically by the
FGREP-mechanism while the network is learning the pro-
cessing task. With backward error propagation extended
to the input layer, the representations are developed auto-
matically as if they were an extra layer of weights. FGREP
creates a reactive training environment, i.e. the required
input/output mappings change as the I/O representations
change.

There are no identifiable microfeatures nor discrete cat-
egories in the resulting representations. All aspects of an
input item are distributed over the whole set of units in a
holographic fashion, making the system particularly robust
against damage. Each representation alsc carries expec-
tations about its possible contexts. The representations
evolve to improve the system’s performance in the pro-
cessing task and therefore efficiently code the underlying
relations relevant to the task. This results in extremely
good generalization capabilities.

The lexicon can be extended by cloning new instances
of the items, l.e. generating a number of items with the
same properties but with distinct identities. This is accom-
plished by combining the semantic representation with a
unique ID-representation. The technique is motivated by
sensory grounding of words, and forms a basis for sym-
bolic processing in PDP. It is possible to approximate a
large number of items by dividing them into equivalence
classes, resulting in combinatorial processing capabilities
with linear cost.

Representing input/output as sequences overcomes the
combinatorial explosion in representing structurally com-
plex data. The technique is implemented in a recurrent
FGREP network. This module, together with a central
lexicon, can be used as a building block in modeling higher-
level natural language tasks.

A single module iz used to form case-role representa-
tions of sentences from word-by-word sequential natural
language input. The system is able to assign case roles
correctly, indicate degree of confidence when the sentence
is ambiguous, and generalize correctly for unfamiliar sen-
tences. A hierarchical organization of four modules was
trained to paraphrase script-based stories, again with nat-
ural language input and output. The complexity of this
task is reduced by effectively dividing it into subgoals.
Fach module can be trained separately and in parallel,
each developing the same lexicon. The system, DISPAR,
is able to produce a fully expanded paraphrase of the story
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from only a few sentences, i.e. the unmentioned events are
inferred. The word instances are correctly bound to their
roles, and simple plausible inferences of the variable con-
tent of the story are made in the process.

The main advantage of the approach over symbolic arti-
ficial intelligence systems is that the processing knowledge
is extracted automatically from examples. The same ar-
chitecture can learn to process a wide variety of inputs
and make advantage of the implicit statistical regularities
in the data, without having to be specifically programmed
with the particular data in mind.
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