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1, INTRODUCTION

A large part of the information content of an image is conveyed by the location of pixels that determine the boundaries
between different segments. In absence of prior knowledge about objects in the scene, it is impossible to predict where
the edges will occur. The gray levels at locations away from boundaries are often highly correlated. They can be
estimated from the values of nearby locations using assumptions based on our knowledge of the physical laws governing
reflections from surfaces. Boundaries occur at points of essentially infinite variation. At these points corresponding gray
levels result from summing energy reflected by two different regions and cannot be easily estimated from the values at
nearby pixels. In this sense gray level values at discontinuities are less predictable.

We attempt to approximate the image data with a nearly second order function. The presence of discontinuities makes
this approximation inadequate. As a result in the process of deriving the approximating function a statistic is generated
which can be used to predict the occurrence of boundaries. This differs from most edge detection algorithms which are
based on local differentiation. Our approach avoids the use of derivatives and assumes minimum knowledge about the
structure of gray levels at edge locations. It is a bottom up approach and does not use high level expert knowledge to
complete edge segments.

Our method is similar to variational techniques used in other low level image processing algorithmsl, However, since
we do not compute extrema, our algorithm can not be classified as a strict variational method. The statistics used for
predicting boundaries are collected at variaous iterations and always before the convergence to an extremum. In this sense
our algorithm resembles a dynamic system before it reaches an equilibrium state.

The algorithm's computational complexity is justified if most of the useful information within an image is encoded in
surface discontinuities. For an nxn image and 28 gray levels there are 2560*n different possibilities. These large numbers
create an inherent computational complexity in the process of extracting information from images2 which can only be
reduced if there is correlation among pixel values. The algorithm proposed here is designed 10 exploit this correlation.

2. ALGORITHM

The algorithm can be described as a two level process. The first level process drives a functional of the form
Q= ZiXj Ejj + waVij + wmMjj (1

towards a minimum. This minimization problem can be mapped onto a locally connected Hopfield3 like network which
might have some biological validity; however, it is not our intent to model any known biological system. The
conversion to 2 Hopfield net will be described below.

The initial computation is based on the assumption that two dimensional gray level surfaces are nearly second order. A
local surface approximation is created at each pixel location. These approximations are repeatedly adjusted so as to
minimize the squared error and a following measure of the higher order variation: For each pixel in 3x3 neighborhood we
us local surface approximations to compute the gradient and magnitude. The gradient and magnitude at a given location are
predicted in two different ways. One set of predictions is based on the approximating surface anchored at the central pixel
of the kernel. The second set of predictions generates gradient and magnitude at peripheral points based on local surfaces at
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those points. Differences in these predictions are used as the measure of higher o::der yan‘ation. This measure doe:s not
constrain surface curvature in any way. It is only required that the surface approximation at each lqca_non be cqngnstept
with neighboring approximations. However, because the algorithm uses second order surfaces and limits the variation in
these surfaces from point (o point it is equivalent to minimizing higher order variation.

In some sense, our method is more restrictive than minimizing the third derivative. For example, a "roof" edge can be
modeled as an intersection of two flat surfaces. The third derivative at such discontinuities is zero. The restrictions
imposed by our method are desirable because they maximize the measure of higher order variation at discontinuities. At
the same time they do not exclude naturally occurring surface variation. Errors computed in the process of approximating
the surface are collected as statistics that indicate a need for higher order terms, These statistics ar¢ then used to create an
error image which is passed onto a second level process. Here the information is used for edge detection. The second level
process will be described in a future paper.

Let p and q be integer values in the interval {-1,1] and let Ijj be the measured gray levels at (ij). At each pixel (i) a
two dimensional second order surface is described using the coefficients ajj, bij, Cij» dijs €ije and fjj, and the equation

F(p.)ij = 2ijp2 + bijpa + cijaZ + dijp + eija + fij; @

This description is used to predict the local nature of the surface. For an n x n image there will be n2 such polynomials
involving 6n2 coefficients. The values of the coefficients are determined by driving the functional (1) towards a
minimum. Ejj, Vijs and Mij are defined as foliows.

Ejj = ZpZq F(.Qij - li+p,j +@2. .

This measures how well each surface fits the local data. If wa = wm = 0, minimizing Q would correspond to making
second order least squares fits to the 9 gray level values in a 3 X 3 neighborhood of each pixel. Let the gradient function
G(p.q)ij be defined by

G(p.Qij = (2aijp + bija + dij , bijp + 2¢ijq + &ij)- @
G(p.q)ij isthe gradient at (p,q) relative to (i,j) as predicted by the fit centered at (i4).

Vij = ZpEq IGO.0ivp jrq - CEDIHZ )

Mij = ZpZq FOOiepj+q- F(p.9)ij)?- {©)

Vij and M;j; penalize variation greater than second order. They do not limit the magnitude of the gradient. Some surfaces

such as those resulting from specular reflection contain higher order variation. It is shown in section 3 that both the
algorithm and a human observer detect edges in this case. wj and w must be large enough to force final surfaces with

small higher order variation but the exact values don't seem critical. Values of wy =wm =109 are being used. Q is
driven toward a minimum by repeatedly solving the six simultaneous equations 0Q/3aij=0, dQ/dbjj=0, 0Q/dejj=0,
8Q/8dij=0, 0Q/deij=0, 0Q/af;j=0, for all i,j with all other coefficients held fixed. The surface obtained after a few

iterations is smooth and has the statistical properties needed for edge detection. Convergence 1o a minimum value of Qis
slow. Convergence is guaranteed since every solution 1o the equations represents a decrease in Q. As will be scen In
section 3 complete convergence is neither necessary nor desired. In order to detect edges, statistics about higher order
terms are collected. The statistics obtain significant values after a few iterations and remain stable for several iterauons
thereafter. These statistics become insignificant indicators of edges as a final minimum value for Q is approached.

If wa and wip are sufficiently ia,rge and the minimum of Q reached; the surface described would be a least square fitofa
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single second order polynomial to the entire image. For smaller values of wa and wm of the order of 103 ; an extremum
surface would resuit in smali values of Vijj distributed over large arcas of the image. This is not desired, because the V
could not be use to indicate edges in this case. This is a dynamic system and edge information is being extracted from
intermediate pseudo stable values computed in the middle of convergence.

The minimization problem can be described as a autonomous system similar to a Hopfield network. This can be shown
by mapping the 6a2 coefficients { aij, bij Cij. dij. &ijs fij ) toa new set of variables { v }. Let

k = 6(i-1) + 6n(j-1) +1
where n is the dimension of the image and let
vk+0 = 8ijp Vk+1 = Dijs VK42 =Cijs Vk+3 = dijs Vk+4 = €ijs VK5 = fij-
Then Q can be written as
Q= -1/2%iZ;j Tijvivj - ZiLivi, %)

where Tjjis a symmetric matrix of constants and Lj is a linear combination of Ijj both derived algebraically from the
original expression for Q. When the terms of the originat expression for Q are multiplied out, those involving products
of the Ijj's are constant and can be dropped. Tijj is a sparse matrix since the coefficients for each pixel appear only 1n the
terms for that pixel and the terms for it's nearest neighbors. This is the form of the energy function minimized by
Hopfield. The minimum is found by determining the stable points of a set of coupied differential equations. The main
differences between our minimization problem and those considered by Hopfield is that he analyses fully connected
networks and problems with solutions at the boundaries of the solution space. The application considered here has a
locally connected network, is concerned with intermediate values of the independent variables, and has stable final states
that occur at interior locations of the solution space. The coefficients are the independent variables of the autonomous
system

dvi/dt = -Zj Tjjvj - Li- (8)

In section 3, we show the statistics collected from intermediate states of the system. They are determined by the initial
conditions and the final stable state.

3. DATA AND ERROR ANALYSIS

To perform data and error analysis, we recorded gray level images of geometrically simple scenes. The scenes contained
surfaces of various curvaiure and examples of edges. Using this data we investigated (1) if a surface fit to the gray level
values has a characterisable statistic which is significandy different at boundary locations, (2) if the algorithm
convergences in a well behaved manner, and (3) if the curvature of the surface has a large effect on the results.

The statistic must not be unduly affected by the initial conditions and must have properties useful for edge detcction.
The following statistics were considered. In each case the statistic used was pjj/<Mij> where <uij> is the average in a
neighborhood of ij.

For statistic (2), pij = (fij-Ti)2.

For statistic (b), Wij = Ejj.
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For statistic <), pij = IGO.0i+1 - G102 + IG(0.0i-1 - GC-1.0%j2.
For statistic (&), ij = FO.0ir1j - FLO)2 + FO0-1,j - FC1.052.

There are three other directional statistics similar to (¢) and (d) oriented at 45 degree intervals. In the examples shown
below only (c) and (d) were used because all of the selected images had edges oriented in one direction.
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fig 1. The response of statistic (¢) to a line and step fig 2. The response of statistics (a), (b), and (d) to the
edge. The dashed line is the approximating surface same line and step edges shown in fig 1. Statistic (a)
after § iterations. Stadstic (¢) displays the properties and (b} were offset for clarity of presentation. Comparing
needed by an edge detector. these to statistic {c) in fig 1, we see that they either have
poor signal to noise or don't correctly locate edges.
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fig 3. Statistic (c) after 5, 20, and 100 iterations. The fig 4. Statistic {c) after 5, 20, and 100 iterations. The
means (<pjj>} are 13357, 6350, and 2597 respectively. means (<pjj>) are 31886, 13039, and 4291 respecusely.
The values have been offset for clarity of presentation, The values have been offset for clarity of presentation.
Inival conditions: ajj = bjj = cij = djj = e;j = O and fjj = Initial conditions: coefficients determined by titw a 3X3
Tij. neighborhood center at (i,j).
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The results shown in figures 1-9 were obtained by analyzing single scan lines from two dimensional images. The
results displayed in figures 1 and 2 were collected after five itcrations of the algorithm. Statistics (a), (b), and (q) either
don't have good signal to noise characteristics or respond in non-edge areas (fig. 2). Statistic (c) has the properties necded
by an edge detector (fig. 1) and is the only statistic considered in the rest of this section.

The initial conditions are important because the statistics are collected as the algorithm converges from the initial to a
final state. To observe the effect of different initial conditions, the coefficients were initialized in two ways. In one case
the initial coefficients were determined by setting jj=0, bjj=0, cij=0, dij=0, e;;=0, and fjj=ljj. In the other case the initial
coefficients were determined by a least squares fit to a 5X5 neighborhood of each pixel. Figures 3 and 4 show that this
change in initial conditions didn't have a significant effect on the results. Figure 3 and 4 also illustrate that the statistic
serves ag a stable edge detector over several ilerations.

A noise spike caused by a pixel whose gray level value is significantly different from all of it's neighbors is smoothed
out in a couple of iterations. A ripple that has correlated support in one dimension (i.e. has the characteristics of and edge)
requires several iterations before being smoothed out. This is illustrated in figures 5 and 6 where three adjacent lines of
image data are shown. The small ripple to the left of the step (A) persists after the larger noise variation on the center line
to the right of the step {B) has been smoothed.

The reflection from points along 2 homogeneous surface varies as a function of the curvamre of the surface, the
variation in the light source, and the variation of the reflection properties of the surface versus incident and reflected angle.
Consequently, the resulting gray level surfaces are only nearly second order. The need for higher order terms adds to the
gradient error term being used for detection. The data displayed in figures 7 and 8 indicates that this additional error will
not reduce the edge detection ability of the statistic by any significant amount.
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fig 5. The uncorrelated noise to the right of the step (B) is fig 6. Small peak to the left of the step (A) corresponds
smoothed over after 5 iterations. The lower amplitude cor- to correlated noise. [t would be significant if step was
related noise (low amplitude edge) 1o the left of the step (A) not present.

takes longer to smooth oul. (see fig 6.)

A specular surface is an example of a more dramatic departure from the second order assumptions. The algorithm sull
has approximately the same response when applied to these surfaces and is able to locate the edges. For the smouth
specular surface, it took ten times as many iterations for the peaks to develop (fig. 9). The peaks in the staustic localize
the edges in approximately the same position as the human would perceive them.
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fig 9. Statistic (c} and surface fit for a specular surface.

The left hand peak is one or two pixel positions to the

right of where a human would locate the edge. The right peak
is located where a human observer would perceive the edge.

<pjj> = 10312
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4, CONCLUSIONS

We introduce an algorithm for edge detection which does not rely on differentiating image data but predicts the location
of discontinuities based on the reflection properties of the continuous surfaces adjacent to the boundaries. The simple
assumption of nearly second order appears sufficient to embody these reflection properties. The statistic generated by the
algorithm has a large signal to noise ratio and very sharp peaks. These are the signal properties needed for detection and
localization of edges. Some aspects of the algorithm need further work. One problem we don't understand is the irregular
accumulation of errors at discontinuities during convergence of the algorithm. It is possible that simplifications in the
mathematical formulation and an investigation of the trajectories determined by the differential equations will lead to a
better understanding. The parameter space (wy, W) needs 10 be investigated o0 determine the relative affect of the terms in
Q. In addition the results present are based on only nearest neighbor interactions. It is possible that the use of more
distant interactions will affect the convergence rate,

The algorithm for simulating the second level detection process has not been finalized. It will be based on analysis of
the data obtained from the first level process. It will use local statistics to detect candidate edge locations and it will
incorporate the fact that most edge pixels lie along smooth curves,
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