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Abstract

Reasoning with Defaults:
Causal and Conditional Theories

Hector Geffner
UCLA
1987

Defaults play a central role in commonsense reasoning, permitting the genera-
tion of useful predictions in the absence of complete information. These predictions
are non-monotonic in the sense that they often have to be revised in light of new
information. Attempts to represent and reason with defaults in AT, however, have
encountered the problem of spurious arguments: arguments which rely on accept-
able defaults but which support unacceptable conclusions.

In this work we develop a semantic account of default reasoning which ad-
dresses this problem. First, we interpret defaults as conditional assertions, and
appeal to probability theory and preference-model logics to uncover the basic set
of inferences that such reading implies. Next, we extend the language of default
theories to accommodate a causal operator which is used to distinguish ezplained
from unezplained “abnormalities.” Competing scenarios that arise from conflict-
ing defaults are then rated in terms of the type of abnormalities they introduce,
and the most coherent scenarios are preferred. The resulting framework yields a
reasonable behavior in several domains of interest to Al including inheritance hier-
archies, reasoning about change, general logic programs and abductive reasoning.






Contents

1 Introduction 1
1.1 Overview. . . . . . . . L e e e 1
1.2 Representing Knowledge . . . . . ... .. ... .. ......... 4
13 AReader’'sGuide . . . . . . .. .. ... ... .. ... ... ..., 6
1.4 Non-Monotonic Systems . . . . .. ... ... .. ... ....... 8
1.5 Non-Monotonic Logics . . . ... ... ... ............. 13

2 A System of Defeasible Inference Based on Probabilities 23
2.1 Imtroduction . . . . . . . . ... .. 23
2.2 Language: Default Theories . . ... ... ... ... ... ..... 25
2.3 Rules of Inference: The Core . . . . . . . . .. ... .. ... .... 27
2.4 Semantics: e-entailment . . . ... .. ... 30
2.5 Independence Assumptions . . . . . ., . . . .. ... 35
26 Examples . . .. ... 38
27 Relatedwork . ... ... ... ... ... ... .. 42

3 High Probabilities and Preferential Structures 45
3.1 Imtroduction . . . . . . . . . . . . e 45



vi

CONTENTS

3.2 Preferential Structures and p-entailment . . . .. ... ... .... 46
3.3 Layered Structures and l-entailment . . . . . . . . . .. .. .. ... 51
34 Equivalences. . . . . . .. ... e 53
3.5 Default Rankings . . . . . ... ... .. ... L 54
3.6 Completenessresults . . . . . . . . . ... 0o ST
3.7 Related Work . . . . . ... .. .. 59
Beyond High Probabilities and Preferential Structures 63
4.1 Defaults and Conditionals . . . .. ... ... ... .. .. ..... 63
4.2 Closing the Gap: Conditional Entailment . . . . . . . ... .. ... 65
421 Model Theory . . . . .. .. .. .. ... .. .. ... .. 65
422 Proof Theory . ... .. .. ... ... ... .. . .. ... 81
4.3 Related Work . . . . . .. . oL Lo 88
The Causal Dimension: Evidence vs. Explanation 93
5.1 Limitations of Conditional Entailment . . . . ... ... ... ... 94
5.2 Causal Theortes . . . . .. . . . .. .. .. ... ... 99
5.21 Language . .. .. .. .. ... 99
5.2.2 Semantics: Causal Entailment . . . . . . .. ... ... ... 100
5.2.3 Integrating Causal and Conditional Preferences . . . . . . . 103
53 Applications . . . . ... L L 106
5.3.1 Inheritance Hierarchies . . . . . . . .. ... . ... ..... 106
5.3.2 Reasoning about Change . . . . ... ... ... ... ..., 109

5.3.3 Logic Programming . . . . . . . .. .. ... 113



CONTENTS

5.3.4 Abducti
54 Related Work

6 Conclusions

veReasoning . . . . ... ... .. ..........

6.1 A New Interpretation of Defaults . . ... ... ...........

6.2 Loose Ends .

A Proofs

..............................

-----------------------------

vii

125

132

135
135
137

142

147



viii CONTENTS



List of Figures

1.1

2.1
2.2

2.3

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

Simple Inheritance Hierarchy . . . . . ... ... ... ... .. ... 10
The canonical example: birds and penguins . . . . ... ...... 32
Implicit preferences among defaults . . . . .. ... .. ....... 39
Reasoning by cases . . .. ... ... ... . ... . ... ..., 41
Equivalence between various forms of entailment . . . . . . .. ... 54
Entailment and default clashes . . . . . . ... ... ... ...... 57
Ordering among interpretations in prioritized structures. . . . . . . 66
Strict specificity . . . . . .. . ... L o e 74
A cyclic inheritance hierarchy . . . .. .. ... ... ... .. ... 7
Default Specificity . . . ... ... .. . . ... oo 78
Disjunctive constraints . . . . . . . . . . .. ... ... 80
8a(t) is cd-entailed in spite of conflict with {81(t),82(t)} . . . . .. 83
Beyond stable arguments . . . . . ... ... 85
The “essential” Yale shooting problem . ... ... ......... 95
The battery problem . . . ... ... ... ... . .. ... ... .. 97
The party problem . . . . . .. .. .. ... ... . 0oL, 98

ix



3.4

3.9

LIST OF FIGURES

A simple network: A’s are expectedtobeCs . . . . ... .. ... 107
Initial scenario: stuffy,, on(a,d)e, and mo ......... 112
Scenario after moving block btoductdy . . . . ... ... oL L. 113
Acausal metwork . . . .. ..o 127
Causal and evidential defaults . . . . . .. ... .. .. ... .... 129

A simple diagnosticmodel . . . .. ..o oL oL oo 131



Acknowledgements

Jacobo Sclarsky, my uncle Lito, started all this. He got me interested in the
world of science before I ever went to school and has been my best teacher ever
since.

For my years at UCLA, I want to thank first and foremost Judea Pearl, my
thesis advisor. Judea taught me everything I know about research and provided
me with that unusual combination of freedom and financial support without
which this work would not have been possible. Judea is also responsible for
making probability theory into a powerful conceptual framework from which the
main ideas of this dissertation are drawn. He also provided valuable comments
on an earlier draft and suggested significant improvements.

I am also grateful to the other members of my committee: Michael Dyer, Kit
Fine, Keith Holyoak and Stott Parker for their support and suggestions. Kit
Fine was especially generous with his time, providing sound criticism, insightful
comments and a healthy dose of skepticism.

I also want to thank Gina George, Verra Morgan, Rosemarie Murphy, Doris
Sublette and Judy Williams for bearing with me during all these years. I am also
grateful to Tom Verma for discussions and good company, and to Bill Dolan for
help with the presentation.

Many people outside UCLA provided comments, encouragement or both.
Special thanks go to David Etherington, Matt Ginsberg, Ben Grosof, Ronald
Loui and David Poole. I am particularly grateful to Ron for being the first
person outside my family to like a piece of research of mine.

If I have kept my sanity after all these years it is only because of my wife,
Maria Eugenia Fuenmayor. She has been a constant source of support and inspi-
ration. To her, and to my family in Argentina who kept asking me “How come
you haven’t finished yet?” my deepest thanks of all.

La tesis esta dedicada a la memoria de mi madre, Sara Sclarsky, y de mis
amigos Judith Goldberg, Mario Geffner y Ruben Gerenschtein.



Y EL OMBLIBITO?)

NO TIENE OM-
BLIGO,GUILLE,, *
DORQUE RACIO
DE UN HDEVITO

- And where is the
bellybutton?

~ He doesn’t have
a bellybutton. Gille;
because he hatched

from an egg.

Y ENTONCHE LAZ ALTAY ?] | Si) BUEND,PERO NO| — -
7 —1 | ToDo LD QUE NACE ,DEzoncAmzADoz,)
/ DE UN RUSVITOTIENE | | LOZ HUENITOZ !
§ /7COMO!...c NO

EZ QUE NACIO"

TAMPOCO TIENE

ALAS. DE UN HUEVO

PUEDEN SALIR PECES /
D ARANAS O SERPUN f
TES ¢ PAJAROS U HOR-
MIGAS O RANAS O
QUE S YO CUANTAS
{05AS MAS

- And then his wings? Yes, right, but not Gee, eggs are really
- He doesn’t have wings everything that hat- mixed up!

either. ches from an egg
— How come. Didn’t he has wings. Lots
hatch from an egg? of things come from

eggs, like fish and
spiders. and snakes.
and birds, and ants,
and frogs, and who
knows what else.

Joaquin Lavado (Quino)
Mafalda 7
Ediciones La Flor









Chapter 1

Introduction

1.1 Overview

The comic strip on the opposite page illustrates two pervasive aspects of com-
monsense inference: the elaboration of predictions in the absence of complete
information and the ability to revise and explain predictions found to be wrong.
Both aspects are so entrenched in common discourse that normally we forget that
most of our actions are adopted on the basis of partial information and tentative
beliefs. We get up in the morning and expect to find the coffee machine in the
same place, the newspaper under the door, the tooth-paste in its container. But
the coffee machine is not always in the same place, the newspaper not always under
the door, tooth-paste not always in the tube. Still, these predictions are usually
true and permit us to make plans that work most of the time. When they are not
true, we adopt new beliefs leading to alternative actions and the old predictions
are discarded.

Ubiquitous as these forms of reasoning are, they have resisted a satisfactory ex-
planation. Why are both expectations “animal hatched form eggs have wings” and
“reptiles have no wings” right, even though reptiles do hatch from eggs? Clearly,
there is a high proportion of winged animals among those that hatch from eggs,
yet a low proportion among reptiles. Still, the explanation of such expectations
in terms of probabilities is not completely satisfying. These expectations rather
appear to rely on qualitative rules, like “animals hatched from eggs have wings”
and “reptiles do not have wings.” Such rules, called default rules, express what is
normally the case without ruling out the possibility of exceptions: turtles which
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are hatched from eggs but do not have wings, pterodactyls which are reptiles but
.do have wings, and so on.

In Artificial Intelligence {Al), it has been natural to express commonsense
knowledge in terms of defaults. Inheritance hierarchies, for instance, encode the
prototypical properties of classes by means of defaults. In reasoning about change,
defaults encode the tendency of properties to remain invariant in the absence of
relevant changes. In diagnostic reasoning, defaults encode the absence of patholog-
ical behavior, whose presence must then be explained by postulating appropriate
hypotheses. Even deductive databases usually embed default assumptions to fill
in information not in the database.

However, attempts to represent and reason with defaults have encountered the
problem of spurious arguments: arguments which rely on acceptable defaults but
which support unacceptable conclusions. For instance, the argument that penguins
fly, on the grounds that penguins are birds and birds normally fly, is not acceptable.
Still, the same argument is acceptable about canaries. If knowledge representation
languages are to accommodate default rules, then the logic of default arguments
must be understood.

The language of logic appears as the most suitable candidate for describing
the logic of default arguments. Precise and well-understood, a logical account of
default inference should make explicit the criteria that distinguish good from bad
default arguments, independently of domains and implementations. Indeed, logic
itself was developed to describe sound argumentation. However, while logic 1s
concerned with arguments that yield true conclusions from true premises, default
reasoning is concerned with arguments that yield likely propositions from likely
premises.

The first attempts in Al to provide a logical account of default inference fo-
cused on extending classical logic with non-monotonicity. Default reasoning is
non-monotonic in the sense that default predictions often need to be revised in the
light of new information. For example, we may go home early to watch the Lakers,
only to discover, in the middle of a trafic jam, that we did not really leave early
enough. Classical logic, on the other hand, is monotonic; no additional informa-
tion can affect the status of a conclusion which is supported by a valid deductive
argument.

The efforts to extend logic with non-monotonic features resulted in various
non-monotonic formalisms which enabled certain patterns of default inference to
be formulated in precise terms. These formalisms, for example, can support the
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conclusions that somebody must be at home when the lights are on, switch to
the opposite conclusion when nobody answers the bell, and switch once again to
original conclusion when voices are heard through the window. This behavior
is accomplished by regarding defaults as rules which extend a set of beliefs in
the absence of conflicting evidence. However, while successful in accommodating
patterns of default inference, non-monotonic logics do not uncover the logic of such
patterns: a set of defaults normally gives rise to a number of conflicting default
arguments, and non-monotonic logics leave it up to the user to distinguish the
good from the bad.l

To account for the distinction between intuitive and counterintuitive arguments
we not only need a non-monotonic logic but an interpretation of defaults capable
of capturing and explaining default behavior. In this work we develop such an
interpretation. For that we rely on two notions which have so far not been consid-
ered essential for understanding defaults. The first is the notion of conditionals.
Conditionals are normally expressed in English by the form “f A then B,’ and are
currently understood as context-dependent assertions.? They assert that B is true
in a context defined by A. Conditionals with false antecedents, such as: “if I were
not writing these lines I would be watching Crimes and Misdemeanors,” are called
counterfactuals. While counterfactuals are bound to be trivially true in classical
logic, they may be false when analyzed conditionally. In such case, the truth of
the counterfactual results from evaluating the truth of its consequent in a context
in which its antecedent is true, and which preserves the relevant features from the
current context.® Here we will adopt a conditional interpretation of defoults: a
default ‘if A then B’ will be understood as asserting the truth of B in the context
that results from the assimilation of A in a given background contert. As we will
show, such a view will have a definite impact on the type of default behavior which
is legitimized.

The second thread in the proposed interpretation of defaults comes from the
notions of causality and ezplanations. Defaults encode expectations, and violations
of defaults represent expectation failures. The task of default reasoning is normally
associated with the minimization of expectation failures. Such a view is most
explicit in McCarthy’s [1986] account of defaults, where default violations are
- encoded by means of “abnormality” predicates whose extensions are supposed to
be minimal. Here we take a slightly different approach. Rather than treating

!Hereafter, the “user,” refers to the builder of the knowledge base.

See [Nute, 1984] for a survey on conditional logics.

3There are a number of important problems in determining what these relevant features are.
See for instance, Goodman [1955).
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all expectation failures in the same way, we distinguish between those which are
ezplained from those which are not ezplained. The task of default inference is then
associated with the minimization of unezpleined expectation failures as opposed to
the minimization of all expectation failures. In terms of McCarthy’s abnormality
formulation, this amounts to consider the “abnormality” of scenarios as opposed
to the “abnormality” of individuals. So, for instance, no penalty will be associated
with a scenario involving a dead non-flying bird called Tim, because even though
Tim might be an abnormal bird, it is certainly not an abnormal deed bird, and
that is what we claim matters.

Where do explanations come from? Usually they arise from causal relations. A
moving action explains the change in location of a block, a disease explains a given
symptom, and the termination of all vital activities explains a non-flying dead
bird. Sometimes, however, the causal origin of explanations is not so apparent.
Being a penguin explains being a non-flying bird, being a priest explains being an
unmarried adult, and even Tom’s desire to get home in time for a game explains him
leaving earlier than usual. In each case, however, we will have a language capable
of accommodating such explanatory patterns, which will permit us to assess the
coherence of the competing scenarios that arise from conflicting defaults.

1.2 Representing Knowledge

A common current agreement in Al is that programs capable of reasoning about
the world must embed large amounts of knowledge. Namely, knowledge about the
world must be represented in the programs, and the behavior of such programs
is to be explained in terms of the knowledge they embed. There are, however,
many ways in which a program can embed a particular piece of knowledge. At
one extreme knowledge can be embedded in the body of procedures, and at the
other it can be encoded in declarative chunks with no commitment at all about its
potential uses.

In AI it has been found useful to represent knowledge in declarative form. Al
programs contain a set of expressions called the knowledge base, which are regarded
as being in correspondence with the world represented, and a general purpose
interpreter, often called the inference engine, which assembles the expressions in
the knowledge base according to the goals at hand. This declarative organization of
programs originated from the need to deal with ill-understood problems for which
conventional top-down software techniques were not appropriate {Doyle, 1985], and
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from the desire to make AI programs extensible [McCarthy, 1987].

Whether these features make the knowledge-based approach the most conve-
nient paradigm for constructing intelligent programs — see the volumes by Rumel-
hart [1986], McClelland [1986] and others, for an emerging alternative view — the
knowledge-based approach remains so far unchallenged as an approach to under-
standing intelligent programs and intelligent behavior in general.

A knowledge based program is determined by the content and the interpretation
of its knowledge base, and two clearly different traditions have developed in Al for
addressing them.

The “scruffy” approach, best represented by Schank’s school, emphasizes the
organization of the knowledge base for simulating how people process high-level
information (see for instance, [Schank and Abelson, 1977]). Given a particular
task, certain knowledge structures are postulated, and an interpreter is designed
which handles these structures in an intuitively satisfying way. Programs in this
tradition have illustrated both the psychological appeal and the computational
importance of the organization of knowledge in memory (see Dyer’s[1983] BORIS
and Kolodner’s {1984] CYRUS, among others).

“Neats”, on the other hand, have argued that interpreters tailored to particular
tasks are likely to lack the flexibility needed to endow programs with common-
sense [McCarthy, 1968]. They say that the range of reasoning patterns should not
be limited a priori by a ‘knowledge engineer,’ but should be implicit in the cor-
respondence between the expressions in the knowledge base and the world being
represented. Thus, work along the “neat” track has proceeded in the develop-
ment of formal languages in which fragments of world knowledge can be encoded,
and formal semantics in which the meaning of such encodings can be made pre-
cise. The interpreter then is to derive new expressions from old ones in ways
compatible which such meanings. For its precision and clarity, classical logic has
constituted the language of choice, often extended to accommodate temporal and
epistemic notions, and non-monotonicity (see [Moore, 1985a, Levesque, 1987]; [Mc-
Dermott, 1982, Allen, 1984], and [McCarthy, 1980, McDermott and Doyle, 1980,
Reiter, 1980]).

A severe limitation of the “neat” approach is that these different logical for-
mulations do not determine what is useful for the interpreter to do, only what is
valid. What is valid, however, may often be useless, and sometimes what is useful
may turn out to be invalid. Even determining validity may sometimes be out of
the question [Levesque and Brachman, 1987). Thus, it is reasonable to believe
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that programs capable of displaying commonsense will require both semantic and
architectural considerations to be taken into account.

In this work the focus is on the semantic aspects of default reasoning. The
remarks above should thus warn the reader that even a satisfactory semantic ac-
count of defaults will still leave us short of a complete account of default reasoning.
Hopefully, however, we will be closer.

Why bother with a semantic account of defaults? Due to their role in common
discourse, every reasonably expressive knowledge representation language must
accommodate defaults, and the problem arises as to what type of inferences they
legitimize. A semantic account will characterize such inferences by associating a
precise “meaning” to defaults; namely, definite constraints on the world that the
defaults are intended to reflect.

When is a semantic account of defaults satisfactory? For our purposes, a seman-
tic account of defaults will be satisfactory when, given a sufficiently rich description
of the domain of interest in terms of logical assertions and defaults, it is able to
distinguish intuitive from counterintuitive default arguments, making it intelligible
why an argument belongs to one or the other category.

1.3 A Reader’s Guide

Traditional non-monotonic logics regard defaults as rules for eztending a set of
beliefs in the absence of conflicting evidence. Different logics enforce such view in
different forms: those which are defined proof-theoretically, by relying on consis-
tency notions; those which are defined model-theoretically, by relying on minimal-
ity notions. In the reminder of this chapter we review such logics together with the
systems {databases, truth maintenance systems, logic programs, etc.) from which
they draw their main intuitions.

There is however more to default reasoning than non-monotonicity, and more
to defaults than the extensional view. In chapter 2 we show that it is possible to
build an alternative interpretation of defaults by regarding defaults of the form
“normally, if p then ¢” as licenses to assume the conditional probability of ¢ given
p arbitrarily high, short of being one. Such an interpretation, called e-semantics,
leads to a qualitative set of inference rules called the core, having virtues and limi-
tations that are practically orthogonal to those of traditional non-monotonic logics.
In particular, as a result of the context-sensitivity nature of conditional probabil-
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ities, e-semantics can resolve arguments of different ‘specificity’ (e.g., “penguins
don’t fly in spite of being birds”), though it fails to account for arguments involv-
ing “irrelevance” assumptions (e.g., concluding “red-birds fly” from “birds fly”).
The next step is the adoption of an additional rule, called the irrelevance rule,
whose role is to derive sensible assumptions about conditional independence from
the information available in the knowledge base. We show that the core augmented
by the irrelevance rule combine the benefits of the probabilistic and the extensional
views of defaults, and illustrate the resulting behavior on a number of examples.

Chapter 3 focuses on an alternative, non-probabilistic semantics of the core.
Such a semantics is structured around the notion of preferential entailment ad-
vanced by Shoham [1988], and further developed by Kraus et al. [1988], Makin-
son [1989], and Lehmann and Magidor [1988]. The idea is to use defaults to
determine a preference relation on models and to identify the valid predictions of a
theory as those that hold in its preferred models. We also analyze the relationship
between e-entailment and preferential entailment, and show that under suitable
conditions, the core is not only sound with respect to them, but also complete.

The goal of chapter 4 is the development of an extended conditional interpre-
tatien of defaults which validates both the core and the irrelevance rule. This
is accomplished within the framework of preferential entailment, except that now
defaults dictate the preference relations on models via admissible (default) assump-
tion priorities. The resulting semantics, called conditional entailment, has many
elements in common with McCarthy’s [1986] prioritized circumscription, yet pri-
orities do not need to be given by the user but are automatically extracted from
the knowledge base. An alternative sound proof-theory for conditional entailment
is also developed which, unlike the system defined in chapter 2, is also complete.

Conditional entailment integrates both the eztensional view of defaults com-
mon to traditional non-monotonic logics, and the conditional view resulting from
the probabilistic and the preferential interpretations. Still, examples can be con-
structed — the most notorious being the Yale “shooting problem” [Hanks and
McDermott, 1986] — in which conditional entailment fails to account for the in-
tuitive behavior.

In chapter 5, we refine conditional entailment by introducing a distinction be-
tween ezplained and unezplained abnormalities. This is done by extending the
language of default theories with a causal operator ‘C,” such that the expression
Ca holds when an abnormality o is explained. However, rather than considering
whether an abpormality is explained in a model, we consider whether an abnor-
mality is explained in a set of models called a class, which groups together models
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committed to a common set of assumptions. Classes are then rated in terms of the
type of abnormalities they introduce, and the most coherent classes are preferred.
Next, we illustrate how a variety of domains of interest in Al, such as inheritance
hierarchies, reasoning about change, general logic programs, and causal networks
accept a natural formulation in the resulting framework.

Finally, in chapter 6, we summarize the main contributions and discuss some
open problems.

1.4 Non-Monotonic Systems

In this section we will review some standard systems and tasks which involve non-
monotonic forms of reasoning. Such systems, while not always based on clear log-
ical foundations, are sufficiently simple and well-understood as to provide a flavor
for the type of inferences that an adequate account of default inference must ac-
commodate and explain. They show that even without an adequate formalization,
we know a lot about how legitimate default inference should look like. We con-
sider databases, inheritance hierarchies, general logic programs, truth-maintenance
systems, and time map management systems.

Databases

Databases are systems designed for the efficient storage and retrieval of information
about objects and their relationships. A departmental database, for example,
may contain a relation teaches with two tuples (martin, pascal) and (kay,lisp).
Relations and tuples are normally understood as encoding ground atoms; in this
case, the atoms teaches(martin,pascal) and teaches(kay,lisp). So the answer
martin to a query “who teaches pascal or ¢,” is understood from the fact that the
atomic encoding of the database sanctions the sentence teaches(martin, pascal)V
teaches(martin,c) as a theorem.

However, a logical understanding of databases requires more than ground atoms.
Given the database above, for instance, conclusions such as “kay does not teach
pascal” and “only martin teaches pascal” will also be supported, even though
they do not follow from the atomic encoding.* To account for such conclusions,

“We will not be too concerned here with the specific manner in which such conclusions are
actually supported by the database. In general, databases will not allow queries such as “who
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the atomic encoding must be augmented with certain assumptions about names of
objects and about the world the database is supposed to represent. These are the
unique names assumption, by which individuals with distinct names are assumed
distinct, the domain closure assumption, by which all individuals are assumed
named, and the closed world assumption, by which it is assumed that there are no
more instances of a relation than those deducible form the database [Reiter, 1984].

In the case of the database above, the unique names, domain closure and closed
world assumptions amount to augmenting the encoding of the database with for-
mulas such as:®

martin # kay, pascal # lisp, martin # pascal, ...
Ve.z =martinVz=kayVvz = pascalVz = lisp
Vz,y.teaches(z,y) = (z = martinA y = pascal}V (z = kay A y = lisp)

Provided with these assumptions, the conclusions supported by the database
will now be theorems of the logical encoding. However, as assumptions, these
formulas may turn out to be false. For instance, a second pascal class taught by
kay, may be opened, rendering the above closed world assumption false. In such
a case, the database will no longer support the conclusion “kay does not teach
pascal” but, rather, its negation.

Note that the logical interpretation of the database is not incremental: the ad-
dition of new information not only translates into the addition of new formulas, but
also in the replacement of old formulas by new ones. Such outcome should not be
surprising though; the behavior of the database changes non-monotonically, while
the behavior of its logical encoding can only change monotonically. It suggests,
nonetheless, how classical logic could be extended with non-monotonic features:
by means of a closed world assumption capable of adapting itself dynamically to
the contents of the database. As we will see in section 1.5 below, this is indeed the
main intuition behind circumscription.

Inheritance Hierarchies

Databases are designed with efficiency as a main concern. They usually store large
amounts of data in a few fixed formats that permits fast storage and retrieval.

does not tech pascal.” Such a query would normally have to be rephrased in a ‘safe’ form, such
as “who, among the teachers, does not teach pascal” [Ullman, 1982].
*The symbol ‘=5 is used to denote material implication.
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Semantic networks, on the other hand, are focused both on computational and
representational issues, providing more expressive languages in which knowledge
can be encoded (see for instance, [Fahlman, 1979, Sowa, 1984, Brachman and
Schmolze, 1985]). The central idea, which has enjoyed significant cognitive appeal,
is to represent knowledge in terms of directed graphs, with links representing re-
lations among concepts. Here we will be concerned with a restricted version of
semantic networks, commonly referred to as inheritance networks, in which the
only relation of interest is that of class inclusion (e.g. [Touretzky, 1986]).

Figure 1.1, depicts a simple inheritance network. The network involves two
types of links: positive links (—), which assert that one class is a (not necessarily
strict) subclass of another (e.g. birds are flying things), and negative links (+#)
which assert that one class is a (not necessarily strict) subclass of the complement
of another (e.g. penguins are not flying things).

animal
-
bird — fly
/ f 3
canary /
penguin

Figure 1.1: Simple Inheritance Hierarchy

Classes are assumed to inherit their properties from superclasses. unless oth-
erwise specified. In the net depicted in fig. 1.1, for instance, canaries are assumed
to inherit the property ‘fly’ from birds, just as penguins are assumed to inherit the
property ‘animal.” On the other hand, penguins do not inherit the property ‘fy’
from birds, as the link from penguins to the negation of ‘fly,” being more “specific”
than the link from birds to ‘fly’, overrides the inheritance path ‘penguin’ — ‘bird’
— ‘ﬂy_-?G

Inheritance reasoning is also non-monotonic: a bird will normally be assumed to
fly, though a penguin, which is also a bird, will not; more information thus results

®While in this case the choice is clear, the problem of determining “specificity” conditions
in general networks has been a subject of much debate. See for instance, Touretzky [1986],
Horty et al. {1987], and Geffner and Verma [1989] among others.
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in the retraction of conclusions. Compared to databases, inheritance hierarchies
point to additional aspects of non-monotonic reasoning that an adequate account
of default reasoning must explain; in this case, the preference of more “specific”
defaults over less “specific” ones.

Logic Programs

I

Logic programs are collections of implicitly uriversally quantified rules of the form
A+« Ly, L,,...,L,, where A is an atom, called the head of the rule, and each L;,
t=1,...,n,n 2> 0, is positive or negative literal in the rule’s body. Unlike common
programming languages constructs, the rules in a logic program accept both a
procedural and a declarative reading [Kowalski, 1979]). If we restrict ourselves to
propositional programs without negative literals, a rule 4 — L,,L,,...,L, can
be understood both as stating that the goal A will be derivable when each of the
subgoals L;, 2 = 1,...,n, is derivable, and that A is true when the literals L;,
t=1,...,n are true.

When some of the literals L; are negative, however, things are not so simple
and the declarative reading of logic programs is usually dropped. Such programs
are commonly understood in procedural terms, with the proviso that negative
literals —A; are assumed to be derivable when every derivation for the atom A; fails
(see [Rousell, 1975]). Such form of negation has turned out to be a particularly
useful programming tool, and follows a tradition that goes back to Planner-like
languages [Hewitt, 1972]. Coined negation as failure, it endows logic programs
with a behavior that is non-monotonic. In a program containing a single rule
p < —q, for instance, negation as failure yields a derivation for the atom p, which
no longer holds when the rule q « is added.

While the straightforward declarative reading of logic programs does not le-
gitimize the behavior of negation as failure, more adequate logical accounts have
been recently developed. In chapter 5, we will consider some of these accounts, as
we analyze the relation between logic programs and causal default theories.

Truth Maintenance Systems

Truth maintenance systems (TMSs) are systems which keep track of dependencies
among propositions [Doyle, 1979]. A user expresses justifications among beliefs in a
restricted propositional language and the TMS labels each proposition as believed
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(IN) or not believed (OUT), according to whether the proposition is justified or
not. As an example consider the following propositions:

“John is at work”

“John is at home”

“Today is a working today”
“John’s car is in the garage”.

arx =

A typical Doyle’s TMS will then contain justifications of the form:’

Ji ¢ WeaD,—H
Js : HeC
Jz : De

The first justification J; can be read as saying that it is justified to believe that
John is a work if it is believed that today is a working day and it is not believed
that John is at home, while J3 says that it is justified to believe that today is a
working day.

The TMS algorithm labels propositions as believed (IN) when they are justified.®
Given the justifications above, for example, the labeling algorithm will have both
D and W labeled ‘IN,” as D is justified as a premise, while W is justified by D and the
lack of belief in H.

Such beliefs, however, are subject to revision. Consider for instance that we
find John’s car in his home’s garage:

J4 :C—

The belief that John is at home (H) becomes now justified and, as a result, the
justification for the belief that John is at work (W) no longer holds, so the TMS
deletes W from the IN list, and adds H.

Though understood in procedural terms for a long time, some satisfactory
accounts of the semantics of the TMS belief revision process have been recently
advanced [Elkan, 1988, Reinfrank et al., 1989]. They are based on autoepistemic
logic, a formalism for non-monotonic reasoning which we will discuss in the next
section. More interestingly, such accounts reveal that a Doyle’s TMS is not very
different from a propositional logic program, and that a TMS labeling turns out to

"The syntax we use is different from Doyle’s.
8There are subtle but important issues about circular justifications which we ignore here. See
[Doyle, 1979] for details.
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be nothing else but a stable model of the logic program that results from replacing
the justification construct ‘e’ by the logic programming construct ‘«-."

Time Map Management Systems

Time map management systems (TMMs) [Dean and McDermott, 1987) are systems
for efficiently reasoning about propositions whose status changes in time. In one
of its simplest forms, given a set of propositions which hold at a given time, a
TMM infers the propositions that will hold at some later time, after a sequence of
events has taken place [Dean and Boddy, 1987]. All such propositions are assumed
to persist in the absence of relevant changes, while sources of change are encoded
in the form of causal rules stating the effects of events when certain conditions
are satisfied. A causal rule may indicate, for instance, that after checking a book
out of the library, the book is no longer at the library, but in possession of the
borrower; a second rule may state that if the borrower has checked a book at a
some time ¢ and has not returned it for a certain period of time T, s/he will get a
fine at time t+T+ A, and so on.

In the simple case described, the task of the TMM is straightforward (see
also [Hanks and McDermott, 1985]). The algorithm starts at the time for which it
has complete information, and moves along the time axis looking for causal rules
which may be triggered. If so, all such rules are inspected and the status of the
temporal database is updated accordingly.

Simple as it is, however, this projection task is very instructive of what a system
of default reasoning about change must be able to do. We will come back to these
issues in section 5.2, when we will analyze some of the general requirements to be
met by adequate frameworks for reasoning about change.

1.5 Non-Monotonic Logics

All the systems reviewed in the previous section behave non-monotonically. Still,
such a non-monotonic behavior is the result of well-crafted algorithms. Non-
monotonic logics were developed to understand what these algorithms do in logical

9For the stable semantics of logic programs, see [Gelfond and Lifschitz, 1988). The correspon-
dence between TMS labelings and stable models is elaborated in [Elkan, 1988). We will say more
about stable models and their equivalent felicitous models [Fine, 1989], in section 5.3.
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terms, making explicit the assumptions they embed as well as their virtues and
limitations. Moreover, while all these systems rely on languages with restricted
expressive power, non-monotonic logics were developed to add non-monotonic be-
havior to languages with the expressivity of first order logic. In this section we
will review three such standard non-monotonic formalisms: Reiter’s [1980] default
logic, McCarthy’s [1980, 1986) circumscription, and Moore's [1985b] autoepistemic
logic.®

Default Logic

In Reiter’s [1980] default logic, defaults are tentative rules of inference of the form:

a(z) : B(z)
v(z)
where a(z), B(z) and 4{z) are formulas with free variables among those of z =
{z4,xs,...}, called the precondition, the test condition and the consequent, re-

spectively. For a tuple a of ground terms, such a default permits one to derive
v(a) from a(z), provided that —f{a) is not derivable.

For instance, a default

bird(x): flies(x)
flies(x)

permits the conclusion f1ies(Tim) upon learning bird(Tim). However, if the nega-
tion of flies(Tim) is observed, the default gets blocked and the former conclusion
no longer holds.

The appeal to non-derivability in the body of defaults together with their use
to extend the set of derivable sentences, often leads to conflicts among defaults.
For instance, given the additional default:

injured(x): ~flies(x)
—~flies(x)

10For more detailed surveys on non-monotonic reasoning, see [Ginsberg, 1987, chapter 1], and
[Reiter, 1987a]. McDermott [1987) also reviews some of these issues within the broader context
of logic in AL
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and that Tim is also injured, we obtain a situation in which the preconditions of two
defaults are satisfied, but in which the application of one blocks the other and vice
versa. Reiter deals with such conflicts by introducing the notion of eztensions of a
default theory. Here, for simplicity, we will only consider the extensions of normal
default theories, where the test conditions and consequents of defaults coincide.

An eztension of a normal default theory T = (W, D), where W is a set of
wifs and D is a set of defaults, is a minimal deductively closed set of formulas F,
W C F, such that every default «:3/4 in D whose precondition a is in F is either
blocked, i.e. F'F —f, or has its consequent ~ in F.

In the example above, two different extensions can be constructed: one which
results from the application of the first default, corresponding to the theorems
derivable from {bird(Tim),injured(Tim),flies(Tim),}, and a second which re-
sults from the application of the second default, corresponding to the theorems
derivable from {bird(Tim),injured(Tim),-flies(Tim) }.

Reiter’s default logic main merit lies in extending classical first order logic with
non-monotonic features by means of a simple formal device. Such an extension
is sufficient to account for some of the non-monotonic forms of inference that
arise in databases, and, by careful encoding, other forms of reasoning as well
(see for example {Etherington and Reiter, 1983], for the encoding of inheritance
hierarchies). As a framework for representing and reasoning with defaults, however,
default logic is too weak. The natural encoding of a body of knowledge in the form
of a default theory often gives rise to unreasonable extensions, which must then
be pruned by the user by properly tuning the defaults’ test conditions [Reiter
and Criscuolo, 1983]. In this regard, Reiter’s logic is more a precise language
for specifying non-monotonic behavior, than an interpretation for uncovering the
meaning of databases containing defaults. It is such an interpretation, however,
what we are looking for.

Circumscription

Circumscription is a formal device which added to a first order theory asserts
that the objects that can be shown to satisfy certain predicate P are the only
objects that do [McCarthy, 1980, McCarthy, 1986, Lifschitz, 1988a].!! For instance,
from a database only including the fact Q(a), the circumscription of Q yields the
formula Vx.Q(x) = x = a as a conclusion. Thus, if b is an object different from

11Gee also the text by Genesereth and Nilsson [1987).
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a, the circumscription of Q will permits us to jump to the conclusion -Q(b). If
Q(b) is learned, however, the previous conclusion would no longer hold, and the
new conclusions would correspond to those derivable from the formula Vx. Q(x) &
x = aVx = b. Circumscription thus behaves as a powerful ‘adaptable’ closed
world assumption, capable of dealing with theories richer than those expressible in

databases.

Formally, if we let A(P) stand for a first order sentence containing the predicate
P, and let A(®) denote the sentence that results from replacing all the occurrences
of P by a predicate ® with the same arity as P, the circumscription Circ[A(P); P]
of P in A(P) can be expressed as the second order schema [McCarthy, 80):

A(P)AA(®) AVX.[®(x) = P(x)] = Vx. (P(x) = &(x)).

The schema can be understood as stating that among the predicates & that satisfy
the constraints in A(®), P is the strongest.

In order to see how circumscription works, let us consider the sentence A(Q) :
Q(a), and let us substitute in the predicate ®(x) the expression x = a. Such
substitution yields the closed first order formula:

Qla)Aa=aAVx. [x=a=Q(x)] = Vx. Q(x) = x = a,
which can be simplified to:

Q(a) A [Vx.Q(x) = x = a]
from which a minimal definition of Q follows:

Vx.Q(x) & x = a.

Circumscription can also be understood from a model-theoretic perspective. In
classical logic, a sentence s is said to be entailed by a sentence A(P) if s holds in
every model of A(P). Circumscription weakens this condition: a proposition s is
entailed by Circ[A(P); P} if and only if s holds in every model of A(P) minimal in
P [McCarthy, 1980, Lifschitz, 1985].12 A model M is minimal in P when there is

12The *if’ part requires the universal closure of the circumscriptive schema.
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no other model which assigns a strictly smaller extension to P and which preserves
from M the same domain and the same interpretation of symbols other than P.

Notice the way by which circumscription achieves non-monotonic behavior:
given a set of axioms, circumscription picks up a minimal interpretation for some
predicate(s) subject to the constraints imposed by the azioms. As the base of axioms
changes, so does the minimal interpretation circumscription picks, and thus, the
inferential import of the circumscriptive schema.

For instance, given A(Q) : Q(a), the circumscriptive schema reduces to the
formula Vx.Q(x) < x = a. Similarly, for A(Q) = Q(a) A Q(b), the circumscriptive
schema reduces to Vx.Q(x) €& x = aV x = b. In either case, provided that ¢ is
different from a and b, ~Q(c) can be inferred. On the other hand, if b is different
from a, ~Q(b) follows in the first case, but not in the second.

This way of ‘jumping to conclusions’ stands in contrast with the way Reiter’s
default logic achieves the same effect. In default logic, the situation above would
be represented by means of a default:

: Q(x)
—Q(x)

which, given Q(a), will permit us to jump to —Q(c) directly, independently of
whether, say, Q(b) holds or not. On the other hand, while Reiter’s default logic
permits inferring —Q(¢), for each term ¢, t # a, it does not authorize concluding,
as circumscription does, that Q does not hold for all individuals different than a,
ie. Vx.x # a= -Q(x).

While circumscription adds non-monotonic features to first order logic, it does
not uniquely specify how defeasible knowledge should be encoded. For that purpose
McCarthy [1986] introduced a convention by which Reiter’s normal defaults like

bird(x):flies(x)
flies(x)

are encoded in the circumscriptive framework as object-level formulas
Vx.bird(x) A ~ab;(x) = flies(x),

read as “every non-abnormal bird with respect to flying flies.” Once defaults are so
expressed, the expected behavior follows from circumscribing the ab;’s predicates,
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or as McCarthy says, from “minimizing abnormality.” However, before that can
be done effectively, a more powerful form of circumscription is needed.

To illustrate this need, consider the default above, and a bird called Tim. Intu-
itively we would expect the circumscription of abj to yield —ab;(Tim) and, there-
fore, flies(Tim). However, circumscription as presented so far, does not yield such
a conclusion. To show that, consider a model M of the sentence above in which
—flies(Tim) holds and Tim is the only abnormal individual. If M is not a minimal
model in abj, then there must be a model M’ which assigns a smaller extension
to the predicate abs, and which preserves the interpretation of all other symbols.
This however, amounts requiring that M’ satisfy the sentence above together with
the literals bird(Tim), ~flies(Tim), abj(Tim) which is not possible. Thus, M is
a minimal model, and therefore the soundness of circumscription guarantees that
the sentence flies(Tim) will not be sanctioned.

What is needed in such cases is a form of circumscription in which certain
predicates can be minimized at the expense of others. A more recent form of
circumscription, proposed in [McCarthy, 1986, permits precisely that. The cir-
cumscription Circ[A(P,Z}); P, Z] of the predicate P in the sentence A(P,Z), where
Z stands for a tuple of predicates allowed to vary in the minimization of P, is
defined by the second order formula:

A(P,Z)AVD, W A(D, W) AVx. [#(x) = P(x)] = Vx. [P(x) = &(x)].

This formula is stronger than the previous one, permitting not only substitutions
in place of P, but also in place of the predicates in Z.

The expected conclusion flies(Tim)}in the example above follows now by cir-
cumscribing the predicate abj, allowing the predicate flies to vary . To see that
it suffices to substitute ®(x) by x # z, and ¥(x) by x = x.

This extended form of circumscription also accepts an appealing model theo-
retic interpretation. The circumscriptive schema Circ[A(P, Z); P, Z] sanctions as
theorems the sentences that hold in all models of the sentence A(P,Z) which are
minimal in P with respect to Z [Lifschitz, 1985, Etherington, 1988]. A model M
of A(P,Z) is minimal in P with respect t6 Z, if there are no other models M’ of
A(P,Z) which assign a smaller extension to P, and which preserve from M the
same domain and the same interpretation of symbols other than P and those in Z.

While the discussion above focused on the circumscription of a single predicate
symbol, the generalization to many predicate symbols, known as parallel circum-
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scription, is straightforward. More interesting is the case of prioritized circum-
scription, in which the user is allowed to specify a priority ordering among the cir-
cumscribed predicates [McCarthy, 1986, Lifschitz, 1985, Lifschitz, 1988a]. For in-
stance, the circumscription Circ[A; P, > P, > ... > P,;Z] of predicates PP, ...,
P, in decreasing order of priority, translates into the conjunction of n — 1 circum-
scriptions of the form Circ[A; P;;Z U {Piy,, ..., P,}] together with Circ[A; P,;Z].
Namely, predicates with higher priority are circumscribed at the expense of pred-
1cates with lower priority. Though it is not clear in general how priorities among
predicates are to be selected, some general guidelines in specific domains have been
advanced (see for instance, [Lifschitz, 1988b] in the domain of logic programs, and
[Krishnaprasad et al., 1989], in the domain of inheritance hierarchies).

Due to its power and mathematical tractability, circumscription has become the
most extensively studied non-monotonic formalism. As a framework for reasoning
with defaults, however, circumscription shares the same limitatjon of default logic:
the distinction between good and bad default arguments is left to the user, who
remains responsible for explicating the relevant preferences. Moreover, the treat-
ment of equality and universals if often less appealing in circumscription than in
default logic. For instance, circumscription will legitimize counterintuitive conclu-
sions such as “all birds fly’ given a default “birds fly,” which are not certified by
default logic. Similarly, if Tim is a bird and does not fly, circumscription, unlike
default logic, will not jump to the conclusion that Tweety flies, unless Tim and
Tweety are known to be different individuals.!® Circumscription, however, offers a
more expressive language than default logic, in which priorities play a major role.
Such a role will be analyzed in detail in chapter 4.

Autoepistemic Logic

Autoepistemic logic is a non-monotonic extension of classical logic, originally pro-
posed by Moore [1985b] as a reconstruction of McDermott’s and Doyle’s [1980]
non-monotonic logic. Since then, autoepistemic logic has received growing atten-
tion, having been studied by Marek [1986], Konolige [1988], and Gelfond [1989]

among others.

Autoepistemic logic deals with qutoepistemic theories: propositional theories!?

13Both problems could be solved if rather than minimizing the ertension of circumscribed
predicates P, we minimize the set of atomic truths P(a), for all tuples a of ground terms in the
language. See the discussion in section 4.3.

145ee Konolige [1988] and Levesque [Levesque, 1987) for first order extensions.
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augmented by a belief operator L, where sentences of the form Lo are read as “a
is believed.”. The steble ezpansions of an autoepistemic theory T are defined as
the sets of formulas S{T") which satisfy the equation

S(T)=Th(T+{Lp:p€ S(T)} +{-Lp:p ¢ S(T)})

where Th(X) stands for the set of tautological consequence of X. Stable expansions
are supposed to reflect possible states of belief of an ideal rational agent, closed
both under positive and negative introspection [Moore, 1985b].

A default such as ‘if it is a bird, it flies” which in McCarthy’s ‘abnormality’
formulation will be encoded as a sentence bird A —ab; = flies with a cir-
cumscribed predicate abj, can be encoded in autoepistemic logic as a sentence
bird A —Lab; = flies. Then, given bird, the only autoepistemic expansion
will contain the autoepistemic sentence —Lab;, and therefore, the target sentence
flies.

An autoepistemic theory may also have none or many stable expansions. For
instance, a theory such as T' = {=Lp = p} has no stable expansions, while a theory
T = {-Lp = ¢,~Lg = p} has two.

In general, autoepistemic logic regards literals of the form —La as assumptions,
and unless a proof for a can be constructed from other beliefs, those assumptions
will appear in every expansion. Under certain circumstances, as in a theory T =
{Lp = p}, literals of the form Lo will also act as assumptions, though whether
they should act so has been debated [Konolige, 1988].

Autoepistemic logic has been successfully applied to characterize the semantics
of general logic programs [Gelfond, 1987, Gelfond and Lifschitz, 1988] and truth
maintenance systems [Elkan, 1988]. Both characterizations are natural and simple,
requiring one only to replace logic negation by autoepistemic negation; namely,
literals of the form —p are replaced by literals of the form —Lp.

Other appealing features of autoepistemic logic follow from its autoepistemic
character: no other non-monotonic logic can distinguish between belief on a propo-
sition, from lack of belief on its negation.!® Autoepistemic logic does so, and makes
the lack of belief the preferred belief state.

On the negative side, the problems of autoepistemic logic as a framework for

1*Except approaches such as Sandewal’s [1988] and Ginsberg’s [1988], based on partial models
and multivalued logic, respectively.



1.5. NON-MONOTONIC LOGICS 21

default reasoning are of two types. On the technical side, exceptions often give
rise to theories which lack stable expansions. For instance, the autoepistemic
encoding bird A ~Lab; = flies of a default “if it is a bird, it flies” will lack
stable expansions given the exception bird A ~flies. Some proposals for dealing
with such difficulties have been recently advanced in [Gelfond and Przymusinska,
1989] and [Konolige and Myers, 1989].

On the conceptual side, though better suited than default logic and circum-
scription for certain default reasoning tasks (see for instance, [Gelfond, 1989)] and
section 5.4 below), autoepistemic logic still carries some of their shortcomings.
In particular, none of these formalisms is able to account for the preference of a
default “if p and r then —¢” over a conflicting default “if p then —q,” nor they
can detect any inconsistency between two defaults “birds fly” and “birds not fly.”
Indeed, these formalisms give us no insight on the empirical basis that makes the
first a good default, and the second a bad one. These aspects are left outside the
logic for the user to care for.

To account for these aspects of defaults, the notion of defaults needs to be taken
more seriously; not merely as rules for extending beliefs, but as declarative con-
straints over states of affairs. The nature and logic that governs those constraints
will then provide us with a more faithful interpretation of default reasoning.
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Chapter 2

A System of Defeasible Inference
Based on Probabilities

2.1 Introduction

Belief commitment and belief revision are the two main characteristics of default
reasoning. Beliefs are adopted in the absence of complete information, and often
have to be revised when new information becomes available. The main tools for
formalizing these notions, logic and probability, present serious limitations. Clas-
sical logic cannot accommodate belief revision; new information can only add new
theorems, never remove old ones. Probability theory, on the other hand, while able
to revise old beliefs in the light of new evidence, does not tell us much about belief
commitment: propositions are believed only to a certain degree, never accepted as
true for practical purposes.

Recently there has been a renewed effort to enhance both formalisms in order
to overcome these limitations. Those working within the probabilistic framework
have devised ‘rules of acceptance’ which work on top of a body of probabilistic
knowledge to create a set of believed, though defeasible, propositions (see [Loui,
1987b] for a review). Those working within the logic camp have developed ‘non-
monotonic’ extensions of classical logic in which old ‘theorems’ may defeated by
new ‘axioms’ (see section 1.5 above).

In comparison, the probabilistic approach has enjoyed a significant advantage
over the logical approach. Given a body of probabilistic knowledge there is in

23
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general no question about what its consequences are. The issue is rather what
constitutes an adequate acceptance rule. Non-monotonic logics, on the other hand,
have lacked such a clear empirical content. Not only has it been difficult to account
for the conclusions implicit in a body of defaults (e.g. [Hanks and McDermott,
1986]), but even to identify what these conclusions ought to be (see, for instance,
[Touretzky et al., 1987], “A clash of intuitions ...”).

On the positive side, as noted by [Glymour and Thomason, 1984] and [Loui,
1987b), the logical approach has shown that a qualitative account of non-monotonic
reasoning not requiring either ‘acceptance rules’ or the expense and precision of
computing with numbers, might be possible, and has even suggested ways in which
such an account may proceed.

The goal in this chapter is to show that it is possible to combine the best
of both worlds. We develop a system of defeasible inference which operates very
much like natural deduction systems in logic but which can be justified on proba-
bilistic grounds. The resulting system is closely related to a logic of conditionals
developed by Adams [1966], as we interpret defaults of the form p — g as infinites-
imal high conditional probability statements. However, high probability turns out
not to be enough for our purposes. As we show later, some simple patterns of
default inference, such as default chaining, fail to be sanctioned from such an ac-
count. Thus we extend the probabilistic interpretation with a syntactic account
of irrelevance used to draw independence assumptions. This notion of irrelevance
endows the resulting account with a dialectical flavor common to approaches in
which defeasible reasoning is viewed as emerging from the interaction of compet-
ing arguments (e.g., [Poole, 1985, Nute, 1986, Horty et al., 1987, Loui, 1987a,
Pollock, 1988]).

Two important benefits result from viewing defaults as high conditional proba-
bility statements augmented with assumptions about independence. First, a prag-
matic one: given a body of default knowledge, the probabilistic interpretation
renders a behavior in close correspondence with intuition. This is important as
we want the interpretation to be faithful to the information encoded in the knowl-
edge base. The second benefit, is of a more theoretical nature: we can appeal
to the empirical grounds of a probabilistic semantics for understanding potential
disagreements between what is sanctioned and what is intended. This is particu-
larly relevant in scenarios like the “Yale shooting” in which different solutions have
often been motivated on different conceptions of where the problem lies.

Actually, the framework for defeasible inference to be developed in this chapter
does not handle the Yale shooting scenario properly. The problem is that the
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notion of irrelevance used does not take causal considerations into account. Such
aspects of default reasoning will be treated in detail in chapter 5.

2.2 Language: Default Theories

The system of defeasible inference to be introduced accepts as input a context
composed of sentences and defaults, and implicitly characterizes the conclusions
that legitimately follow from that context. Sentences and defaults are expressed in
terms of an underlying first order language £. We use the object-level connective
‘=’ for material implication, and the meta-level connective ‘=’ for defaults. The
sentence ‘p = ¢’ thus reads as ‘if p then g,’ while the expression ‘p — ¢’ as 4f p,
then normally ¢.” The symbols ‘-’ and ' are used to stand for derivability and
non-derivability in classical first order logic with equality, respectively.

We use the letters p, g, ..., possibly indexed, as variables ranging over sen-
tences, and write object-level sentences in typewriter style (e.g. dog(fido)). Like-
wise, letters in italics from the end of the alphabet z, y, ... denote variables
(sometimes, tuples of variables), and from the beginning of the alphabet a, b, ...
denote ground terms (sometimes, tuples of ground terms). Sentences are implicitly
universally quantified, so we often write dog(z) = animal(z), for instance, instead
of Vz.dog(z) = animal(z).

Default theories T = (K, E) are comprised of two components: a background
context K containing generic information, and an evidence set E containing in-
formation specific to the particular situation at hand. Intuitively, K contains the
relevant rules, while E contains the relevant facts. For instance, in the canonical
“birds fly, penguins don’t” example, we will include the encoding of the defaults
“birds fly” and “penguins don’t fly” as well as the strict inclusion “penguins are
birds,” in K, leaving in E facts such as “Tweety is a bird,” “Tim weights three
pounds,” etc. We will also refer to the pair (K, E) as a contezt and will sometimes
denote it simply as Ex.

The background context K = (L, D) is also comprised of two components: a
sentential component L and a default component D. While L and E are sets
of sentences, namely closed wffs in £, D stands for a set of defaults. Defaults
are encoded by expressions of the form p — ¢, where p and ¢ denote sentences
in £ called the default antecedent and consequent, respectively. The expression
dog(fido) — can-bark(fido), for instance, represents a default stating that “nor-
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mally, if Fido is a dog, Fido can bark.” We use default schemas of the form
p(z) — gq{z), where p and ¢ are wifs with free variables among those of z, to
denote the collection of defaults p(a) — ¢(a) that results from substituting z by
all the tuples a of ground terms in the language.

Often it will be convenient to consider default theories in which defaults are
associated with assumptions in the underlying language £. In such cases we will
be able to say that a default is satisfied or is violated in a model according to
whether its associated assumption is satisfied or not. For that we will assume a set
Ay of assumptions in the language containing all atoms of the form é;(a), where ¢
is some type of index.

An assumption based default theory then is a default theory T = (K, E) in
which the consequent of each default p — é in K is a unique assumption § in
Ag. Arbitrary default theories TV = (K’, E) can be expressed in an assumption
based format by replacing each default schema p(z) — ¢(z) in K’ with a sentence
p(z) A §i(z) = q(z) and a new default schema p(z) — &;(z), for a unique index
t. Literals 6;(z) provide us with object-level handles on defaults, in a way similar
to Poole’s [1988] default naming convention, and McCarthy’s [1986] abnormality
predicates.

A theory with a background context K containing a sentence bird(z) =
animal(z) and a default schema bird(z) — f1y(z), for example, can be expressed
in an assumption based format by replacing the default schema by the expressions
bird(z) A §1(z) = fly(z) and bird(z) — 61(z), for a unique index 1. We will
often abbreviate the later two expressions by simply writing bird(z) —1 £1y(z).

An important assumption we will adopt in this chapter is that the underlying
language £ and the background contexts K = (L, D) are such that there is a finite
number of different truth valuations defined over £ that satisfy the sentences in
L. We say in that case that default theories T = (K, E) defined over £ are finite.
Finite propositional theories as well as default theories augmented by suitable
domain closure axioms, for example, will qualify as finite default theories. These
conditions will be later relaxed in chapter 4.
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2.3 Rules of Inference: The Core

The next system of defeasible inference will be referred to as P as an abbreviation
for “probabilistic.” P is characterized by a set of rules of inference in the style of
natural deduction systems. The first five rules constitute what we call the core.
We will later introduce an additional rule of inference which extends the inferential
power of the core significantly. The reason to isolate the first five rules as the core
of P, is because these rules admit a precise and pure probabilistic interpretation.
The power and limitations of the core will thus be a good indication of the power
and limitations of the underlying probabilistic interpretation. The last rule can
be interpreted as supplementing the core with assumptions about independence
extracted from the structure of discourse. It will be shown in chapters 3 and 4
that both P and its core can be given a model-theoretic interpretation as well.

The rules of P implicitly define the set of conclusions that follow from a given
context. We write E k p to denote that the sentence p is derivable in P from a
context T' = (K, E) with background context K = (L, D). Likewise, E, {¢} k p,
abbreviated E, ¢ k. p, states that p is derivable from the context that results from
adding the sentence ¢ to £. We will use the notation E & p as an abbreviation
of E,L I p. It should be kept in mind, however, that the consequence operator
‘K, unlike ‘ i ,’ is non-monotonic, so the expression E, ¢ k. p does not necessarily
follow from E k p .

Definition 2.1 The core of P is defined by the following set of rules:

Rule 1 (Defaults) If p > ge D thenply g

Rule 2 (Deduction) If E . p then E bk p

Rule 3 (Augmentation) IfEkp and E ly q then E,pk g
Rule 4 (Reduction) IfEt.pand E,plyq then E kg

Rule 5 (Disjunction) If E,pkr and E,qk r then E,pVghr

The defaults rule permits us to conclude the consequent of a default when its
antecedent represents all the available evidence. Deduction states that whatever
the context, what is derivable by the rules of classical logic, is also derivable in
P. Augmentation permits the assimilation of an established conclusion to the
current evidence set without affecting the status of any other derived conclusions.
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Reduction is the inverse of augmentation: it permits to remove information from
the evidence set if such information is derivable from the reduced set. Finally,
disjunction, permits reasoning by cases.

Rules 2-5 can be shown to share the inferential power of the system proposed
by Adams [1966] for deriving what he calls the probabilistic consequences of a
given set of conditionals. Some of these rules also appear, in different forms, in
several logics of conditionals (see [Nute, 1984}), and in a “minimal” non-monotonic
logic proposed by Gabbay [1985]. More recently Gabbay’s system has been further
investigated by Kraus et al. [1988] and Makinson [1989] who arrive at a system
which is equivalent to the core above, but which they justify on model-theoretic
grounds.?

We proceed now to investigate some of the properties of the system defined
by rules 1-5. Later on, we will discuss some of its limitations as we enhance the
system with an additional inference rule responsible for drawing assumptions about
independence.

Some Useful Derived Rules of Inference

The following derived rules of inference illustrate some of the logical properties of
P:

Theorem 2.1 The following rules are derived rules of P:

Deductive Closure IfEt.p, Et q, and E,p,q i r, then E kg r
Context Equivalence IfE,pkq, E,ghp, and E,ph.r, then E, gz r
Weak Reduction IfE,qgt.pthen Ek—~qVp

Presuppositions If Efzp and E,q b ~p then E K —q

Parallel Reduction IfE,p,ghr, Etp, and E by q, then E ki r
OR-transitivity IfE,pVglhqand E,qVrir, then E,pVrkr
OR-monotonicity IfE,pVgl—q, then E,pVgVrh g

To illustrate how derivations proceed in P, we include here the corresponding
proofs.

!More about this in chapter 3.
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Proof We start with deductive closure. From E k¢ and E kp, we can
obtain E,p k¢ by augmentation. Similarly, from E,p,q lkr we get E,p,qkr
by deduction. Applying reduction twice then, the target result follows. For
context-equivalence, E,p k ¢ permits us to augment E,p iy r into E,p,q kr,
while E, q k p permits us to reduce the latter into the desired conclusion E, ¢ k r.
For Weak reduction note that E,~gk ~¢V p and E, gk ~qV p, follow by de-
duction and deductive closure respectively. Thus, reasoning by cases and the
reducing ¢ V —¢ from the evidence set, the final result is obtained. Presup-
position is a consequence of weak reduction on F,qh —p and the deductive
closure of E f =gV —p and E g p. Parallel reduction follows from the aug-
mentation of E Iy p into E,q k p, and the reduction of E,q,pk r into E,q k.,
and further into E f;r. To prove Or-transitivity, note that by deduction we
can obtain E,qV r kpV ¢qV r, while from the hypothesis E,p V ¢ I ¢ and reason-
ing by cases we get E,pV qVr k¢ Vr. Similarly, we obtain E,pVrkpvgVvr
and E,pV qVrhkpVr. Finally, from the hypothesis E,qV r kyr one applica-
tion of context-equivalence yields E,pV ¢V r Iy r, and asecond E,pV r kr. OR-
monotonicity is a consequence of augmenting the hypothesis E,p V ¢ i —¢ into
E,pVq,pVgVrilg-g, from which the conclusion E,pV gV r k. —g follows by
weakly reducing p V ¢ from the premises, and deductive closure.

Some non-theorems:

E F p and p k ¢ do necessarily imply E k ¢
E k. p and E' i p do not necessarily imply E, E' k. p

Note that the first non-theorem is clearly undesirable. If accepted, it would
endow our system with the monotonic characteristics of classical logic, precluding
exceptions like non-flying birds, etc. The second one would authorize conclusions
such that John will be happy when married to both Jane and Mary on the grounds
that he will be happy when married to either one of them.

The system of rules 1-5 defines an extremely conservative non-monotonic logic.
In fact, the inferences sanctioned by these rules do not invoke any assumptions
regarding information absent from the background context. Namely, while the
core is non-monotonic in the evidence set E, it is monotonic in the background
context K. If for two background contexts K = (L, D} and K' = (L', D'} we write
K C K'for L C L' and D C D', the following theorem holds:?

ZProofs can be found in the appendix.
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Theorem 2.2 (K-monotonicity) IfEtp and K C K’ then E k. p

2.4 Semantics: e-entailment

As indicated above, it is possible to construct a probabilistic interpretation un-
der which rules 1-5 can be shown to be sound and, as we will later see, complete.
The idea, roughly, is to associate the expression E ky p with conditional probability
statements Pk (p| E) =~ 1, for probability distributions Px(-) which comply with
the constraints in K in a suitable way. We provide the details of such an interpre-
tation below. Note, however, the different roles that background and evidence will
play: while the background K delimits the space of probability distributions to
be considered to what we call the admissible probability distributions Pg(-); the
set E participates as the information on which the admissible probability distri-
butions are conditioned upon.> More precisely, the admissibility of a probability
distribution P relative to a background context K and a given range ¢ is defined
as follows.

Definition 2.2 A probability distribution Py is admissible with a background con-
tezt K = (L, D) within a range ¢, if Px assigns unit probability to every sentence
s in L, i.e. Px(s) =1, and for each default p — ¢ in D, Px(q|p) is greater than
1 — ¢, while Px(p) is greater than zero.

In other words, a probability distribution is admissible within a range € when
1t renders the sentences in L certain, while leaving a range € of uncertainty for the
defaults in D. What we show next is a result due to Adams [1966, 1975], stating
that when the expression E k p is derivable by means of rules 1-5, the conditional
probability Px(p|E) is bound to approach to one, as the range of uncertainty e
approaches zero. When this happens, we say that the proposition p is e-entailed
by the default theory T' = (K, E}.*

Definition 2.3 A proposition p is e-entailed by a default theory T = (K, E) when
for any € > 0, there is an € > 0, such that for any probability distribution Py

3The reader without a basic background in probabilities will found in [Pearl, 1988b] all what
we are going to need and considerably more.

“The terms c-entailment and e-semantics were coined by Pearl in [Pear] and Geffner, 1988,
Adams (1966, 1975], refers to the same notions as probabilistic entailment (p-entailment) and
probabilistic semantics, respectively. Here we will adhere to the ¢-terminology, leaving the term
p-entailment for other purposes.
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admissible with K within a range €, Px(p|E) > 1 —e.
The soundness result can then be cast as follows:

Theorem 2.3 (Adams) If E k. p then p is e-entailed by the default theory T =
(K,E).

Like deductive inference preserves truth, rules 1-5 preserve high-probability.
However, unlike classical model-theory, the probabilistic interpretation provides
a semantics for default inference as opposed to defaults themselves. We cannot
evaluate whether a default is true in given a world; rather, the interpretation tell
us which propositions should be accepted, provided (1) that only conclusions with
arbitrarily high conditional probability (short of one) are accepted, and (2) that
defaults are accepted.®

A distinctive feature of this interpretation is that it leads to a notion of default
consistency which is different from traditional ones. A background context K
containing two defaults p — ¢ and p — -—g, for instance, legitimizes any sentence
in the language from a context which includes p. Indeed, inconsistencies may
occur when K does not accept admissible probability distributions beyond certain
ranges:

Definition 2.4 (Consistency) A background contezt K = (L, D) is e-consistent,
iff there is a probability distribution admissible with K within any positive range.
Otherwise, K 1is e-inconsistent.

A context T' = (K, E) whose background context K = (L, D) is e-consistent, is
thus guaranteed not to sanction logically incompatible propositions as long as the
set L+ E of sentences is logically consistent. Moreover, as noted by Adams [1975],
e-consistency can be determined in terms of e-entailment, and vice versa:

Theorem 2.4 (Adams) The proposition q is e-entailed by the default theory T =
(K,{p}), with K = (L, D) if and only if the background K' = (L,D + {p — —q})

is e-tnconsistent.

5For alternative probabilistic semantics of plausible reasoning, see Wellman [1987], Neufeld
and Poole [1988], Bacchus [1989], and the recent survey by Pearl [1989a).
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Such a correspondence between e-entailment and e-consistency will be at the
center of the equivalence between e-entailment and a model-theoretic form of de-
feasible entailment to be studied in the next chapter. We will also show then that
the core of P, comprised by rules 1-5 above, is not only sound with respect to
e-entailment, but in a suitable sense, also complete.

The example below illustrates some of the virtues and limitations of the core
as a system of default inference.

Example 2.1 (Specificity) Let us consider a background context K with infor-
mation about birds (B), red birds (RB), penguins (P) and flying things (F) expressed
in an assumption based default theory with formulas (see fig. 2.1):

P(z) = B(z) RB(z) = B(z)
B(z) A 81(z) = F(z) B(z) — 81(z)
P(z) A 62(z) = —F(z) P(z) — 6a(z)

Recall that the last two rows encode the defaults B(z) — F(z) (“birds fly”) and
P(z) — —F(z) (“penguins don’ fly”). The convenience of such an encoding device
will become apparent in the next section.

1
——
X

Figure 2.1: The canonical example: birds and penguins
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In this background context K, it is possible to prove that an arbitrary bird, say
tim, is likely to fly, as follows:

1. B(tim) bk é;(tim) ; Defaults B(z) — 6,;(z)
2. B(tim) k F(tim) ; Deductive Closure 1
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The fact that the consequence relation ¢ ; * is closed under deduction permits us
to obtain the behavior associated with the intended default B(tim) — F(tim) from
the encoding in terms of the assumption é3(tim). Indeed, the pattern of ‘applying’
a default such as B(tim) — 631(tim) and closing the result under deduction will be
so common that we will find useful to replace it by the application of the “virtual”
default B(tim) —; F(tim) in K. So, we justify the inference that an arbitrary
penguin does not fly as:

3. P(tim)k —F(tim) ; Defaults P(z) —q —F(z)

Notice that there is no contradiction between the conclusions B(tim) b F(tim)
and P(tim) & —F(tim) as both refer to different contexts: {B(tim)}, and {P(tim)},.
Nonetheless, since penguins are known to be birds, the latter context subsumes
the former one:

4. P(tim) k B(tim) ; Deduction
enabling us to augment 3 above to yield:
5. P(tim),B(tim) iz —-F(tim) ; Augmentation 3,4

Thus we see that subclasses properties override classes properties. However,
unlike default logic or circumscription, the ‘abnormality’ of subclasses does not
need to be specificed explicitly; the expected behavior emerges automatically from
the probabilistic interpretation embodied in the rules and the distinction made
between formulas in the background context K from those in the evidence set E.
Indeed the behavior we have just illustrated would not be sanctioned if we had
included the fact that ‘penguins are birds’ in F rather than in K. In such a case
we would need to show that the expression P(z) = B(z) can be assimilated into
the left hand side of the non-monotonic consequence operator without affecting
the status of the intended conclusion —~F(tim). When the expression P(z) = B(z)
is included in the background context, on the other hand, it does not need to be
assimilated; defaults p — ¢ in K are interpreted by rule 1 as stating that “if p then
g, even if K.” In particular, thus, if K were augmented with the fact that tim
is an exceptional bird, namely B(tim) A ~F(tim), K would become ¢-inconsistent:
no probability distribution would be able to make the probability of F(tim) given
B(tim) arbitrarily high, while making the probability of B(tim) A =F(tim) one and
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the probability of B(tim) greater than zero. That is the reason why the background
context is to contain only generic information, leaving the information specific to
the situation at hand in the evidence set.

While the interpretation of defaults embedded in rules 1-5 captures certain
pattern of reasoning that escape more traditional formulations, it falls short in
other important aspects. For instance, in the example above, we also would expect
that a red bird is likely to fly. However, while the expression B(tim) k. F(tim) (“a
bird flies”) is derivable, the expression RB(tim),B(tim) fx F(tim) (“a red bird flies”)
is not.

This limitation of rules 1-5 is indeed serious and prevents us from maintain-
ing a conclusion in the presence of additional but irrelevant information. Such a
behavior, however, is not surprising given the probabilistic semantics underlying
the core. Rules 1-5 are probabilistically sound, and therefore, only ‘jump’ to con-
clusions F k; p whose high conditional probability Px(p| E) can be guaranteed in
every probability distribution Px admissible with K.® Since there are probability
distributions admissible with K in which red birds do not fly (as much as penguins
do not fly}, the conclusion that a red bird is likely to fly is not probabilistically
sound, and therefore, not derivable from the core.

To account for these inferences, additional restrictions on the space of proba-
bility distributions considered are needed. A natural restriction is to require these
distributions to comply with certain assumptions about conditional independence;
namely, that the consequent g of a default p — g be derivable from its antecedent,
as long the available evidence does not indicate otherwise. In the case of assump-
tion based default theories, where defaults are associated with assumptions, such
independence assumptions take a form familiar to other non-monotonic formalisms:
assumptions will be adopted in the absence of conflicting evidence. In the example
above, this amounts to maintain the assumptions §;(tim) (“f Tim is a bird, Tim
flies”) in the presence of the new information RB(tim) (“Tim is a red bird”), as the
latter does not provide an argument against the former.

®The expression ‘a probability distribution admissible with K* is to be understood as ‘a
probability distribution admissible with K within infinifesimal ranges’.
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2.5 Independence Assumptions

The account of the irrelevance conditions determines whether an assumption §
can be asserted in a given context T = (K, E} by checking whether T provides
arguments against §. Probabilistically, if § is the assumption associated with a
default p — ¢ in K, such conditions amount checking whether the sentence p = ¢
can be assumed to be independent of the body of evidence E in K: namely, if
Pr(p = q|E) can be assumed to be equal to Px(p = ¢) for any admissible
probability distribution Px.”

First, we shall make the notion of arguments precise. We use the symbols A,
A', ... to stand for sets of assumptions, and —A to stand for the negation of the
conjoin of A (—A = true if A is empty).

Definition 2.5 A set of assumptions A constitutes an argument in ¢ contezt T =
(K,E), if E.—~A. An argument A is an argument for o proposition p in T, off
E,A & p, and an argument against p iff E, A k. —p.

Intuitively, if a body of evidence E does not give rise to arguments against
an assumption é, it is reasonable to assume that E is irrelevant to the status
of . In the example above, this amounts to say that given the evidence E =
{B(tim),RB(tim)}, the assumption &,(tim) associated with the default B(tim) —,
F(tim) can be assumed to hold, enabling a derivation for B(tim), RB(tim) b F(tim)
by deductive closure.

The problem, however, is that the characterization of the irrelevance of a body
of evidence E to an assumption & in terms of the lack of counterarguments is
too weak. Many times it is possible to construct arguments against an assumption
which, intuitively, do not count. In the same example above, this happens when all
we know about Tim is that it is a penguin, i.e. E = {P(tim)}. In such a context, an
argument {§;(tim)} (“if Tim is a bird, Tim flies”) against the assumption b2(tim)
(“if Tim is a penguin, Tim does not fly”) can be constructed, and still ba(tim)
is derivable from T = (K, E) by means of rule 1. In other words, the argument
{61(tim)} refutes the assumption §2(tim) but carries no weight. However, if we
want to assess the relevance of an additional piece of evidence, say RB(tim), such an

"The account in [Geffner and Pearl, 1987) and [Geffner, 1988] computes whether the condition
Px(q|p, E) = Px(q]p) can be assumed to hold, which unlike the conditions addressed here, does
not allow for default contraposition.
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argument remains, preventing to tag the evidence £ = {P(tim),RB(tim)} as irrel-
evant to 82(tim), and thus precluding a derivation for P(tim),RB(tim) k —F(tim).

What such a scenario suggests is that the license to derive an assumption 6
from p in a background K containing a default p — § (rule 1), presumes that
arguments A against 6 in the context T = (K, {p}) carry no weight. Let us say
that such arguments are against the defaeult p — 4:

Definition 2.6 A set of assumptions A is an argument against g default p — §
in K, iff A is an argument against the assumption 6 in the contezt T = (K, {p}).

The intuitions then is that when assessing the relevance of E to §, arguments
A against an assumption § which are also arguments against a default p — §
in K should not be considered. We say that A is an argument which is directly
dominated by é:

Definition 2.7 (Direct Dominance) A set of assumptions A is directly dom-
inated (d-dominated) by an assumption § in K, iff A contains an argument A’
against a default p — § in K.

It is easy to check that the expected behavior follows from the example above
once dominated counterarguments are discarded. Indeed, the evidence E' =
{P(tim),RB(tim)}, gives rise to a single minimal argument {6;(tim)} (“f Tim
is a bird, then Tim flies”) against the assumption é2(tim) which is d-dominated by
62(tim). Thus, if such argument is ignored, the expression P(tim), RB(tim) b 62(tim),
and by means of deductive closure, the expression P(tim), RB(tim) b —F(tim) (“a
red penguin doesn’t ly”} would be authorized.

This irrelevance criterion is sufficient for many other cases as well, and more-
over, can be shown not to introduce any inconsistencies (chapter 4). However,
it is not strong enough. Consider for instance the theory that results from the
example above by replacing the strict inclusion P(z) = B(z) by a default inclusion
P(z) —3 B(z). In the resulting background context, {;(tim)} is no longer an argu-
ment against the default P(tim) — 62(tim), and thus it is no longer d-dominated by
the assumption é2(tim). As a result, the body of evidence E' = {P(tim),RB(tim)}
can no longer be proven irrelevant to §z(tim), precluding thus a derivation for
P(tim),RB(tim) bz —-F(tim).
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Note, however, that the assumption §2(tim) directly dominates the set of as-
sumptions {6;(tim),83(tim)}, and the assumption §3(tim) directly dominates the
set {81(tim),82(tim)}. Thus, if the relation “6 directly dominates the set A” is
understood as meaning that the assumption & has a higher priority than some as-
sumption in A, where priority relations are irreflezive and transitive, both 85(t im)
and é3(tim) are forced to have a higher priority than 6;(tim). Intuitively, then,
the argument {61(tim)} should still be dominated by the assumption 65(t im), and
thus ignored when assessing the relevance of E' to 63(tim).

The following extended definition of dominance captures such understanding
of direct dominance in terms of priorities:

Definition 2.8 (Dominance) The set A of assumptions dominates a set A’ rel-
ative to a background context K, iff every assumption § in A directly dominates
the set A+ A’. An assumption § dominates a set A’ iff § belongs to a set A that
dominates A’.

In chapter 4 we will analyze such a prioritized interpretation of defaults in
detail, and prove that § must have a higher priority than some assumption in each
set it dominates, provided that every assumption has a higher priority than some
assumption in each set it directly dominates.

Since arguments against § which rely on assumptions with lower priority than é
should be discounted, the following definition of the irrelevance conditions finally
results:

Definition 2.9 (Irrelevance) A body of evidence E is irrelevant to an assumnp-
tion  in a background context K, written Ix (8| E), iff every argument against §
in the contert T = (E, K) is dominated by 6.

The last inference rule of the system P permits us to derive an assumption 6
in a context T = (K, E) provided that the body of evidence E is irrelevant to §:

Rule 6 (Irrelevance) If Ix(6|E) then E & 6

As a special case, for an assumption é; associated with a default p—iqin K, we
will often find useful to write Ix(p —, ¢| E) as an abbreviation of Ix(6; | E + {p}).
We will say in that case that FE is irrelevant to the default P =i ¢, and invoke the
irrelevance rule in the following, more restricted form:
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Rule 6.1 (Irrelevance) If Ix(p —i q| E) then E,pl; ¢

Provided with this irrelevance rule, a proof that a red bird is expected to fly
(example 2.1), can then be constructed as follows:

1. Ig(B(tim) — F(tim) |RB(tim)) ; No arguments against §;(tim)

2. RB(tim),B(tim) & F(tim) ; Irrelevance (6.1) 1
3. RB(tim) b B(tim) ; Deduction
4. RB(tim) i F(tim) ; Reduction 2,3.

In chapter 4 a justification for the irrelevance rule in terms of priorities will be
considered in detail.

2.6 Examples

In this section we illustrate the behavior of the system of defeasible inference
determined by rules 1-6 on a number of examples.

Example 2.2 (Default Preferences) Let the background context K contain
the following defaults : “adults (A) work (W)”,“university students (U) are adults
but do not work”, and “adults which are young (Y) are university students”, ex-
pressed as:

A(z) =1 ¥(z)

U(z) —2 A(z)

U(z) —3 —M(:L‘)

A(z) AY(z) —4 U(z)

Namely, for each expression p(z} —; ¢(z), K contains a default schema p(z) —
8i(z) and a sentence p(z) A éi(z) = ¢(z). Figure 2.2 provides a graphical represen-
tation of K. The labels on links indicate the indices of the associated assumption
predicates.

We show first that an adult, say Ken (k), who is also a university student, is
likely not to work, i.e. A(k),U(k) k —W(k) :
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Figure 2.2: Implicit preferences among defaults

1. U(k) b —W(k) ; Defaults, U(z) —3 W(z)
2. U(x) k A(k) ; Defaults, U(z) —2 A(z)
3. U(k),A(k) lz ~W(k) ; Augmentation 1,2

Note that the rules in P result again in a preference for more ‘specific’ defaults.
Indeed, if we consider the context {U(k)}, it is possible to find a preference pattern
among assumptions. Namely, while the assumptions §1(k) and 62(k) and 83(k) are
in conflict, d2(k) and 83(k) hold, but §;(k) does not:

4. U(k) Iz 62(k) A 83(k) A =831(k) ; Defaults + Deductive Closure

Indeed, the set of assumptions A = {63(k), 63(k)} dominates the set of assump-
tions A’ = {61(k)}, as each assumption in A directly dominates the set A + A”:

U(k), 81(k), 63(k) k —b2(k) and  U(k) & —(61(k) A 83(k))
U(k), 81(k), b2(k) b ~83(k) and  U(k) & —(61(k) A 82(k))

In light of the definitions of irrelevance and dominance above, this implies that
arguments against either 6a(k) or 83(k) which appeal to the assumption 6;(k)
can be ignored. In particular, then, it is possible to construct an alternative
derivation for U(k), A(k) b —W(k) which relies on the irrelevance of the evidence
E = {U(k), A(k)} to the status of the assumption 83(k):

5. Ik(b3(k)|U(k),A(k)) ; Defn + {2(k),3(k)} dominates {&;(k)}

6. U(k),A(k) b 63(k) ; Irrelevance 5
7. U(k), A(k) by ~H(k) ; Deductive Closure 6

The irrelevance conditions, however, allow us to go well beyond what is deriv-
able by the core. In particular, the expression A(k),Y(k), U(k) k —W(k), while not
derivable by means of rules 1-5, has a derivation in the extended system. Such a
derivation indeed is equivalent to steps 5-7 above, except that the set {a(k), U(k)}
needs to be replaced by the set {A(k), Y(k),U(k)}. Another expression not derivable
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from the core alone is A(k), Y(k) i —W(k); namely, that a young adult is likely not
.to work. The irrelevance rule permits the following derivation:

8.  Ix(ba(k)|A(k),Y(k)) ; Defn + {62(k),83(k),ds(k)} dominates {81(k)}
9. Ix(63(k)|A(k),Y(k)) ; Def + {ba(k),d3(k)} dominates {é1(k)}

10.  A(k), Y{(k) k ba(k) ; Irrelevance 8
11, A(k), Y(k) & 63(k) ; Irrelevance 9
12, A(k),Y(k) k ~W(k) ; Deductive Closure 10, 11

We will later show, that while the irrelevance rule permits us to go beyond the
core, it is guaranteed not to lead to inconsistencies (chapter 4). For instance, there
is no way to prove the conclusion A(k), Y(k) & W(k); the evidence E = {A(k), Y(k)}
is indeed relevant to the assumption §;(k) by means of the counter-argument
A = {62(k), 83(k), ba(k)} which is not dominated by §1(k).

It is also possible to illustrate in this example, how default contraposition works
in P. For instance, we can derive that if Ken does not work he is likely not be an
adult;

13. Ik(61(k)|-W(k)) ; Definition + No counterarguments
14. =W(k) k 81(k) ; Irrelevance 13
15. -W(k) k —a(k) ; Deductive Closure 14

However, if it is additionally learned that Ken is a university student, the
conclusion changes; and while the former derivation no longer applies, the following
one does:

16. U(k) k A(k) ; Defaults U(z) —2 A(z)
17. U(k) k —W(k) ; Defaults U(z) —3 -W(z)
18. U(k),W(k) i A(k) ; Augmentation 16,17

The reason the former derivation does not hold in the new context is that the
irrelevance assertion Ik (61(k)|U(k), ~W(k)) is false: there is an argument {62(k)}
against the assumption 6;(k) in the context {U(k), ~W(k)} x which is not dominated
by 51 (k)

Example 2.3 (Cases) Let us consider now a background context K with defaults
“quakers (q) are doves (d),” “republicans (r) are hawks (h)” and “both doves and
hawks are politically motivated (p),” together with the fact that nobody is both a
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hawk and a dove:®
r(z) —1 h(z)
q(z) —2 d(z)
h(z) —3 p(z)
d(z) —4 p(z)
—{d(z) A h(z))

/\

== d
I
q

Figure 2.3: Reasoning by cases

We want to show that somebody, say Nixon (n), who is both a quaker and a re-
publican is likely to be politically motivated. The proof involves first reasoning by
cases to get q(n),r(n) kr d(n) V h(n). The first case, q(n), r(n),d(n) k d(n) V h(n)
trivially follows by deduction. The second case, q(n),r(n),~d(n) k d(n) V h(n),
requires the irrelevance of £ = {q(n),~d(n)} to r(n} —; h(n). This is straight-
forward, as there are no arguments against the assumption 6, (n) in the resulting
context. Finally, since by irrelevance we can further conclude g(n),r(n) k &3(n)
and q(n), r(n) ki 84(n), the target conclusion q(n),r(n) k p(n) follows by deduc-
tive closure. Note, however, that neither q(n), r(n) k d(n) nor q(n), x(n) k h(n) are
sanctioned by P, as the required irrelevance conditions Jx(r(n) —1 h(n)|q(n)) and
Ix(q(n) —2 d(n) | r(n)) do not hold.

Example 2.4 (Inconsistency) Defaults in P may give rise to inconsistent con-
clusions in contexts which are e-inconsistent (see section 2.4). For instance, a
background encoding two defaults “birds fly” and “birds do not fly” gives rise to
two contradictory conclusions bird(tim) k fly(tim) and bird(tim) k ~fly(tim).
This behavior does not arise in most default reasoning frameworks as these defaults

®This example is due to Matt Ginsberg.
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are regarded as conflicting rather than inconsistent. The present framework makes
such a distinction. This distinction is useful as, usually, inconsistent default the-
ories reveal something wrong about the encoding. Three defaults such as p — q,
pAq— r and p — —r constitute another example of inconsistent defaults.

The examples above illustrate some of the characteristics of the system of defea-
sible inference defined by rules 1-6. While the examples are treated satisfactorily,
it should not be inferred that rules 1-6 provide an adequate formal account of
default inference. They rather provide an account of some of the aspects of default
reasoning, such as specificity, cumulativity, and the like, which belong to what we
call the conditional dimension of defaults. There is another dimension to default
reasoning, however, in which the present account has little to say. We call such
a dimension the causal dimension of defaults, as it normally pops up in scenarios
which involve causal relations. The Yale shooting scenario [Hanks and McDermott,
1986], for instance, belongs to such class. In chapter 5 we will analyze several such
examples and construct a more refined account of defeasible inference in which
both the causal and conditional aspects of defaults are considered.

Before proceeding with such an account, however, we will further investigate
in the next two chapters the foundations of the system presented.

2.7 Related work

Rules 2-5 of the core are essentially equivalent to the logic of indicative condition-
als developed by Adams [1966, 1975]. These rules also appear, in different forms,
in most logics of conditionals (see [Nute, 1984]), where they are usually justified
in terms of possible worlds rather than high probabilities. More recently, Makin-
son [1989] and Kraus et al. [1988] have worked a system that is equivalent to the
core of P, but they derive on model-theoretic grounds. A common characteristics
of all these proposals, though, is that they do not go beyond the core. So, while
they display nen-monotonic behavior in the evidence set, they remain monotonic
in the set of defaults (conditionals); namely, the more defaults, the more inferences
that are sanctioned (see theorem 2.2). However, the fact that the core can also be
justified on model-theoretic grounds is by itself interesting, and as we will see in
the next two chapters, fruitful.

In AI, most non-monotonic logics require the explicit addition of preferences
in order to properly deal with interacting defaults [Reiter and Criscuolo, 1983)].
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In recent years, however, several novel systems of defeasible inference have been
proposed which attempt to uncover such preferences.

In this regard, the closest formalism to P is perhaps the one proposed by
Pollock [1988]. Pollock also combines probabilities and arguments, though in a
different manner. He relates defeasible inference to what philosophers have called
direct inference: the inference of definite probabilities relating members of certain
classes, from indefinite probabilities relating the classes themselves. Pollock further
regards a conditional indefinite probability P(B|A) > r, for some r reasonably
high, together with a given instance a of A, as constituting a prima facie reason
(i.e. defeasible reason) for believing a to be a B. Prima facie reasons combine
to form arguments, and undefeated arguments support what he calls warranted
conclusions. The rest of his account is concerned with the conditions for argument
defeat.

The main feature that distinguishes P from Pollock’s framework, is the syntac-
tic form taken by the former. Unlike Pollock’s account, P constitutes a calculus of
defeasible inference. Its simplicity is a result of both the focus on arbitrarily high
and low probabilities, and the limited use of arguments for identifying indepen-
dence assumptions. Additionally, Pollock’s account relies on a non fully specified
notion of ‘projectibility,’ as a result of not distinguishing ‘primitive’ from ‘derived’
defaults [Pollock, 1988].

A system close in form to the one proposed here is Delgrande’s [1987]. Paral-
leling the correspondence between P and Adams’ logic of indicative conditionals,
Delgrande’s system shares its core with a variant of the logics of counterfactuals.
Delgrande’s default logic is grounded on a possible world semantics rather than on
probabilities. Still, such semantics does not circumvent the need for supplement-
ing the system core with assumptions about independence. In this regard, while
we characterize the notion of irrelevance in terms of arguments and embed it in
the meta-predicate Ix(-), Delgrande appeals to fixed point constructions, used to
generate new defaults and assertions which are added to the original set.

In Loui’s [1987a] system, default reasoning emerges from dialectical argumenta-
tion. A set of rules are used to evaluate arguments in terms of syntactic attributes,
like ‘has more evidence’, ‘is more specific’, etc. This set of rules appears to embed
most of the inference rules that define our system and can be mostly justified in
terms of them. Still, it is possible to find some differences. One such difference is
that Loui’s system is not (deductively) closed. It is possible to believe propositions
A and B, and still fail to believe their conjunction [Loui, 1987a). In our scheme, the
deductive closure of believed propositions is established by theorem 1. Similarly,
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Loui’s preference for arguments based on ‘more evidence’ sometimes contradict our
augmentation rule, as the confirmation of facts expected to hold might produce
changes in belief.

Touretzky’s [1986] account was motivated on the problems caused by redun-
dant paths in inheritance networks. He was one of the first to suggest the use of
specificity relations for filtering spurious ambiguities in default theories. Rather
than a calculus of defeasible inference however, Touretzky’s inferential distance
can be regarded as a refinement of Reiter’s default logic; to determine whether a
proposition follows from a network, it is necessary to test whether the proposition
holds in all the remaining extensions. Similar observations apply to Poole’s {1983]
specificity selection criterion.

Nute [1986], and Horty et al. [1987], on the other hand, define defeasible infer-
ence inductively, with special attention paid to ‘specificity’ relations. Horty ef al.
define a ‘skeptical inheritance’ scheme for homogeneous (defaults only) inheritance
hierarchies, while Nute’s system deals with linear arguments comprised of both
defeasible and undefeasible rules. However, while Horty et al. rely on defaults to
establish specificity relations, Nute relies only on ‘strict’ rules. In that regard, the
difference between ‘strict’ rules and facts that Nute postulates, is reminiscent of
the distinction made in [Poole, 1985] and [Delgrande, 1987] between necessary and
contingent facts, and the one made here between background and evidence.



Chapter 3

High Probabilities and
Preferential Structures

3.1 Introduction

In the previous chapter we described a system of defeasible inference made up of
six rules. We showed that the five rules in the core can be given a probabilis-
tic interpretation which guarantees that only highly probable conclusions can be
derived from highly probable premises. The irrelevance rule, on the other hand,
supplements the core with assumptions about independence. The resulting system
captures a variety of patterns of default inference while providing a new vantage
point from which default reasoning can be understood.

Interestingly, it is possible to justify the core of P on non-probabilistic grounds
as well. In this chapter we present an alternative validation that rests on purely
model-theoretic grounds, showing that e-entailment is equivalent to a form of pref-
erential entailment. . Preferential entailment is a generalization of classical entail-
ment in which the truth of the target conclusion is considered only over the pre-
ferred models of the premises, rather than over all their models [Shoham, 1988].
" The framework of preferential entailment underlies the semantics of circumscrip-
tion as proposed by McCarthy [1980, 1986], and the notion of subimplication due
to Bossu and Siegel [1985]. It is also closely related to the possible world seman-
tics of counterfactual logics, and to Lewis’[1973, section 2.3] comparative similarity
formulation in particular.

45
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The correspondence between e-entailment and preferential entailment will pave
the way for a better understanding of both the potentials and limitations of in-
terpretations of defaunlts structured around the notions of high probabilities and
preferred models. Additionally, it will furnish us with a completeness characteri-
zation of the inference rules that constitute the core, as well as with the building
blocks for an extension of the core taken up in chapter 4.

This chapter largely reformulates results that go back to Adams [1966, 1975],
and relies on recent developments in the area of preferential logics due to Kraus
et al. [1988], Makinson [1989], and Lehmann and Magidor [1988], and extensions
due to Pear] [1989b].

3.2 Preferential Structures and p-entailment

As discussed in section 1.5, the circumscription of a predicate P in a theory T
is a second order formula that asserts that the tuples which can be shown to
comply with P in T are the only tuples that do. Model-theoretically, the effect
of circumscription is to exclude from consideration all those models of T which
assign an extension to P larger than necessary. The models left assign a minimal
extension to P, and thus the name minimal models. The formulas entailed by
the circumscription of P in T are then simply the formulas which hold in the
models of T minimal in P. It is also common to say that these formulas are
minimally entailed by T, where the minimality criterion is understood relative to
the extension of P.

Minimal entailment can be regarded as a generalization of classical logical
entailment. While a proposition A logically entails a proposition B when B is
true in all models of A, A minimally entails B when B is true in all models of
A considered mintmal in some sense. The notion of minimality underlying cir-
cumscription is a function of both the extension of the circumscribed predicates
and the interpretation of fixed predicates and function symbols ([Lifschitz, 1985,
Etherington, 1988}). However, other minimality criteria which do not necessarily
translate into a simple circumscriptive axiom, are also possible. Shoham [1986],
for instance, developed an alternative minimization criterion motivated by the

apparent limitations of circumscription for handling problems in the temporal do-
main [Hanks and McDermott, 1986).

Shoham [1988] later investigated the properties associated with the form of
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entailment that results from an abstract ‘minimality’ criterion; namely, a simple
strict partial order on interpretations called the preference order. Shoham found
that the resulting form of entailment, called preferential entailment, while being
non-monotonic preserves yet certain traits of classical logic. Further properties of
preferential entailment have been recently established by Kraus et al. [1988] and
Makinson [1989]. In the recapitulation below, our notation and terminology is
closest to Kraus et al.

We assume an underlying language £ and a space 7 of classical interpretations
defined over £. Default theories T = (K, E), as in chapter 2, are composed of a
background context K = (L,D) and a set E of evidential sentences. A model
of a default theory T is to be understood as an interpretation that satisfies the
sentences in both L and E. The defaults in D will determine how such models
should be ordered.

Definition 3.1 A preferential model structure (p-structure) is a pair (T, <), where
7 denotes a non-empty collection of interpretations, T C I, and ‘<’ denotes an
irreflezive and transitive order relation over I called the preference order.

Within a particular p-structure (Z, <), we usually read the the notation M <
M’ for two interpretations M and M’ in 7, as saying that M is preferred to M.
Furthermore, when M is a model of T and there is no model of T preferred to M
in Z, we will say that M is a preferred model of T:

Definition 3.2 A model M of a default theory T is a preferred model of T in
a p-structure (I,<), iff M € I and there is no model M’ of T in I such that
M <M.

The semantics which underlies circumscription, for instance, can be understood
in terms of a particular type of preferential model structure (T, <eire), 1 which
Zeirc corresponds to the set of all logically possible interpretations, and the ordering
‘<rc’ on interpretations is such that an interpretation M is preferred to an inter-
pretation M’ when both M and M” coincide on the domains and the interpretation
of fixed predicate and function symbols, but M yields a smaller extension for the
circumscribed predicates [Lifschitz, 1985, Etherington, 1988).

In a way analogous to circumscription, preferential entailment could be defined
in terms of the truths in the preferred models of a given theory. The problem,
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however, is that the existence of preferred models for consistent theories is not
always guaranteed. There may be p-structures which contain models of T but
no preferred models of T, and therefore, which would entail any sentence in the
language. This has been noted in the case of circumscription by Etherington
et al. [1985] who show that in certain circumstances, the circumscription of a
consistent theory may turn out to be inconsistent. They also identify a class of
well-founded theories in which such a behavior is guaranteed not to arise. This well-
foundedness condition has an immediate generalization for arbitrary preferential
structures which we express as follows:

Definition 3.3 A default theory T is well-founded relative to a given preferential
model structure (I, <), iff for every model M of T in T there is a preferred model
M of T'inT such that M' < M or M' = M.

In other words, a theory is well-founded in a given structure when for ev-
ery non-preferred model M, there is a preferred model M’ preferred to M. In
certain cases, this well-foundedness condition can be tested syntactically. Bossu
and Siegel [1985), for instance, showed that universal (classical) theories are well-
founded in certain circumscriptive preferential structures. Here, and very much like
Kraus et al. [1988] and Makinson [1989], we will focus on the study of a special
kind of preferential model structures for which every possible default theory is well-
founded. We call these preferential model structures, well-founded p-structures:?

Definition 3.4 A preferential model structure 7 = (T, <) is well-founded relative
to a background context K when every theory of the form T = (K, E) is well-
founded relative to «.

Preferential structures (Z, <) which do not involve infinite descending chains;
namely, interpretations M;, such that M;,, < M; for every positive 7, will be thus
well-founded. In particular, preferential model structures defined over finite propo-
sitional languages £ will be well-founded. Still the condition of well-foundness are
very strong, and will be later relaxed in chapter 4.

The importance of well-founded structures is twofold. First, every logically
consistent default theory T' = (K, E) will have a non-empty set of preferred models
in every well-founded preferential model structure. Thus, an entailment relation
defined in terms of the preferred models of T will be guaranteed to be consistent

! Analogous structures are called ‘smooth’ by Kraus ef al., and ‘stoppered’ by Makinson.



3.2. PREFERENTIAL STRUCTURES AND P-ENTAILMENT 49

as long as T itself is logically consistent. Furthermore, as the following theorem
states, any such entailment relation will obey many of the rules of the probabilistic
system P studied in chapter 2.

Theorem 3.1 (Kraus et al.) If the ezpression E k p is interpreted as asserting
that p is true in all the preferred models of T = (K, E) in every preferential model
structures well-founded relative to K, then the following rules are sound:

Rule 2 (Deduction) If E . p then Ekp

Rule 3 (Augmentation) If E k. pand Efy g then E,phk ¢
Rule 4 (Reduction) If Etz pand E,pk g then E kg

Rule 5 (Disjunction) If E,plzr and E,qk r then E,pVghkr

In other words, well-founded preferential model structures provide an inter-
pretation alternative to e-entailment under which rules 2-5 of P are valid. Note,
however, that absent from these rules is rule 1. Rule 1 is a critical rule in the core
as it is the only one which takes into account the default component of the context
in question. The failure of rule 1 to hold, however, is not surprising. We have only
talked so far about models of theories T = (K, E), in which the default component
D of K = (L, E) plays no role. The role of D indeed will not be in determining
what the models of T' are, but in determining how such models are supposed to be
ordered. Preferential model structures which comply with such order will be said
to be admissible:

Definition 3.5 A well-founded preferential model structure (I, <) relative to a
background context K = (L, D)} is admissible with K iff every interpretation in T
satisfies L, and for every defoult p — g in D, (a} q is true in all preferred models
of pin I, and (b) there is an interpretation in I that satisfies p.

Preferential entailment is defined in terms of the preferred models of a body of
evidence within the preferential structures admaussible with its background context.

Definition 3.6 A default theory T = (K, E) preferentially entails (p-entails) a
sentence p iff p is true in all the preferred models of E in every preferential model
structure admissible with K.
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Note that within any preferential model structure admissible with K, a model
of E will also be a model of T' = (K, E), and vice versa. We emphasize that
the preferred interpretation must be models of E rather than of T = (K, E), to
highlight the similarity between preferential entailment and e-entailment (chap-
ter 2): while in e-entailment the background K picks the admissible probability
distributions which are then conditioned upon the evidence E, in p-entailment,
the background K picks the admissible preferential model structures, from which
the preferred models of E are selected.

The restriction to admissible p-structures yields a model-theoretic entailment
relation which provides an alternative validation of the core of P:

Theorem 3.2 (Soundness) If the proposition p is is derivable from a context
T = (K, E) by means of rules 1-5, then p is preferentially entailed by T = (K, E).

The simple nature of rules 1-5, together with the existence of natural justifi-
cations in terms of both probabilities and models, have lead some researchers to
present the core as a minimal default inference shell (e.g. [Pearl, 1989a)]). We
will return to this theme in section 3.7. Meanwhile we will analyze in more detail
what are the features that make a probabilistic interpretation that relies on high
conditional probabilistic statements, and a model-theoretic interpretation that re-
lies on a preference relation on models, legitimize a common set of inferences.
In particular, we would like to know whether this set of inferences is complete
with respect to either e-entailment or p-entailment, and whether this latter two
entallment relations are indeed equivalent. These two topics will constitute the
subject of the remainder of this chapter. We will show first that e-entailment and
p-entailment are indeed equivalent, and then, that the core is not only sound with
respect to them, but also complete. In different ways, similar results have been
shown by Adams [1966, 1975], Kraus et al. [1988], Makinson [1989)], and Lehmann
and Magidor [1988].

We will show the equivalence between e-entailment and p-entailment, by ex-
ploiting the relation between entailment and consistency established before for
¢-entailment. P-consistency is defined in a way analogous to e-consistency:

Definition 3.7 A background contezt K is p-consistent iff there is a preferential
model structure admissible with K. Otherwise, K p-inconsistent.

For example, an e-inconsistent background context K containing two defaults
p — q and p — g 1s p-inconsistent. A preferential model structure admissible
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with K must accommodate a non-empty set of preferred models of p which must
satisfy ¢, due to the presence of the default p — ¢, and —¢, due to the presence of
the default p — —¢. Hence, there cannot be p-structures admissible with K, and
thus, K is p-inconsistent.

This example suggests that the conditions for e-consistency and p-consistency
may be closely related. We will investigate such a relation in detail in section 3.4.
Some preliminary results, however, will be needed. First, note that the relation
between e-entailment and e-consistency established in lemma 2.4, also holds for
preferential structures:

Lemma 3.1 A default theory T = (K, {p}) with a background context K = (L, D)
p-entails a sentence q if only if the background K' = (L,DU {p — —q}) is p-
inconsistent.

3.3 Layered Structures and l-entailment

To get a deeper insight into the relation between p-entailment and e-entailment
we need to relate the structures on which such notions rely. The preferential
model structures deal with full fledged interpretations which are partially ordered;
probability distributions, on the other hand, deal with worids ordered by their
probability ranks.? We will thus find useful to introduce an intermediate class
of structures, called leyered world structures, consisting of non-empty subsets of
W, the set of all possible worlds, ordered according to ranking function (see also
[Lehmann and Magidor, 1988]).

Definition 3.8 A layered world structure (I-structure) is a pair (W, &), where
W is a non-empty set of worlds, W C W,, and k is e function which assigns a
non-negative integer to each world in W.

Layered world structures are structures which comprise a set of worlds W
organized in layers Wy, W, ..., W;,.... Every world W in W belongs to a single
layer W, whose index ¢ represents the rank «(W) of W.

2A world is a truth valuation over the sentences of the language. Every interpretation is
associated with a world, though, in first order languages, a single interpretation will usually be
associated with many worlds.
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The definition of preferred worlds within a given l-structure is analogous to the
definition of preferred models within a given p-structure:

Definition 3.9 A4 world W that satisfies a default theory T ts a preferred world of
T in a l-structure (W, &) iff W € W and there is no world W' in W that satisfies
T for which x(W') < x(W).

We follow the aforementioned convention of saying that a world W satisfies a
default theory T = (K, E} with a background K = (L, D), when W satisfies the
formulas in both L and FE.

Note that the ordering of worlds in terms of non-negative integer rankings
ensures the existence of a minimum ranked set of worlds among the worlds satis-
fying any logically consistent theory. As a result, layered world structures, unlike
preferential model structures, are always well-founded.?

The admissibility of layered world structures and the notions of l-entailment
and l-consistency are defined in a way analogous to p-structures:

Definition 3.10 A leyered world structure (W, k) is admissible with a background
K = {L,D) iff every world in W satisfies L, and for every default p — q in D,
(a) q is true in all preferred worlds of p in W, and (b) there is a world in W that
satisfies p.

Definition 3.11 A default theory T = (K, E) l-entails a sentence p iff p is true
in all the preferred worlds of T of every layered world structure admissible with K.

Definition 3.12 A background K is l-consistent iff there is a layered world struc-
ture admissible with K. Otherwise, K is l-inconsistent.

The relation between entailment and consistency found for e-semantics and
p-entailment also holds for l-entailment:

Lemma 3.2 A default theory T = (K, {p}) with a background K = (L,D) I-
entails a sentence ¢ if only if K' = (L, D U {p — —q})} is l-inconsistent.

3This is one of the few differences between our layered world structures and Lehmann’s and
Magidor’s [1988] ranked models. Notions similar to layered world structures also appear under
the name of “P-orderings” in Adams [1966], and more recently, in Spohn’s {1988] conditional
functions.
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3.4 Equivalences

Admissible layered world structures will play the role of a bridge between admis-
sible preferential model structures and admissible probability distributions. On
the one hand, admissible layered world structures are closely related to admissible
preferential model structures due to the relation between worlds and interpreta-
tions, and rankings and partial orders; on the other, admissible layered world
structures are closely related to admissible probability distributions due to the re-
lation between world ranks and world probabilities. The results below make such
correspondences precise for finite propositional lenguages.

Lemma 3.3 A background K is p-consistent if and only if K is l-consistent.
Lemma 3.4 A background K is e-consistent if and only if K is l-consistent.

In light of the results relating entailment and consistency across preferential
model structures, layered world structures and probability distributions, these cor-
respondences will thus permit us to express the relations between e-entailment,
l-entailment and p-entailment in the following form:

Theorem 3.3 (Equivalences) Let K = (L, D), and K' = (L, D + {p — —~q}) be
two background contests, and let T = (K, {p}) be a default theory. Then, for finite
propositional languages, the following statements are equivalent:

(1) T e-entails g
(2) K' is e-inconsistent
(8) K' is l-inconsistent
(4) T l-entails q
(5) K' is p-inconsistent
(6) T p-entails q

Figure 3.1 illustrates the resulting relations. It is clear now why the core of P,
Justified originally in terms of probabilities, is also valid under a preferential inter-
pretation: there is a two way correspondence between the structures that underlie
both semantic accounts, and whenever one structure renders a given inference in-
valid in one interpretation, a corresponding structure can be constructed which
renders the same inference invalid in the other interpretation.
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€-consistency —*—> l-consistency =" p-consistency

! !

e-entailment l-entailment p-entailment

Figure 3.1: Equivalence between various forms of entailment

In particular we can now prove the core of P to be complete with respect
to e-entailment or p-entailment, by proving it to be complete with respect to 1-
entailment. That is indeed what we are going to do in the rest of this chapter.
First, however, we will introduce the notion of default rankings.

3.5 Default Rankings

A default ranking over a background context X = (L, D) is a function that assigns
a non-negative integer to each default in D. Intuitively, we may think the rank of a
default as a measure of its strength. In this regard, default rankings are comparable
to priorities in McCarthy’s [1986] prioritized circumscription. However, rather as
a means for the user to ezpress the strength of defaults, we are going to use
default rankings to uncover them from the information in the background context
in which they appear. For instance, in a consistent background containing two
defaults p — q and p A r — -gq, the more ‘specific’ default p A r — —q will
autornatically receive a higher rank than the less ‘specific’ default p — q. Such a
use of default rankings was implicit in the original work of Adams [1966], and has
been recently exploited by Pearl [1989b] in an extension of Adams’ work.

We will refer to default rankings that comply with the preferences implicit in
K as admissible default rankings. To make such preferences precise, let us say that
a world W wverifies a default p — g in K if W satisfies both p and ¢, and that W
falsifies p — g, if it satisfies p but fails to satisfy ¢ [Adams, 1975]. Furthermore,
let us define the notion of conflict among defaults as follows:*

4The conditions under which a set of defaults p; ~ ¢; is in conflict with a default p — q are
closely related to the conditions under which a set of assumptions is an conflict with a default
(section 2.5), provided that the assumptions are drawn from the material counterparts Pi = g
of the defaults p; — ¢;.
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Definition 3.13 Let p — ¢q and p; — ¢;, i = 1,...,n, be a set of defaults in a
background contezt K. Then the default p — q is said to be in conflict with the set
of defaults i — gi, i=1,...,n Fpk (P = )V ~(p1 = @) V- V ~(pn = gu).

Namely, a default p — ¢ is in conflict with a set I’ of defaults when the
verification of p — g in K amounts to the falsification of some default in D'.
Moreover, since in the preferred worlds of p in any structure admissible with X
the default p — ¢ must be verified, it is reasonable to assume that in any such
structure it is preferable to falsify one of the defaults in D’ than p — ¢q. Admissible
default rankings are defined to reflect such preferences:®

Definition 3.14 Let o denote o bounded default ranking over a background context
K = {(L,D), and let o(D’), for a subset D' of D, stand for the rank of the minimally
ranked default in D' if D' is non-empty, and for infinite otherwise. Then o is a
default ranking admissible with K, iff for every default p — q in D and every set
D' of defaults in conflict with p— q in K, 0(D') < o(p — q) holds.

For instance, if K contains a default p — q and a second default pAr — g
in conflict with the former, a default ranking ¢ will admissible with K, only if
o(pAq— 1) > o(p — —r). More generally, whenever p — q and p’ — —q are two
defaults in K, such that p is ‘more specific’ than p’, i.e. p L p’, then the default
p — q will have a higher rank than p’ — - in every ranking admissible with K.

Note that it is simple to come up with background contexts which do not accept
any admissible default ranking. For instance, no default ranking will be admissible
with K if K contains a pair of defaults p — ¢ and p — —g. Indeed, the existence
of admissible rankings turns out to be a sufficient and necessary condition for the
existence of admissible structures:

Theorem 3.4 A background contezt K = (L, D) is consistent if and only if there
s o default ranking admissible with K.

In light of the correspondences between entailment and consistency established
in the previous section, default rankings thus become an alternative way to evaluate
entailment. Default rankings will be particularly convenient for such task due to

A default ranking o over a background K is bounded, when there is a constant k, such that
for every default p— ¢ in K, o(p — ¢) < k.
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the explicit relation between the admissibility conditions and the syntactic form
of K.

To show these advantages we will introduce yet another syntactic notion: the
notion of default clashes.

Definition 3.15 A non-empty set of defaults D', D' C D, constitutes a clash in
a background K = (L, D), iff every default p — q in D' is in conflict with D' in
K. Likewise, a default p — q clashes with D', if the set D' + {p — ¢} constitutes
a clash in K.

Two defaults p — ¢ and p — —gq, for instance, clash in any background context.
Indeed, clashes of defaults are the only reason for incomsistency. In other words,
we can test the consistency of a background context by purely syntactic means by
testing the presence of default clashes:®

Lemma 3.5 A background context is consistent if and only if it does not contain
a clash.

Furthermore, since we can evaluate whether a proposition ¢ is entailed by a
proposition p in a background context K = (L, D) by testing the consistency
of the background context K' = (L, D + {p — —q}), clashes provide us with the
facility to test entailment by syntactic means (fig. 3.2):

Lemma 3.6 In a background context K = (L, D) p entails q if and only if the
background K' = (L,D + {p — —q}) contains a clash.

Moreover, it is possible to test whether a background context X = (L, D) con-
tains a clash in a ‘greedy’ fashion. Namely, if D itself is a clash then every default
p — ¢ in D must be in conflict with D; otherwise, every default not in conflict with
D 1s guaranteed not to participate in any clash and can thus be removed, leav-
ing a smaller set I)’ which can be tested by similar means. As originally noted by
Pear] [1989b), such a procedure, together with the result summarized in lemma 3.6,
permits computing entailment in time polynomial in the number of defaults in D,
provided unit time satisfiability tests:

®Lemma 3.5 assumes that the background context K contains a finite number of default
schemas p(z) — g(z) such that any two instances gives rise to identical conflicts except for term
substitutions. This permits to assign the same rank to all the potentially infinite instances of a
given default schema.
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clashes

e-consistency —+— l-consistency =+ p-consistency
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€-entailment l-entailment p-entailment

Figure 3.2: Entailment and default clashes

Theorem 3.5 (Pearl) For a background context K = (L, D) with n defaults, there
is ¢ O(C(n) x n?) procedure for testing whether a sentence q is entailed by a sen-
tence p in K, where C(n) is the complezity associated with testing the satisfiability
of n sentences in the language fragment that contains the sentences in L, the ma-
terial counterparts of the defaults in D, and the material counterpart p = —q of
the default p — —q (e.g. C(n) = O(n) for Horn clauses).

3.6 Completeness results

Provided with the results about default rankings and clashes, we are now ready
to attack that last problem of this chapter: the completeness of the core relative
to e-entailment and p-entailment. We will however introduce a final notion which
will help us simplify matters considerably. This is the notion of quasi-conjunctions
originally introduced in [Adams, 1975].

The quasi-conjunction C(D) of a set D of defaults p; — ¢;, 7 = 1,...,n, is the
default: py VpaV---Vp, = (11 = @) A (p2 = @) A+ A(pn = ¢n). As noted by
Adams, quasi-conjunctions permit us to map the problem of whether a sentence ¢
is entailed by a sentence p in a background context K = (L, D}, by the problem of
testing the consistency of a simpler background context K’ = (L, D’} containing
only two defaults: the quasi-conjunction C(D) of D, and the denial p — —q of the
default p — ¢. This feature is a consequence of results established in the previous
section and the following lemma:

Lemma 3.7 Let p — ¢ be a default in D, let D' a subset of D, and let C(D') be
the quasi-conjunction of D'. Then, p — q clashes with D’ in a background contezt
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K = (L,D), if and only if p — g clashes with C(D’) in the background context
K'=(L,D") with D" = {C(D'),p — q}.

The lemma is a simple consequence of the logical equivalence between the
sentence

“(pr=q)V--Va(p, = ga)

and the sentence

TP1VPV Va2 (2 ) A (P2 = @) A APa = ¢a))

With this final result, we are now ready to prove that the core of P as embodied
in the rules 1-5 is complete with respect to all three forms entailment considered
for finite propositional languages. We use the notation ‘p I ¢’ to express that ¢ is
derivable from p in X by means of rules 1-5.

Theorem 3.6 (Completeness) If p entails ¢ in a consistent background K =
(L, D}, then p f q.

Proof Note first, that if p entails ¢ in K, the background context K’ that results
from the addition of p — —¢ to K must be inconsistent. Furthermore, since K
1s assumed to be consistent, the results above imply that the default p — =g
must clash with a subset D' of D in L, and therefore, that p — —¢ must clash
with the quasi-conjunction C(D’) of D’. The rest of the proof is a straightforward
consequence of the following two results:

Lemma 3.8 Let K = (L,D) be a background contezt, and D’ be a non-empty
subset of D. Then, if r — s stands for the quasi-conjunction C(D’) of D', r s .

Lemma 3.9 Let K = (L, D), and K’ = (L, D'} be two background contexts shar-
ing the same set L of sentences. If p — —q clashes withr — s in K’ and r s,
thenp g .
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Thus, we have that the core is complete with respect to entailment in consistent
background contexts. The consistency condition is required because the semantic
accounts legitimize any sentence in the language when K is inconsistent, while the
core does so only in certain contexts. For example, from an inconsistent background
context K containing two defaults p — ¢ and p — —¢ the core will not derive
E K false, unless it can previously derive E K p.

Actually, there are various ways in which the consistency requirement can be
dropped from the completeness theorem. One way is to legitimize arbitrary deriva-
tions in inconsistent contexts. This can be accomplished by means of an additional
rule of inference which permits the special atom false to be derived when an incon-
sistency in K is detected [Adams, 1975]. A second, more appealing option consist
of relaxing the admissibility requirements on structures and probability distribu-
tions. This approach has been pursued in [Kraus et al, 1988], and amounts to
dropping the requirement that every default be verified in some world. In terms of
probabilities, this amounts taking into considerations non-proper probability dis-
tributions, for which it is agreed to set Px(g|p) equal to one when Px{p) is equal
to zero (see [Adams, 1966]).

We have chosen the more stringent admissibility conditions together with the
consistency properties that they entail, since they provide a simpler and more
insightful correspondence between the probabilistic and model-theoretic accounts
of defaults. Furthermore, the resulting consistency conditions impose a reasonable
integrity constraint on defaults: pairs of defaults such as “birds fly” and “birds
do not fly, ” for instance, are ruled out as inconsistent.” Last but not least, these
consistency conditions, expressed in terms of default rankings, will turn out to be
essential for a semantic and proof-theoretic extension of the core to be developed
in the next chapter.

3.7 Related Work

The soundness and completeness of rules 1-5 with respect to e-entailment, were
informally sketched in Geffner and Pearl [1987], and can be traced back to Adams
(1966, 1975]. Preferential model structures and layered world structures, corre-
spond, in essence, to structures recently advanced by Kraus et al. [1988], Makin-
son [1989] and Lehmann and Magidor [1988]. Lehmann and Magidor also noted the

"Even more stringent conditions on default and strict rules have been recently advanced
in [Goldszmidt and Pearl, 1989].



60 CHAPTER 3. PREFERENTIAL STRUCTURES

connection between accounts based on infinitesimal probabilities and preferences
among models; a connection which Adams himself explored in [Adams, 1978]. The
notion of default rankings is due to Pearl [1989b]. As far as I know, this chapter
is the first coherent and self-contained treatment of all these ideas.

A few remarks follow about the status of the inference rules legitimized by
these accounts. From our discussion in section 2.5, it is clear that this set of
inference rules, as well as the semantic accounts which render them sound and
complete, do not provide a complete characterization of default reasoning. They
fail to sanction inference patterns which involve independence assumptions as well
as many other patterns to be studied in the next two chapters. What is not so
clear, however, is whether these rules should be regarded as a minimal set of rules
to be satisfied by any reasonable account of defeasible inference. In this regard,
augmentetion and reduction, also known as cumulative monotony and cumulative
transitivity [Makinson, 1989], have attracted most of the attention. This pair of
rules establish that two contexts T = (K, E) and T" = (K, E + {p}) legitimize the
same conclusions, when p is a consequence of 7. Early in 1985, Gabbay [1985]
argued, on proof-theoretic grounds, that these rules, together with a weak form
deduction, define minimal requirements on any reasonable non-monotonic conse-
quence relation. Such a position has been lately echoed, on a semantic basis, by
Kraus et al. [1988] and Pearl [Pearl, 1989a). Our position is that while these rules
are reasonable, they are not necessarily ‘inescapable.’ Indeed, both the probabilis-
tic and model-theoretic accounts which validate curmnulativity, embed questionable
assumptions. The probabilistic interpretation, for instance, regards defaults as
having arbitrarily high conditional probabilities. The model-theoretic account, on
the other hand, regards the preference relation on models to be an exclusive func-
tion of the background context. Still, examples can be constructed whose intended
behavior demands preferences to depend on both background and evidence (e.g.
example 5.1) . However, once the space of admissible preferential structures is so
determined, the cumulative behavior is no longer guaranteed.

Similarly, Lehmann and Magidor [1988] discuss a rule suggested by Makinson
called rational monotony, which holds in what we have called layered world struc-
tures, but does not hold in preferential model structures. Rational monotony is a
strong form of augmentation, which permits to carry a conclusion ¢ from a con-
text T' = (K, E) to a context T' = (K, E + {p}), as long as the negation of p is
not a consequence of T'. An extension of preferential entailment based on ratjonal
monotony has been recently advanced in [Lehmann, 1989], on the grounds that
reasonable accounts of defeasible inference should be as monotonic as possible.
Whether this intuition is right, however, remains an empirical matter. For exam-
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ple, a consequence relation obeying rational monotony will force us to conclude —p’
from p, and —p from p’, from any unresolved conflicting pair of defaults p — g and
P’ — —g. Such a behavior, however, may turn out to be too adventurous, as when
p is connected to p’ via a ‘diamond’ structure (e.g. p — r — p’ and p — s ~ —p').
In such a case, though there are no grounds to conclude ¢ over —¢ given p and p/,
there are no grounds to conclude —p’ from p either. Still, a consequence relation
obeying cumulativity and rational monotony is forced to make such a choice.
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Chapter 4

Beyond High Probabilities and
Preferential Structures

4.1 Defaults and Conditionals

The last two chapters have analyzed in detail two semantic accounts of defaults,
one which relies on probabilities, the other which relies on a preference relation
on models. Both interpretations legitimize a set of inferences identical to those
sanctioned by the core of the system introduced in chapter 2. These inferences
follow from regarding defaults as conditional assertions. While the probabilistic
interpretation regards a default p — g as asserting that the probability of ¢, given
that p represents all the available evidence, is high; the preferential interpretation
regards p — ¢ as asserting that g is true in all the preferred models of p. In both
cases something is asserted about a particular context, constraining other contexts
as well as a result of the axioms of probability theory in the first case, and as a
result of the postulates on the preference relation on models in the second. The
core is the logic of such constraints.

With a few exceptions (e.g., [Delgrande, 1987]), most work in non-monotonic
logics has neglected this conditional dimension of defaults. Such a neglect has
translated into important limitations, though also, into some important assets. The
limitations arise from having to account for preferences among defaults by some
other means. Thus many special ways of resolving counter-intuitive ambiguities
have been proposed, ranging from those which rely on “specificity” considerations
(e.g., [Poole, 1985, Nute, 1986, Loui, 1987a)) to those which rely on the user (e.g.,

63
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prioritized circumscription [McCarthy, 1986, Lifschitz, 1988a}, non-normal defaults
[Etherington and Reiter, 1983)).

The benefits from ignoring the conditional dimension of defaults shows in the
fact that non-monotonic logics (e.g. [Reiter, 1980, McDermott and Doyle, 1980,
McCarthy, 1980, Moore, 1985b]) are able to capture intuitive default inferences
which conditional interpretations of defaults cannot. In non-monotonic logics a
default p — ¢ is not viewed as an assertion g, bound to a particular context p,’
but as a prima facie reason to assert ¢ in all those contexts in which p holds.
So, while these formalisms do not guarantee that ¢ will follow when p is the only
evidence available, because there may also be reasons for ~¢ in that context, they
nevertheless induce a preference for ¢ in all contexts in which p is true. This
disposition escapes conditional interpretations of defaults where the success to
account for specificity preferences is rooted in a clear-cut distinction between the
context p, where a default p — ¢ guarantees the truth of g, from contexts in which
p holds, which are almost unconstrained by the presence of such a default.

In section 2.5 we discussed these limitations and developed an extension of the
core around the notion of iérrelevance. The idea was to strengthen the inferential
import of defaults of the form p — ¢ by guaranteeing the truth of ¢ both in the
context p, and in any context in which p holds and which is not suspected to contain
evidence relevant to the negation of g. Such appeal to irrelevance considerations
was an attempt to close the gap between the conditional and the traditional non-
monotonic readings of defaults. Unfortunately, however, the irrelevance account
presented in section 2.5 raises as many question as it solves. First of all it is not
clear under what conditions the ‘closure’ of the core under the irrelevance rule
is consistent. Even if so, we would like to know whether the syntactic account
presented is adequate, and whether it can be justified on independent grounds,
just as the core can be justified in terms of high probabilities and preferential
structures.

We address these issues in this chapter by developing a form of entailment akin
to preferential entailment, but which validates both the core and the irrelevance
account. The new entailment relation is called conditional entailment, as it merges
the conditional and traditional readings of defaults. The resulting interpretation
takes us a step closer in our goal of uncovering the intended meaning and use of
defaults, and constitutes the basis of further refinements to be studied in chapter 5.

1A context p refers here to a context in which p represents all the available evidence.
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4.2 Closing the Gap: Conditional Entailment

In the previous chapter we have shown the core to be a sound and complete in-
ference system with respect to ¢-entailment and preferential entailment. In order
to validate an extension to the core, it is necessary to weaken the conditions that
define both entailment relationships. A natural choice is to restrict the space of
admissible preferential structures or probability distributions in which valid con-
clusions must hold. In this chapter indeed we will study the patterns of inference
sanctioned by a subset of admissible preferential structures. These structures will
correspond to those admissible preferential model structures that can be induced
from a given default prioritization. We will call the structures induced in this way
prioritized preferential structures. Restricting our focus to default theories cast
in assumption based format? will further permit us to replace reference to default
priorities by the more standard notion of assumption priorities.

4.2.1 Model Theory

Prioritized preferential structures represent preferential mode! structures in which
the relation that orders interpretations is determined by a given priority order on
assumptions. Formally, if A[{M] stands for the assumptions which are false under
an interpretation M, prioritized preferential structures are defined as follows:

Definition 4.1 A prioritized preferential structure is a quadruple (Ip, <,Az, <),
where I stands for the set of interpretations over the underlying language £, A,
stands for the set of assumptions in £, ‘<’ stands for an irreflezive and transitive
priority relation over Ag, and ‘<’ is a binary relation over Ip such that for two
interpretations M and M', M < M’ holds iff A[M] # A[M'] and for every as-
sumption & in A[M]~ A[M'] there exists an assumption §' in A[M | — A[M] such
that § < &',

We will further assume that priority orderings ‘<’ do not contain infinite chains;
namely, there is no infinite sequence of assumptions 6,,8,,...,6; for which the
relation ;41 < & holds for every positive 1.

? Assumption based default theories are theories in which all defaults are of the form p — &
for unique assumptions 8. See section 2.2 for details.
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AlM] AlM]

Figure 4.1: Ordering among interpretations in prioritized structures

The model structures defined in this way are called preferential because the
priority relation ‘<’ over A; induces a preferential model structure over the set Z,
of interpretations.

Lemma 4.1 The quadruple (T;,<,Ar, <) is a prioritized preferential structure
only if the pair (Tz, <) is a preferential model structure.

The ordering ‘<’ on interpretations induced from the priority ordering ‘<’ on
assumptions regards the relation § < 8 as a preference to sustain the assump-
tion & over the assumption & in cases of conflict. A similar mapping from pred-
tcate priorities to ordering relations on interpretations occurs in Przymusinski’s
characterization of the perfect model semantics of general logic programs [Przy-
musinski, 1987] and in McCarthy’s prioritized circumscription {McCarthy, 1986,
Lifschitz, 1985]. Moreover, like in these frameworks, the induced order on inter-
pretations establishes a preference which favors models M which violate a smaller
set A[M] of assumptions:

Lemma 4.2 For two models M and M’ of a theory T, if A[M) C A[M'], then M
is preferred to M’ (M < M') in every prioritized preferential structure.

In particular, then, preferred models violate a minimal set of assumptions:3

Lemma 4.3 If M is a preferred model of a theory T in a given prioritized pref-
erential structure, then M is minimal in Ag, i.e. there is no model M’ of T such
that A[M'] C A[M].

3Recall that a model of a default theory T = (K, E) with K = {L, D) is an interpretation
that satisfies the sentences in both L and E.
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The minimality of preferred models in prioritized preferential structures will
be responsible for endowing the resulting form entailment, called conditional en-
tailment, with features of non-monotonic logics absent from p-entailment and e-
entailment. For instance, given a theory T = (K, E), with a single default p — §
and a body of evidence E = {p, ¢}, there will be models of T which violate no
assumption at all. Thus, the lemma above states that the preferred models have
to be among those models, and therefore, that the assumption & will be true in all
preferred models of T'. As a result, § will be conditionally entailed by T, though §
is not p-entailed or e-entailed by T.

We will often refer to the sets of assumptions A[M] violated by an interpretation
M, as the gap of the interpretation M. Minimal models are models with minimal
gaps or, alternatively, models committed to a maximal set of assumptions.t

The order on interpretations induced from a priority relation on assumptions
depends only on the interpretation gaps, and in particular, interpretations with
identical gaps are not distinguished. In that regard, since models with an identical
gap are models committed to the same set of assumptions, the induced ordering
on interpretations can also be understood as an ordering on sets of assumptions.
The notion of classes of models as collection of models committed to a common
set of assumptions, will serve to make this view more explicit:

Definition 4.2 A class C of a theory T with an associated gap A[C] = A, repre-
sents the non-empty collection of models M of T such that A[M] C A.

Thus a class C with gap A = A[C] includes all the models which validate all
the assumptions not mentioned in A. In particular, we will say that the class
C i1s minimal, iff for every model M in C, A[M] = A. A minimal class is thus a
collection of minimal models. We also say that a proposition p holds in a class C iff
p holds in every model in C. Proof-theoretically, this is equivalent to the existence
of a classical derivation of p from the sentences in T and assumptions not in the
gap of C. Since preferred models are guaranteed to be minimal (lemma 4.3) and
the induced preference relations do not distinguish between models with identical
gaps, such preference relations can be usefully regarded as selecting, among the
minimal classes of a theory T, the preferred ones.

4This notion of minimality is not the conventional one. Usually minimal models are defined
in terms of the extension of some predicates (e.g. [McCarthy, 1980]), rather than in terms of the
truths of some literals. We will discuss these issues in more detail in section 4.4,
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In the rest of this section we will focus on three related issues: the well-
foundedness and admissibility conditions of prioritized preferential structures, the
constraints on admissible assumption priorities, and the form of entailment defined
by admissible prioritized preferential structures.

The condition of well-foundness was introduced in section 3.2 as a condition
that guarantees consistency and compliance with rules 1-5 of P. We said that a
default theory T is well-founded in a preferential model structure (7, <) when for
every non-preferred model M of T in I, there is a preferred model M’ in T such
that M’ < M. Likewise, we said that a preferential model structure = is well-
founded relative to a background context KX when every theory T = (K, E) is well
founded in =.

These notions could be easily generalized to prioritized preferential structures
by stipulating that a structure (I, <, Az, <) is well-founded relative to a back-
ground context K when the embedded preferential model structure (7, <) is.
Such an approach, however, would be unnecessarily restrictive. Indeed, if the
underlying language £ is first order, for most prioritized preferential structures
7 = {Iz,<,Ar, <} and background contexts K of interest, it will be possible to
construct some theory T' = (K, E}, which is not well-founded in 7, rendering every
such = structure not well-founded.?

For that reason we will abandon here the notion of well-founded prioritized
preferential structures, and restrict ourselves to the weaker notion of well-founded
theories. A theory T is well-founded in a structure (I, <,Ar, <), when T is well-
founded in the embedded p-structure (Z, <), and is simply well-founded when it
is well-founded in in every prioritized structure.

Definition 4.3 A theory T is well-founded when it is well-founded in every prior-
itized preferential structure; namely, for every structure (I.,<,Az, <) and every
model M of T, there ezists a preferred model M' of T, such that M' < M or
M =M.

Actually, even this notion is more restrictive that it needs to be. Still, as we
will show below, it comprises a large class of theories which includes all the theories
we will consider.

SIndeed, since preferred models in any prioritized preferential structure must be minimal, it
is sufficient for T to be a theory which lacks minimal models, in the sense defined above (see, for
instance, [Etherington, 1988, pp. 117]).
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In order to guarantee that theories under consideration are well-founded in this
sense, it will be convenient to show that they belong to a class of theories which we
call bound. Bound theories are defined in terms of the conflict sets they give rise to
and are always well-founded. If A stands for a set of assumptions and —A stands
for the negation of the conjoin of A, conflict sets are defined as follows [Reiter,

1987b]:

Definition 4.4 A set of assumptions A constitute a conflict set in a contezt T =
(K,E) if ER-A .

Conflict sets are thus sets of assumptions which cannot all hold in a given
context. The minimal conflict sets in a given context T contain assumptions which
‘compete’ with each other. On the other hand, assumptions which do not belong to
any minimal conflict set are not ‘questioned’, and therefore, are guaranteed to hold
in every minimal model of T. We call these assumptions free in T, and distinguish
them from bound assumptions as follows:®

Definition 4.5 An assumption which belongs to a minimal conflict set in T is
bound in T'; otherwise, it is free in T,

For instance, the assumption that “Tim is a bird, then Tim flies” is free in
a context in which all the evidence is that Tim is a bird, and it is bound in a
context in which Tim is known to be a penguin. In most theories of interest most
assumptions are free, with the exception of a small number of bound assumptions
which point to possible ‘abnormalities.” We call these theories, bound theories:

Definition 4.6 A theory T is bound if it gives rise to a finite number of bound
assumptions.

Interestiﬁgly, this property is sufficient to make a theory well-founded:

Lemma 4.4 Bound defoult theories are well-founded.

5The complement of the assumptions that we call free are essentially what Gelfond et al. [1986)
call free for negation,
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This result thus guarantees that as long as we are dealing with theories which
give rise to a finite number of possible ‘abnormalities,” we are in a safe terrain:
every model will be or will be outranked by a preferred model.

Having defined bound and well-founded theories, we are now in a position to
specify the space of prioritized preferential structures {Z.,<,Ag, <) which are
admissible with a given background context. These structures will correspond
to those which are induced from priority orderings ‘<’ which obey with certain
conditions sketched in section 2.5. We said then that a set of assumption A is
in conflict with a default p — 6 in K, if A constitutes an argument against § in
the context (K, {p}), i.e. if p, A -6 and pf —~A. If so, we said that § directly
dominates (d-dominates) the set A and any superset of it. The intuition was that
by writing a default p — § the user intends § to be true in the preferred models
of p, and thus, s/he implicitly regards the violation of one of the assumptions in
A as less important than the violation of §. Admissible priority orderings capture
such intuition as follows:

Definition 4.7 A priority order ‘<’ over A, is admissible with e background
contezt K iff every set A of assumptions directly dominated (d-dominated) by an
assumption § contains an assumption &' such that & < 6.

A similar intuition underlies the definition of admissible default rankings in
section 3.5. Indeed, if /{ is a pure assumption based default theory,” the priority
ordering ‘<’ defined as 6; < &, iff o(p1 — &) < o(p; — 62) for defaults p; — &,
and p; — 6, in K and an admissible default ranking o, will be admissible with
K. Admissible priority orderings, however, are not admissible default rankings in
general because priority ordering, unlike default rankings, are partial orders.®

Example 4.1 Admissible priority orderings, like default rankings, normally en-
code priorities which reflect the ‘specificity’ of defaults. Consider, for instance, a
background context K encoding two defaults p —; q and p A r —3 ~q. Namely,
K contains the sentences pAés = q and pAr Adz = —q, and the defaults p — &,

K = (L,D} is pure if it is the translation of a background K’ which does not contain
assumption predicates (see section 2.1). Namely, assumptions predicates §; only occur in L in
sentences of the form p(z) A §(z) = ¢(z) for default schemas p(z) — ¢(z) in K’.

5The advantage of focusing on partial as opposed to total orders is that the former provide
a more concise representation of partial information. Often we will find background contexts
which can be characterized in terms of a single admissible priority orderings, but which would
otherwise require multiple admissible rankings.
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and p AT — é2. No set of assumptions is in conflict with the default p — &;,
and thus, p — §; does not impose any constraint on admissible priority orderings.
On the other hand, the set {61} is in conflict with the default p A r — &, as the
relation p A r, 81 I =62 holds, but p A r i ~8; does not. As a result, a priority
ordering ‘<’ will be a admissible with K iff the relation §; < &, holds. In other
words, in any admissible priority ordering the assumption 6, corresponding to the
‘more specific’ default p Ar — 63, will have a higher priority than the assumption
61 corresponding to the ‘less specific’ default p — &;.

We will also refer to admissible priority orderings as conditional orderings, as
the constraints they obey are a result of interpreting defaults of the form p — 8,
conditionally; namely, assertions § bound to a particular context p. The edmis-
sible prioritized preferential structures are the structures induced from admissible
priority orderings:

Definition 4.8 A prioritized preferential structure (I;, <, Ar, ~<) is admissible
with ¢ background K = (L, D), iff the priority ordering ‘<’ is admissible with K )
and every theory T = (K, {p}) for a default p — § in K is bound.

Conditional entatlment is defined in terms of the preferred models of the ad-
missible prioritized structures:

Definition 4.9 A proposition g is conditionally entailed (cd-entailed) by a default
theory T = (K, E), when q holds in all the preferred models of T of every prioritized
preferential structure admissible with K.

We also refer to the preferred models of T = (K, E) in some admissible pri-
oritized structure admissible as the conditional models of T, and similarly, to the
preferred classes of T', as the conditional classes of T. This terminology will be
particularly useful in chapter 5, when we study preference relations based on causal
rather than conditional considerations.

There are some important differences between the definition of conditional en-
tailment and the definition of preferential entailment in chapter 3. Even though
every prioritized preferential structure (I, <, Az, <) embeds a preferential model
structure (7, <}, the admissibility conditions on both structures are very differ-
ent. The admissibility of p-structures amounts, essentially, to a restriction on the
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preferred models of the theories T = (K, {p}) for defaults p — 6 in K. Prioritized
preferential structures, on the other hand, capture these constraints by means of
the restriction on the priority orderings on assumptions (see below), but go beyond
that by rewarding models which violate smaller sets of assumptions. In that way
conditional entailment is able to combine the features of conditional interpretation
of defaults with the features common to traditional non-monotonic logics.

There are two other differences worth pointing out. Admissible prioritized
structures (Z;,<,Ag, <), unlike admissible preferential structures {7, <}, com-
prise the whole set of interpretations over the underlying language £. This is
needed to guarantee the minimality of preferred models; a notion which plays no
role in the context of p-entailment. On the other hand, we do not require ad-
missible prioritized structures to be well-founded as we demanded from admissible
preferential structures. We have replaced this requirement by the more reason-
able one of requiring the theories T = (K, {p}) for defaults p — 6 in K to be
well-founded, and in particular, bound.®

The latter technical differences between admissible prioritized structures and
admissible preferential structures makes a general comparison between preferential
entailment and conditional entailment difficult. However, if we restrict ourselves
to finite propositional languages, the following result is obtained:

Theorem 4.1 A theory T preferentially entails a proposition p only if T condi-
tionally entails p.

Furthermore, since preferential entailment and e-entailment coincide for finite
propositional languages, the same subsumption relation applies to e-entailment.

For the subsumption relations to be meaningful, though, we also need to guar-
antee that while T conditionally entails p, it does not entail ~p. Namely, we need
to show that a p-consistent background context, is also cd-consistent, where a
background K is cd-consistent when it admits an admissible prioritized preferen-
tial structure. Indeed, when the background K is pure (see page 70), the following
result holds for finite propositional languages:

Theorem 4.2 A background context K is p-consistent only if K is cd-consistent.

*This condition could be also relaxed in principle; though it is sufficiently ample for our
purposes.
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Theorems 4.1 and 4.2 thus show that conditional entailment captures the pat-
terns of inference sanctioned by preferential entailment and e-entailment. A simple
example further reveals that conditional entailment goes well beyond them. Indeed,
while preferential entailment and e-entailment are semi-monotonic (non-monotonic
in the evidence set but monotonic in the background context; theorem 2.2) condi-
tionally entailment is fully non-monotonic.

Example 4.2 Let us consider a background K with a sentence p A §; = q and a
default p — 65, and a default theory T = (K, {p}). First of all, note that T is a
bound theory; as a matter of fact, T' does not give rise to any conflict set, and thus
all assumptions are free in T'. The minimal models of T' thus falsify no assumption
and, therefore, all belong to a unique minimal class C of models with an empty
gap. Lemma 4.3 guarantees then that C is the only preferred class of T and, hence
that the assumption &3 holds in every preferred model of p in K. Moreover, since
every model that satisfies p, 61, and the sentences in K must also satisfy q, then
q is conditionally entailed by p as well.

The same reasoning applies to a context in which —q is observed instead of P.
That is, the preferred models of the theory T/ = (K, {—q}) will also correspond
to the empty gap interpretations that satisfy 7", and thus, both sentences §; and
—p will be conditionally entailed by T”. Moreover, by similar arguments, both
conclusions remain in the presence of an additional piece of evidence e, though
they would have to be retracted if K is is augmented by a sentence e = §;.

The example shows that conditional entailment is able to capture reasoning pat-
terns that involve ‘default modus tollens’ and conditional independence assump-
tions which escape e-entailment and p-entailment. The key feature responsible for
the additional power of conditional entailment is the minimality of preferred mod-
els. In this way, conditional entailment not only captures the contest sensitivity of
defaults in a way analogous to e-entailment and p-entailment, but also the more
conventional property by which the connection between default antecedent and

consequent is preserved in the absence of conflicting evidence.

The examples below illustrate other features of conditional entailment. The
reader familiar with prioritized circumscription [McCarthy, 1986) will notice the
similarities. It should be kept in mind, however, that while prioritized circumscrip-
tion accepts priorities from the user, conditional entailment eztracts the priorities
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automatically from the defaults present in the background context.!?

We will find useful to write A < é as an abbreviation of “there exists a ' in A
such that 6’ < 8.” The admissibility of the priority order ‘<’ with respect to K,
can thus be expressed as the condition that if § d-dominates A then the relation

A ~ § must hold.

Example 4.3 (Strict Specificity) Let us consider a background context K =
(L, D) with sentences:

b(z) A b1(z) = £(z)
p(z) A ba(z) = ~£(z)
p(z) = b(z)
r(z) = b(z)
and a pair of defaults b(z) — 61(z) and p(z) — 2(z) (fig. 4.2).

1
t——
X

Figure 4.2: Strict specificity
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A priority ordering ‘<’ is admissible with K if the relation A < §;(a) holds for
any minimal assumption set A d-dominated by §;(a), for i = 1,2 and any term a in
the language. The assumption é;(a) does not d-dominate any set A so there are no
admissibility constraints originated from the default schema b(z) — 6;(z). On the
other hand, the assumption é3(a) d-dominates a single minimal set of assumptions
A = {61(a)}, as for any ground term a, we have p(a), A k =62(a), while p(a) & -A.
Thus, a priority order ‘<’ will be admissible with K iff the relation 6;(a) < 62(a)
holds for every ground term a. We also write in these cases simply 6;(z) < &,(x).

Provided with this implicit characterization of the prioritized preferential struc-
tures admissible with K, we can now turn to analyze the propositions conditionally

10The relation between conditional entailment and prioritized circumscription will be discussed
in some detail in section 4.4.
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entailed in the different contexts of interest. For an individual Tim (t), the pre-
ferred models of b(t) in K are once again, the models which violate no assumption.
As a result, both the assumptions 6;(t) and 2(t) are conditionally entailed by T,
as are the propositions f(t) and —p(t). A different scenario arises, however, if
we consider the evidence p(t) instead of b(t). In that case, every interpretation
satisfying the evidence and the background context is forced to render one of as-
sumptions 63(t) or é2(t) false. Thus, two classes of minimal models arise: a class
C{1y whose models M, have a gap A[M,] = {61}, and a class C{;) whose models M,
have a gap A[M;] = {é,}. However, the former class is preferred to the latter as for
any such models M; and M, the relation M; < M; in every admissible prioritized
structure. Indeed, A[M;] — A[M;] = {62(t)}, A[Mi1] — A[M:] = {61(t)}, and the
relation 6;(t) < 82(t) holds for every admissible priority ordering. It follows then,
that C{yy represents the class of preferred models of p(t) in K, and therefore, that
the propositions 62(t) and —£(t), as expected, are conditionally entailed by p(t) in
K. Similar conclusions, indeed, are legitimized by p-entailment and e-entailment.

Consider now the scenario in which the target context is enhanced with the
information that Tim is also a red bird, i.e. T = (K, E'), where E’ = {p(t), r(t)}.
In this case, neither e-entailment nor p-entailment constrain the preferred models
of T'. In cd-entailment, on the other hand, we are guaranteed that the preferred
models of T are minimal, and therefore, that they belong to one of the minimal
classes C(1y and Cyy), where Cy stands for the class of models M of 7" with a gap
A[M] = {é:(t) |7 € I}. However, as we showed above, models in C{1y are preferred
to models in Cpz3.'! As a result, in agreement with the irrelevance account given
in chapter 2, the assumption 62(t) and the proposition —-f(t) are conditionally
entailed by T7.

The example above illustrates a background context where every admissible
priority ordering ‘<’ must include all tuples of the form (§;(a), 62(a)), for ground
terms a in the language. Priority orderings may also include additional tuples, e.g.
(61(a), 62(b)}, but those tuples are not necessary for the ordering to be admissible.
We will say that an admissible priority ordering ‘<’ is minimal when there in no
admissible priority ordering ‘~<’’ which includes a proper subset of the tuples in
‘<.” In other words, a minimal admissible priority ordering is an ordering from
which no set of tuples can be removed without violating the admissibility condi-
tions. For instance, in the example above, there is a single minimal admissible

11Note that these classes do not contain the same interpretations as in the context T above.
Still, they possess the same gaps, and the preference relation on classes exclusively depends on
such gaps.
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ordering which includes all the tuples of the form {61(z), 62(z)) and nothing else.
Later we will see background contexts which give rise to multiple minimal admissi-
ble priority orderings. In any case, due to the fact that minimal priority orderings
contain only the strictly necessary relationships, it is natural to ask whether condi-
tional entailment can be computed by restricting attention to minimel admissible
priority orderings as opposed to all admissible priority orderings. The answer is
yes. Indeed, if we can obtain the admissible priority ordering ‘<’ by deleting cer-
tain tuples from the admissible priority ordering ‘<’,’ the preferred models in the
structure (T, <',-£, <’} will be a subset of the preferred models of the structure
(Te, <, Ag,=<). Thus, if we say that an admissible prioritized preferential struc-
ture (T, <,Ag, <) is minimal if the relation ‘<’ is a minimal admissible priority
ordering, the following result holds:

Lemma 4.5 A proposition ¢ is conditionally entailed (cd-entailed) by e default
theory T = (K, E), when g holds in all preferred models of T' of every minimal
prioritized preferential structure admissible with K.

In the example above, we can thus compute conditional entailment by consid-
ering a single structure (., <,Ac, <), where the priority ordering is such that
6 < 6" holds iff 6 = §3(a) and 6’ = 82(a) for some ground term ¢ in the language.
Often, however, multiple structures will need to be considered (see example 4.6
below).

Example 4.4 (Cycles) In this example we illustrate the prioritization associated
with a cyclic default inheritance network. The background context K = (L, D)
encodes the following default schemas (fig. 4.3):

c(z) =1 u(z)
u(z) —2 a(z)

a(z) —3 ~u(z)

Namely, for each such expression p(z) —; ¢(z), K contains a default schema
p(z) — éi(z) and a sentence p(z)} A §;(z) = g(z). The defaults above can be read
as stating that “most people sitting in the class are university students,” “most
university students are adults,” and “most adults are not university students.”

In order to determine the space of prioritized preferential structures admissible
with K, we need to look at the pattern of dominances it gives rise to. In this
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Figure 4.3: A cyclic inheritance hierarchy

background context, there are only two such patterns. First, assumptions of the
form é2(a) d-dominate the set {§3(a)}. This can be inferred from the presence
of the path u — a /4 u in the figure, and more precisely, from the expressions
u(a), 63(a) k ~d2(a) and u(a) % —83(a). As a result, any admissible priority order-
ing ‘<’ must be such that §3(z) < &2(z) holds. Secondly, the assumption &;(a)
d-dominates the set {62(a),é3(a)}, and thus every admissible priority ordering
must also satisfy é;(a) < 61(a) or é3(a) < 61(a), a disjunction which we abbreviate
as {62(0),63((1)} - 61((1).

Note that if the priority order is such that 63(a) < 6;(a) holds, by the tran-
sitivity of ‘<’, it must also be the case that the relation 63(a) < &31(a) holds.
Moreover, since either 63(a) or 83(a) must have a lower priority than é;(a), the
relation é3(a) < éi(a) must hold even if 82(a) £ 65(a). As a result, there is a
single minimal admissible priority ordering ‘<’ which only satisfy d3(a) < 6;(a)
and 83(a) < 62(a), for ground terms « in the language.

We can illustrate the behavior of conditional entailment under such a priori-
tization by considering a context T = (K, E), where E = {c(k),a(k)}. Namely,
we know that an adult, say Ken, is sitting in the class; we want to know whether
he is likely to be a university student, u(k). First, the context T gives rise to
two minimal classes of models: a class C(;y of models which only violate the as-
sumption é;(k} (‘Ken is in the class, then he is a university student’), and a class
C{s} of models which only violate the assumption 63(k) (‘Ken is an adult, then he
is not a university student’). However, the latter class is preferred to the former
one, as for any models M; € Cpyy and M; € Cgy, A[M] — A[Ms] = {6:(k)},
A[M;) ~ A[Mi] = {é3(k)}, and 63(k) < 1(k). As a result, and since &3(k) is the
only assumption violated in the preferred class C{a}, the assumption é,(k) is con-
ditionally entailed and so is the target proposition u(k). The same result follows
indeed from p-entailment and e-entailment. However, while the same derivation
remains in conditional entailment in the presence of irrelevant information, e.g.
Ken is blond, it is no longer legitimate in either p-entailment or e-entailment.
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Example 4.5 (Default Specificity) We consider now a slightly different back-
ground context K = (L, D), representing the hierarchy depicted in figure 4.4. For
simplicity, we deal the propositional defaults:

a— W
u —2 W
u-—3a
f—4a

As usual we assume that each such expression p —; g abbreviates the pair com-
prised by the sentence p A §; = ¢ and the default p — §;. The defaults above can
be understood as expressing “most adults work,” “most university students do not
work,” “most university students are adults,” and “most fans of Frank Sinatra are
adults,” respectively.

Figure 4.4: Default Specificity

There are two relevant dominance relations in this background context. First,
the assumption §; d-dominates the set A = {63,683} as A constitutes an argument
against the default u — 62, i.e. u, A i -6, holds, while u f ~A does not. Likewise,
the assumption 83 d-dominates the set {6;,62}. Thus, any priority ordering ‘<’
admissible with K must be such that both relations {63, 63} < 63 and {§;, 82} < &5
are satisfied. Moreover, due to the asymmetric and transitive character of priority
orderings, such constraints can be further simplified to 6; < 8, and §; < 63. To
show this is the case, let us assume 62 < 3. Then, by the asymmetry of the
priority order we must have é3 £ 82, and therefore, from the constraints above,
81 < 2. On the other hand, if 63 # 83 and &; £ 82, the constraints above imply
61 < &3 and 63 < &2 in contradiction with the transitivity of ‘<’. Thus, either if
d2 < 63 holds or not, the relation §; < 63 must hold. On similar arguments, we
can infer that the relation §; < 63 must hold as well.

With these space of admissible priority orderings, let us consider first a context
T = (K,E), with E = {f}. Since there is an interpretation that satisfies T and
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every assumption in the language, the single preferred class in every prioritized
structure admissible with K turns out to be the class of models of T' which violate
no assumption. In particular, the assumptions §; and &4 are conditionally entailed
by T and so the propositions a and w. Note that these inferences involve default
chaining, a pattern not sanctioned by e-entailment or by p-entailment.

A different situation arises, however, if the proposition u is also observed. The
context IV = (K, E'), with E' = {f,u}, gives rise to three minimal classes: Cqy,
Ci2; and Cy3,43, where Cy, as usual, stands for the class of models M of 7’ such that
A[M] = {&; : i € I'}. However, any model M in Cp1) is preferred to any model M’ in
C{2) and any model M" in C(3 4}. Indeed, A[M] - A[M'] = A[M) - A[M"] = {61},
A[M'] — A[M] = {6}, and A[M"] — A[M] = {63, 64}, while the relations &; < 8,
and é; < &3 hold in every admissible priority order. Hence Cp1) 1s the preferred
class of T, and therefore, all assumptions with the exception of §; are conditionally
entailed by T”, and are the propositions a and —w.

The previous examples illustrate background contexts which can be character-
ized in terms of a single minimal admissible priority ordering. The next example
illustrates a background context K which results in multiple ones. Namely, K
dictates disjunctive constraints of the form A < §, where A is a non-singleton
assumption set which cannot be further simplified.

Example 4.8 Let K represent the hierarchy depicted in fig. 4.5 in propositional
form:

a—1b
a—sd
b—-3zc

c —4 —d

In order to determine the constraints admissible priority orderings must obey,
- we have to identify first the relevant dominance patterns, There are two such pat-
terns: the assumption 6; d-dominates the assumption set {62,83,8a}, and the as-
sumption é3 d-dominates the assumption set {6y, 63, 64}. Such relations are a result
of the fact that a Iz =(61 A 63 A 83 A 64) holds, while neither a &, =(63 A 83 A d4), nor
a Iz —(81 A b3 A 84) does. Thus, every priority ordering admissible with K must be
such that both relations {6z, 83,84} < 6; and {61,83,64} < 65 are satisfied. More-
over, from these two constraints and the fact that priority orderings are asymmetric
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Figure 4.5: Disjunctive constraints

and transitive, it is possible to show as above that every admissible ordering must
also comply with the simplified constraints {63,084} < 63 and {63,854} < 82. These
constraints, however, cannot be simplified further.

Let us consider now a body of evidence E = {a}. The theory T = (K, E) gives
rise to four'classes Cy;; of minimal models, each one with an associated gap {6}, =
1,...,4. We show first that the preferred models of T in any prioritized preferential
structure 7 = (I, <, Az, <) admissible with X are contained among those of C(3)
and Cgqy. Let M; be a model in Ciiy, for 2 =1,...,4 and assume that the relation
63 < 61 holds. Then, since A[M;] — A[M;] = {83} and A[M,] — A[M,] = {6:}, M
must be preferred to M) in 7 and, therefore, M; is not a preferred model of T in
T. Assume now otherwise, that §3 # ;. Then from the constraint {63,8a} < 6&;
above, the relation 64 < §; must be true. By similar arguments, it follows then that
M, is preferred to M, in 7 and therefore, that M;, again, is not a preferred model
of T in 7. Replacing M; by M,, we obtain similarly that M, is not a preferred
model of T either. Furthermore, since neither 63 has priority higher than §;, nor
vice versa, no class among C(a)y and C(4) is preferred to the other, and thus, both
turn out to be the preferred classes of T'. As a result, the assumptions §; and &,
are conditionally entailed by T, and so the propositions b and d.12

The examples above illustrate the power gained by focusing on the class of
admissible prioritized preferential structures over the larger class of admissible
preferential structures. Prioritized preferential structures combine the constraints

2Note, however, that against intuition, the proposition ¢ is not conditionally entailed by a
since ¢ does not hold in Cys}. More about this problem in chapter 5.
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inherent to admissible preferential structures with the minimality constraints typ-
ical of more traditional non-monotonic formalisms. However, as the examples also
show, uncovering the propositions which are conditionally entailed by a given de-
fault theory is far from a trivial task. First we need to determine the conditions
to be met by the family of admissible priority orders, then identify the minimal
classes, and only then can we uncover the set of preferred models and the conclu-
sions they legitimize. In the next section, we will develop a proof theory which will
enable us to bypass this process. Such a proof theory will permit us uncovering
the conditionally entailed propositions by purely syntactic means.

4.2.2 Proof Theory

In this section we will focus on the development of syntactic criteria to determine
when a proposition is conditionally entailed (cd-entailed) by a given default theory.
We start analyzing the assertability conditions of assumptions, i.e. sufficient condi-
tions under which an assumption is guaranteed to hold in all preferred models of a
particular theory. We continue refining theses syntactic conditions to arrive, at the
end, to a sound and complete syntactic characterization of conditional entailment.

It will be useful to recall some terminology. A set A of assumptions constitutes
an argument in a context T' = (K, E) if A is logically consistent with T'. A is
an argument for p if E,A i p, and an argument against p if E, A k-p. fAis
not logically consistent with T', then A is conflict set in T. Two arguments are in
conflict when their union is a conflict set. Likewise, an assumption is free in T when
it does not belong to any minimal conflict set in T, and is bound otherwise. Default
theories I" are bound when they give rise to a finite set of bound assumptions. All
theories considered so far are bound and as the theories to which the syntactic
account below applies.

The first condition for assertability is a simple consequence of the minimality
of preferred models within the class of prioritized preferential structures.

Lemma 4.6 If an assumption § is free in T, then & is conditionally entailed by
T. '

A similar condition is both sound and complete for circumscriptive theories,
provided that assumptions are identified with negative literals and that T includes
the unigue names and domain closure axioms [Gelfond and Przymusinska, 1986].
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In the context of conditional entailment, however, such a condition is too weak.
Often an assumption is bound in a context T and still is conditionally entailed. The
“birds fly-penguins don’t” (example 4.3) provides one such example. In the context
in which Tim is known to be a penguin, the assumptions ‘Tim flies, because it is
bird’ (61(t}) and ‘Tim does not fly, because it is a penguin’ (82(t)) are in conflict,
and thus, both are bound. Still the latter assumption is conditionally entailed.

In order to capture these conclusions by syntactic means, we need to go beyond
the minimality of preferred models to consider the constraints imposed by K on
the admissible priority orderings. Indeed, the reason the assumption 6,(t) holds in
spite of being in conflict with §;(t) is because its priority is higher; that is, under
every priority ordering admissible with K the relation 8;(t) < 62(t) holds.

The assertability conditions below take these constraints into account. Recall
that we write A < 6 as an abbreviation of the expression 36’ € A such that § < é.

Lemma 4.7 An assumption & is conditionally entailed by o default theory T =
(K,E) if for every argument A against § in T and every priority ordering ‘<’
admissible with K, the relation A < § holds.

Note that it is sufficient to consider the minimal arguments A against 6; if the
relation A < § holds, so will the relation A’ < § for any superset of A.

This new condition provides a correct handling of the example above. In the
context in which Tim is known to be a penguin, the set A = {83(t)} (“if Tim is
a bird, then Tim flies”) is the only (minimal) argument against 6>(t) (“if Tim is
a penguin, then Tim doesn’t fly”), and since §2(tim) has a priority higher than
61(tim), lemma 4.7 permits us to derive é2(t), and so the proposition ‘Tim does
not fly.’

While lemma 4.7 refines lemma 4.6, it is not yet complete with respect to con-
ditional entailment. This can be illustrated by converting the strict subsumption
‘links’ p(z) = b(z) (‘penguins are birds’), and r(z) = b(z) (‘red-birds are birds’)
by default subsumption ‘links’ p(z) —3 b(z) and r(z) —4 b(z), with associated
assumption predicates 3 and 64 respectively (fig. 4.6).

Since the resulting structure is identical to that analyzed in example 4.5, by
similar arguments it is possible to show that the assumption 64(t) is conditionally
entailed by the context T = (X, E), with E = {p(t), r(t)}. Yet, the conditions in
lemma 4.7 do not authorize asserting 84(t) in T: A = {64(t), 62(t)} isan argument
against 64(t) for which the relation A < 64(t) does not hold.
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Figure 4.6: 64(t) is cd-entailed in spite of conflict with {61(t), 62(t)}

Intuitively, the reason é4(t) is conditionally entailed by T in spite of the coun-
terargument A, is that A contains an assumption é;(t) which is defeated in T.
Namely, 61(t) which is in conflict with two ‘better’ assumptions 83(t) and 83(t).
Thus, the latter two assumptions knock the argument A out, leaving the assump-
tion 64(t) unchallenged.

In order to extend the assertability conditions of lemma 4.7 to handle such
cases, we need to consider multiple conflicts at the same time. For that, some
definitions will be handy.!®> We write below A’ < A as an abbreviation of the
expression “for every 6 in A, A’ < §” and assume a context T' = (K, E).

Definition 4.10 Given a priority ordering ‘<’, an argument A defeats an argu-
ment A’ if the two arguments are in conflict and the relation A’ < A holds. We
say in that case that A is o defeater of A’.

Definition 4.11 An argument A is protected from a conflicting argument A’ iff
for every priority ordering admissible with K, A contains a defeater of A,

Intuitively, when an argument A is protected from a conflicting argument A’ it
means that A is a stronger argument than A’, and that from the point of view of A,
the conflicting argument A’ can be ignored. When all such conflicting arguments
" can be so ignored, we say that A is a stable:

Definition 4.12 An argument A is stable iff it is protected from every conflicting
argument A’.

13The vocabulary below is borrowed from argument-based approaches such as Loui’s [1987a)
and Pollock’s [1987].
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As suggested above, a stable argument is better than any of its competitors,
and assumptions which belong to stable arguments are conditionally entailed:

Lemma 4.8 If an assumption § belongs to o stable argument A in T, then 6 is
conditionally entailed by T.

The conditions in the previous lemma 4.7 can now be interpreted as requiring
that the singleton argument {6} be stable for the assumption § to be assertable.

The notion of stable arguments is a very powerful one, sufficient to account for
most inferences authorized by conditional entailment. In the example constructed
above (fig. 4.6), for instance, A = {8a(t),63(t),84(t)} is a stable argument in
the context T' = (K, E) with E = {p(t),r(t)}, as the only minimal conflicting
argument {61(t)} is defeated by the subset A, = {62(t),83(t)} of A. As a result,
lemma 4.8 authorizes us to conclude that any of the assumptions in A, and &4(t)
in particular, are conditionally entailed by T.

The assertability conditions established by lemma 4.8 are powerful enough to
account for all the examples we have considered so far. However, as the next
example illustrates, they are yet not complete.

Example 4.7 Let us consider a background context K given by the sentences
PAS = —é3, i = 1,2, and the defaults p — §;, i = 1,2. A priority ordering ‘<’
will then be admissible with K iff 3 < 6, and 3 < 8,. The context T = (K, E),
with E = {p, (61 A 63), (83 A 64)}, gives rise to three minimal classes (fig. 4.7):
C(1,3}» C2,3}, and Cyy 243, where Cr stands for the set of models M of T such that
A[M] = {é; : i € I}. Furthermore, Ci1,3) and Cyg 3y are the preferred classes of T,
and thus, the assumption 4 is conditionally entailed. However, 6, does not belong
to any stable argument in T: neither argument among {64}, {61,684} or {82,464}
is stable in T, and the assumption set {6;,86,, 6,4} is logically inconsistent with T.
Thus, &, is not derivable from the conditions in lemma 4.8.

The context T' that corresponds to this.example is depicted in fig. 4.7 (crossed
links indicate incompatible pairs of assumptions). The problem is that while the
assumption &4 cannot be protected from the conflicting assumption &3 by the ‘bet-
ter’ assumptions 6, and 4, because A = {§;,6;,8,) is inconsistent with T, the
assumption 64 could be protected from &3 by the disjunction 6, Vv §,. That is, even
though we cannot assert the sentence §; A 6, A 64, we would like to be able to test
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Figure 4.7: Beyond stable arguments

and assert the disjunctive sentence (& A 64) V (6, A 6,;). So, even when neither
argument A; = {6;,8,} or A, = {6;,8,} is stable, because they conflict with the
assumptions &; and §; respectively, their disjunction might. We will call such a
collection of arguments {A;,A;} which support the truth of 6§, a cover for 4.
Roughly, a cover C will be said to be stable when the disjunction of arguments in
C — the sentence (&, A 84) V (82 A &4) in this case — is assertable.

We make the notion of stable covers precise by refining first the conditions
under which an argument is protected:

Definition 4.13 An argument A is strongly protected from a conflicting argu-
ment A" if A is protected from every conflicting argument A” in A’.

For instance, if an argument A is protected from a conflicting argument A but
is not protected from a conflicting argument A3, A will not be strongly protected
from their union A + A/ even though A will be protected it. The distinction
between the two notions is irrelevant for stable arguments which are both protected
and strongly protected from every conflicting argument. As we will see, it is
nonetheless needed for dealing with disjunctive arguments.

Let us refer to a collection of arguments as a cover — where a cover is to be
understood as the disjunction of the arguments it contains — and let us generalize
the notions of conflicts and protection to covers as follows:

Definition 4.14 An argument A is in conflict with a cover if A is in conflict with
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every argument in the cover.

Definition 4.15 A cover is protected from a conflicting argument A if the cover
contains an argument A’ which is strongly protected from A.

The conditions under which a cover is stable then, are a straightforward gen-
eralization of the conditions under which an ergument is stable:

Definition 4.16 A cover C is stable iff it is protected from every conflicting ar-
gument A,

Stable covers are thus a generalization of stable arguments, and if an argument
A is stable so will be the singleton cover {A}. So if we say that an assumption
belongs to a cover when the assumption belongs to every argument in the cover,
we will thus have assumptions which belong to stable covers which do not belong
to stable arguments. The assumption §, in the example 4.7 above, is one such case:
64 does not belong to any stable argument in the context T, and yet §; belongs
to the stable cover {4A,,Az}. To prove this, let us first identify the arguments A’
in conflict with both A; and A; in T. For A’ to be in conflict with A;, A’ must
contain one of the assumptions &§; or é3. Similarly, for A’ to be in conflict with A,,
A’ must contain one of the assumptions 6, or 63. Thus, if A’ does not contain the
assumption 63 it must contain both 6, and §,. However, this is not possible: such
an assumption set is inconsistent with T and, therefore, it cannot be an argument.
Hence, every argument A’ in conflict with the cover {A;, A;} must contain the
assumption é3. Furthermore, only subsets of A’ containing the assumption 63 can
be in conflict with either A, or A;. However, since both assumptions 4; and &, are
in conflict with 63 and have a higher priority than 83, it follows that both A, and
A are strongly protected from A’, and therefore, that together, they constitute a
stable cover.

As expected, the conditions of lemma 4.8 can be relaxed by replacing stable
arguments by stable covers:

Theorem 4.3 An assumption § is conditionally entailed in a contezt T if and
only if & belongs to a stable cover in T.

Theorem 4.3 provides a sound and complete syntactic characterization of the
conditions under which an assumption can be legitimately adopted in a given con-
text. While stable arguments are mostly adequate for capturing knear arguments,
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stable covers provide the ability to deal adequately with disjunctions as exam-
ple 4.7 illustrates.

Theorem 4.3, however, does not provide a characterization of the conditions
under which arbitrary propositions are conditionally entailed by a given context.
This extension, however, is straightforward. Let us say that a proposition p is
supported by a cover C in a context T = (E, K) when every argument A in C is
an argument for p,i.e. E, A k p. We have then the main result of this chapter:

Theorem 4.4 (Main) A proposition p is conditionally entailed in a contert T if
and only if p is supported by a stable cover in T.

We have thus arrived to a complete syntactic characterization of prioritized
entailment in terms of admissible priority orderings. Once such a space of priority
orderings is established, theorem 4.4 permits us to either analyze the truth con-
ditions in the preferred classes of models of the contexts of interest, or determine
the relevant stable arguments and covers and the propositions they support.

An undesirable feature of both approaches, though, is that they presume that
we have identified the set of admissible priority orderings, and therefore, that we
can check whether relations of the form A’ < A are necessarily satisfied. In many
of the examples discussed in this chapter we have shown, however, that this is not
a trivial task. Many times the constraints on admissible priority orderings imposed
by a particular background contexts have a disjunctive form, and testing whether
relations of the form A’ < A hold requires a good deal of work.

Fortunately, however, it is possible to replace such a test of by a correspond-
ing syntactic test on K. For that purpose, we need to recall the definition of
assumption dominance introduced in section 2.5 and reproduced below:

Definition 4.17 A set A of assumptions dominates a set A’ in a background
context K, iff every assumption § in A directly dominates A + A,

Recall that an assumption é directly dominates arguments A in conflict with a
default p— é in K (i.e., p, A | =6 and p £ -A). We have appealed to this notion
before for delimiting the space of priority orderings which are admissible with a
given background context. It is not surprising thus, that due to the asymmetry
and transitivity of priority orderings, the following syntactic characterization of
the conditions under which a relation A’ < A must hold can be formulated:
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Theorem 4.5 (Dominance) For set of assumptions A and A, the relation A’ <
A holds in every priority ordering ‘<’ admissible with a consistent background
K = (L, D) if and only if A is part of a set that dominates A’ in K.

Theorems 4.5 and 4.3 together permit us to determine whether a given propo-
sition is conditionally entailed by a consistent default theory by purely syntactic
means. For that, we only need to look for stable covers and the corresponding
dominance relations. Furthermore, we are now in a position to show that the irrel-
evance rule in the system P discussed in chapter 2, is indeed sound with respect to
conditional entailment. Such a rule was introduced as an extension of the core and
was responsible for drawing assumptions about independence. These assumptions
amount to the following condition:

Theorem 4.8 (Irrelevance) An assumption § is conditionally entailed in a con-
text T = (K, E) if for every argument A’ against 6, there is a set A, § € A, that
dominates A’ in K.

Given the soundness of the core for finite propositional languages, the following
result is an straightforward consequence of the soundness of the irrelevance rule:

Theorem 4.7 For finite propositional languages, all the rules of P are sound rules
of conditional entailment,

Such rules, however, are not complete. The irrelevance rule as defined in chap-
ter 2 is only an approximation of the complete assertability conditions summarized
in theorem 4.3. Indeed, examples such as 4.7, which require the notion stable cov-
ers, are beyond the power of rules 1-6.

4.3 Related Work

Conditional entailment is a refinement of an extension of the core recently advanced
by Pearl [1989b], which is also related to a proposal due to Lehmann [1989]. Both
accounts deal with finite propositional languages, where the core is sound and
complete with respect to all forms of entailment analyzed in chapter 3, and both
can be understood as suitable extensions of l-entailment. We will focus here on
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Pearl’s proposal only. If we recall from chapter 3, a layered-world structure is a pair
(W, £}, where W is a set of worlds, and « is a world ranking function. A proposition
p is l-entailed by a theory T' = (K, E}, when p is true in the preferred worlds of T
in every layered-world structure admissible with &. Pearl extends l-entailment by
considering only a single admissible layered world structure (W, Kmin), where W,
stands for the set of all possible worlds, and &min is a function which assign worlds a
minimal rank.' For instance, for a language containing three propositional letters
P, q and r, the minimal world structure (W, £min) admissible with a background
context K containing a single default p — q, will be such that every world W that
does not falsify p — q will have a rank kmin(W) = 0, and every world W’ that
falsify it will have a rank xmin(W’) = 1. In particular, the lowest ranked world
that satisfies both p and r will also satisfy the proposition q, correctly legitimizing
the conclusion q from p and r; a conclusion which escapes l-entailment.

However, other inferences common to non-monotonic logics escape both ac-
counts. For instance, given two defaults p — q and p — —r both accounts fail to
authorize the conclusion q given both p and r. The reason is that, in the resulting
world ranking, the violation of one default “costs” as much as the violation of
many defaults of equal rank. Similarly, while two defaults pA s — q and r — g,
render the status of q ambiguous in the presence of p, s and r, such an ambiguity
is resolved in favor of q, when an additional default p — —q supporting its nega-
tion is added. Conditional entailment avoids these anomalies by ignoring defaults
(assumptions) commonly violated by the pair of models being compared, and by
considering multiple partial orders, as opposed to a single world ranking.

Outside the conditional camp, conditional entailment is closest to prioritized
circumscription. Prioritized circumscription is a refinement of parallel circum-
scription, originally proposed by McCarthy [1986], and later developed by Lifs-
chitz [1985, 1988a]. Roughly, the effect of prioritized circumscription is to induce
a preference for models that assign smaller extensions to predicates with higher
priorities. The only difference between conditional entailment and prioritized cir-
cumscription in the propositional case, is the source of such priorities: while pri-
oritized circumscription relies on the user, conditional entailment automatically
extracts the priorities from the knowledge base.

Two other technical differences arise, however, in the first-order case. First,
the priorities in prioritized circumscription are on predicates as opposed to atoms.
Such a difference often translates into a different behavior. For instance, in the

14Pearl call the resulting entailment relation 1-entailment which should not be confused with
the entailment relation associated with layered world structures which call I-entailment.
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“birds fly, penguins don’t” example, the conclusion ~flies(tim) is conditionally
entailed by penguin(tim) by virtue of the priority of the assumption 62(tim) (‘if
Tim is a penguin, Tim does not fly’) over the assumption §;(tim) (‘if Tim is a bird,
Tim flies’). The same behavior would normally be accommodated in prioritized
circumscription by assigning a higher priority to the predicate abs = —8s than
to the predicate aby = —6;. However, such an encoding produces an unexpected
behavior which does not arise in conditional entailment: given that either Tim
is a flying penguin or that Tweety is a non-flying bird, for instance, prioritized
circumscription is forced to conclude that Tweety is a non-flying bird.!?

The second technical difference between conditional entailment and prioritized
circumscription is the notion of minimality employed. In conditional entailment a
model M of T is minimal iff it is has a minimal gap A[M]; namely, if there is no
model M’ of T’ with violates a set of assumptions A[M’] properly included in A[M].
In particular, since assumptions are ground literals, M will be a minimal model of
a theory T' = {3x.=64(x)} iff M satisfies every assumption in the language. Every
such model will thus presume the existence of one or many unnamed individuals
in their respective domains which belong to the extension of the predicate 6;.
So while the formula 6;(a) will hold in all minimal models of T, the formula
dx.Vy. =61(y) = y = x will not. The opposite is true in circumscription, where
the minimality of a model is understood semantically, rather than syntactically
(see for example, [Lifschitz, 1985]). In such a case no attention is paid to literals,
but to individuals in the domains of the interpretations.

Which notion of minimality is preferred? The consensus is overwhelming in
favor of a minimality notion understood in a semantic sense. However, if we reject
the idea that such a choice carries a particular epistemological significance and
that model theory and meaning are the same thing, the choice remains simply a
selection of the most convenient device for formalizing default inference. So, which
minimality criterion is more convenient for such a task? My view is in favor of a
syntactic minimality criterion, as it permits us to reason about equality. Namely,
given the negation of an assumption 6;(a), we can still infer that an assumption
81(b) holds. A semantic minimality criterion, on the other hand, would require the
inequality between a and b to be stated explicitly, precluding the possibility of a
and b denoting the same thing. Similarly, given a default “birds fly,” conditional
entailment, unlike circumscription, is not bound to conclude that all birds fiy.
Indeed, the treatment of equality and universals in conditional entailment is closer

15Viadimir Lifschitz has recently brought to my attention the circumscriptive framework elab-
orated in [Lifschitz, 1988a] which permits a finer grained specification of priorities which avoids
these anomalies.
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to Reiter’s [1980] default logic than to circumscription.

There are, however, severe limitations that arise from the focus on literals as
opposed to individuals. Sometimes, we do want to assume that a property about all
individuals. For instance, when reasoning about time we may want to assume that
a clean block will remain clean unless a relevant change takes place. However, a
default schema such as on(z, y,t) — on(z, y, t+ 1) would not authorize us to infer
dx,y on(x,y, t+1) from Ix,y on(x,y, ¢).® In that case, we do want to minimize the
eztension of predicate ab; = —8; associated with the persistence of the on relation.
Does that mean that we are forced back into a semantic notion of minimality? Not
necessarily. It is possible to retain a syntactic minimality criterion and still be able
to accommodate these forms of closed world reasoning.

Let us say that we want a predicate §; to be closed when we want the eztension
of §; to be mazimal (i.e. the complement of & to be minimal). Furthermore,
let 8,{M] stand for the set of tuples of ground terms # in the language such that
6i(t) € A[M]. Then, in order to close a predicate &;, it is sufficient to prune
all those models M of the theory T' of interest which fail to satisfy the condition
Vz.éi(z) = = € &[M]. If we say that a model of T is a model of the closure
of T when all these closure conditions are satisfied, no empty gap model of a
theory T' = {3x.-6;i(x)}, for instance, would remain a model of the closure of
T. Similarly, if the preferred models of T are selected among the models of the
closure of T, a theory T = {—é8;(a)} will certainly conditionally entail the sentence
Vx.x # a = 6i(x) very much as the circumscription of the complement of 6; will.
So, it is possible to retain the appealing treatment of equality and universals of
Reiter’s default logic, and yet accommodate the form of closed world reasoning
characteristic of circumscription.

In light of the relation between the model theory of prioritized circumscription
and conditional entailment, it is not surprising to find that their respective proof-
theories are related as well. An elegant proof-theory for prioritized circumscription
was recently developed by Baker and Ginsberg [1989). Baker and Ginsberg address
the case in which predicates are linearly ordered; namely, circumscribed predicates
are drawn from sets P;, P,,..., P, such that the priority of a predicate in a set
P; is higher than the priority of a predicate in a set Pjforl1 <j<i<n
While differing in technical detail, the proof-theory they present has the same
dialectical flavor as the proof-theory developed in section 4.3, which as they note,
is closely related to approaches to defeasible inference based on the evaluation of
arguments (e.g. {Loui, 1987a, Pollock, 1987]). The with Baker and Ginsberg are

15The example is from [McCarthy, 1980].
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mainly in the treatment of disjunctions, which in our case, are pushed completely
into what we called covers. Likewise, due to the nature of the constraints on
admissible conditional priority orderings, we are forced to consider sets of non
necessarily linear priority orderings. In this regard, the results in section 4.3 may
prove relevant to prioritized circumscription, as they relax some of the assumptions
on which the proof-theory of Baker and Ginsberg is based.



Chapter 5

The Causal Dimension:
Evidence vs. Explanation

Conditional entailment extends preferential entailment and e-entailment with many
desirable features such as independence assumptions and default contraposition.
It also accepts an intuitive proof-theory, akin to argument-based systems, in which
arguments supporting incompatible propositions compete and those arguments
based on assumptions of higher priority win. Nonetheless, while able to capture the
intended behavior in a variety of contexts, many simple scenarios remain beyond
its reach. Unintended models often slip into the set of preferred models, rendering
a behavior weaker than expected.

In this chapter we argue that many of these problems arise from the causal
nature of common defaults, which the conditional interpretation presented ignores.
We claim that such a causal dimension of defaults is often the critical feature that
distinguishes intended from unintended classes of models, and that it manifests
itself in the fact that intended classes of models usually cohere. Namely, intended
classes explain why certain expectations fail, like the failure of a car to get started
due to a dead battery, or the change in position of a block due to a moving action.

Here we formalize these intuitions along two dimensions. On the one hand,
we extend the language of default theories with a “causal” operator which allows
the user to indicate when an exception is “explained.” On the other, we use this
operator to determine an ordering on classes of models which permits us to select
among the conditional classes of a given theory, the most coherent ones.

93
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Section 5.1 illustrates the limitations of conditional entailment and introduces
the intuitions underlying the proposed refinement. Section 5.2 elaborates the lan-
guage and interpretation of causal default theories. Finally, section 5.3 illustrates
how tasks such as inheritance reasoning, reasoning about change, abductive rea-
soning, and reasoning about general logic programs, can all be expressed in the
resulting framework.

5.1 Limitations of Conditional Entailment

A natural example in which to illustrate the limitations of conditional entailment
is the now famous “Yale shooting problem” [Hanks and McDermott, 1986]. The
problem describes a simple scenario where a gun loaded at a certain time (or situa-
tion) is shot at a person, Fred, at some later time. Hanks and McDermott devised
the scenario and showed that a natural encoding in well-known norn-monotonic for-
malisms — McCarthy’s [1980, 1986] circumscription, Reiter’s [1980] default logic
and McDermott and Doyle [1980] non-monotonic logic — produced a behavior
weaker than expected; namely, a behavior in which the fate of Fred remains unde-

cided.

The Yale shooting problem spurred a large number of replies, ranging from
special forms of circumscription, to alternative frameworks and encodings of the
original problem. Some of of these replies have been reviewed by Hanks and
McDermott themselves in [(Hanks and McDermott, 1987]. We share the essence of
Hanks and McDermott’s argument that few of these proposals answer the problem
in its full generality. Moreover, unlike Hanks and McDermott, we do not think
that the temporal nature of the problem plays a distinctive role among the relevant
issues. For that reason, we present a bare-bones propositional description of the
Yale shooting scenario in which the same difficulties pointed out by Hanks and
McDermott arise.

Example 5.1 (Yale Shooting Problem) The problem states that there is a
gun loaded at time ¢, shot at a later time ¢ at a person alive at t. The ques-
tion is to predict the fate of the person after the shooting. We encode the relevant
relations in a background context K = (L, D) with sentences (fig. 5.1):

loaded A §; = loaded’
alive' A 8 = alive”
shoot’ A loaded’ = —alive”
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shoot’ A loaded’ = —é,

loaded
shoot’ 1
alive’ loaded’
2
alive”

Figure 5.1: The “essential” Yale shooting problem

These sentences can be read as stating that the fluents loaded and alive tend to
persist, and that a shooting with a loaded gun “clips” the fluent alive, switching
its sign. Furthermore, we assume that K includes defaults of the form p — &, for
each of the sentences p A §; = ¢ above.

The target context T = (I, E) is defined by the evidence E = {loaded,alive’,
shoot’}. In such a context, two classes of minimal models arise: the expected class
C{2) in which é2 is the only violated assumption (i.e. loaded persists and alive
does not), and the spurious class C{1) in which 6 is the only violated assumption
(i.e. alive persists and loaded does not). The former class would be preferred to
the latter if the assumption §; — the persistence of loaded — had priority higher
than the assumption 6, — the persistence of alive. However, the background
context K does not impose such a restriction, and as a result, like in the frameworks
analyzed by Hanks and McDermott, neither ~alive” nor loaded’ are conditionally
entailed by T

Note that it is not unreasonable for the assumptions §; and 62 to be unordered;
after all, their status is normally independent: nor does the persistence of loaded
normally presume the clipping of alive, nor does the persistence of alive normally
presume the clipping of 1oaded. It is rather in the particular context in which a
shooting aimed at a particular person takes place, in which the status of one
assumption become relevant to the status of the other. Indeed, it is only in such
context that it makes sense to regard one assumption as preferred to the other.

It is thus not surprising to find that such a behavior cannot be captured within
the framework of conditional entailment in a natural way. Indeed, while the space
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of priority orderings admissible with a given default theory T = (K, E) depends
on the background K, it is independent of the particular body of evidence E
considered. In particular, since in the absence of a shooting the fluents loaded
and alive are unrelated, they remain unordered even when the evidence indicates
that a shooting has taken place.

It is thus clear, that the particular body of evidence at hand needs also be taken
into account for capturing the intuitive preferences among assumptions. As we will
see, the need for such dynamic preferences also occurs in inheritance hierarchies,
general logic programs, and reasoning to the best explanation. The following
example 1s indeed a version of the Yale shooting problem which does not involve
temporal persistences.

Example 5.2 Consider the following scenario. We get up in the morning and
want to drive to work. However, we go to the car and notice that we have left the
lights on for the whole night. At that point we want to assess the chances that the
car is going to get started upon turning the ignition key. First, we assume that,
normally, when the ignition key is turned the car engine starts. However, the car
1s likely not to start if the battery is dead. Moreover, the battery is likely to be
dead after having left the lights on during the whole night. Thus K contains the
following defaults (fig. 5.2):

turn_key —1 starts
turnkey A battery_dead —3 —starts
lights were on —3 battery dead

Namely, following the convention advanced in section 2.2, K contains a sentence
pAd; = q and a default p — §; for each expression p —, g.

The context T' = (K, E) with E = {lights were.on,turn_key}, gives rise
to three minimal classes: Ciy}, C(3), and Cy3), where C(;) stands for the class of
models which violate the assumption §; only. Models in the class Cyy) are pre-
ferred to models in the class C(y}, as the assumption 63 is preferred to the as-
sumption §; in every priority order admissible with K. No such preference exists
however between the assumptions 6; and 83, and thus, models in Cpy and Cay
remain equally preferred. As a result, conditional entailment sanctions the dis-
Junction ~startsV battery.dead, rather than the stronger, expected conclusion
—starts. Note that, again, while unrelated in K, it seems reasonable to regard
the assumptions §; — about the expected state of the car after turning the ig-
nition key — as preferred to the assumption 83 — about the expected state of
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Figure 5.2: The battery problem

the battery after leaving the lights on. Indeed, while it is reasonable to ezplain
the car not getting starting due to a dead battery, we cannot ezplain the battery
not dying by predicting that the car will get started. Like in the Yale shooting
problem, the logical symmetry between a pair of conflicting assumptions hides a
causal asymmetry which underlies the intended behavior.

Example 5.3 As a last example, consider a scenario in which Mary is organizing
a party to which she plans to invite most of her friends, who, normally, are likely
to attend. However, people are likely not attend a party which is attended by
somebody they dislike. Tammy and Peter are Mary’s friends and Tammy dislikes
Peter.

We express this knowledge as a default theory T = (K, E), with an evidence set
E= {friend(t),friend(p),dlikes(t,p)} and a background context K = (L, D)
given by the following expressions (fig. 5.3):

friend(z) —; invited(z)
invited(z) —2 attends(z)
3y. [dlikes(z, y) A attends(y)] —3 —attends(z)

In the context T, it is reasonable to expect that both Tammy and Peter are
going to be invited, that Peter is going to attend, while leaving in doubt whether
Tammy will attend, considering her dislike for Peter. However, none of these
conclusions are conditionally entailed by T'. Indeed, there are five minimal classes,
each violating an assumption from the set &, (t), 81(p).62(t), 62(p),63(t)}, all equally
preferred. Again, the intended classes are precisely those in which the violated
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friend(t) friend(p)

invited(t) invited(p)
1 dlikes(t,p) 1

attends(t) 4A\/ attends(p)

Figure 5.3: The party problem

assumptions accept explanations in terms of the available information: e.g. Tammy
did not go because Peter was attending and Tammy does not like Peter; or Tammy
did go in spite of Peter, because she usually attends Mary’s parties. The intended
classes, on the other hand, include models in which Peter is invited but does not
go, or where he is not even invited.!

All these examples illustrate contexts which generate spurious preferred classes
and, therefore, weak conclusions. We claim that that characteristic feature that
distinguishes intended form unintended models is coherence: while ‘exceptions’ are
explained in the intended classes, they are not explained in the unintended ones.
The refinement of conditional entailment to be developed in the next section is
based on an extension of the language of default theories which will permit the
user to express when an exception is explained. For a (plain) formula «, there
will be be a new formula Ca in the language, which will be read as stating that
a is ‘explained.” The coherence of a class of models will then be determined by
considering the truth of the literals C~§ for the assumptions § violated in the class.
These considerations will allow us to prune the set of conditional models associated
with a given context, and to strengthen the resulting defeasible entailment relation.
We will later show that the resulting framework goes well beyond the examples
considered in this section, and provides some useful insights into the semantic
issues surrounding the use of negation in logic programming (section 5.3.3), as
well as on issues related to abductive reasoning (section 5.3.4).

!These expectation failures could be explained in principle by postulating appropriate hy-
potheses. For example, we could explain that Peter did not go in spite of being invited, in
order not to affect Tammy’s chances of attending. However, we only consider here explanations
which do not need hypotheses unsupported by the available evidence. Such explanations will be
considered in section 5.3.4 in the context of abductive reasoning.
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5.2 Causal Theories

5.2.1 Language

A causal theory is a default theory whose underlying language £ has been extended
with the causal operator ‘C.” We refer to the resulting language as CL£. We call the
formulas in £ plain formulas, while those in CL but not in £ as causal formulas.
The language CL is closed under all the standard classical connectives. On the
other hand, we do not allow embedded causal operators; thus if 7 is a causal
formula, C« will not be in CL.

For example the causal encoding of the version of the Yale shooting problem
considered above will contain the following rules:

loaded A §; = loaded’

alive' A dy; = alive”

shoot’ A loaded’ = C-alive”
shoot’ A loaded = C-é,

Namely, rules of the form ‘if p then ¢’ — such as the shooting rule — which have a
causal or explanatory character, are encoded as causal rules of the form ‘if p then
Cq’ which can be read as stating that if p is true, then ¢ is explained.

We will assume that the operator ‘C’ complies with certain minimal restric-
tions which happen to correspond to the postulates of the system T in modal
logic [Hughes and Cresswell, 1968]:

[C1]] Ca=a
[C2] C(a= )= (Ca=CH)
[C3] If k o then Ca

[C1] forces every explained proposition to be true, [C3] renders every expression
that logically follows from the background as explained, while [C2] guarantees that
the set of explained proposition is closed under deduction.

The operator ‘C’ will be used to induce an order on classes of models, and
indirectly, to determine a set of causally preferred models.
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5.2.2 Semantics: Causal Entailment

Let us first recall that for an interpretation M, A[M] refers to the assumptions
violated in M. Every assumption § not in A[M] is thus an assumption that holds
in M. A class C of models with an associated gap A stands for the collection of
models M of T such that A[M] C A. The class C is minimal iff for every model
M in C, A[M] = A. Likewise, a proposition p holds in C iff it holds in every model
in C. Proof-theoretically, this condition is equivalent to the existence of a classical
derivation of p from the sentences in 7' and assumptions not in the gap of C. Let
us also recall that a conditional model (class) in a context T, refers to a model
(class) preferred in some admissible prioritized structure. Similarly, we refer to an
admissible priority ordering as a conditional ordering.

As usual, we call the complement of an assumption é an ‘exception’ or an
‘abnormality.” Furthermore, we will say that an exception —& is ezplained in a
class, when the causal literal C—é holds in the class. From the remarks above, a
sufficient and necessary condition for an ‘exception’ ~§ to be explained in a class
C in a context T, is thus the existence of a set of assumptions not in gap of C A,
that together with T imply the literal C—§. Thus all explanations in a class are
grounded in the available evidence and the assumptions validated by the class.

When the context T is understood, we will use the notation A°[C] to refer to
the set of assumptions é whose negations are explained in C. We call such a set
the ezplained gap of C, an distinguish it from the wnezplained gap of C, given by
the collection of assumptions in the gap of C but not in its explained gap. The
unexplained gap of a class is thus a measure of its incoherence. In particular,
when a class possesses an empty unexplained gap, the assumptions in the class fit
perfectly well. We call such classes perfectly coherent classes. Intuitively, no class
can be ‘better’ than a perfectly coherent class. The following ceusal preference
relation on classes formalizes this intuition:

Definition 5.1 Let C and C' be two classes in @ contezt T. The class C is as
causally preferred as the class C' iff A[C] — A°[C] C A[C’]. The class C is causally
preferred to C' iff C is as causally preferred as C' but C’ is not as causally preferred
as C.

In words, a class C is causally preferred to C’ when every exception in C but not
€’ has an explanation, but not vice versa. We will also say that C is a (causally)
preferred class in the context T, iff there is no other class in T causally preferred to
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C. We call € a causal class of T, and refer to the models it contains as causal models
of T'. It is simple to show that causal models and classes are minimal; namely,
among the models and classes of T' they possess a minimal gap. Furthermore, even
though the causal preference relation on classes is not necessarily transitive, the
causal classes of T' can be determined by considering the minimal classes of 7" only.

In analogy to conditional entailment, causal entailment is defined as follows:

Definition 5.2 4 theory T causally entails (cs-entails) a proposition p iff p holds
in all the causally preferred classes of T'.

We will illustrate these definitions with some examples. Later on we will inte-
grate causal entailment and conditional entailment into a single entailment relation
which takes into account both causal and conditional aspects of defaults.

Example 5.4 Let us consider first a theory T given by the single causal sentence
6 = C-¢', where § and &' are different assumptions. Such a context admits two
minimal classes: a class C with an associated gap A[C] = {é'}, and a class €’ with
an associated gap A[C'] = {6}. Both classes represent all the minimal classes of T,
as there is no model of T that satisfies both § and &', and the restrictions [C1)-[C3].
The class C is committed to the assumption & while the class €’ is committed to the
assumption ¢'. Furthermore, since T, 6 F C—§’ holds, it follows that the exception
—6' is explained in C. On the other hand, the exception =6 is not explained in (', as
there is no assumption set validated by ¢’ which supports the literal C~4. It follows
then, that the class C is causally preferred to C', as AlC] - A°[C] = 8 C A[C'], but
A[C] — A%[C'] = {6} € A[C] = {6'}. Furthermore, since C and C’ are the only
minimal classes of T', C remains as the single causally preferred class of T, and the
propositions § and -4’ are causally entailed (cs-entailed) by T.

Note the asymmetry established by the causal preferences on the theory T
while the assumptions 6 and & are incompatible, é is cs-entailed but & is not.

The next example illustrates the behavior of the causal formulation of the Yale
shooting scenario described above.

Example 5.5 The causal formulation consists of the following sentences:

loaded A §; = loaded’
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alive' A 3 = alive”
shoot’ A loaded’ = C—alive”
shoot’ A loaded = C-é64

The difference with the formulation in example 5.1, is that the causal character of
the shooting rule has been made explicit . As usual, we also have defaults p; — §;
for each of the sentences of the form p; A §; = ¢; in K.

The target context T' = (K, E) with E = {loaded,alive’, shoot’}, gives rise
to two minimal classes: Cy;), where the assumption 62 about the persistence of
alive holds and the assumption §4 is violated; and C{23, where the assumption &,
about the persistence of loaded holds, and the assumption 6, is viclated. These
two classes, however, are no longer symmetrical. Indeed, while the assumption &,
ezplains the violation of 62, namely, E,§; l C—é63, no set of assumptions valid in
Cf1y supports an explanation for —6;. Thus, we obtain A[Cy] = Ac[Ciy] = {62},
while A[C(1y] = {6} and A°[C;;3] = B. As a result, the minimal class Ciay is
perfectly coherent and is causally preferred to the only other minimal class Chy-
It follows then that the propositions that hold in C{2) are causally entailed by T
and, in particular, the propositions loaded’ and -alive”.? 3

20ther solutions to the Yale shooting problem which rest on the same intuition of minimizing,
or even banishing unexplained abnormality are Lifschitz’s [1987], Haugh’s [1987), and Morgen-
stern’s and Stein’s [1988).

31t should be mentioned that there are logically consistent causal theories, which lack causal
models. This is a consequence of the fact that causal preferences on classes are not always
transitive. Consider for instance a context T given by the rules § = C=ég, 63 = C—§3, and
83 = C—é;. Such a context admits three minimal classes C(1,2}» €(1,3}, and C{3 33, where Cli i
stands for a class with gap {6;,6;}. It is simple to show that the class €{1,2} is causally preferred
to C{3,3}, that Cy3 3} is causally preferred to C{1,3}, and that C(; aj is causally preferred to €{1,2}-
These preferences, thus, establish a loop. As a result, T' does not possess any causally preferred
class, and hence, it entails any sentence in the language.

There is a simple refinement of the definition of causal entailment, originally proposed in
[Geffner, 1989], which avoids these anomalies. Let C be a class in a context T, and let us say
that a class C is causally admissible in T, iff every class ¢’ in T which is causally preferred to
C is such that A[C'] C A[C]. In the example above, the class C{1,2,3) with gap {6,,65,63}, is a
causally admissible class, while none of the minimal classes C{1,2}» Cq1,3) and Cyz 3 is. Then a
form of cautious causal entailment can be defined, where rather than focusing on the causally
preferred classes of T', we only consider its minimal admissible classes. The resulting consequence
relation is guaranteed to be well-behaved—namely, consistent whenever T is consistent— as every
consistent T has at least one admissible class: the class Cacq.» Whose gap Acp contains all the
assumptions in the language.
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5.2.3 Integrating Causal and Conditional Preferences

The notion of causal entailment above was motivated as a refinement of the notion
of conditional entailment developed in the last chapter. We argued that in addition
to the conditional dimension of default reasoning, there is an additional dimension
of defaults related to causality and coherence, which pops up in problems such
as those considered in section 5.1. Here we will present a simple scheme that
integrates both causal and conditional considerations.?

Causal entailment (cs-entailment) is defined in terms of the causally preferred
classes of a given theory T. These causally preferred classes are drawn from the
space of all classes associated with T or, with identical results, from the space of
minimal classes of T. The notion of conditional entailment (cd-entailment) devel-
oped in chapter 4 was introduced in an analogous way, selecting the conditional
rather than the ceusal classes of T.

In order to refine the conditional entailment relation we will apply the causal
ordering to refine the set of conditional classes of 7". In other words, we will use the
causal ordering to select, among the conditional classes of T, the causally preferred
ones. Naturally, we refer to the resulting classes as the cousal conditional classes
of T' and to the resulting entailment relation as causal conditional entailment (csd-
entailment). Thus we say that a context 7' csd-entails a proposition p when p holds
in all the causally preferred conditional classes of T.

It is straightforward to show that T' cd-entails p only if T csd-entails p. Not
the other way around though, as the Yale shooting scenario reveals (example 5.5).
Such an example, however, did not display interactions between causal and con-
ditional preferences, as all the minimal classes were also conditional ones. These
interactions are illustrated in the reformulation below.

Example 5.6 We consider the same formulation employed in example 5.6 above,
except that we assume now that the effects of the shooting rule hold by default:
loaded A §; = loaded’
alive' A 63 = alive”
shoot’ A loaded’ A 63 = C—alive”
shoot’ A loaded' A 83 = C—4,

Each of the first three rules p; A §; = ¢; in K has also an associated default of the
form p; — §;.

4Other integration schemes are aiso possible. See section 6.2.
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We consider again the context T’ = (K, E), with E = {loaded, alive’, shoot'}.
In order to determine which propositions are csd-entailed by T, we have to identify
the conditional classes of T and select, among them, the causally preferred ones.
Since conditionally and causally preferred classes are guaranteed to be minimal, it
is natural to start with the minimal classes.

The context T gives rise to three minimal classes C1}s Cyoy, and Cysy, where
each Cy;) stands for the class of models in which only the assumption &; is violated.
However, C(3) is not a conditional class; the class C(2) 1s conditionally preferred
to class C(3) as the assumption 63 is conditionally preferred to the assumption
63. Namely, the assumption 63 directly dominates the assumption set {62} as
a result that shoot',1oaded’, é; Iz =63 holds, but shoot’, loaded’ k= 82 does not.
Thus, the causally preferred conditional classes of T are among C;} and Cyz). As
illustrated in example 5.5 above, the class Ci2} 1s causally preferred to C{2), and
thus, T' csd-entails every proposition that holds in Ci2}-

Although the causal encoding of the scenarios we have so far considered has
been straightforward, often some care is required. The next example illustrates
some of the-aspects that need to be taken into account for such a tramslation to
yvield the expected behavior. More general guidelines will be analyzed in the next
section.

Example 5.7 Consider a causal formulation of the “battery” example discussed
above. The background context is described by the sentences:

turn.key A §; = Cstarts
turn key A battery_dead A §; = C-starts
lights_were_on A §3 => Cbattery dead

together with defaults p; — & for each sentence p; A 6; = gi- The rules are in
causal form, because we agree to regard their consequents as explained when their
antecedents hold.

Let us consider a context T = (K, E), with E = {lights.were_on, turn key}.
As before, T gives rise to three minimal classes Ci1}> €2y and Cy3), where C{iy stands
for the class which violates the assumption §;, from which only Cqyy and C3y are
conditionally preferred. Since dead_battery holds in C{1} we would expect the
failure of the car to get started (—6;) to be explained in C{1); however, the literal
C—4é; does not hold in Cyyy, the class C{13 1s not preferred to Cyzy, and the expected
conclusion ~starts is not sanctioned.
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Note that the discrepancy between the expected behavior and the actual be-
havior does not refute the intuition that classes should be ordered in terms of
coherence considerations. It rather exposes the fact that the causal interpretation
of T fails to uncover relevant explanatory patterns. The problem in this case, is
that while dead_battery is able to explain the failure of start s, it is unable to
explain the failure of the assumption (6;) which predicts it.

The fix we are about to propose rests on a simple intuition: that the assumption
é; associated with the encoding of a default p —; ¢ should be explainable from p
and an ezplanation of the negation of q. Such an intuition demands that a default
P —i q be encoded not only in terms of the pair of expressions p A §; = ¢ (or,
pAbd = Cqg) and p — §;, but alse in terms of an additional causal sentence
pACg = C=6,.5

In the context of the current example, this encoding requires the inclusion in
K of the following three additional rules:®

turn.key A C-starts = C-§,
turn key A battery dead A Cstarts = C-é,
lights were.on A C—battery.dead = C—§,

The theory T” that results from such an encoding gives rise again to the same
three minimal classes Ca)» €2y and C{3}, only two of which, C1y and Cysy are
conditionally preferred. However, now the literal C—é1 holds in every model in
C(13, and thus Cgy is causally preferred to Ci3}. As a result, C(1y is the causally
preferred conditional class of 7", and the propositions ~starts and batt ery dead
are legitimized.

The examples illustrate that the introduction of the causal modal operator C
provides a more powerful representational language in which to express intuitive
patterns of inference which escape the machinery of conditional entailment. The
inconvenience, however, is that the commonsense interpretation of the operator
C involve fuzzy notions of explanation and causality which make the encoding
of knowledge in the form of causal theories somewhat arbitrary. In the example

SGelfond [1989] and Konolige and Myers [1989] suggest related encodings of defaults in au-
toepistemic logic. We will discuss the relation between causa! and autoepistemic theories in
section 5.4.

6Note that we write Cstarts, for instance, rather than C-=starts. This is only a conve-
nience. Both causal sentences possess the same models under the constraints on C.
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above, for instance, we claimed that a default p; —; ¢; should be expressed as a
pair of sentences p; A §; = Cg; and p; A Cg; = C—é;, together with a default
pi — &;. This raises the questions of whether this encoding, among the many
possible, is a ‘trick” contrived to make the proposed interpretation work, or to the
contrary, it fits within more general guidelines for expressing defeasible knowledge
in the form of causal theories. In the rest of this chapter we address this issue.
We show that there are simple, local mappings (i.e. expression by expression}
which permit expressing knowledge about a variety of domains in the form of
causal theories, in such a way that the intended behavior is captured. We consider
defeasible inheritance hierarchies, reasoning about change, general logic programs,
and abductive reasoning,

5.3 Applications

5.3.1 Inheritance Hierarchies

Defeasible inheritance hierarchies are convenient devices for organizing knowledge
about prototypical classes of individuals [Touretzky, 1986]. They take the form of
directed graphs, where links connecting nodes r and y represent either that z is a
member of the class y — if z represents an individual— or that members of the
class z are normally members of the class y— if = stands for a class. For negated
links connecting z to y, the same relations are to be understood in terms of z and
the negation of y. Given an inheritance hierarchy I', the problem is to determine
the properties which a given individual can be assumed to possess; a problem
that amounts to determining which directed paths in the net encode legitimate
inferences (see [Touretzky, 1986, Horty et al., 1987, Geffner and Verma, 1989]).

Conditional entailment, while able to accommodate languages and patterns of
inference that go beyond those captured by inheritance schemes, fails to provide
an intuitive account of what they do capture. This is not surprising, though, as
the links in the net represent more than conditional statements. There is also
a causal component which needs to be taken into account in order to identify
the inheritance relations embedded in a net. In the example below we illustrate
where this component comes from and show how a simple mapping of inheritance
hierarchies into causal theories solves the problem.

Example 5.8 Let us consider the inheritance hierarchy depicted in fig. 5.4. Such a
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network can represent something like “USC students are students”, “most students
are unemployed,” and while “unemployed are not rich,” “USC students are.” The
natural encoding of such a network is in the form of a background context K with
sentences:

A(z) A 61(x) = B(z)
B(z} A 62(x) = C(z)
C(z) A b3(x) = ~D(z)
A(z) A 84(x) = D(z)

and default schemas p;(z) — 6;(z) for each such sentence pi(z) A bi(z) = qi(z).

Figure 5.4: A simple network: A’s are expected to be C’s

In such a background context, we want to determine whether an instance,
say a, of class A (e.g. “USC students”), is declared to be an instance of class
C (e.g. “unemployed”). In the context T = (K, E), with E = {A(a)}, the four
assumptions 6;(a), ¢ = 1,...,4, are in conflict, giving thus rise to four minimal
classes Cgyy, ¢ = 1,...,4, where C(i) stands for the class of models in which the
assumption 6;(a) is violated. As shown in example 4.6, only two of these classes
are conditionally preferred: Ciz3 and Cg3y. As a result, while the sentences B(a)
_and D(a) are conditionally entailed by A(a), the sentence C(a) unexpectedly is not.

The diagnosis of such misbehavior is not difficult to identify: conditional entail-
ment fails to capture the intuition that while there is no Justification for ‘breaking’
the argument path B — C -4 D between B and C, there is a justification for ‘break-
ing’ it between C and -D; the justification being the conflicting link A — D. The
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encoding of defaults as causal rules along the lines suggested in example 5.7, cap-
tures this intuition.

An inheritance network I' will be mapped into a causal default theory T =
(K, E) as follows. Defeasible links connecting a class p to a class ¢ are tagged with
a unique integer ¢, and are translated into a default schema p(x) — §;{z) and a pair
of causal rules p(z) A 6;(z) = Cq(z) and p(z) A C-¢(z) = C-6i(z). These rules
will guarantee that ‘exceptions’ —§;(z) will be explained when conflicting directed
paths to —¢ are supported. Strict links connecting classes p and ¢, on the other
hand, are mapped into universal sentences p(z) = ¢(z). Finally, the evidence set
E of T is simply the collection of atoms of the form p(a), for individual nodes
connected to class nodes in I'. The problem of determining whether an individual
a can be assumed to inherit a property ¢ in I' is thus mapped to the problem of
determining whether the atom g(a) is entailed by T'; namely, whether g(a) holds
in all the causally preferred conditional classes of T'.

Example 5.9 We consider now the causal encoding of the inheritance hierarchy
I’ depicted in fig. 5.4. The background K of the causal theory T contains thus the
causal rules:

A(z) A 81(x) = CB(z)
B(z) A 82(x) = CC(z)
C(z) A 63(x) = C-D(z)
A(z) A ba(x) = CD(z)

where for each sentence p;(x)Adi(z) = Cqi(z), we add a sentence p;(2) AC—gi(x) =
C—é;(z) and a default schema p;(z) — §;(x). The context T contains in addition
a body of evidence F = {A(a)}.

The context T gives rise, again, to four minimal classes Cuy,t=1,...,4, where
C{;) stands for class of models in which the assumption &;(a) is violated. Likewise,
only the classes C(9) and C(3) remain conditionally preferred. However, this time,
among the classes Cyy) and C(3} only the latter is causally preferred. The reason is
that we can explain —é3(a) (in terms of the assumptions 61(a), 62(a) and 64(a)),
but we cannot explain the exception —é2(a). As expected then, A(a) entails the
propositions B(a), D(a), and C(a).
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5.3.2 Reasoning about Change

Inheritance hierarchies are simple domains which involve a single type of defeasible
statements. The situation is more complex when reasoning about change. Simple
theories for reasoning about change need to represent the effects of actions, the
conditions which can prevent actions from achieving their normal effects, and the
tendency of certain aspects of the world (fluents) to remain stable in the absence
of relevant changes (see [McDermott, 1982, for instance). We will refer to the first
type of rules as change rules, to the second type as cancellation rules, and to the
third type as persistence rules.

Change, cancellation and persistence rules can interact in various ways. The
Yale shooting illustrates problems that result from an inadequate handling of the
interactions between change and persistence rules. We showed, however, that it
is possible to avoid these problems by expressing the Yale shooting problem as a
causal theory. We now present general guidelines to locally map general theories
for reasoning about change into causal theories.

Rules about change are encoded in a way similar to defeasible links in inher-
itance networks. Such encoding is uncommitted about the particular temporal
notation used. For simplicity, we use a simple reified temporal language (see,
[Shoham, 1987], for instance), sufficient to illustrate the relevant issues. Other
notations could be used as well. The notation p(z): below, where p is a predicate
and t is a time point, is used as an abbreviation of the sentence Holds(p(z),1), to
read “fQuent p(z) holds at time t.” We will also assume for stmplicity a discrete
time where ¢ precedes t+1.

Formally, a rule about change of the form
precond(z), A action(z); — effect(z)y;

where precond(z) stands for the (default) preconditions of action(z), is mapped
into a default causal rule; namely, a default schema

precond(z), A action(z); — &;(z),
with a unique predicate §;, and sentences

precond(z); A action(z) A 6i(z); = Ceffect(z)y;
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and
precond(z): A action(z)s A Coeffect(z); = C6;(z),

Causal expressions of the form Cp(z), can thus be understood as stating that p(z)
has been caused to hold at time ¢, or that p(z) has been ‘initiated’ at time ¢, as in
Kowalski and Sergot’s [1986] event calculus.

The persistent of a fluent f (e.g. on(a,b)), on the other hand, is expressed by
a default of the form

fi = J(f)t

where 6(f), stands for the atom §(f,t), read “the persistence of f holds at time
t,” together with two sentences:

feAS(f)e = fem
Cfeqr = C-6(f),

Notice that there is a significant difference between the encoding of rules about
change from the encoding of rules about persistence: rules about change are causal,
while persistence rules are not. Thus, while we will be able to explain a “clipping”
in terms of a rule about change, we will not be able to explain the failure of a rule
about change in terms of the persistence it fails to clip. Moreover, a persistence
assumption is assumed not applicable when an event has caused the negation of
the projected fluent. Thus, in particular, when an action causes a fluent f to be
false at time t, the action is guaranteed not to affect the status of f prior to ¢,
Notice also, that unlike the formulations of the Yale shooting problem discussed,
this encoding scheme does not rely on making explicit the ‘clippings’ an action
is expected to produce (e.g. shoot’A alive’ => —6;). These ‘clippings’ will be
inferred from the encoding above, according to the context in question.

Finally, cancellation rules stating that a given action is not applicable in a
given circumstance are encoded in the form of causal rules. For instance, to state
that the rule about change above is not applicable when some abnormal condition
abcond(z) holds, we would write the causal sentence abcond(z), = C-é;(z):.
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We have illustrated above a causal encoding of a simple propositional version
of the Yale shooting problem. A full temporal version would proceed along similar
lines, rendering the same behavior. We consider now a slightly richer example due
to Ginsberg and Smith [1988].

Example 5.10 Let us assume that there is a room with some ducts that main-
tain the room ventilated. If the ducts become blocked, the room becomes stuffy.
Furthermore, an object sitting on a duct, blocks the duct. That is, we have three
relevant causal relations:

duct(z) A Jy. on(y, z), causes  blocked(z),
[Vz.duct(z) = blocked(z),] causes stuffyq,;
move_to(z, y), causes  on(x,y)i;

According to the guidelines sketched above, we encode these expressions in a back-
ground context K with sentences:’

duct(z) A Jy.on(y,z); = Cblocked(z),
[Vz.duct(z) = blocked(z);] = Cstuffy,,,
move_to(z, ¥): A buove(z, ¥): = Con(z, y)ety
move_to(z, ¥): A Coon(z, y)iy; = Cbnove(z, y):

and a default schema move_to(z,¥): — fnove(Z, y);. The use of the predicate dnove
in place of §;, for some integer 3, is only for descriptive purposes.

The persistence of the fluents blocked(z, y), on(z,y), and stuffy, and their
negations, is expressed as stipulated above. To keep in mind that all these fluents
are really terms,® we will use the notation f to denote the fluent which is the
complement of f. Thus, for instance, on(a,b) will stand for the ‘negation’ of
on(a,b). Namely, if on(a, b) holds at time t, on(a, b) will not, and vice versa. This
is expressed by a constraint

ft =>_'?-t

which renders f and f incompatible. The complement of f is f itself.

“For simplicity, we treat some of the causal relations as strict. No significant change would
arise, however, from treating them defeasibly.
®Recall that blocked(z, y); is an abbreviation of the atom Holds(blocked(z, y), t).
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Finally, for this example, we need to express that an object cannot be on two
different places at the same time:

on(z,y): Aon(z,2); => y ==z

Given this background context K, we consider a scenario T' = (K, E), describ-
ing a room with two ducts dy and dy. Furthermore, at time t = 0 it is known that
the room is not stuffy, that a block a is sitting on top of duct dy, and that a block
b sitting on a place different than dz. Namely,

E = {duct(z) = z = d31 V z = da, stuffy,, on(a,ds)o, on(b,d2)s}

Figure 5.5 depicts the situation and the backward and forward projections which
are legitimized.

<—— on(b,d3), —
<+—— on(a,d;)y ———

+————  Stuffy, ———

Time

Figure 5.5: Initial scenario: tuffy,, on(a,d;)o, and on(b, da),

Let us now assume that at + = 0 the block dz is moved to duct d,. The
action move_to(b,d;) determines a new context 7' = (K, E’), with ' = E +
{move_to(b,dz)o} which produces two conflicts among assumptions (fig. 5.6).

These conflicts give rise to three minimal classes: the intended class C where
the action is successful and, as a result, the two ducts get blocked and the room
becomes stuffy; the class C’, where the action is successful but somehow the block
a has been removed from duct dy; and the class, C”, where the action is unsuc-
cessful and the block b remains in a place different than d,. More precisely, the
assumptions violated in each of these minimal classes are:?

AlC] = {é(stuffy)o,6(on(D, d2))o}

SRecall that 8(f): stands for the assumption associated to the persistence of fluent f from t
tot + 1.



5.3. APPLICATIONS 113

move_to(b,da)o

|

on(b,dz2)g | _, on(b,d)y —

on(2,d1)p e on(a,ds)y —

stuffy, — ! . stuffy, <—I

Figure 5.6: Scenario after moving block b to duct dg

A[CT = {é(on(a,dy))o,(on(b,dz))o}
A[C”] = {6,“,(b,d2)o}

and each class explains the following violations:

A°[C] = {6(stuffy)o, 6(on(b,ds))o}
Af[C)] {6(on(b,d2))o}
Ac[cﬂ] = 0

As a result, C turns out to be the single causally preferred class of T', capturing the
intuition that the block a stays on duct d; and that the room becomes stuffy. Note
that such a behavior arises without the presence of explicit cancellation axioms.

5.3.3 Logic Programming

While the adequacy of the framework presented for reasoning about change and
inheritance hierarchies rests mainly on empirical grounds —how natural it is to
express knowledge about these domains and how closely the resulting behavior
resembles the behavior intended by the user— a growing body of work on the
semantics of general logic programs will permit us to assess the expressivity and
semantics of causal theories on formal grounds.1°

1%For a review of the different semantic account of logic programs, see {Shepherson, 1987)
and [Przymusinska and Przymusinski, 1989). For an introduction to logic programming, see
Lloyd [1984].
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General logic programs are collections of implicitly universally quantified rules
of the form: A « Ly,L,,...,L,, where A is an atom called the head of the rule,
and each L;, ¢ =1,...,n,n > 0, is a positive or negative literal in the rules’ body.
When all the literals L; are positive, the rule is said to be positive. Logic programs
composed only of positive rules are called positive logic programs.

The interest in logic programming was sparkled by the development of Prolog, a
general purpose programming language with close connections to the Horn-subset
of classical first order logic [Rousell, 1975]. The Prolog experience showed that
it was possible to combine the declarative reading of logic with the procedural
interpretation of more conventional programming languages [Kowalski, 1979]. A
positive rule such as A — L,,L,,..., L, can thus be understood both as stating
that A is true when all the literals L;, ¢ = 1,...,n are true, and that the goal A
is derivable when each subgoal L, is derivable. If all the rules are positive and the
connective ‘«—’ is regarded as material implication, it can be shown that the set of
ground atoms true in all models of a positive program P corresponds precisely to
the set of atoms true in the single minimal Herbrand model of P. Such minimal
Herbrand model is identical in turn, to the set of ground atoms which can be
derived from P by a careful form of back-chaining called SLD-resolution [Lloyd,
1984].

When some of the literals L; are negative, however, things are not so simple
and the declarative reading of logic programs is usually dropped. Such programs
are commonly understood in procedural terms, with the proviso that negative
literals —A; are assumed derivable when every derivation for A; fails. Such an
interpretation of negation has turned out to be a particularly useful programming
tool, and follows a tradition that goes back to Planner-like languages [Hewitt,
1972]. Coined negation as failure, it endows logic programs with a behavior that
1s non-monotonic. In a program containing a single rule p «— —q, for instance,
negation as failure yields a derivation for the atom p, which no longer holds when
a rule such as q « is added.

The first logical interpretation of the negation as failure rule is due to Clark
[1978]. While under the standard interpretation of positive logic programs, the
collection of rules of the form A — L,,... L, for a given atom A, are regarded to
provide sufficient conditions for the atom A to hold, under Clark’s interpretation,
these conditions are assumed to be necessary as well. Thus, for instance, the
semantics of a program P comprised of the rules p + -q and q « r is identified
with the semantics of the completion of P, written comp[P], given by the collection
of sentences p < —q and q & r and r & false. From comp|[P], the truth of p and
the falsehood of ¢ and r do indeed follow, in agreement with negation as failure.
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Assuming that the user means comp[P], when s/he writes the program P,
Clark and others have shown the negation as failure rule to be sound and complete
for a large class of programs. Nonetheless, there are still important limitations
in Clark’s approach, even in the domain of positive programs. For instance, the
completion of a program p « p fails to sanction the proposition —p, even though it
holds in its unique minimal Herbrand model.!? Furthermore, the addition of such
an apparently innocent rule to a program q « —p, prevents Clark’s interpretation
from sanctioning the otherwise expected conclusion q.

In recent years a number of new semantic accounts of general logic programs
have been proposed (see the reviews in [Shepherson, 1987, Przymusinska and Przy-
musinski, 1989]) Not only do these new accounts overcome the shortcomings of
Clark’s approach, but they also suggest interesting connections with other non-
monotonic formalisms proposed in Al (e.g., [Przymusinski, 1988]). We will not
review these approaches here; rather we will compare them with the result of
interpreting logic programs as particular types of causal theories.

A Causal Semantics for Logic Programs

Let £ be a first order language. The Herbrand universe of L, U, is the set of all
ground terms in £, while the Herbrand base of L, B, is the set of all ground atoms
in £. A Herbrand interpretation over £ is an interpretation whose domain is the
Herbrand universe U, where each constant symbol is assigned to itself, and each
function symbol f* is assigned to the mapping (t1,ts,...,80) ++ f*(t,22,.. cytn)
from (Uz)" to Uz. A Herbrand interpretation can be represented by the set of
atoms in the Herbrand base that it satisfies. For specifying the models of a program
P, the connective ‘"’ is interpreted as material implication, and rules are assumed
to be universally quantified. Rules of the form A «— are interpreted as A « true,
where true is an special atom satisfied in every interpretation. A Herbrand model
of P is a Herbrand interpretation that satisfies all the rules in P.

As it is standard, we consider only the Herbrand models of programs. Moreover,
since for answering existential queries, a program involving variables can be shown
to be equivalent to a program without variables,!? we will be dealing mainly with
variable-free logic programs. More precisely, we will analyze the semantics of
general logic programs in terms of three different mappings C;[-], i = 1,2, 3, each

!1Note, however, that Clark’s interpretation remains close to the semantics of the negation as
failure rule: a proof for p will normally ‘loop’ in such program without ever returning failure.
'2This is a consequence of Herbrand’s theorem (see for instance, [Chang and Lee, 1973).
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converting a program P over a language £ into a causal theory Ci[P] over the
language CL. Each such mapping associates a different “meaning” to P. For
the purposes of logic programming, C,[P] will turn out to be most relevant, as
it represents an extension of Przymusinski’s [1987] perfect model semantics. The
alternative mappings Cy[-] and Cs[-] will be used mainly to illustrate the relation
between the interpretation of general logic programs and the semantics of causal
theories.

Each causal theory C;[P], ¢ = 1,2, 3 takes the form C,[P] = (K:[P], E), with a
background K;[P] = (L;[P], D), where the set of defaults D and the evidence set E
are invariably empty. Thus, the minimal classes and the conditional classes of C:[P]
coincide. The only sentences in C;[P] then, are just those in the background context
which correspond to causal rules obtained by an appropriate local transformation
of the rules in the logic program P.

The assumptions § in the causal theories C;[P] will correspond to the set of
negative literals in the underlying (non-causal) language £. As a matter of con-
venience, for a given theory C;[P], C4 will denote the class of Herbrand models of
C;[P] whose plain atoms (i.e. exceptions) are among those of A. We will say that
A stands for the atomic gap of the class Cy4, to distinguish it from the set A of
assumptions violated by some model in C4, which remains as the gap of the class.
We will further convene that an assumption § = —p in A belongs to the explained
gap of C4, when the causal literal Cp (rather than C~—p) holds in the class. This
will permit us to dispense with the constraints [C2] and {C3] on the operator C,
and only retain [C1], which requires models of Cp to be models of p as well.

We consider first the mapping C1[-] which associates programs P with causal
theories of the form Ci[P], by converting each rule

Y a0 08

in P, where n > 0 and m > 0, and a’s, 8's and 7 are atoms, into a causal rule of
the form

CalA...ACan/\—-ﬂlA.../\-ﬂﬁm:'C'y .

The example below illustrates such a translation, together with the semantics
of the original program P and the resulting causal theory C;[P).
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Example 5.11 Consider a program P given by the following rules:

c+a,"b
d < -c

a +—

This program has two minimal models: M; = {a,c} and M; = {a,b,d}. The
model M, however, is the single canonical model of P [Apt et al., 1987].

The mapping C;[-] maps the program P into the causal theory C, [P], given
by the following causal rules:

CaA-b= Cc
-c=C4d
true = Ca

Such a causal theory gives rise to two minimal classes Cy, and Cpr,, with atomic
gaps M; and M, as above. Furthermore, in the former class, the atoms a and c are
both explained, as C;[P],-b F Ca A Cc holds, and —b is a legitimate assumption
in Cps,. On the other hand, only the atom a is explained in Cps,. Thus, the class
Cu,, which is a perfectly coherent class, is the single causally preferred class of
C1[P]. As a result, the canonical model M; of P and the causally preferred class
Cwm, of C,[P] sanction the same non-causal literals.

This example suggests a possible correspondence between the ‘intended’ behay-
ior of a logic program P and the interpretation of the causal theory C,[P]. Such a
correspondence can be specifically tested in the class of stratified programs, whose
intended behavior has been formalized in various ways. Stratified programs are
general logic programs in which the use of negation adheres to certain constraints.
These constraints permit to characterize a stratified programs P in terms of a sin-
gle minimal Herbrand model, called either the canonical of P [Apt et al., 1987].
the perfect model of P [Przymusinski, 1987], the stable model of P [Gelfond and
Lifschitz, 1988], or the felicitous model of P. [Fine, 1989). In the case of propo-
sitional programs, a program P is stratified when its rules can be organized in
layers, in such a way that rules in which a literal —p occurs in their bodies appear
in higher layers than rules in which the atom p occurs in their head.’® For such

13Gimijarly, a dependency graph of the program P can be constructed in which a link between
atoms p and ¢ cccurs when there is a rule with head ¢ and a body which includes p. The link is
positive if the atom p occurs positively in the body, and negative if the atom p occurs negatively
in the body [Apt et al, 1987). P is then stratified if and only if there are no cycles containing
negative links in the dependency graph of P,
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programs, the following correspondence between the canonical model of P and the
single causally preferred cladss of the theory C;[P] can be established:

Theorem 5.1 Let P be a stratified program. Then M is the canonical model of
P if and only if Cpr is the single causally preferred class of C[P].

As mentioned above, this implies that the non-causal literals sanctioned by M
and Cps are the same. Models in Cps, however, will normally satisfy additional
causal literals. Indeed, Cps is a perfectly coherent class, and thus if a plain atom p
belongs to M, the causal literal Cp will belong to every model in Cpy.

The perfectly coherent classes of the causal theory C;[P] are closely related to
the stable models of the program P, even when P is not stratified. Namely, when
M is a stable model of an arbitrary program P, the class Cjs is a perfectly coherent
class of P, and vice versa:!*

Lemma 5.1 M is a stable model of an arbitrary program P if and only if Cpy is
a perfectly coherent class of the causal theory C,[P].

However, even in light of this correspondence, the semantics of causal theories
C1[P] and the stable semantics of logic programs P diverge outside the family of
non-stratified programs. The reasons for such a departure are several.

First, even when a program P may have no stable models, the associated casual
theory C;[P] may have a set of non-perfectly coherent causally preferred classes.
The simplest such an example is the program P, given by the single rule p «— —p.
Such a program does not admit stable models, while the causal theory -p => Cp
has a single causally preferred class Cp, with M = {p}. As a result, a query such
as p? will remain undefined in a stable model semantics, but will be answered
positively under the causal interpretation described.!®

While the program Fp has no stable models, other programs may have multiple
stable models. For instance the program P, given by the rules {a — —b, b «—

14Readers not familiar with Gelfond and Lifschitz’s [1988] stable semantics of logic programs,
may want to adopt this correspondence as the ‘definition’ of the stable semantics for the sake
of the discussion below. Gelfond and Lifschitz’s [1988] stable models are also equivalent to
Fine’s [Fine, 1989)] felicitous models.

15There is no consensus in the logic programming community about the ‘right” answer to this
query. Approaches based on 3-valued models such as Van Gelder et ol. [1988] and Przymusin-
ski [1989] will also leave the value of p undefined.
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-2, p « ~—a} has two stable models: M; = {a} and M, = {b,p}. Likewise,
the causal encoding Cy[P] of P has two causally preferred classes Cr, and Cypy,.
Nonetheless, differences arise again, when the programs Py and P, are combined
into a single program P,. As noted by Van Gelder et al. [1988], the addition
of the rules in P; to P, has a stabilizing effect; and while P, does not possess
stable models, the program P, does. Indeed, M = {b,p} turns out to be the
unigque stable model of P. On the other hand, the causal theory C;[P;] retains two
causally preferred classes: the class Cps, with M as above, and the class Cas, with
M = {a‘: P} .

The differences in these examples, nonetheless, are justifiable, and arguably,
even advantageous. In other cases, however, such a departure is less convincing,
The problem in ascribing a semantics to a program P in terms of the “atomic
gaps” of the causally preferred classes of the transformed program C,[P), is that
not always these atomic gaps are models of P.

As an example, consider the program P; = {p « -p,q «— p}. The causal
theory Cy[P;] associated with P; is given by the causal rules {-p = Cp, Cp = Cq}.
Since there are interpretations that simultaneously satisfy the literals P, ~Cp and
—q, the single causally preferred class of C; [F3] is Car, with M = {p}. As a result,
the literals p and —q are sanctioned by this causal semantics, even though there is
10 model of P in which p holds and q does not.

Thus, while the mapping C)[-] provides a satisfactory interpretation of strati-
fied logic programs, it is inadequate for a large class of non-stratified programs. In
particular, as the program P; demonstrates, such an interpretation fails to sanction
certain logical consequences of the program under consideration. We will show now
that an alternative mapping Cs[-] of logic programs into causal theories, removes
these difficulties while succeeding in retaining the satisfactory features of C;|- I

The mapping C;[-] considered above, translates each rule
Y an.an B, 0
in a program P, into a causal rule of the form
CalA...ACanAﬂﬁlA...A—‘ﬂm:’07
in the theory C;[P]. The new mapping Cy[-]is defined in a similar manner, except

that the causal rules are supplemented by the direct logical encoding of the rules
in P:
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a’l/\.../\an/\"'ﬂ1/\.../\"‘ﬁm=}‘)’

The theory Cp[P] is thus the composition of C1[P] and P. The effect of extending
the causal rules of Cy[P] with the rules of the program P itself, is to prune those
models of Cy[P] which are not models of the original program; the causal theory
C:[P] thus determines the “preferences” on models, while P remains as an ‘in-
tegrity constraint.” As a result, the “atomic gaps” of the causally preferred classes
Cum of C2[P] are now guaranteed to be models of the target program P, suggesting
the following definition:

Definition 5.3 M is an induced causal model of a program P iff Cps is a causally
preferred class of C,[P].

The previous result about stratified programs can therefore be cast as follows:

Theorem 5.2 For a stratified program P, there is a single induced causal model
which is identical to the canonical model of P.

We will refer to the semantics of P determined by its induced causal models, as
the causal semantics of P. Note that while the mappings Cy[-] and Cy[-] induce
an identical interpretation of stratified logic programs, Cyf-] is better suited than
Ci[-] for non-stratified programs. The semantics induced by the mapping C;[-]
can indeed be regarded as an extension Przymusinski’s perfect model semantics in
the domain of non-stratified programs. The appeal to the —em dynamic notion of
“explanation” in the interpretation of causal theories, provides in fact an ordering
on atoms similar to that obtained by the extension of the perfect model semantics
proposed in [Przymusinska and Przymusinski, 1988]. We illustrate this in the
following example.

Example 5.12 Consider the following rules

(1) be
(2) de
(3) a«<b,~c
(4) c+—d,—a

and two non-stratified programs P; 34 and P, 34, comprising rules 2,3,4 and 1,34
respectively. Both P,34 and P, 34 contain a rule which appears to be ‘irrelevant’
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in the context of the other rules in the program: rule (3) appears irrelevant in
P, 3,4 as no information is available about its positive antecedent b, while rule (4)
appears irrelevant in P34 as no information is available about d. If the ‘irrele-
vant’ rules are removed from each program, two stratified programs P34 and P 5
result. In particular, the first program legitimizes the atom a, while the second
program legitimizes the atom c. If the rules are not removed from the original
programs, however, neither of these atoms is legitimized by the perfect model se-
mantics. Indeed, for sanctioning such a behavior it is necessary to determine the
priorities relating the atoms a and ¢ dynamically; i.e. by looking at the program
as a whole, rather than at its individual rules. This, however, is beyond the power
of perfect model semantics, which relies on a priority ordering on atoms estab-
lished by considering each rule in isolation. The causal semantics described has
no such a limitation. The assumption —a is “preferred” to the assumption -c in
the context of the causal theory Cy[P;3,4], while the assumption -¢ is preferred
to the assumption —a in the context of Cy[P; 34].1° By determining “preferences”
in terms of global explanations, the causal interpretation of logic programs thus
remains unaffected by the presence of “irrelevant” rules.

Logic Programs and Causal Networks

We have considered so far the semantics of causal theories that result from mapping
the rules

Y Q00,08 B
of a logic program P, into causal rules of the form
CO.’*_[ /\.../\Ca,,/\--ﬁll\.../\—-ﬂm =>C'y .

Causal theories C;[P] contain, in addition, the logical encoding of the program
P itself. Both mappings yield a satisfactory interpretation of stratified logic pro-
grams, and Cy[-], in particular, yields an appealing interpretation of non-stratified
programs as well. We will now investigate the semantics associated with a third
mapping Cy| -] of logic programs into causal theories. The interest on this mapping
does not lie on what it has to say about general logic programs or causal theories,

'For an understanding of causal entailment in terms of priorities, see section 6.2 below.
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but, rather, for what it suggests about the relation between logic programs and
causal networks.

For a logic prdgra.m P, C53[P] represents the collection of rules which result
from mapping each rule

N = Qg ey Ony Py ey T Pm
in P, into a causal rule of the form:
a A A, ADBI AL ASB, = Cy

The difference with the previous translations is that the positive antecedents
of the resulting causal rules do not need to be “causally” established. This renders
the models of the causal theory C3[P} as models of the causal theory C;[P] though
not the other way around. The semantics of causal theories of the form C;[P]
differs from that of C3{P] and C,[P] even within the family of stratified programs
P, We illustrate this departure in the example below.

Example 5.13 Let P be the program given by the following rules:
| q ¢ -p
PpeT
Tep
P is stratified, and therefore, possesses a single canonical model M = {q}. In light

of the results above, thus, Cps is the single causally preferred class of the theories
C1|P] and C;[P].

The mapping Cs3| -], on the other hand, renders the following causal theory:

—p=Cq
r=Cp
p=Cr

Such a theory accepts two minimal classes, Cps and Cpsr, whose atomic gaps M =
{q} and M’ = {p, r}, are in correspondence with the two minimal models of the
original program P. Furthermore, both classes are perfectly coherent, and thus,
both are causally preferred: the assumption —q explains p in the class Cys, while
the atoms p and g explains each other in the class Cps. As a result, the theories
C,[P} and Cy[P] support the truth of q, while the theory C;3[P] does not.
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It is clear in this example that the ‘anomalous’ behavior of the theory Cs[P] is
a consequence of the circularity relating the atoms p and r. ‘Circular’ explanations
are precluded in the theories C)[P] and Cy[P], in which the assumption —q supports
the truth of p and r but not of Cp or Cr. What is interesting, however, is that
once these circularities are removed, the ‘anomalous’ behavior is guaranteed to

disappear.

Let us say that a program P is acyclic when its dependency graph does not
contain cycles. Acyclic programs are thus stratified. Moreover, acyclic programs,
not only preclude ‘recursion trough negation,” but every type of recursion. For
acyclic programs, the following result applies.

Theorem 5.3 Let P be an acyclic program. Then the class Cay , where M 1is the
canonical model of P, is the unique causally preferred class of the theories Cy[P],
C3[P)] and C,[P).

In other words, once recursion is removed the three causal mappings examined
result into an identical behavior, in correspondence with the received semantic
accounts of logic programs. While the requirement of acyclicity is unacceptably
strong in the domain of programming, it is common among network representa-
tional languages, such as inheritance hierarchies [Touretzky, 1986] and Bayesian
networks [Pearl, 1988b]. Indeed, causal theories of the form C3[P], for acyclic
programs P, possibly augmented by integrity constraints!” and non-assumption
negative literals, provide a sufficiently expressive language for reasoning in causael
networks. Pearl’s [1988b, section 4.3.2) noisy-OR probabilistic networks, for ex-
ample, consist essentially of rules of the form

a A Aan ABi AL AR, = Cy

where a;’s are preconditions and f;’s are censors, which are disjunctively combined
into the common ‘node’ 4. We will investigate the use of such a representational
. language for diagnostic reasoning in section 5.3.4. Below, we illustrate some of
the differences between the semantics of theories C3[P] and C,[P] for a program
P containing negative clauses.

17By integrity constraints we mean arbitrary propositional sentences which do not involve the
causal operator C.
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Example 5.14 Consider the acyclic logic program P given by the rules:

hesg,—v
m+ v,oa

8 +—

Let us say that the first rule asserts that “whenever Tom needs to go to the
supermarket (s) he goes to Hughes (h), unless he goes to Vons (v),” and the
second rule that “whenever he goes to Vons, he buys mangos'® (m), unless he has
enough already (e).”

In the context of P, all the accounts considered point to a single preferred
model: M = {s,h}. Now, let us consider that we learn the additional information
that Tom is not only going to the supermarket (8), but that, this time, he is not
going to Hughes:

—h

Intuition dictates that, in the new context, there should be a single preferred model
M’ = {s,v,n}. That is, since Tom goes to Hughes except when he goes to Vons,
he must be going to Vons (v) now that he is not going Hughes. Furthermore, since
when he goes to Vons he buys mangos except when he has enough, he must be
buying mangos (m) too.

Nonetheless, neither the stable model semaatics nor Clark’s completion seman-
tics apply to this new ‘program’, as there is no stable model of P which satisfies
—h, nor a completion of P consistent with —h. Furthermore, both causal theories
Cy[P] and C;[P] admit two preferred classes: Cpyv and Cagw, with M” = {s,v, e},
leaving the status of the atoms m and e undecided.

In contrast, the intended behavior is captured by the causal theory Cs[P]:

s A-v=Ch
vA-e=Cn
true = Cs
—h
The classes Casr and Cag» both remain as the minimal classes, but only the former

is now causally preferred. The reason for such a preference is that the explanation
of m no longer requires an explanation for v.

184 tropical fruit.
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5.3.4 Abductive Reasoning

A leading motivation behind the work in non-monotonic reasoning has been the
goal of providing a formal account of some of the pervasive patterns of common-
sense inference. So far, our focus has been on default inference; a form of reasoning
akin to deductive inference, where assumptions are adopted in the absence of con-
trary evidence. Nonetheless, there are other forms of non-monotonic inference,
qualitatively different from default reasoning, which also appear to play an impor-
tant role in commonsense reasoning. One such form, is what has been referred to
either as “inference to the best explanation,”“ abductive reasoning,” or “conjec-
tural reasoning” [Peirce, 1955, Harman, 1986, Charniak and McDermott, 1985].
This is a form of inference which attempts to make sense of the evidence when it
does not cohere with a given set of beliefs. The characterization of these patterns
of inference involves both the determination of the sources of incoherence and the
identification of hypotheses capable of explaining such incoherence away. In this
subsection, we will to show that the framework we have so far developed, lends
naturally to a characterization of that sort.

The central idea is too associate a coherence measure to contexts as opposed to
classes of models. Intuitively, the coherence —or, for that matter, the incoherence—
of a context T' will depend on whether the ‘exceptions’ declared in that context
have an explanation. A natural choice is to associate to T an incoherence set in
which the unezplained gaps of its preferred classes are grouped. In particular, such
an incoherent set will be empty if the preferred classes of T are perfectly coherent;
and non-empty, otherwise.

More precisely, if C;, i = 1,...,n are the preferred classes of T 22 we define
the incoherence set I[T] of T, to be the collection of sets A¥C] = A[G] = AC[cy,
i =1,...,n, where A[C;] and A°[C;] stand for the gap and the explained gap of C;
respectively.

For instance, a context in which all that is known is that Tim is a non-flying
bird will have a non-empty incoherence set, reflecting the lack of explanation for
Tim’s unexpected feature. On the other hand, if it is learned that Tim is sick,
such incoherence would become explained, leaving the new context with an empty
incoherence set, '

We will say that a context T is as coherent as as a context 7" if for every set S

15Unless otherwise specified, the preferred classes refer to the causally preferred conditional
classes.
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in I[T] there is a set S’ in I[T"] such that S C S’. If the context T is as coherent
as T, but 7' is not as coherent as T, we will further say that T is more coherent
than 7.

In the example above, for instance, the context in which Tim is known to be a
sick non-flying bird, is more coherent than the context in which all that is known
is that T'weety is a non-flying bird.

In principle, it would be natural to say that a proposition p qualifies as a con-
jecture in a context T, if the context T + {p} is more coherent than the context
T';*® namely, if the adoption of p in T renders previous unexplained exceptions ex-
plained without introducing new ones. The problem with this approach, however,
is that it gives rise to too many conjectures. For instance, if both p and ¢ qualify as
conjectures in a context T', their disjunction p V g will usually qualify as well. So,
together with the conjectures ‘Tim is sick’ and ‘Tim is a penguin’, we would obtain
the unnatural conjecture: “Tim is sick or Tim is a penguin.” This proliferation of
conjectures could in principle be avoided by imposing syntactic restrictions on the
form of the admissible conjectures, though such a criterion will likely give rise to
different conjectures for different conceptualizations of the domain of interest.?!

Our approach here will be slightly different. Like Poole [1987], we will assume
that conjectures are selected from a predetermined set, which we will refer as =
The difference with Poole, however, is that conjectures are going to be invoked
to explain incoherence rather than observations. The latter task will turn out to
be a special case of the former, when (certain) observations are declared to be
abnormal.

—

A context T and a set of conjectures = € = logically consistent with T, will
determine what we call a belief state (T,=). A belief state B = (T, =) is thus a
context T' + = in which part of the evidential component stands for hypothetical
beliefs rather than solid evidence. We say in that case that the belief state B is
rooted in T,

For two belief states B = {T,=) and B’ = (T,Z’), B is less committed than B’,
if Z C &/, and B is a mazimally-coherent belief state, if there is no other belief
state B’ rooted in T which is more coherent than B.

Finally, a maximally-coherent belief state B = (T, =) 1s admissible when there

*°For a context T = (K, F), we use T + {p} to denote the context 7 = (K, E U {p}).
*1This is not necessarily bad though. The choice of predicates in the conceptualization of a
body of knowledge is likely to contain information about the structure of the domain.
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is no maximally-coherent belief state B’ = (T, =') which is less committed than
B. Intuitively, admissible belief states (T, Z) are supposed to represent maximally
coherent belief states that a rational agent with the information in T may choose
to adopt. We also say in that case that = is an admissible hypothesis set in T, and
that the conjectures in = are admissible hypotheses in T.

We will illustrate these definitions with examples from Console et al. [1989],
and Pear] [1988a]. As we will see, the fact that what needs to be explained and
what constitutes an explanation are part of the language of causal theories, makes
the present framework particularly suitable for applications involving reasoning
from evidence to hypotheses.

Example 5.15 Let us consider the causal network depicted in fig. 5.7 describing
a fragment of the knowledge relevant to the diagnosis of a malfunctioning car.
We will encode such a network by mapping each causal link o — B into a causal
rule o = CpB, and by regarding each atom in the net as an ‘exception’ that needs
to be explained. Furthermore, we assume a pool = of conjectures which includes
only the top propositions pistons_rings_used, oil.cup-holed, old_spark.plugs,
which we regard as self-explanatory; namely for each such conjecture £ we assume
£ = C¢.

pistons_rings used oil_cup.holed old_spark plugs

~N 7

oillack

|

high_engine_temp

TN

melted pistons pover.decrease

irregular_ignition

Figure 5.7: A causal network

Let us assume now that power_decrease is observed, and let T refer to the re-
sulting context. Clearly there is a single preferred class of T in which the exception
power._decrease holds but is not explained; namely, there is no set of assumptions
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A consistent with T which supports Cpower_decrease. On the other hand, any
belief state B; = (T, =;) with a non-empty set of conjectures =;, will explain such
incoherence away, and thus every such state is maezimally-coherent. However, only
those states containing a single hypothesis from E will qualify as admaissible belief
states. Thus, there are three admissible belief states, involving three singleton hy-
pothesis sets {pistons.ringsused}, {oil-cup.holed}, and {old_spark_plugs}
respectively.

If —high engine._temp is also observed, however, only one admissible hypoth-
esis would remain: {old.spark.plugs}.?? Moreover, if we also add — irregu-
lar_ignition no admissible conjecture would be left, thus giving rise to a single
(incoherent) belief state involving no conjecture at all. Note that this behavior
is different from the behavior that results from approaches which equate abduc-
tion with deduction in a completed model (e.g. [Kautz, 1987] and [Console et al.,
1989)]). Indeed, the completed model when power._decrease, ~high_engine_temp
and —irregular_ignition have all been observed is inconsistent.

The framework for conjectural reasoning suggested also permits to accommo-
date what Pearl has called evidential defaults. In [Pearl, 1988a] Pearl suggested
a distinction between defaults which evoke expectations from those which evoke
explanations. He called the former defaults, much as we do it here, causel de-
faults, and the latter, evidential defaults, in analogy to the distinction between
causal and evidential support in the context causal probabilistic networks [Pearl,
1988b, chap.4]. Thus, while a default such as “rain — grass-is-wet” represents a
causal default, the converse default “grass-is-wet — rain” represents an evidential
default. Pearl further argued that while causal defaults may trigger other causal
defaults, a counterintuitive behavior is likely to result when causal defaults trigger
evidential defaults. This explains why the reasoning chain “my-shoes-are-wet —
the-grass-is-wet — it-rained” is sound, while a reasoning chain “the-sprinkler-was-
on — the-grass-is-wet — it-rained” is not. We use Pearl’s example below to show
how evidential defaults can be expressed in the framework proposed.

Example 5.16 Counsider the causal network depicted in fig. 5.8. We encode this
network again by translating each link & — # into a causal rule a = Cf8. The
‘modified’ link sprinkler_on — grass_wet, on the other hand, is mapped into the
rule sprinkler_on A —-bad pipes = Cgrass_wet. All tokens in the network are

22Note that the observation —high engine _temp does not need to be explained because it is
not regarded as exceptional.
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treated as ‘exceptions,’ namely, their negations are assumed to hold. Furthermore,
for each link a — 3 in the net, we include an evidential rule of the form BAE = a,
with conjectures & with indices as indicated in figure 5.8. Finally, for those tokens
7 in the network without incoming links, we add a rule v = C+; the idea is that
these tokens are ‘ultimate’ causes and do not require explanation.

sprinkler_on rain

bad_pipes 7&\ /
1 2

grass_wet

AN

grass_cold.and shiny wet_shoes

Figure 5.8: Causal and evidential defaults

Let us now assume that grass_cold.and shiny is observed. The resulting
context ' = (K, F), with E = {grass.cold and_shiny} is not perfectly coher-
ent, as the only observation has no explanation. Nonetheless, the observation
‘triggers’ the evidential rule grass_cold_and_shiny — grass_wet, which in turn
‘triggers’ the evidential rules grass.wet — sprinkler_on and grass_wet — rain
That is, the evidence E gives rise to two admissible coherent belief states B, =
(T,{&1,6}) and B, = (T,{¢s,£&)), which explain the evidence is explained in
terms of sprinkler_on and rain respectively. Thus, all conjectures £;, £; and &
are admissible in the context T.

If sprinkler_on is also observed, however, the conjecture £, associated with
the evidential rule grass_wet — rainis no longer admissible. The presence of the
proposition sprinkler_on in the new context renders the conjecture {;, supporting
the hypothesis rain, redundant. As Pearl observes, sprinkler_on explains rain
~away. However, if it is further learned that sprinkler_on is not the actual cause
of grass.cold and_shiny after all, say by observing pipes._bad, the conjecture &,
becomes admissible once again, and rain becomes the only supported hypothesis.

It is common to find in the AI literature two different types of diagnostic
tasks: abductive diagnosis, in which the search is for hypotheses that imply the
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observations, and consistency-based diagnosis, in which the search is for hypotheses
that render the model and the observations consistent (see [Poole, 1989]). The
examples considered so far all belong to the first category. There is, however, a
natural way in which consistency-based diagnosis can also be accommodated in
the present framework. All that is needed is to stipulate that ‘abnormalities’ are
self-explanatory, i.e., we need to assert expressions of the form « = Ca for every
relevant ‘abnormality’ a. In that case all classes will be perfectly coherent, and
thus, the causally preferred classes will be simply the minimal classes.

Other patterns of abductive inference, however, cannot be accommodated so
easily. For instance, if the example above is supposed to reflect the situation of
a farm in the Sahara dessert, we may wish to express that the hypothesis of the
sprinkler being on is significantly more likely than the hypothesis of rain. The
framework laid out so far, however, does not provide such facilities. For that we
not only need to be able to identify the pool of conjectures, but also how such
conjectures are to be ordered. The extension below addresses this limitation and
shows how this additional information can be used to prune the space of admissible
hypotheses.

A preference relation on conjectures will refer to a strict partial order on the
set = of conjectures. We will denote such an ordering by the symbol ‘~." The
expression { = ¢ is to be read as stating that conjecture £ is preferred to conjecture
¢'. Likewise, a set of conjectures = is preferred to a set of conjectures =/, if every
conjecturein =~—Z' is preferred to some conjecture in ='—Z. Similarly, a mazimally-
coherent belief state B = (T',Z) is a preferred belief state in context T, if there
is no other mazimally-coherent belief state B’ = (T, =’} with an hypothesis set =’
preferred to Z.

By means similar to those in chapter 4, it can be shown that the preference
relation among maximally-coherent belief states is also a strict partial order. Like-
wise, under reasonable assumptions, every preferred belief state is admissible and,
furthermore, it can be identified by considering the admissible belief states only.
We call the pair formed by a causal theory and an ordered set of conjectures an
abductive causal theory. Unlike prioritized preferential structures, we will not dis-
cuss here whether there are constraints that these structures are supposed to obey.
We will just illustrate their use in a simple, idealized diagnostic structure of the
type considered by Reggia et al. [1985].

Example 5.17 Let us consider the causal network shown in fig. 5.9, We assume
the d,’s,7 = 1,...,5 stand for diseases, and the m;’s, j = 1, ..., 3 stand for manifes-
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tations or symptoms. As usual, we map each link of the form a — B into a causal
rule of the form o = CB, except the link d; — my, which is modified by ds, which
is expressed as di A ~ds = Cmy. The set M = {m,|j € [1,3]} of manifestations,
determines the space of ‘exceptions.” The coherence of a model will thus depend
on whether the manifestations it renders true are explained.?? We also assume
that D = {d;}¢ € [1,4]} represents the set of possible conjectures, and that d; is
preferred to d;, d; > d;, iff ¢ > j. Such preferences may be available from relevant
prior probabilities.

NI

dy > dz > da>dg > dg

m3

Figure 5.9: A simple diagnostic model

Let us name this background K and let us consider a context 71 in which the
manifestation my is observed. From the model depicted in fig. 5.9, it is simple to
see that mz gives rise to three admissible belief states B; = (Ty,{d;}}),fori =1,2,3.
However, due to the preference order on hypotheses, only the belief state B, and
the hypothesis d; remain preferred.

Let us further assume that, refuting the hypothesis d1, —m, is observed. This
new observation gives rise to three admissible belief states, but while conjectures
dz and ds remain admissible singleton hypotheses sets, the third hypothesis set is
now given by the compound hypothesis {d1,ds}. Furthermore, due to the prei-
erence order on conjectures, the hypothesis d; becomes now the single preferred
hypothesis, as it is preferred to ds and dg.

Finally, let us assume that ms is observed. The new context gives rise again
to three admissible belief states, involving now the admissible hypothesis sets
{d1,d4,ds}, {d2,da}, and {d3} respectively. However, due to the preferences on
conjectures, this time da remains as the single leading hypothesis, followed by the

?3The same results would follow if diseases were treated as self-explanatory exceptions as in
the examples above.
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compound hypotheses {dz,ds}, and only then by {d;,ds,ds}.

5.4 Related Work

Causal theories are an elaboration of ideas in [Geffner, 1989], where the notions of
ezplanations, classes, and coherence were originally presented. The adoption here
of a causal operator as part of the object-level language, however, has simplified
matters considerably. This move was influenced by a proposal due to Pear! to
explicitly incorporate a causal language into default theories, and by the resem-
blance between the preference criterion on classes advanced in [Geffner, 1989], and
features of autoepistemic logic, kindly brought to my attention by Halina Przy-
musinska and Michael Gelfond. We consider the relation to each formulation in
turn.

Pearl’s proposal draws on work in causal probabilistic networks [Pear], 1988b)
to suggest that there is a natural distinction between defaults which encode ex-
planations (e.g. fire — smoke) on the one hand, and defaults which trigger
explanations (e.g. smoke — fire) on the other. He calls the former defaults
causel and the latter defaults evidential. He argues that the language of default
theories should make such a distinction clear, and in particular, that explana-
tion ‘seeking’ defaults are not supposed to be triggered by explanation ‘giving’
defaults. Pearl’s proposal to preclude such chains consist of three parts. First, he
labels every default rule as either causal, e.g. rain —¢ grass_wet, or evidential,
e.g. grass.wet —g sprinkler_on. Secondly, he distinguishes the status of propo-
sitions p established on causal grounds, Cp, from those established on evidential
grounds, Ep. Finally, he introduces a C-E calculus for reasoning with causal and
evidential defaults which comprises the inference rules:

P—c4g P—cq P—EYQ
Cp Ep Ep
Cq Cq Eq

Though differing in detail and goals, the appeal to a causal operator in the
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context of causal theories is based on similar intuitions. The reading, though
not the interpretation of the causal expression Cp, is indeed the same in Pearl’s
C-E system as in causal theories. On the other hand, the distinction between
causal and evidential default rules is captured here in terms of the distinction
between assumptions (defaults) and conjectures. Conjectures, unlike assumptions,
are triggered only by the need to explain “abnormalities.” A similar approach has
been indeed previously advanced by Poole [1987].

The relation between causal theories and autoepistemic theories (see [Moore,
1985b), and section 1.5) can be best illustrated in the domain of general logic
programs. A propositional rule of the form

Y — al,...,an,"'ﬁl,---,_‘ﬁm ’

in a program P, is translated as a rule:
a A Aa AL AL AL, =y

in the autoepistemic theory L{P) [Gelfond, 1987, and as a causal rule:
CorA...ACan A=BL A ... A= = Cry

in the causal theory C,[P] which, provided P is stratified, legitimize the same
(plain) literals. Indeed, if we look at the forms of the autoepistemic theory L[P]
and the causal theory C1[P], it is possible to appreciate that the operators L and
C behave as duals in some sense. Namely, we can go from one encoding to the
other by removing either autoepistemic or causal operators from certain atoms,
and by adding either causal or autoepistemic operators to every other atom, while
preserving the same meaning of the theory.

Actually it is possible to understand the autoepistemic operator L as an evi-
dential operator, with Lo meaning: there is evidence for . Instead of using the
causal operator C under the conventions that

- is an assumption
Ca = a must hold for every (plain) sentence o, and
@ is ezplained in a class when Ca holds,
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we could have instead used an evidential operator E under the conventions that

-Ea is an assumption
a = Eca must hold for every (plain) sentence o, and

Ea is ezplained in a class when a holds.

Under such an approach the evidential encoding of a logic program would be
tdentical to the autoepistemic encoding, except for the presence E’s instead of L’s.
Moreover, both encodings would sanction an equivalent semantics for stratified

programs.

For non-stratified programs, however, as for most default theories, the duality
between causal and autoepistemic disappears. First, default theories may lack sta-
ble models.?* More importantly, the behavior of an autoepistemic rule =Lp = g
departs from the behavior of a causal —p = Cg, when —p is not an assumption.
Namely, autoepistemic theories, unlike causal theories, do not require a an identi-
fied set of assumptions in the language; the prefix —L, as no causal prefix, generates
the assumptions needed.

There has also been a lot of work in philosophy around the notions condition-
als, causes and explanations.?® For the most part, however, philosophers have been
concerned with making the meaning of such notions precise, while we have been
mainly concerned with exploiting the basic intuitions for designing better knowl-
edge representation languages and semantics. Both goals, however, are highly
inter-related, and a closer interaction between them is to be expected.

24Though see the extension of autoepistemic logic due to Gelfond and Przymusinska [1989)].
#Gee for instance, the collection of papers in [Pitts, 1988] and the recent book by Garden-
fors [1988].



Chapter 6

Conclusions

The construction and analysis of programs capable displaying the reasoning abili-
ties of people requires the representation of rich fragments of commonsense knowl-
edge. Representation languages suited for this task must provide expressive and
meaningful primitives in which knowledge can be naturally encoded and efficiently
processed. In this work we have addressed issues relevant to the design of languages
for representing defeasible knowledge. In particular, we have been concerned with
the form and interpretation of default theories.

6.1 A New Interpretation of Defaults

Defaults play a central role in commonsense reasoning, permitting the generation
of useful predictions in the absence of complete information. Nonetheless, the fact
that these predictions are non-monotonic has made an understanding of default
reasoning in terms of the traditional tools of formal logic difficult. Formal inter-
pretations of default reasoning had thus appealed to non-monotonic extensions of
classical logic. However, in recent years, work in inheritance hierarchies, tempo-
.. ral reasoning, logic programming and abductive reasoning has pointed to aspects
other than non-monotonicity that must also be addressed when reasoning with
defaults.

The thesis advanced in this work is that most of these aspects have to do
with two dimensions of default reasoning often ignored by non-monotonic logics: a
conditional dimension, by which default expectations are regarded as conditional

135
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assertions; and a causal dimension, by which explained expectation failures are
distinguished from unexplained ones. The conditional interpretation of defaults
evolved from a probabilistic interpretation into a form of entailment, called condi-
tional entailment, which combines conditionals and defaults. The model and proof
theories of conditional entailment take a form similar to those advanced for priori-
tized circumscription. However, while priorities in circumscription are a means for
the user to express preferences among assumptions, priorities in conditional entail-
ment are extracted automatically from the knowledge base. Such priorities enforce
the conditional reading of defaults; namely, they permit us to assert a proposition
g from a body of evidence {p} in a background contezt containing a default p — ¢,
regardless of the presence of conflicting defaults. The distinction between a back-
ground context conveying generic information and a body of evidence conveying
factual information is critical for such an interpretation to work.

Causal aspects are captured by extending the language of default theories by
means of a causal operator. Such an operator is used to express and identify
the conditions under which abnormalities are regarded as “explained.” Classes
of models which succeed in explaining the abnormalities they engender are then
rewarded, determining the propositions which are causally entailed. Causal en-
tailment suffices to account for theories which lack a conditional component such
as general logic programs. Domains such as inheritance hierarchies, on the other
hand, require both causal and conditional considerations to be taken into account.
In that case, the entailment relation is defined in terms of the causally preferred
conditional classes of the theory in question.

The main contribution of this research is to formulate and point to two aspects
of defaults which suffice to provide a reasonable account of a variety of domains
of interest in AI, including inheritance hierarchies, reasoning about change, gen-
eral logic programs and abductive reasoning. With the exception of abductive
reasoning, all these domains accept a natural and faithful representation in terms
of causal theories. Abductive theories, on the other hand, require an additional
component: a distinguished and possibly ordered set of conjectures. Admissible
sets of conjectures represent sets of hypotheses which an agent may find reasonable
to postulate in order to make sense of a given body of evidence. Together with the
information available, the admissible sets of conjectures represent the belief states
to which an agent is likely to commit.
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6.2 Loose Ends

Having summarized the good news, it is time now to recount aspects which have
not received a satisfactory treatment. Two such aspects will elaborated in some
detail: the first is regarding the integration of causal and conditional considerations
proposed in section 5.2.3, the second, regarding languages, architectures and real
reasoning as opposed to default reasoning.

Causal and conditional preferences

The proposed integration of causal and conditional preferences consists of two
steps. First, the preferred models of the theory T under consideration are grouped
into what we call the conditional classes of T, and then the causally preferred
classes among them are selected. The propositions entailed by T are then identified
as those that hold in such classes.

This two-step process is not completely satisfactory, and it hinders the devel-
opmient of a concise proof-theory for the resulting entailment relation. A cleaner
integration, more amenable to analysis, would require merging causal and condi-
tional preferences into a unique priority ordering on assumptions. However, while
we have identified a family of admissible priority orderings which reflect conditional
preferences on assumptions, nothing of that sort has been achieved for causal pref-
erences, which are exclusively determined by the existence of explanations. In the
following paragraphs we will discuss issues relevant to a ‘prioritized’ understand-
ing of causal preferences, and possible ways to integrate causal and conditional
priorities.

Let us recall first the relevant notions. First, the negation of an assumption §
is explained in a class C of a causal theory T when the literal C~6 holds in C. The
set of assumptions in the gap A[C] of C, whose negations are explained constitute
the explained gap of C. Gaps and explained gaps determine the causal ordering
on classes. Namely, the class C is as preferred as a class C' iff every assumption in
A[C] — A[C'] belongs to the ezplained gap of C, and is preferred to C' iff it is as
preferred as C’ but C’ is not as preferred as C.

A possible way to understand such preference on classes in terms of assumption
priorities, is to appeal to the proof-theoretic conditions under which exceptions are
explained. As we said in section 5.2.2, the literal C—8 holds in a class C in a context
T, when there is a set of assumptions A outside the gap of C, that together with
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T logically imply C—é. Let us assume, furthermore, that A is a minimal such
set, and let us call it a minimal causal support of =6 in T. Then, it must be the
case that for every assumption § in A[C] — A[C’] which belongs to the explained
gap of C, there is an assumption §’ in A[C’] which participates in a minimal causal
support of m§. Thus, if we establish a non-strict (i.e., reflexive and transitive)
preference relation ‘<¢c’ on assumptions such that §=<¢ ¢’ holds in a context T,
if &' belongs to a minimal causal support of =6 in T, a causal preference relation
‘<’ on classes can be obtained as follows.

A class C would be as preferred as a class C’ in T, written C<¢ (, if for every
assumption 6 in A[C] — A[C’] there exist an assumption ' in A{C’] — A[C] such
that 6<¢ é'. Similarly, a class C would be preferred to a class ', written C<c (',
when C<¢g €’ holds, but ¢'<¢C doesn’t.

The entailment relation that follows from this type of preferences is not equiv-
alent to causal entailment, though it preserves its main features. The departure is
a consequence of the fact that preferences based on explanations — which are be-
tween sets of assumptions, on the one hand, and single assumptions on the other —
have new been projected onto a a preference relation ‘<’ on pairs of assumptions.
Likewise, we have made such a preference relation transitive. Nonetheless, the be-
havior rendered by both causal accounts is equivalent within a sufficiently large
family of causal theories as to regard the new account as a tentative substitute. Its
main appeal is that it permits to map the problem of combining conditional and
causal preferences into the apparently more manageable problem of combining the
conditional priority orderings ‘<’ determined by a background K, with the non-
strict causal preferences ‘<¢ ' dictated by a particular context T = (K, E). There
are many ways in which to proceed with such a combination. We will not go into
these details here. Rather we will mention some of the features that would make
one such combination adequate.

First, a preference on assumptions based on causal and conditional prefer-
ences has be to such that its effect is similar to the two-step process described
above; namely, the ultimate preferred classes of a causal theory T' must be among
the conditional preferred classes of T. The reason is that explanations in non-
conditionally preferred classes are often spurious, and cannot be relied upon for
coherence judgements. Second, the resulting preference relation on assumption has
to render a behavior equivalent to conditional entailment in those domains which
lack a conditional component, and in which causal entailment behaves properly
(e.g. causal theories associated with stratified programs). Finally, it has to be
simple and amenable to a proof-theory similar to that of conditional entailment.
In summary, it has to capture the behavior associated with the causally preferred
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‘conditional classes of a theory, without having to rely on such a crisp distinction
between causal and conditional considerations.

Languages, Architectures and Reasoning

We have been talking all along about default reasoning. It would be good now to
stop for a while and wonder about what is the relation between real reasoning and
default reasoning in the sense we have assumed. Real reasoning is what intelligent
people do to accomplish their goals; default reasoning, on the other hand, is the
name for an abstract family of patterns of inference whose main characteristic is
its reliance on rules which admit exceptions. There is nothing like real default
reasoning; real reasoning exhibit traits of deductive, default, abductive and other
forms of reasoning all combined. Moreover, while the analysis of these different
reasoning forms is concerned with describing inferences which are likely to yield
true conclusions from true premises, real reasoning is concerned with inferences
which are likely to be useful. While inferences leading from true premises to
false conclusions are likely not to be useful, the likelihood of arriving to true
conclusions from true premises is just one of the dimensions a reasoning agent
must be concerned with. The other dimension is regarding the resources available;
a clever chess program designed for a CRAY supercomputer is likely not to fare
well against a clever chess program designed for a PC when both programs are run
on a PC.

With this perspective in mind, it is still possible for formal analyses of abstract
forms of reasoning to contribute to a better understanding of real reasoning, and to
the construction of programs capable of displaying some of the reasoning abilities
of people. In this last regard, such formal analyses should not only provide the
vocabulary on which research progress on the topic could be articulated, but also
useful guidelines for the design of such programs. In the area of our concern —
default reasoning— some of the questions that need to be addressed are: (1) what
is a good language for expressing default knowledge, {2) what is a good architec-
ture for reasoning with default knowledge, and (3) what is a ‘reasonable’ default
" reasoning task.

In this work we have partially addressed questions (1) and (3), but only in an
isolated form. At the end, however, such question require an integrated answer:
the representation language of programs capable of reasoning with defaults must
be designed with a reasoning architecture in mind, and such architecture will
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be heavily influenced by the reasoning task envisaged. The work reported here
attempts to provide a better understanding of what default reasoning is, and what
- the requirements for a language which supports defaults reasoning are (e.g. K vs.
E). Now we would like to know more about what the proposed framework reveals
about default reasoning architectures. Before expressing some ideas in that regard,
however, we will find useful to review some of the successful language-architecture-
reasoning task triplets existent in the knowledge representation arena. We will
refer to them as reasoning bozes.

One such reasoning box is inheritance reasoning. Inheritance networks are both
a language and an architecture which support a particular reasoning task called
inheritance reasoning (see section 1.4). Inheritance reasoning is concerned with
finding “good” inheritance paths in inheritance hierarchies. The limited expres-
sive power of inheritance networks and the narrow focus of inheritance reasoning
enable efficient reasoning, hard to achieve in more expressive frameworks.! An-
other appealing reasoning box based on networks, is Bayesian Networks [Pearl,
1988b)]. Like inheritance networks, Bayesian Networks are both a language, in this
case to express probabilistic knowledge, and an architecture. Several reasoning
tasks have been defined on those networks, including the computation of degrees
of beliefs and most likely belief commitments. Furthermore, Pearl has shown that
such tasks can be performed in a highly efficient manner, for Bayesian networks
complying with certain constraints.

Other successful reasoning boxes are logic programs and truth maintenance
systems. The language of general logic programs is that of universally quantified
rules, and their standard architecture is that of SLD resolution, augmented by
negation as failure [Lloyd, 1984). The task in the domain of logic programs can
be understood, in essence, as computing the atomic consequences that follow from
a logical interpretation of the program in question (e.g. the completion of the
program [Clark, 1978]).2 Moreover, SLDNF resolution is a sound and complete
method for performing such task within a large class of programs [Lloyd, 1984]. It
Is interesting to note that logic programs do not fall into the “irrelevance” trap of
pure logic; namely, while pV p and p A p and infinitely many other formulas are
logical consequences of p, SLDNF, for instance, never bothers to prove them. For
the reasoning task adopted, they are known to be irrelevant.

Finally, assumption truth maintenance systems (ATMSs) are systems designed

'Though see the worst-case results investigated by Selman and Levesque [1989].
?Logic programs also compute answer substitutions. Still, these substitution are computed in
terms of the atomic consequences of the program.



6.2. LOOSE ENDS 141

for keeping track of results which rely on assumptions which may later have to be
retracted. They evolved from early work by Stallman and Sussman [1977] on ruled-
based programs for analyzing circuits, and Doyle’s {1979] TMS. de Kleer [1986]
presented an informal description of the standard ATMS, as of its language and
architecture. The ATMS task has been later described in detail by Reiter and
de Kleer [1987]. Roughly, the ATMS is given a set T of propositional facts and
rules embedding assumptions, and computes the minimal sets of assumptions A
consistent with T, which together with T logically imply particular literals of
interest. This computation is usually done by keeping track of the minimal set of
assumptions logically inconsistent with T (no-goods). Still, since the task is highly
intractable in the case of non-Horn rules, the ATMS sometimes only approximates
such a behavior, being unsound and incomplete at times.

These successful reasoning boxes, raise the question of whether a suitable rea-
soning box for default reasoning can be defined. The answer, I think, is a qualified
yes. For conditional entailment, for instance, we may want to consider ‘almost’
propositional theories; namely, universal rules and atomic queries on first order
languages with a finite number of constants and no function symbols. Further-
more, it makes sense to restrict attention to background contexts which accept a
single minimal admissible priority ordering ‘<’. As shown in section 4.2, this will
permit us to compute conditional entailment by considering a single prioritized
admissible structure {(Iz, <, Az, <}. The reasoning task and architecture will bear
some resemblance to a prioritized ATMS. Namely, rather than computing minimal
supports A for particular literals p, such that A is consistent with the theory the-
ory T = (K, E) in question, we would compute minimal supports A for p, such that
A is stable in the context T (see definitions in section 4.3). Such literals p would
then represent propositions conditionally entailed by T'. Not every conditionally
entailed proposition would be identified, though: first, we would be focusing on
literals rather than on arbitrary formulas; second, a literal may be conditionally
entailed and still lack a stable support (section 4.3). Nonetheless, the claim is that
literals supported by stable sets will represent the main propositions of interest.
Note also that the switch from consistency in the ATMS to stability in a prioritized
ATMS, is a result of the change from the minimal model semantics underlying the
ATMS task (see [Ginsberg, 1989], for instance) to the prioritized minimal model
semantics underlying conditional entailment.

The details of such a prioritized ATMS will be elaborated elsewhere. The main
intuition, however, is simple. By the results in section 4.3, in order to test whether
the set of assumptions A is stable, we can first identify all the minimal set of
assumptions A’ from which A is protected. that is, we look in the ATMS database
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for no-goods of the form A’ 4 A,, where A, is a subset of A such that A’ < A,
holds. The set A then is stable iff every no-good A” which contains an assumption
from A, is such that A” — A is one of the sets A’ from which A is protected.

An architecture of that sort for capturing causal entailment as well, will require
the development of an appropriate proof-theory for causal entailment. It is also to
expect that the explicit use of the causal operator ‘C’ could be avoided by appealing
to a suitable network languages, such as the language of causal networks described
in sections 5.3.3 and 5.3.4.

Finally, the search for algorithms should not be exclusively focused on those
which are complete or even sound with respect to some accepted formalization.
Tractable algorithms which are ‘reasonably’ sound and ‘reasonably’ complete, and
whose sources of unsoundness and incompleteness can be understood and justified,
are likely the best to be achieved in default reasoning and reasoning in general.?

6.3 Open Problems

In this final section we will discuss some relevant open problems. The focus is
on the projection problem in reasoning about change and belief revision, and the
interactions between probabilistic and non-monotonic reasoning.

The Projection Problem
Consider the following story from [Maloney, 1989] in relation to the frame problem:

Eloise glances at her window and sees Abelard standing in the court-
yard, wearing a hat, leaning against the chestnut tree and speaking to
her father ... Soon oneof her brothers enters and tells her that Abelard
has departed. Now Eloise has to reasses her beliefs. Minimally, she
must delete her belief that Abelard is in the courtyard. But what of
his hat? ...

Intuitively, the belief that Abelard’s hat is in the courtyard should be deleted as
well. However, the hat was in the courtyard, and there is no explicit information in

3See for instance the study of the complexity of different fragments of Reiter’s defaults logic
in [Kautz and Selman, 1989).
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conflict with the assumption that the hat remained in the courtyard. Thus, if the
location of the hat is regarded as a fluent (namely, a time or situation dependent
property [McCarthy and Hayes, 1969, McDermott, 1982]), and the persistence of
fluents is assumed by default, we would be led to the counterintuitive conclusion
that the hat remained in the courtyard. On the other hand, if we do not regard
the location of the hat as a persistent fluent, we wouldn’t be able to predict the
location of the hat after having dropped it in the courtyard.

The lesson to be drawn from this and similar examples is that the assumption
that all fluents persist in time by default, while a useful one to make, is not
generally tenable. In most contexts there will be some fluents whose persistence
can be assumed to hold in the lack of contrary evidence, any many other fluents
which cannot.

How to handle the persistence of fluents then? Let us refer to the proposition
ft denoting the status of a fluent f at time ¢, in some appropriate notation, as
a propositional fluent, and let us say that a propositional fluent f; is projectible
when it is reasonable to jump to the proposition f;4; by default. In the story
above, for instance, when Abelard is in the courtyard, the location of Abelard is
projectible, while the location of the hat is not. The projection problem — to be
distinguished from the more general problem of temporal projection or prediction
(e.g. [Hanks and McDermott, 1987]) — is the problem of identifying the projectible
propositional fluents in a given context.

Several proposals have been recently advanced for addressing this and related
problems. These proposals range from those which presume that the projectible
propositional fluents have been identified by the user (e.g. [McDermott, 1982,
Kowalski and Sergot, 1986]), to those in which persistence defaults contain appro-
priate censors (e.g. [Myers and Smith, 1988]). Likewise, in some approaches the
projectibility of a propositional fluent is determined by their (explicit) appearance
in the context in question (e.g. [Ginsberg and Smith, 1988]), while in others, all
propositional fluents are assumed equally projectible (e.g. [Winslett, 1988]). How-
ever, while these proposals contain elements which are necessary in dealing with
the projection problem; none addresses it in its full generality. Myers and Smith
for instance, who are among the few to recognize the problem as such, regard it as
the problem of determining the persistence of derived information. Namely, they
assume that what we call the projectibility of a propositional fluent depends on its
derivation from the information explicitly available.

In my view, the projection problem is more general and concerns the identifica-
tion of the independent propositional fluents in a particular context. For instance,



144 CHAPTER 6. CONCLUSIONS

the propositional fluent above(a,b), is projectible in a context which does not
contain other information, but is not projectible in a context which also includes
the propositional fluents on(a, c); and on(c,b),. Similarly, the propositional fluent
—on(a, table); is projectible if alone, but is not projectible when augmented with
an additional propositional fluent on(a,c);. In each case, we need to conjecture
what depends on what and project only what we regard as independent. Like in
abductive reasoning (section 5.3.4), however, there may be several equally good
conjectures in a particular context. The projection problem is the problem of
elucidating the nature and the logic of these conjectures.

Non-monotonic Reasoning and Probabilistic Reasoning

Another area open for exploration lies on the boundary between non-monotonic
and probabilistic reasoning. Several of the notions developed in this work, such
as the semantics for the core and the account of abduction, rely on a probabilistic
basis. It would be interesting to investigate if there are other probabilistic notions
can be imported in a qualitative framework of defeasible inference. Similarly, the
question arises whether the qualitative frameworks of defeasible inference may be
used to extend probabilistic reasoning with assumptions about conditional inde-
pendence. This topic has been explored by Grosof [1988].

Grosof focuses on the conditions under which the value of an entry P(H | E)
of a partially specified probability distribution P can be approximated, given that
the only known entries P(H|C;), i = 1,...,n are such that the propositions C;
constitute a chain; namely, P(Ciy1 |C;) = 1,for i = 1,...,n — 1. On the basis of
an intuition similar to Kyburg’s [1983] notion of reference classes, Grosof assumes
that the value of P(H | E) can be approximated to P(H | C;), when C; is the first
member of the chain for which P(C; | E) = 1. Furthermore, using Nilsson’s [1986]
probabilistic logic, he shows how such form of non-monotonic reasoning about
probabilities can be formulated in McCarthy’s circumscriptive framework. In the
next few lines we show how conditional interpretations of defaults, with their ability
to capture the context-dependent nature of conditional probabilistic statements
might provide an alternative framework in which to reason about probabilities.

When reasoning about probabilities, we are interested in determining the prob-
ability P of an hypothesis H given certain constraints C on P, and a body of
evidence E. We will cast this problem as the problem of encoding the constraints
C on P in a background context K, in such a way that if P(H|E) = z is the
target result, the proposition B(H) = =z is conditional entailed by T = (K, E).
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For simplicity we will focus on a variable-free first order language with equality,
with an operator P(-) which complies with the axioms of probability, and an in-
dexical belief operator B(-) such that in context T' = (K, E), B(H) represents the
probability statement P(H | E).

The direct encoding in K of a probability statement P{q|p) = « is as a default
p — [B(g) = z]. Then, given a body of evidence E = {p}, the proposition B(g) = z
will be conditionally entailed, correctly assessing that the belief in ¢ given a body
of evidence E = {p} is equal to P(¢q|p). More interestingly, when the body of
evidence E is extended with an additional, but irrelevant piece of information e,
the conclusion B(q) = P(q|p) (hence, the belief in ¢) remains unaltered. Grosof’s
1dea of default inheritance of probabilities, follows as a natural consequence of such
an encoding, provided certain conditions are met. First we need an axiom in K
of the form p & [B(p) = 1], to relate p and the belief operator B. Then, given a
set of defaults p; — [B(H) = P(H|pi)], ¢ = 1,...,n, such that the propositions
P1,P2,---,Pn form a chain, as above, the proposition B(H) = P(H|p;) will be
conditionally entailed by the theory T' = (K, E), as long as p; is conditionally
entailed by E, and E does not provide support to any of the propositions p; in the
chain for which j < ¢ (see the irrelevance rule in section 2.5).

Clearly, these remarks only scratch the surface of the problems involved in the
use of conditionals for reasoning about probabilities. For instance, the encoding
suggested above cannot deal with probabilistic chains; namely two probabilistic
statements P(q|p) = z and P(p|r) = y, do not yield a judgement regarding the
value of P(q|r). Similarly, the encoding of two probabilistic statements P(g|p) =
z and P(q|r) = y for z # y, yields that P(q|gq,r) is either P(q|p) or P(q|7),
contrary to the intuition suggesting that the supports of p and r should be somehow
combined. Whether it is possible to capture commonsense probabilistic arguments
in a default framework is thus to be seen. An effort in that direction may also
help understand the relations between probabilistic inference, fuzzy logic [Yager et
al., 1987] and Dempster-Shafer inference [Shafer, 1976], which also appear to rely
heavily on assumptions about independence.
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Appendix A

Proofs

Theorem 2.2 IfEt;p and K C K’ then E b p

Proof The theorem easily follows by induction on the minimal length n of the
derivation of E & p. If n = 1, it means that h was derived from E in K either by
rule 1 or by rule 2. In either case it is easy to show that A can be derived from E
in K'. Let us assume now that & is derivable from E in K in n steps, n > 1, and
that the theorem holds for all the proofs with length m < n. Clearly the last step
in the derivation must involve one of the rules 3-5. In any case, the antecedents of
such a rule must be derivable in a number of steps smaller than n and, therefore,
by the inductive assumption, they are also derivable in K’ , from which it follows
that, using the same rule, & is also derivable from E in K.

Theorem 2.3 If E k p, then p is e-entailed by the default theory T = (K, E).

Proof We show this by proving each rule in the core to be sound with respect
to e-entailment. That is, for a rule with conclusion E tx p, we prove that for any
probability distribution P admissible with X within a range € and which complies
with the premises of the rule, the probability P(p| E) must approach one, as ¢
approaches zero. The defaults rule is sound by definition: if p — ¢ is a default
in I, then the admissibility of P requires the conditional probability of P(p|q)
to approach one as ¢ approaches zero. For deduction, if E i p, then, clearly
P(p| E) = 1. To prove the soundness of augmentation and reduction, we need
to show that if P(p| E) approaches one, P(g| E, p) approaches one iff P(q|F) does.
This, in turn, is a consequence of the probabilistic equality:

147
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P(¢lE) = P(q|E,p) P(p|E) + P(q|E,~p) P(-p|E)

Indeed, if P(q| E) and P(p| E) approach one, so must P(q| E, p), since P(~p| E)
approaches zero, and P(q | E, —p) is bounded by one. On the other hand, since the
value of P(g|FE) is bound from below by the product of P(q|E,p) and P(p|E),
the former term must approach one, as the latter two terms do. Finally, we prove
the soundness of disjunction by proving the soundness of weak reduction first,
which permits to derive E k. —~pVr from E,pk r. The soundness of the rule is
obvious in case E I —p holds. Otherwise, by Bayes rule we have:

P(-rAp|E) = P(-r|E,p) P(p|E)

In particular, if P(r|E,p) approaches one, P(-r | E,p) must approach zero, and
so does P(~r Ap|E). As a result P(—~(~r A p)| E) must approach one, and so
P(rv-p| E), due to the logical equivalence between —{=rAp) and rvV-p. To derive
now the disjunction rule, note that the augmentation rule permits us to derive
E,p,pVglkrand E,q,pVqiyr, from E;pk rand E, ¢ b r. Weak reduction then
permits us to obtain E,pV glyrV —pand E,pV qkrV -¢. Finally, from these
two expression we can obtain E,pV ¢ k r by deductive closure. g

Theorem 2.4 The proposition g is e-entailed by the default theory T = (K, E),
with K = (L,D) and E = {p}, if and only if K' = {L,D + {p — —q}) is ¢-
inconsistent.

Proof The only-if part of the theorem is a simple consequence of the monotonicity
of the relation ‘ f;’ (theorem 2.2) with respect to K. If ¢ follows from p in K, ¢
will certainly follows from p in K'. However, since —¢ also follows from pin K,
due to the soundness of rules 1-5, K’ cannot be e-consistent. The other half of the
theorem is simple prove in the case in which K itself is e-inconsistent. In this case
E e-entails any sentence in the language. We will assume that K is €-consistent,
and show that p e-entails ¢ in K when K’ is e-inconsistent. We will follow the
proof in Adams [1975], also sketched in [Goldszmidt and Pearl, 1989], and rely
on results to be fully established in chapter 3. Two useful concepts in the proof
are the notions of default verification and falsification, and quasi-conjunctions. A
default p — q is verified in a world W (i.e. a truth valuation) iff W satisfies
both p and ¢, and is falsified in W iff W satisfies p but not gq. Likewise, provided
there 1s finite set of worlds which satisfy the sentences in L, a background context
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K' = (L, D'} is e-inconsistent, only D’ contains a set D", such that every world
that satisfies L and verifies a default in D", must also falsify a default in D" (first
part lemma 3.4, and lemma 3.5, chapter 3). Under the assumptions above, this
implies that if X' = (L, D + {p — —q}) is e-inconsistent, there must be one such
set D" which must contain the default p — —gq.

The quasi-conjunction C(D) of a set D of defaults p; — ¢;,7=1,...,n, is the
default C(D)=p1 Vps V- Vpo = (p1 = 1) A (p2 = @2) A+ A (Pn = ¢n). Due
to the logical equivalence between the formulas =(p; = ¢1) V-V -(p, = ¢n) and
“(PrVPV- VP = (= @) A (P2 = g2) A+ A(Pn = ¢n)) the existence of a
set D" in K' as above, implies that there is no world that satisfies L and verifies
the quasi-conjunction C(D") of D”. Now, let Up(Dy) stand for the sum:

Up(Do) = 321 — Plailps)

=1

for a probability distribution P and a set Dy of defaults p; — ¢;, i = 1,...,n, and
consider the sums Up(Dy) and Up({C(Ds)}), where C(Dy) is the quasi-conjunction
of Dy. Up({C(Dy)}) represents the sum of the probabilities over all the worlds
that falsify a default in Dy, while Up(Ds) includes all such terms, and possibly,
many more. Up(Dy) is thus greater than Up({C(Dg)}) for any P and set Dy. In
particular, Up(D") > Up({C(D")}), and in the context of a probability P which
assigns unit probability to the sentences in L, Up(D") > 1, since as we showed, no
world satisfies L and verifies C(D") and thus Up({C(D")}) = 1. Moreover, if P is
a probability distribution admissible with K within a range ¢, as € approaches zero
all terms in Up(D") which correspond to defaults in D will vanish. In the limit,
since p — —¢ is the only default in D” which is not in D, we get that 1 — P(—q|p)
and thus P(q|p) must approach one. Thus, g is e-entailed by pin K. g

Theorem 3.1 If the ezpression E ty p is interpreted as asserting that p is true in
all preferred models of the default theory T = (K, E) of every preferential model
- structures well-founded with respect to K, then the following rules are sound:

Rule 2 (Deduction) If Ek p then Ek p

Rule 3 (Augmentation) If E L. pand E t; g then E,p k¢
Rule 4 (Reduction) If E; pand E,pk g then E k ¢

Rule 5 (Disjunction) If E,pt;r and E,q k. r then E,pV gk r
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Proof Deduction is clearly sound: if p is true in all the models of E, p will
be true in all the preferred models of E. The soundness of angmentation and
reduction follows from the fact that in any well-founded structure (Z,<) where
p s true in all the preferred models of E, the preferred models of E and E U {p}
coincide. Assume otherwise, that there is a well-founded p-structure in which M
is a preferred model of E but not of E' = EU {p}. Clearly, M must a be model of
E’ since p holds in all preferred models of E. Then, by well-foundness, there must
be a preferred model of M’ of E’ such that M’ < M. However, since M’ is also a
model of E, that would contradict the assumption that M is a preferred model of
E. A similar contradiction results if we assume that there is an interpretation N
which is a preferred model of E' = E U {p} but not of E. That would imply that
there must be a preferred model N’ of E, such that N’ < N. That, however, would
contradict N being a preferred model of E', as E’ is also satisfied by N'. Finally,
disjunction follows from the fact that in any p-structure, the preferred models of
a disjunction o V § are among the preferred models of o and the preferred models
of 5. Assume otherwise a well-founded p-structure (Z,<) with a model M which
is preferred for a V 8 but not for either o or S. Clearly, M must be a model
of either a or . Without loss of generality we can assume M to be a model of
a. By well-foundness then, there must be a preferred model M’ of & such that
M’ < M. Since M’ is also a model of a V 8, however, this implies that M cannot
be a preferred model of o V 8, in contradiction with the former assumption. g

Theorem 3.2 If the proposition p is is derivable from a context T = (K, E) by
means of rules 1-5, then p is preferentially entailed by T = (K,E).

Proof Straightforward from theorem 3.1 and the definition of p-entailment. g

Lemma 3.1 A default theory T = (K, {p}) with a background contezt K = (L,D)
p-entails a sentence ¢ if only if the background K' = (L, DU {p — —g}) is p-
inconsistent.

Proof The ‘only if’ of the theorem is trivial: if there is a p-structure = admissible
with K’, then there is at least a preferred model of p in 7, in which ¢ does not
hold and, since 7 is also admissible with K, p cannot p-entail ¢ in K. The “if’ part
is slightly more involved unless K itself is p-inconsistent, in which case the proof
is trivial. So let us assume that K is p-consistent and that p does not p-entail ¢
in K. Then, there must be a p-structure 7 = (Z, <) in which there is a preferred
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model M of p where ¢ does not hold. In order to show that K’ is p-consistent in
that case, we construct a p-structure ' = (7, <’} admissible with K" as follows. =’
is defined by retaining the set of interpretations in 7, and by extending the order
‘<’ in such a way that My <’ M, if M; < M, for any interpretations M; and M,
inZ, and M <’ Ma, for any preferred model M; of p in 7 different than M. It
is simple to check that 7’ is a p-structure admissible with K. Furthermore, M is
the unique preferred model of p in 7/, and thus —q is true in the non-empty set
of preferred models of p in #’. It follows then that ' is admissible with K’ , and
therefore, that K’ is p-consistent. g

Lemma 3.2 A default theory T = (K,p) with a background K = (L, D) l-entails
a sentence ¢ if only if the background K' = (L, D U {p — ~q}) is l-inconsistent.

Proof Similar to the proof of lemma 3.1.

Lemma 3.3 A background K is p-consistent if and only if K 1s l-consistent.

Proof We show first that given a l-structure A = (W, ) admissible with a back-
ground context K, it is possible to construct a p-structure = = (Z, <) also admissi-
ble with K. For that purpose, we define 7 to be any minimal set of interpretations
whose associated set of worlds is W, and define the order ‘<’ on interpretations
in such a way that M < M’ holds for two interpretations M and M’ in Z,iff
k(w(M)) < k(w(M")), where w: T — W, is a function that maps an interpretation
into its corresponding world. We need to show that the structure 7 is admissible
with K = (L, D) if X is. First of all, note that due the fact that worlds in W have
only non-negative ranks, the induced preferential structure r must be well-founded.
Likewise, the mapping from worlds to interpretations preserves satisflability; as the
interpretations in 7 all satisfy L, and there is at least one which satisfies p, for
every default p — ¢ in D. Furthermore, if ¢ is false in some preferred model M
of p in Z, it means that there is a world W in which both p and ¢ hold, and
no world W’ where p and ¢ hold such that x(W’) < x(W). This, however, would
contradict the assumption that the l-structure A = (W, x) is admissible with K.
Therefore, if A is admissible, so is .

To show that given a p-structure = = {Z,<) admissible with K it is possi-
ble to build a l-structure A = (W, k) admissible with K, we use a construction
suggested by Lehmann [1989]. First, we define W to be the set of worlds that



152 APPENDIX A. PROOFS

correspond to the interpretations in Z, and then for every interpretation M in
I we let height(M) stand for the length of the longest ascending chain of inter-
pretations in I, My, M,..., M,, such that M; < M;,, for every i, 0 < i < n,
and where M = M,. The rank of a world W in W is then defined as (W) =
minprer, height(M), where Ty stands for the set of interpretations M in 7 such
that w(M) = W. Since, again, the mapping form worlds to interpretations pre-
serves satisfiability, to show the admissibility of A\ we need only to show that for
every default p — ¢ in K, ¢ is true in all the preferred worlds of p in A. Let us
assume otherwise, that there is a world W in W that satisfies both p and —¢q, and
no world W' in W that satisfies both p and ¢ such that «(W’) < x(W). Further-
more, let x(W) = height(M), for some interpretation M in Z. Then, from the
admissibility of the preferential model structure «, it must be the case that there
is an interpretation M’ that satisfies both p and ¢ and for which M’ < M. This
in turn implies that height(M’) < height(M) and, therefore, that W’ = w(M’)
satisfies both p and ¢, and by construction xK(W’) < x(W) also holds. This, how-
ever, contradicts the assumption that W is a preferred world of p in A. Thus, A is
a layered structure admissible with K and therefore, K is l-consistent. g

Lemma 3.4 A background K is e-consistent if and only if K is l-consistent.

Proof We show that given a l-consistent background X = (L, D} it is possible to
construct a probability distribution admissible with K within any positive range,
and vice versa, that it is possible to construct an admissible layered world structure
given a e-consistent background K.' Assume first that K is l-consistent and that
(W, k) represents a layered structure admissible with K. As only a finite number
worlds satisfy L, we assume that W contains n worlds and that the ranking «
divides the set W into m + 1 non-empty layers Wy, W1, ..., W, of increasing rank,
each with a number n; of worlds. Clearly, since L has to be logically consistent,
there is a probability distribution admissible with K within any range € greater or
equal than unity. We show below, that it is also possible to construct a probability
distribution P over W which is admissible with K within any positive real e smaller
than unity.?

The probability distribution P is defined to assign to each world W in layer
Wi, 0 < < m, a probability P(W) = §(1-6)/n;,0 < §<e-[1+n(l—¢)] ! <1,
and to each world W' in the last layer Wy, a probability P(W’) = §™+!. Due to
the equality between the expression 1 — §™*! and its expansion (1+64+8*+686+

1See section 2.4 for the definition of admissible probability distributions in e-semantics.
2Similar constructions appear in [Adams, 1966) and [Lehmann and Magidor, 1988].
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co.+8™) - (1~ §), it is easy to show that sum of P over all the worlds in W is
1. We need to show that that the probability distribution P is admissible with X
within a range e. First, note that since the structure (W, &) is admissible with K,
every world W in W satisfies L, and for every default p — ¢ in D there is a world
where p holds. Thus, we are guaranteed that the probability P(s) of any sentence
s in L is one, and that the probability P(p), for any default p — ¢ in D, is greater
than zero. We are thus left to show that the probability P(g|p) for any default
p — ¢ in D is greater than 1 — e. We know, however, due the admissibility of
the structure (W, «}, that there is a world W that satisfies both p and ¢ which is
better than any other world in which p is satisfied and g is not. In particular, if W
belongs to W,., we are thus guaranteed P(q|p) = 1. Otherwise, W must belong
to some layer W, 0 < ¢ < m. In that case, we obtain that P(g|p) must be equal
or greater that 1 — € as follows:

P(p,q)
P =
(a1p) P(p,q) + P(p,—q)
> §(1-8)
= S (1=6) +né
1—-6
>
= 14 né
> l—¢,for 0<b< —F 1

1+n(l—c¢)

To prove the converse, we will construct an admissible layered-structure (W, k)
given a e-consistent background K. We will select the set of worlds W to be the
finite set of worlds Wy, ..., W, which satisfy L. From the assumption that £ is
finite, we know that the set of possible worlds must be finite, and furthermore,
that each world can be characterized in terms of the truth of a finite set of ground
atoms. For a world W;, we will refer by s; to the sentence formed by conjoining the
positive and negative ground literals true in W;. Namely, s; can be regarded as the
‘world’ sentence associated to W;. The ranking x on worlds will be determined,
by defining an order on their corresponding sentences. First, we collect in a set §
all the defaults of the form s; v s; — —s; and s; V s; — -s;, for world sentences
s; and s; with 7 < j. The number of defaults in $ is thus I = n (n — 1). We then
incrementally construct a new e-consistent background context K’ = (L, DU S Y,
5" C S, from the e-consistent background context K = {L, D}, as follows. Initially,
we let 5° =5, D® = @ and K° = K. Then until 5 is empty, for each i = 1,...,1,
we remove a default p; — ¢; from 5' and test whether —g; in e-entailed by p; in the
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background context K*~! = (L, D U D*-'). If so, we set D' to D'~1; otherwise, we
set D' to D*~1U{p; — ¢;}. Note that the resulting background context K’ = K' is
e-consistent; K® = K is e-consistent by assumption and, as a result of lemma 2.4,
each iteration preserves the e-consistency of K*. We show next (1) that there is
a total order over the sentences s,, 7 = 1,...,l, and (2) that the ranking x on W
determined by this order renders a layered world structure admissible with X.

Let s; and s;, ¢ < j, stand for a pair of world sentences. We show first that
one and only one of the defaults s; V s; — =, or s; Vs; — —s; belongs to K.
Assume that s; Vs; — —s; belongs to X’. Then the disjunction s; Vv s; e-entails
the sentence s; and, by consistency arguments, the default s; Vv 8; — —s; cannot
belong to K'. Otherwise, if s; V s; — —s; does not belong to K, it must be the
case that it is not consistent with some K*, 0 < i < [, and therefore, not consistent
with K’. That means, by lemma 2.4, that the disjunction s; Vv s; e-entails the
sentence s, in K, and therefore, that it also e-entails the sentence —s;, since s; and
8; are logically inconsistent. Thus, the default s; V s; — —8; is e-consistent with
K’ and, therefore, it must belong to K’. Furthermore, from the soundness of core
and or-transitivity (theorem 2.1), it must also be the case that if K’ includes the
defaults s; V s; — —s; and s; V s — -5k, then K’ must also include the default
8; V 8 — TS,

Thus, K’ determines a total order ‘<’ on the sentences si, where s; < s; iff
either s; Vs; — —s; or 5;Vs; — =s; belong to K’. We can thus define the ranking
% of a world W; as the length of the maximal chain s; < $iy < ... < 8, where
Sin = Sn. We show now that the resulting l-structure A = (W, x) is admissible
with K. Note that by definition, W stands for the set of worlds that satisfy L.
Furthermore, since K = (L, D) is e-consistent, W must include worlds satisfying p
for every default p — ¢ in D. We are thus left to show that for every such default,
g 1s true in all the preferred worlds of p in the l-structure A. Assume otherwise,
that there is a world W; in which p holds and ¢ does not, and no world W; with
smaller rank than W; where both p and g hold. Since by construction & orders the
worlds in W along a chain, without loss of generality we can assume that Wi is the
single minimal ranked world in W where p holds. However, if s; is the sentence
which corresponds to W;, this requires X' to contain the defaults $;Vs; — —s; and
8i V 8 — —sg, for every sentence s; and s; consistent with p, for which j<tor
t < k. Furthermore, since p logically entails the disjunction of all such sentences Sk,
8j, and s;, this implies, as a result of or-monotonicity (theorem 2.1), deductive
closure, and the soundness of the core, that s; is e-entailed by pin K’. This,
however would imply that —g is e-entailed by p in K’ as well, in contradiction with
the e-consistency of K'. Thus, there is no such a world W; and the l-structure ) is
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admissible with K. a

Theorem 3.3 Let K = (L, D), and K' = (L,D + {p — —q}) be two background
contexts, and let T = (K,{p}) be a default theory. Then, for finite propositional
languages, the following statements are equivalent:

(1) T e-entails ¢
(2) K’ is e-inconsistent
(8) K' is l-inconsistent
(4) T l-entails q
(5) K’ is p-inconsistent
(6) T p-entails q

Proof (1) and (2) are equivalent as a result of lemma 2.4; the same about (3) and
(4) (lemma 3.2), and about (5) and (6) (lemma 3.1). Likewise, the equivalence
between (2) and (3) follows from lemma 3.4, while the equivalence between (3)
and (5) from lemma 3.3. &

Theorem 3.4 A background contezt K = (L, D) is I-consistent if and only if there
18 a default ranking admissible with K.

Proof We prove the ‘only if’ part first. Assume that K is l-consistent, and that
A = (W, k) in a layered world structure admissible with K. We show how to
construct an admissible default ranking o over K = (L, D), by choosing o(p —
q) = minwew, £(W), where W, stands for the non-empty set of worlds in W that
satisfy p. We need to show that ¢ is a default ranking admissible with K. Assume
it is not; i.e. there is a default p — ¢ in D in conflict with a subset D’ of D,
such that o(p — ¢) < mingepr o(8’). Let us select W as a minimal ranked world
in W that verifies the default p — ¢. By the admissibility of A, we know there
is at least one such world, which we also know must satisfy L. From the conflict
between p — ¢ and IV, one default in D', say p’ — ¢’, must then be falsified by
W. Again, by the admissibility of A, W must thus be preceded by a world W' in
which the default p’ — ¢’ is verified. This, however, implies o(p' — ¢’) < o(p — ¢)
in contradiction with the assumption above.

We prove now the ‘if’ part. We show that given an admissible default ranking
over K = (L,D) it is possible to construct a layered structure (W, x) which is
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admissible with K = (L,D). For that purpose, we select W as the set of all
worlds consistent with L, and « in such a way that x(W) = maxyep,, o(d), where
Dy stands for the set of defaults falsified in world W. We need to show that
for any world W in W which falsifies a default p — ¢ in D, there is a world
W', k(W') < k(W), which verifies it. First, note that if W falsifies the default
p — ¢ then, by the definition of x, (W) must be equal or higher than o(p — ¢).
Moreover, we know from the fact that ¢ is an admissible default ranking, that
every subset D; of D in conflict with p — ¢ contains a default p; — g; such that
o(pi — ¢;) < o(p — g). Let D' be the set of all such defaults. It follows then that
there is world W' in W that satisfies L, verifies the default p — ¢ and only falsifies
defaults in D’. This implies that the ranking of W' is such that x(W') < o(p — ¢)
and, therefore, that x(W’) < x(W). Thus, the layered world structure (W, &) is
admissible with K, and K is l-consistent. g

Lemma 3.5 A background contezt is l-consistent if and only if it does not contain
a clash.

Proof We prove the ‘only if’ part first. Let us assume that there is an admissible
ranking o over K = (L, D), and that a set D', I C D constitutes a clash in K.
Let us further choose from D' a default p — ¢ with a minimum rank, and let 1
represent its rank. There must be one such minimum ranked default at least, by
the nature of default rankings. However, by the definition of admissible default
ranking, since p — ¢ is in conflict with I, D' must contain a default with a
rank smaller than ¢, contradicting thus the minimality of p — ¢. Thus, K cannot
contain a clash.

Now, let us assume that K does not contain a clash. We show that it is
possible construct an admissible default ranking by decomposing D into layers
Do, Dy,...,D;,... and by setting o(p — ¢) = i if p — ¢ € D;. Let D° = D.
Since, in particular, D is not a clash in itself, there is a set Dy of defaults in D°
which are not in conflict with D% For i = 1,2,..., let D’ be set to D'~! — D;_;.
Since D' C D, D' cannot be a clash and, therefore, there must be a non-empty set
D; of -defaults in D' which are not in conflict with D'. Following this procedure,
we obtain a layering Do, Dy, .. of defaults, such that (1) D = U;D;, and (2) every
default in D; is not conflict with defaults in D' = D; U D;y; U---U D,. Thus,
since D contains a finite number of default schemas whose instances all belong to
the same layer, the default ranking o(p — ¢) = 1 iff p — ¢ € D; assigns a rank to
every default in D, and therefore, o is default ranking admissible with K.
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Lemma 3.6 p entails ¢ in K = (L,D) if and only if the background K' =
(L, D+ {p — —q}) contains a clash.

Proof Follows from the fact that p entails ¢ in K iff K’ is inconsistent, which in
light of lemma 3.5 and the equivalences between l-consistency, p-consistency, and
e-consistency, amounts to the presence of a clash in K'. ¢

Theorem 3.5 For a background contezt K = (L, D) with n defaults, there is an
O(C(n) x n?) procedure for testing whether a sentence q is entailed by a sentence
p in K, where C(n) is the complezity associated with classical entailment in the
language fragment that comprises the sentences of L and the material counterparts
of the defaults in D.

Proof In order to test whether ¢ is entailed by p, it is sufficient to test the
consistency of the background K’ as in lemma 3.6. We can test the consistency of
K’ by simply following the construction given in the second part of the proof of
lemma 3.5. That is, we start with D% = D and for each D' we identify a set D,
of defaults which are not in conflict with D, and set D't! = D' — D;. We stop
this iteration only when either one of the sets D* or D; is empty. If D* is empty
at the end, it means that we have not found a clash in D, and therefore, that K’
is consistent and that p does not entail ¢ in K. Otherwise, D' is a clash and,
therefore, K’ is inconsistent and g is entailed by p. Furthermore, there are at most
n + 1 iterations, each involving at most n + 1 satisfiability tests. u

Lemma 3.7 Letp — ¢ be a default in D, let D' be a subset of D, and let C(D') be
the quasi-conjunction of D'. Then, p — g clashes with D' in a background context
K = (L,D), if and only if p — q clashes with C(D) in the background context
K' = (L,D"), with D" = {C(D"},p — q}.

Proof Let py = p, go = ¢, and let D’ be the collection of defaults P = G,

- t=1,...,n. First note that, if the set composed by p; — go and D’ is a clash in
K, we must have

Pilk=(Po=q@)Valpr = @)V -V o(pa = ¢qa)

for each ¢ = 0,1, - -, n. Therefore, by invoking the logical equivalence between the
formulas:
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= @)Ve Voo = gn)

and

(VP Vo= (ot @) A (2= @) A A (Pn = ga))
we get

Polk (po=>q) V(P VPV - Vo= (o1 = @) A+ A (pn = ¢a)),
and

PV VP (po = @) (P VPV V= (0= @) A A (pa = g0)),

where the last derivation involves the logical equivalence between z V y k. z and
T Iz z and y iz 2. The last two expressions above reveal a clash between the default
Po — ¢o and quasi-conjunction C(D’). The proof for the ‘if’ part of the lemma
involves the reverse steps. g

Lemma 3.8 Let K = (L,D) be a background contezt, and D' be a non-empty
subset of D. Then, if r — s stands for the quasi-conjunction C(D'Yof D', ris.

Proof Let D' be a collection of defaults p; — ¢;, = 1,...,n. Then by rule 1 of the
core we can obtain p; £ ¢;. Furthermore, if let p; ,, stand for the disjunction V-V
Pn, We can get p;, p1 , [ ¢; by augmentation, and p; ,, & p; = ¢;, for any:=1,...,n,
by weak reduction. Finally, the target result p,, & (p; = Q)A- A (pn = qn)
follows by deductive closure.

Lemma 3.9 Let K = (L, D}, and K’ = (L, D'} be two background contests shar-
ing the same set L of sentences. If p — —q clashes withr — s in K’ and r ks,
thenpfgq .
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Proof From the definition of default clashes, it follows by deduction that
r,5 . pA g and p,—g k r A —s. Furthermore, from r s and the first expression,
we can obtain r fp, = plk g, and therefore, by weak reduction, p & -rvgq.
Likewise, from the second expression we can obtain p,—¢ £ r, and then by weak
reduction, p £ r V g. Combining the two results by means of deductive closure,
p B g thus follows. »

Lemma 4.1 The quadruple (I, <,Ar, <) is a prioritized preferential structure
only if the pair (I, <) is a preferential structure.

Proof We know that for two interpretations M and M’, the relation M < M’
holds iff A[M] # A[M’], and for every § in A[M] — A[M'], there exists a &
in A[M'] — A[M], such that § < &, where ‘<’ is an irreflexive and transitive
relation which does not contain infinite chains. First, note that the relation ‘<’
is clearly irreflexive. We need to show that ‘<’ is also transitive. Let My, My,
and M; be three interpretations such that M; < M; and M, < M;, and let
Ay = A[M,), Ay = A[M,], and Az = A[M;). We will use the notation A to denote
the complement of a set A , i.e. A = Az — A. Moreover, we will find convenient
to denote the intersection of sets A of assumptions with indices 7,, %3, ..., in, by
simply writing A; 4, .i.. Furthermore, when one of the indices i is preceded by
a minus sign, the associated assumption set A; is supposed to be replaced by its
complement A;. Thus, for instance A;,_»3 stands for the intersection of the sets
Ay, Az and the complement A; of A,. Similarly, A_; » stands for the intersection
of A_l and AQ.

We need to show that for every assumption § in Ay _3, there is an assumption
&’ in A_; 3 such that § < &.3 Note that it is sufficient to prove this for every
mazimal element 6 in A; _3. Since ‘<’ does not contain infinite chains, it is clear
that for every non-maximal element §” in A; _3 there is a maximal element § such
that 6 < &. So, if § < § holds, by transitivity §” < § will hold as well. Hence, let
61 be an arbitrary maximal element in A; _3. We need to consider two main cases:

1. if 4; belongs to A _; 3, then §; must also belong to Ay, 3. Thus, since
M; < M;, there must be a §, in A_;; such that § < &,. Furthermore,
let 6; the maximal such element. If §; € A_; ;3 we are done. Otherwise,
02 € A_y2,_3 and then, since M, < M, there must be a &5 € A_33 such

3An equivalent proof can be found in [Przymusinski, 1987).
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that é; < 63. If 63 € A; _33, then from M; < M,, there should be a &4 in
A_; 3 such that 83 < 63, and therefore, §; < §;, in contradiction with the
maximality of é;. Thus, és € A_, 3, and é; < 83, by the transitivity of ‘<.

2. if 6, belongs to A; 3,_3, then, since M; < Ma, there must be a §3 in A_33such
that & < 83. Moreover, if §3 € A_;,_3 3 we are done. Otherwise, §; € Ay,_a3,
and therefore, as a result of M; < M,, there must be a §; in A_; 5 such that
63 < 62. Let §; be a maximal such element. if §; belongs to A; we are done.
Otherwise, 8; € A_; 2 _3, and therefore, there must be a 83 in A_, 3 such that
62 < &3. Furthermore, 6} cannot belong to A;; otherwise, there should be
another element §; in A_; 5, such that 8, < &}, contradicting the maximality
of 8. So, 63 € A_; 3 and §; < & by transitivity of ‘<.”

Lemma 4.2 For two models M and M’ of a theory T, if A[M] C A[M'], then M
is preferred to M’ (M < M') in every prioritized preferential structure.

Proof If A[M] C A[M'], then A[M] — A[M’] = 0, and the relation M < M’
holds trivially in every prioritized preferential structure. g

Lemma 4.3 If M is a preferred model of a theory T in a given induced preferential
structure, then M is minimal in Ay, i.e. there is no model M' of T such that
A[M') Cc A[M].

Proof Straightforward from lemma 4.2. 5

Lemma 4.4 Bound default theories are well-founded.

Proof In order to show that a bound theory T is well-founded, we appeal to the
notion of hitting sets in [Reiter, 1987b]. For a collection C of sets Ay, A, a
set A is a hitting set for C iff A includes an assumption 6 from every set A; in
C. If we let C stand for the minimal conflict sets in 7', then a necessary condition
for an interpretation M to be a model of T, is for the gap A[M] of M to include
a hitting set for C. Moreover, a model of T will be minimal iff A = A[M] is a
minimal hitting set for C. Also note that a bound theory T gives rise to a finite
set of minimal classes, and since the gap of every non-minimal class must contain
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a minimal hitting set for C, every class is either minimal or has a gap larger than
some minimal class.

Now, if T is logically inconsistent, the lemma follows trivially. So let us assume
that T is logically consistent and that it gives rise to a finite number n of minimal
classes. If a minimal model M, of T is not a preferred model of T in some prioritized
structure 7, there must be another minimal model M; of T which is preferred to
M. If M; in turn is not a preferred model of T in =, then there has to be another
minimal model M3 of T preferred to M; and so on. However, one such model
M; for © < n must be a preferred model of T in 7 because in the presence of n
minimal classes there cannot be a chain containing more than n minimal models.
So, if M is a minimal model of T', then either M is a preferred model of T in =,
or there must be a preferred model M’ of T such that M’ < M. Similarly, for a
non-minimal model M"” of T it follows from the remarks above that there must be
a minimal model M of T such that A[M] C A[M"], and therefore M < M'. Thus
from the result above, either M is a preferred model of T, or there is a preferred
model M’ of T such that M' < M < M".

Theorem 4.1 For o theory T = (K, E) over a finite propositional language, T
preferentially entails p only if T conditionally entails p.

Proof Note that if £ is finite propositional language the p-structure 7 = (I, <)
embedded in any prioritized structure (I, <,A., <) must be well-founded. We
further show that 7 is also admissible with K and hence, that if T does not
conditionally entail p, T does not preferentially entail p either. For that we need
to prove that for every default p — § in D, 6 holds in the preferred models of the
theory T = (K, {p}) in n. Let M’ be a model of T" in which & does not hold.
Thus, clearly, § € A[M’]. We construct a model M preferred to M’ in which é
holds. Since the preference order ‘<’ is well-founded, this is sufficient to prove that
6 holds in all preferred models of T". Let C stand for the collections of all minimal
conflict sets in T, and let C’ stand for the collection of all minimal conflict sets
A in T such that AN A[M'] = {6}. Since the priority ordering ‘<’ is admissible,
any such set A must contain an assumption § such that & < 6. Let A’ be the
collection of all such assumptions &', and let us select M as an interpretation which
satisfies T', with a gap A[M] = A[M’]| + A’ — {6}. From the results in the proof
of lemma 4.4 above, there must be one such interpretation as A[M] is a hitting
set for C. Indeed, any set in C not ‘hit’ by assumptions in A[M’'] — {§}; will
certainly be ‘hit’ by assumptions in A’. Thus, the relation M < M’ must hold, as
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A[M] — A[M'] = A’, A[M'] = A[M] = {6}, and for every & in A, the relation
6’ < 6 holds.

Theorem 4.2 For a pure background contest K over a finite propositional lan-
guage, K is p-consistent only if K is cd-consistent.

Proof The proof below relies on the correspondence between the p-consistency
of K and the presence of default rankings admissible with K (theorems 3.4 and
3.3, chapter 3), as in the particularity of pure theories, which permit a natural
translation of admissible default rankings o into admissible priority orderings ‘<’.
Indeed, if p; — &, ¢ = 1,2,...,n are the defaults in a pure background K, the
condition:

Pile=(p1 = 6)V(py = 8) V-V a(p, = 6,)
for some ¢, 1 < ¢ < n, is equivalent to the condition:
Pi |‘R‘|61 V“"52V"'V_|6n

Therefore, if o is a default ranking admissible with K, the priority ordering ‘<’
defined as 6; < §; iff o(p; — &) < o(p; — 6;), will also be admissible with K. g

Lemmas 4.6, 4.7, and 4.8, are special cases of the following theorem:

Theorem 4.3 An assumption & is conditionally entailed in o context T if and
only if 6 belongs to a stable cover in T.

Proof (only if part) We assume that T = (K, E) is a bound theory, and therefore,
that T is well-founded and there are only a finite number of preferred classes of
T. Let Aq, Ay, ..., Ay, be the mazimal sets of assumptions validated in each of
the preferred classes of T'. Clearly, § belongs to every such set. We show first that
the collection C of sets (arguments) A,,..., A, constitutes a stable cover. More
precisely, we show that if C is not a stable cover, there must be a preferred model of
T in which none of the assumption sets in C holds. Let us thus assume that there
1s a set of assumptions A’ which is in conflict with each of the sets Ay,...,A,, such
that no set A;,; 1 < ¢ < n, is strongly protected from A’. That means that there
1s a priority ordering ‘<’ admissible with K, such that for every i, 1 = 1,...,n,
a subset AY of A’ in conflict with A; can be found, such that AY £ A] holds for
every set A in A; in conflict with AY. Furthermore, let §7 be the assumption in Al
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for which the relation A < 6j fails to hold. With these assumptions we construct
a model M of T which validates all the assumptions in A’ and which among the
sets in the cover C, only falsifies the assumptions &!. There is one such model,
as every set A; in C contains one assumption & for every subset of A, in conflict

with A’

Now, M cannot be a preferred model of T', since M violates one assumption
of every set A;,...,An. Thus, since the theory is well-founded, there must be a
preferred model M’ of T such that M’ < M. Let us assume that M’ is a model
which satisfies every assumption in one of the sets A;, 1 <1 < n. Since A, is in
conflict with the subset AY of A’, M’ must falsify one of the assumptions in A
That is, some assumption 6” in A must belong to A[M'] — A[M]. The preference
of M’ over M, then requires the set A[M] — A[M’] to contain an assumption
6 such that & < 6. However, A[M] — A[M’] only contains the assumptions &/,
i =1,...,n,, selected in a way such that the relation A” < 6/ does not hold. Thus,
there cannot be preferred model M’, M’ < M, which satisfies all the assumptions
in A;; 1 €1 < n, and since M cannot be a preferred model of T, C must be a
stable cover in T.

Proof (if part) We show now that if § belongs to a stable cover Ay, A, ..., A,, in
a bound theory T' = (K, E), then § is conditionally entailed by T. Since T is a well-
founded theory it is sufficient to show that in any structure (Zc, <, Az, <)admissible
with K, for any model M which violates assumptions from every set A., : =
1,...,n, there is another model M’ which satisfies one of the sets A;, 1 < i < n,
such that M’ < M. Let A’ be the maximal set of assumptions sat1sﬁed by M.
Clearly, if there is a set A;, 1 < ¢ < n, not in conflict with A’ in T, then there
must be a model M’ of T which sat1sﬁes both A’ and A;, and therefore, which
1s preferred to M. Let us assume otherwise, that A is in conflict with every set
in the cover. Then, by the definition of stable cover, one of the sets A; must be
strongly protected £rom A'. That is, for every subset A’ of A’ in conflict with A;,
there is a subset AJ of A, in conflict with A’ , such that Al =< A?. That means
that every set A in A’ in conflict with A;, contains an a,ssumptlon 67, such that
6 < 6!, for an assumption 6/ in in A[M]. Let A” stand for the collect:on of those
. assumptlons 6;in A’. Then, it is possible to build a model M’ of T that satisfies
A; such that A[M’] — A[M] C A", and thus, for which the relation M’ < M must
hold. &

Theorem 4.4 (Main) A proposition p is conditionally entailed in a contezt T =
(K, E) if and only if p is supported by a stable cover in T.
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Proof Let A,,...,A, stand for the maximal assumptions sets legitimized by
each of the preferred classes of T'. From the proof of theorem 4.3 above, we know
that such a collection of sets constitute a stable cover in T. Furthermore, if p is
conditionally entailed by T', this means that T together with any of the sets A;,
1 <1 < n, logically implies p. So, p is indeed supported by a stable cover. Let as
assume now that p is supported by a stable cover Ay,..., A, in T. Again, from the
proof of theorem 4.3 above, we know that for every model M of T which satisfies
no set A;, there is a model M’ of T which does satisfy one such set, and hence,
since every such sets supports p, a model M’ which satisfies p. Thus, since we
are assuming I' to represent a bound, and therefore, a well-founded theory, this
amounts to say that p holds in all the preferred models of T'.

Theorem 4.5 For two sets of assumptions A and A’, the relation A' < A holds
in every priority ordering ‘<’ admissible with a consistent background K = (L, D)
if and only if A is included in a set that dominates the set of assumptions A’ in
K.

Proof Let us recall, that we use the notation A’ < A to state that for every & in
A there exists a 6’ in A’ such that & < § holds. Moreover, the relation ‘<’ among
sets of assumptions remains irreflexive and transitive, and therefore, asymmetric.
That is, for every priority ordering A £ A, and if A; < A; and A; < A; holds,
so does A; < As.

Let A stand for a collection of assumptions &, : = 1,...,n. We will use the
notation A,;, for ¢ < j, to stand for the set {&,6i41,...,6;}. I j > n, the
notation A;; is to be understood as A;,, and if i > n, A;; denotes the empty
set. We show that if A dominates a set A’ then the relation A’ < A must hold
for any priority ordering ‘<’ admissible with K. We show this by induction; the
base case Agy + A’ < Ay, first. Clearly, if A dominates A’ the assumption 6,
must d-dominate A;, + A’, and thus, A;, + A’ < § must hold. In particular, if
n = 1, we are done. So let us assume that n is greater than one. Furthermore,
let us assume as inductive hypothesis that Ay, + A’ < Ay, holds for every i,
1 <1 < n. We need to show the same relation for i = n, for which Ant1n = 0 and
A1n = A. By hypothesis, we have that {6,} + A’ < Ain-1, since A, = {6,}.
Let A4 stand for the set of assumptions in Arn-i, such that {6,} < A4 holds,
and let Ap stands for A;,_; — A4. Then, since the assumption §,, d-dominates
A+ A, there must an assumption & in A + A’, such that § < §,,. Furthermore,
¢’ cannot belong to A4, because {6} < Ay, and the relation < is asymmetric. So
there are two cases to consider. If §' belongs to the set A/, then by transitivity we
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would have A’ < Ay, and therefore, A’ < A;,,. On the other hand, if ' € Ag the
relation A’ < 6, must hold by transitivity on Ap, since the way Ap was selected
guarantees A’ < Apg to hold. Furthermore, by transitivity on 8,,, A’ < A4 must
hold as well, and therefore, A’ < A; , and A’ < A must hold as well.

The proof for the ‘only if’ part of the theorem is slightly more involved. We
need to show that if the relation A’ < A holds for every admissible ordering with
a (conditionally) consistent background context K, then A is part of a set that
dominates A’. Let us first divide the assumptions in A, between those which
participate in a set that dominates A’, which we group in a set A, from those
which do not participate in a set that dominates A’. Furthermore, let Ag =
A'— Ay, and Ag = Ag— Ay — Ap. Note that Ag cannot be empty, otherwise A4
would dominate itself, precluing X from being consistent. Note also, that if two
sets dominate A’, so will their union. It follows then that A, dominates A’. Our
goal will be to show that A is included in A4. For that we will show that there
is a priority ordering ‘<’ admissible with K, such that the relation A’ < & holds
only if 6 € Ay,.

Let us say that a priority ordering ‘<’ in a background context K is admis-
sible within a range A and a restriction A’ iff every set A” d-dominated by an
assumption § in A contains an assumption & in A’, such that §' < § holds. The
notions of range and restriction provide a finer measure of the admissibility of a
priority ordering. In particular, an admissible priority ordering, must be admissi-
ble within a range A, and a restriction Az. Furthermore, if a priority relation ‘=<’
is admissible within a range A; and a restriction A,, for two sets Ay and A, such
that A; + Ay = Ay, then there must be a priority relation ‘<’ admissible within a
range A; and restriction A, such that §; < §; holds only if §; € A; and &, € A,.
Indeed, if ‘<" is a priority relation admissible within a range A; and a restriction
£z, the relation that results by deleting all pairs 6; ¢ A, and §; € A, for which
61 <’ 63 holds, remains irreflexive, transitive, and admissible.

Now, let us assume that there is no priority ordering admissible within a range
Ac and a restriction Ag, for Ag as above. By arguments similar to the ones
about default clashes in section 3.5, it is possible to show then, that there must be
a non-empty subset A of A¢ such that each assumption §' € Al d-dominates the
set AL + Ag, where Ag stands for the set of assumptions not in Ag; in this case,
A4+ Ap. This, however, amounts to say that A dominates the set Ay + Ap,
which by virtue of the dominance of A4 over A’ and the inclusion of Ap in A,
implies that A, dominates A’ as well, in contradiction with the maximality of
Ay4. Thus, there must be a priority ordering ‘<’ admissible within a range Ac
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and a restriction Ag, such that § <¢ § holds only if § and & both belong to
Ag. Furthermore, since K is consistent, there must be a priority ordering ‘<4’
admissible within range A4 and restriction Az, such that § <4 § holds only if &
belongs to As. We can thus define a relation ‘<’ such that § < § iff [6 <4 &)
or [6 <¢ 8 or [6 € Agand & € Ay + Ap]. It is simple to show that such a
relation is a priority relation, and that it is admissible within a range A4 + Ac.
Let us assume, on the other hand, that ‘<’ is not admissible within a range Ag.
That is, there is an assumption 6 in Ap which d-dominates a set A% for which the
relation A < 4 fails to hold. Note that Ay cannot contain elements from A¢; for,
otherwise, the relation A% will certainly hold. Thus, Ay C A4 + Ap, so that §
d-dominates A4+ Ap. That means, however, that the set A4 + {6} dominates the
set A, in contradiction with the assumption that A, is the maximal such set. So,
the ordering ‘<’ must be admissible within the range Ap as well, and so ‘<’ must
also be a priority relation admissible with K. Since A’ < A holds by hypothesis,
and A’ < ¢ holds only if § € Ay, it follows that A belongs to a set, A4, which
dominates A’. y

Theorem 4.6 An assumption & is conditionally entailed in a a contert T , if for
every argument A’ against &, there is a set A, § € A, that dominates A’.

Proof The dominance A over A/, implies A’ < §, for every assumption é in A
and every admissible priority ordering ‘<’ (theorem 4.5). The assumption § is
thus protected from every conflicting set A’ in T, and thus by lemma 4.8, 6 is
conditionally entailed by T'.

Theorem 4.7 For finite propositional languages, all the rules of P are sound rules
of conditional entailment.

Proof We have shown in chapter 3 that rules 1-5 of P are sound with respect
to preferential entailment (theorem 3.2), and in this chapter that preferential en-
tailment is sound with respect to conditional entailment for finite propositional
languages (theorem 4.1). The theorem thus follows from the soundness of the
irrelevance rule established in theorem 4.6.

In the proofs below, we use the symbols N, N’ and N" to stand for sets of
non-causal atoms, and C[N], for N = U;{e;}, to stand for the set of causal atoms
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C[N] = U;{Cai}. A set of atoms C[N] + N’ will thus denote a Herbrand inter-
pretation which satisfies the causal atoms in C[N] and the non-causal atoms in
N'. We use the notation Ry, for a collection of rules R, to stand for the set of
rules in R which contain no negative literal ~« for no atom « in N. Likewise, R}
will denote the collection of rules that result from removing the negative literals
from the bodies of the rules left in Ry. Finally, C[T; M] will denote the class of
Herbrand models of T with an atomic gap M. Namely C[T; M] will stand for the
collection of models C[N]+ N’ of T such that N' C M.

Lemma 5.1 M is a stable model of an arbitrary program P if and only if Car is
a perfectly coherent class of the causal theory C[P].

Proof We prove the lemma by showing the equivalence between the following
conditions:

1. M is stable model of P

2. M is a minimal model of P

3. C[M]+ M is a minimal model of C,[P]},
4. the class C[C;[P]},; M] is perfectly coherent

S. the class C{C;[P); M] is perfectly coherent

The correspondence between (1) and (2) is the definition of stable models {Gelfond
and Lifschitz, 1988]. For the correspondence between (2) and (3), note that a
Herbrand interpretation N is a model of Py iff C[N] + N, for some set N’ D N,
is a model of C1[P]};.* Indeed, the theory C;[P]}, only contains rules of the form
Cay A+ A Cay = Cx, for positive literals a; and v and, furthermore, for each
such rule there is rule v « a1,...,0, in P3f, and vice versa. The equivalence
between (2) and (3) thus follows: N is a minimal model of Py iff C[N]+ N is a
- minimal model of Cy[P]},. Furthermore, C[N] + N is a minimal model of C, [Pl

iff the class C[C1[P]y;; N] is perfectly coherent. Indeed, for any model C [N']+ N”
in C[C\[P]};; N, the relations N” C N and N’ C N” must hold. The first, due to
gap of the class; the second due to the constraint on the causal operator C. Hence,
if C{N]+ N is a minimal model, the relation C[N] C C[{N’] must hold as well.

“We are assuming here that the only constraint on the causal operator C, is [C1]; namely,
that every model of Ce is also a model of o.
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Otherwise, we will get C[N'] C C[N] and that the model C[N]+ N is not minimal.
Likewise, if for every model C[N']+ N” in C[C:[P]};; N] the relation C[N] C C[N]
holds, then C[N]+ N must be a minimal model. Thus, we have the equivalence
between (3) and (4). We are left then to show that the class C[Ci[P]3,; M] is
perfectly coherent whenever the class C[Cy[P]; M] is. For that it is sufficient to
show that both classes contain the same models. First, since perfectly coherent
classes are minimal, models in either class C[Cy[P]},; M] or C[C1[P]; M], will have
the form C[N] + M. Moreover, any such interpretation will satisfy the theory
C1[P)}; iff it satisfies the theory C; [P]. Indeed, a rule in C;[P] with a negative
literal e, such that « € M, is automatically satisfied by C [N]+ M. On the other
hand, a rule in C,[P]

CC!lA"-/\CC!nA"'lﬁI/\'-'Aﬁm=>C‘T

in which no negated literal §; belongs to M, is satisfied by C[N ]+ M iff a corre-
sponding rule

Coy A--- A Ca, = Cy

in C1[P]}, is. So both classes C[C1[P]3s; M] and C[C,[P}; M] contain the same
models, and thus, one is perfectly coherent only if the other is. Since Cuy in the
lemma is simply an abbreviation for C[C,[P]; M}, the lemma is thus proven. g

Theorem 5.1 Let P be a stratified program. Then M is the canonical model of
P if and only if Cr is the single causally preferred class of C, [P].

Proof Let us recall that for a class C of a theory 7T, A[C] denotes the gap of C,
and A°[C] the explained gap of C. Moreover, for two classes C and C’ of T,Cis as
(causally) preferred as C’ if A[C] — A°[C] C A[¢], and C is (causally) preferred to
C’ if C is as preferred as C’ but C’ is not as preferred as C. Likewise, a perfectly
coherent class C of T is a class for which A[C] = A°[C]. Now, for a stratified
program P, the canonical model M of P and the single stable model of P coincide
[Gelfond and Lifschitz, 1988, Van Gelder et al., 1988]). As a result of lemma 5.1
then, M is a canonical model of P iff the class Cps of models of C\[P] with an
atomic gap M is a perfectly coherent class. Moreover, the class Cu, having an
empty unexplained gap, is as preferred as any other class of C; [P]. To prove the
theorem, thus, we only need to show that there is no class Cpy of T, with M’ £ M,
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which is as preferred as Cpy. We will write the relation a; < a3, for two atoms
o and a; with predicates p; and p;, respectively, when the dependency graph of
P contains a path connecting p; to p; which includes a negative link.® Since P is
stratified, the relation ‘<’ must be a strict partial order. So, let o be a minimal
element in M’ — M relative to the order ‘<’. For the class C}, to be as preferred
as Cps, the atom o must have an explanation in Cpyr. We show that there must
be a set of atoms ay,...,a, not in M, such that Cy[P), ~ay,...,~a, F Ca, and
a; < @, for 2 = 1,...,n. Indeed, by arguments similar to the those in the proof
of lemma 5.1, if Cer holds in the class Cj;, Ca must also be a logical consequence
of the positive causal theory C,; [P]L,. In that case there must be a proof for Ca
in C1[P]3,, involving only rules with Ca in their heads, or rules that precede some
of these; where a rule with head H precedes the rules with H in its body, and
any other rules the latter rules precede. Thus, the literals ~ay,..., ~a, can be
selected, for instance, as the literals which removed from C; [Py, span a set of the
rules in Cy[P]},, which legitimize one such proof.

Now, one of the atoms a; must belong to M; otherwise, @ would belong to M
as well. So, let o; be an atom in M. Since Cps is a perfectly coherent class, such
an atom must also have an explanation in Cps. By arguments similar to the ones
above, there must be a non-empty set of atoms o, ..., a,. not in M, such that
Ci[P],nol, ..., nay,, F Coy, and a; < o; holds, for j = 1,...,m;. Furthermore,
in such case, on such atom &, 1 < j < m; must now belong to M’; for, otherwise,
the atom a; could not be false in M’. This, however, contradicts the minimality of
@, as both o < o; and ¢; < @ hold. Thus, there cannot be a class Cjs as preferred
as Cpr in Cy[P], and thus Cps is the single causally preferred class. u

Theorem 5.2 For g stratified program P, there is a single induced causal model
which is identical to the canonical model of P.

Proof Let C[T; M] stand for a class of T with an atomic gap M. We have shown
above that C[Cy[P]; M] is a perfectly coherent class of the causal theory C; [P],
for a stratified program P with a canonical model M. Moreover, since the set of
non-causal atoms satisfied by any model in C[Cy[P]; M] is identical to M, every
interpretation in C[C:1[P]; M] is also a model of C;[P]. Furthermore, since every
model of C3[P] is a model of Cy[P] as well, the class C[C;[P]; M] contains the same
models as the class C[C1[P]; M], and therefore, C[C,[P]; M] is perfectly coherent,
and thus, a preferred class of C;{P]. Moreover, it has to be unique preferred; for if

5See [Apt et al., 1987], for the relevant terminology.
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C[C,[P]; M'], with M' # M, is as preferred as C[C[P); M), so C[C1[P]; M'] should
be as preferred as C[C}[P]; M]. Indeed, an atom « in M’ — M, is explained in class
C[C2[P]; M'] iff Cex is a logical consequence of the theory C3[P]},,, and since the
logical consequences of Cy[P]};, and C,[P]i,, are identical, a will also be explained
in the class C[C[P]; M’]. Thus, for a stratified program P, C[C,[P]; M] is the
single causally preferred class iff M is the canonical model of P, and thus, M is
the single induced causal model of P. 4

Theorem 5.3 Let P be an acyclic program. Then the class Cpr, where M is the
canonical model of P, is the unique causally preferred class of the theories C, [P],

Cy[P] and Cs3[P).

Proof Since an acyclic program is a stratified program, in light of the results
above, all we need to show is that Cjs is the single preferred class of C3[P]. Fur-
thermore, recall that if

Yo,y 0m, B DB
1s a rule in P,
CayA...ACan A= AL..A=B, = Cy
will be the corresponding rule in C,[P], and
ar A Aan ABL AL A B = Cy

will be the corresponding rule in C3[P]. Thus, models of C3[P}] are models of C; [P]
and, if M is a model of P (without causal atoms), C[M]+ M will be a model of
Cs[P]. So the collection of models of C3[P] with a gap M is not empty, and since,
they also belong to the perfectly coherent class C[C;[P]; M], all support the truth
of the causal atoms in C[M]. Thus, Cy = C[C5[P]; M] is a perfectly coherent
class, and thus, a preferred class of C3[P]. We need to show then, there is no class
Chr =€[C3[P]; M’], with M’ # M, as preferred as Cps. So, let us assume otherwise
that Cj, is as preferred as Cps, and let us write oy < @, for two atoms oy and as
with predicates p; and p, connected by a (non necessarily negative) directed path
in the dependency graph of P. Since the program is acyclic, it is then possible to
select an atom a in M’ — M, which is minimal relative to such order. Moreover,
since the class C}, is as preferred as the class Cpy, it follows then, that Chr must
explain a. Namely, C3[P] must contain a rule:
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ag Ao A AL AL NS, = Ca

such that every positive literal o; and negative literal —=3; hold in C},. Indeed,
since C3y must be a minimal class, each non-causal atom holds in a model in €},
if and only if it belongs to M’. Furthermore, since @; < a, for { = 1,...,n, and
a is a minimal atom in M’ — M, it follows that every such positive antecedent
a; of a must also belong to M. Then, since & does not belong to M, one of the
atoms §;, 1 < ¢ < m, must belong to M — M’. So let o be the minimal element
in M — M/, such that o’ < B;. Such atom o' must then be explained in the class
Car, and therefore, C3[P] must contain a rule:

ey A Aep ARBIA L A=BL = Cd

in which every antecedent ¢ and —f3; holds in Cps. Furthermore, no B,1<j<my
may belong to M’ since 8} ¢ M and B; < & < B; < a. On the other hand, every
atom o} must also belong to M’, given the minimality of a’. So, every antecedent
e; and —f; of o’ holds in every model in the class C};, contradicting the assumption
that o' does not belong to M’. Thus, there cannot be a second causally preferred
class Cj, for a causal theory C3[P] for an acyclic program P, and thus, Cps is the
single preferred class of C3[P).
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