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ABSTRACT

Connectionist networks have been unable to perform
high-level conceptual tasks because of their inability to
handle the variable binding and inferencing problems.
This paper proposes the use of artificial neural oscillators
in a localist network to approach these problems. In this
model, groups of relaxation oscillators with unique
patterns of natural oscillation frequencies serve as
signatures to identify the concepts bound to an escillator
“variable”. Inferences are made as the frequency signatures
representing variable bindings propagate across chains of
phase-locking oscillalors.

1. INTRODUCTION

Understanding natural language is a difficult task, often re-
quiring a reader to make multiple inferences to understand the
motives cof actors and to connect actions that are unrelated on
the basis of surface semantics alone. An example of this is the
sentence:

“John put the pot inside the dishwasher because
the police were coming.” (S1)

A complex plan/goal analtysis of $1 must be made to under-
stand the aciors’ actions and disambiguate “pot” to Marijuana
by overriding the local context of “dishwasher”. This requires
the ability to represent dynamic role-bindings and quickly
propagale them for inferencing while combining contextual ev-
idence to perform the disambiguation.

I.1. Distributed Spreading-Activation Networks

Distributed connectionist models, such as those of [McClel-
land & Kawamoto, 1986] and [Touretzky & Hinton, 1988], have
lately been receiving much interest, in part because their mas-
sively parallel networks of simple processing elements suggest
correspondence with the way information is processed in the
brain. Despite this attention, no distributed network model has
yel exhibiled the ability to handle natural language input hav-
ing complexity even near to that of S1. The primary reason for
this current lack of success is the inability to perform dynamic

1To appear in the Proceedings of the International
Workshop on Neurocomputers and Attention, Moscow,
USSR, September 18-22, 1989.
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role-bindings and to propagate these binding constraints during
inferencing. Distributed networks, furthermere, remain sequen-
tia} at the knowledge level {i.e. can select and fire only one rule
at a time) [Dyer, 1989] and lack the representation of structure
needed to handle complex conceptual relattonships [Feldman,
1989].

1.2. Localist

Localist spreading-activation models, such as those of [Col-
trell & Small, 1982], [Waltz & Pollack, 1985], and [Shastri,
1988], alsc use massively parallel networks of simpic
processing units. Knowledge is represemied in localist
networks by simple computational nodes and their intercon-
nections, with each node standing for a distinct concept.
Activalion on a conceptual node represents the amount of ev-
idence available for that concept in the current coniext.

Spreading-Activation Networks

Unlike distributed networks, localist networks are parallel at
the knowledge level and are able to represent structural relation-
ships between concepts. Because of this, many different infer-
ence paths can be pursued simultaneously; a necessity if the
speed of language undersianding exhibited by people is 1o be ac-
counted for,

Unfortunately, however, the evidential activation on the
conceptual nodes of previous localist networks gives no clue us
to where that evidence came from. Because of this, previous lo-
calist models have had no more success than distributed mocdels
at handling dynamic, non-local bindings — and thus remain un-
suited to higher-level knowledge tasks where inferencing is re-
quired.

2. A VALUE-PASSING MODEL: ROBIN

RopIN (ROle Binding and Inferencing Network), introduced
in [Lange & Dyer, 1988, 1989a] and explained in detail in
[Lantge & Dyer, 1989b}, is our localist spreading-activation
model that retains the advantages of previous localist ap-
proaches but, in addition, handles dynamic role-binding for in-
ferencing. Nodes in ROBIN's network are simple computational
elements, whose activaton represents one of iwo things:

Evidential activation — Activation that indicates the
likelihood that a concept is selected in the current
context.

Signature activation — Uniquely-identifying activation
that represents and allows the propagation of dy-
namic role-bindings for inferencing.

ROBIN uses structured connections of nodes using both evi-
dential and signature activation to encode frames [Minsky.
1975]. EBach frame (schema) has one or more role nodes, wilh
each role having expectations and logical constraints on its
fillers. Every frame can be related 1o one or more other {rames,
with pathways between corresponding roles for inferencing.
Evidential and signature activation spread [rom frame to related
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Figure 1. Overview of a ROBIN semantic network showing inferences dynamically made after 81 has been presented

Bindings of frame roles have been

Thickness of frame boundaries shows the amount of evidential activation for the frames.
realized through propagation of signature activation. Darkly shaded area indicates the most highly-activated path of frames
representing the most probable plan/goal analysis of the input. Dashed area shows the discarded dishwasher-cleaning
Frames outside of both arcas show a very smal) portion of the network that received no evidential or

interpretation.
signature activation from either phrase.

frame when the constraints on their role fillers are met, thus
automatically instantiating other frames and performing the

processes of inferencing and frame selection.
For instance, in order to understand the sentence”John put

the pot inside the dishwasher because the police were coming.”,

RoBIN makes the following inferences:

If the police see John's marijuana, then they will

I1:
know that he possesses an illegal object (since
marijuana is an illegal substance).

I2: If the police know that John is in possession of an

illegal object, then they will arrest him, since
possessing an illegal object is a crime.

I3: John does not want to get arrested.



14: John has the goal of stopping the police from
seeing his marijuana.

I5: The police coming results in them being near John
and his marijuana.

I6: The police being near John's marijuana enables
them to see it.

I7: John’s putting the marijuana inside the dishwasher
results in the marijuana being inside the dishwasher.

I8: The marijuana is inside an opague object (the dish-
washer).

I9: Since the marijuana is inside an opaque object, the
pelice cannot see it, thus satisfying John's goal.

Figure 1 shows a segment of the semantic network embedded
in ROBIN after input for sentence S1 has been presented. The
network has made inferences 11-19, with most being shown in
the figure. For example, I8 (the inference that the Marijuana is
inside of an opaque object) is represented by the instantiation of
state Inside-Of-Opaque. The role-bindings of the frames
shown were instantiated dynamically with signature activation,
with the final interpretation selected being the meost highly-
activated gvidentjal path of frames inside the darkly shaded area.

2.1. The Structure of RoRIN

The processing units in ROBIN's networks each perform a
simple computation on their inputs: summation, summation
with thresholding and decay, or maximization. The connec-
tions between units are weighted and either excitatory or in-
hibitory.

As in previous localist models, ROBIN’s networks have a
node for every known concept in the network. Relations be-
Iween concepts are represented by connections between their re-
spective nodes, with the activation of a node corresponding to
the amount of evidence (evidential activation) that exisis in the
current context for that concept. ROBIN's networks, however,
have additional structure to represent dynamic role-bindings and
to handle inferencing.

2.2. Signature Activation In RopIx

As mentioned earlier, every conceptual node in ROBIN’s lo-
calist network has associated with it an identification node
broadcasting a stable, uniquely-identifying activation pattern,
called its signature. A dynamic binding is created when a role’s
binding node has an activation that matches the activation of
the bound concept’s signature node.

For instance, in Figure 2, the viral binding of the Actor
role node of action Transfer-Inside to John is represented by
the fact that its binding node, the solid black circle, has the
same activation (3.1) as John's signature node.

2.3. Propagation of Signatures For Inferencing

The most important feature of ROBIN’s signature activations
is that the model passes them, as activalion, across sometimes
leng paths of binding nodes to handle the non-local role-
bindings necessary for inferencing. Figure 3 illustrates how the
structure of the network automatically accomplishes this in a
ROBIN network segment that implements a portion of the se-
mantic network of Figure 1.

In Figure 3, the virtual binding of the Object role of frame
Transfer-Inside to objects Marijuana and Cooking-Pot (from
the phrase “John put the pot inside the dishwasher”) is repre-
sented by the fact that its corresponding binding nodes have the
same activations (6.8 and 9.2) as the objects’ signatures.
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Figure 2. Several concepis (ovals) and their uniquely-
identifying signature nodes (rectangles) are shown,
along with the Actor tole of the Transfer-Inside frame.
The Actor role has a virtual binding to John because its

hinding node (black circle) has the same activation (3.1)
as John's signature.

Each of the binding nodes calculates its activation as thc
maximum of its inputs, thus allowing the signature activations
1o be propagated and preserved across the paths between the cor-
responding roles of related frames. For example, in Figure 3,
the signature activations have reached the binding nodes of
Inside-Opaque’s Object, showing that the network has inferred
that either Marijuana or Cooking-Pot might be inside of some-
thing that is opaque (the dishwasher). The greater evidential ac-
tivation of Marijuana (thicker oval) reveals the currently pre-
ferred interpretation of “pot”.

2.4. Selection of Ambiguous Role-Bindings

Note that a/f ambiguous meanings of a word are bound to a
role with signature activation (Figures 1 and 3). The netwerk’s
interpretation of which binding is selected at any given tme is
the binding whose concep! has greater evidential activation.
Because all candidate bindings propagate in the network, with
none being discarded until processing is completed, ROBIN is
able to handle meaning re-interpretations without resorting to
backtracking. For further details on the use of signature activa-
tion for role-bindings see [Lange & Dyer, 1989b].

During the interpretation of St, Cooking-Pot initially re-
ceives more cvidential activation than Marijuana by connec-
tions from the highly stereotypical usage of the dishwasher for
the Clean goal. The network’s decision between the two candi-
date bindings at that point would be that it was a Cooking-Pot
that was Inside-Of the Dishwasher. However, reinforcement
and feedback from the inference paths generated by the Police's
Transfer-Self eventually cause Marijuana to win out. The final
selection of Marijuana over the Cooking-Pot bindings is repre-
sented simply by the fact that Marijuana has greater evidential
activation. The resulting most highly-activated path of nodes
and non-local bindings represents the plan/goal analysis in
Figure 1. A more detailed description of ROBIN's network struc-
ture and capabilities can be found in [Lange & Dyer, 1989b).

3. SYNCHRONIZABLE OSCILLATORS

The vast majority of connectionist models employ value-
passing processing elements that calculate a binary or continu-
ous activation based upon a function of their inputs. Their acli-
valion is passed through an output function to produce a numeric
output which becomes the inpul to other nodes. These value-
passing elements and their connections have been “neurally-
inspired” [McClelland & Rumelhart, 1986], with their numeric
outputs likened to a simple “frequency-coded” representation of
real neurons’ action potential activity.



Figure 3. Simplified ROBIN network segment showing paralle]l paths over which evidential activation (bottom plane)
and signature activation (top plane) are spread for inferencing. Signature nodes (rectangles) and binding nodes (solid black
circles) are in the top plane. Thickness of conceptual node boundaries (ovals) represents their level of evidential activation
after quiescence has been reached for sentence S1. (The names on the nodes are not used by ROBIN in any way, being used
simply to set up the network’s structure initially and to aid in analysis.)

3.1. Neurophysiological
Inspiration

Background and

While the neurophysiological plausibility of connectionist
models is open to debate, it may be peinted out that many of the
valuable timing dynamics of real neurons are lost when the pop-
ular frequency-coded simplification is used. The importance of
precise action potential timing and phase relationships between
neighboring neurons has been illustrated in several studies.

Of particular interest here are the dynamics of groups of neu-
rons that act as neural oscillators, generating stable paiterns of
spike trains. An example of this has been shown by [Segundo
et al., 1964}

“The mechanism described determines stable
patterns in which, over a clearly defined frequency
range, the output discharge is locked in phase and
frequency...” [Segundo et al., 1964]

The interactions of neighboring neural oscillators are par-
ticularly siriking. The output of an oscillator receiving a strong
input, either excitatory or inhibitory, from a neighboring oscil-
lator will often adjust its timing until its output spikes are
locked in both phase and frequency with its input [Segundo &
Kohn, 1981]. This kind of synchronization is lost in the
simple value-passing elements of traditional artificial neural
networks.

Our new model employs retaxation oscillators that approxi-
mate some of the complex timing dynamics of their neural coun-
terparts. We do not make any claims about the neurophys-
iological plauvsibility of our model, but do utilize some of the
gross features of real neural oscillators as an improved mecha-
nism for dynamic role-binding and inferencing.

3.2. A Model of a Relaxation Oscillator

Figure 4 shows a simple model of a relaxation oscillator of
fVidal & Haggerty, 1987]. In a coarse approximation to similar
mechanisms in real neurons, the relaxation oscillator accumu-
lates activation energy umtil a threshold (E¢) is reached. At
that point the stored energy is abruptly released, accompanted
by a brief output spike.

Activation
Eneray E(1)
Excitatory
or
Inhibitory
Input

input perturbation *
Ug (1-13

Internal
Energy Input

Output

Figure 4. Relaxation Oscillator with perturbation input.

As shown in Figure 4, each relaxation osciliator possesses
its own constant rate of energy influx, a. In absence of any ex-
ternal inputs, the oscillator will fire with the namral period:

Ec

T=—
a



Between spikes, when external input in the form of input
pulses at time ti arrives, the activation energy of the oscillator
is calculated by:

J
E(t - tg) = a(t - tg) + ZWj'uo(t -t 5 E £ Ee
1

where tgy represents the instance of the last firing of the cell,
tj, (¢ = 1,2,..J), the instants of pulses arriving from other
cells, wj the mput weight for pulse j, and ug(t) represents the
unit impulse at t=9.

3.3. Phase Locking

Two oscillators that are phase-locked, or synchronized, with
each other, fire with the same period at a constant phase apart.
[Vidal & Haggerty, 1987] showed how a masier-slave relation-
ship between two relaxation oscillators forces the slave os-
cillator to synchronize with its master. In Figure 5, master os-
cillator A (having natural period T o) inhibits oscillator B
(having natural period TR). The energy increment or decrement
infroduced by the arrival of an input pulse is a function of its
relative arrival time with respect to the last output firing. As a
result of this, regular inhibitory spikes from A causc the phase
of B to self-adjust until an equiltbrium is reached with new pe-
riod TA. The precise value of the inhibitory connection’s
weight affects only the phase with which B's output spikes fol-
low A’'s, and not its ability to take on A’s firing frequency.

I R P
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Figure 5.
oscillator (B), the driven oscillator will tend 1o phase-
lock with the first by taking on its natural period. Each
upward-pointing arrow represents a single output spike.

When one oscillator (A) drives another

In general, the synchronization dynamics presenl an altrac-
tor for cach rational frequency pair. This type of multiple
phase-locking has been demonstrated in living invertebrate
neurons [Segundo & Kohn, 1981], as well as in simulations.

4. SYNCHRONIZABLE OSCILLATORS FOR
ROLE-BINDING

The two critical features of ROBIN’s signature activations are
that they serve as stable patterns to uniquely identify concepts
and that they can be propagated across long paths of binding
nedes to allow dynamic role-binding and inferencing.

As previously described, ROBIN uses simple value-passing
elements similar to most other artificial neural networks. A
concept’s signature is produced by a signature node that outputs
a constant numeric value that is unique to that signature. To al-
low signatures to propagate, binding nodes are elements whose
aclivation and output are equal to the maximum of their inputs,
with each input connection having unit weight. Signature acti-
vations are thus preserved as they are propagated across paths of
binding nodes for inferencing (as in Figure 3).

We can casily envision how the nodes over which evidential
activation pass could be "implemented” in neural-like hardware.
Since their activation serves only as an approximate measure of
how likely a concept is in the forefront of memory in a given

context, it is not necessary for them to exactly calculate the sum
of their inputs. A simple integration of their input evidence
will easily suffice, with levels of activation represented by
frequencies of output firing.

As we examine the model further, however, the binding
nodes that exactly calculate the maximum of their inputs appear
more nettlesome. It is critical that these nodes calculate the
maximum of their inputs exactly, and that their inputs all have
precisely unit weight. A small deviation from either unit input
weight or perfect maximum calculation will cause different lev-
els of activation; therefore possibly representing a differcnt
signature and hence tole-binding. The accumulative effect of
such noise as signatures are passed along long chains of bind-
ing nodes could be devastating to the inferencing process, even
if there is a margin of error between signatures. Small errors in
signaturc propagation would become less troublesome if
signatures were distributed patterns of activation rather than
single numbers, as we proposed in [Lange & Dyer, 1988,
1989b], but the problem would still remain.

4.1. Relaxation Oscillators for Signatures and
Bindings
We have developed an extension of ROBIN whose elements
communicate via action potentials rather than the simple valucs
characteristic of most connectionist models. Synchre-Rosin
uses relaxation osciltators to both produce its concept-identify-
ing signatures and propagate them across long paths of nodes
for dynamic role-binding and inferencing. The complex dynam-
ics of action potential timing actually increases the model’s
resistance to noise.

Synchro-ROBIN uses a separate relaxation oscillator for each
signature-producing node. Each signature oscillator has a
characteristic level of internal energy influx or firing threshold
so that the natural frequency at which it produces output spikes
is different than every other oscillator signature, The signature
oscillators are cut off from external input during the short-term
inferencing process so that they may produce output spikes at
their natural frequencies.

Binding nodes in $ynchro-ROBIN are also relaxation oscilla-
tors. A virtual dynamic binding is made when a binding oscilla-
tor is locked in phase with an oscillator signature.

In Figure &, the virtual binding of the Actor role of action
Transfer-Inside is represented by the fact that output spikes of
its binding oscillator are temporarily locked in phase with the
signature oscillator of John.

As in ROBIN, the oscillator signaiures of Synchro-ROBIN are
passed across long paths of interacting binding oscillators to
handle inferencing. In Figure 7, the left binding oscillator of
Transfer-Inside’s Object role is locked in phase with the signa-
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Figure 6. Several concepts and their uniquely-identifying
signature oscillator (light grey circles). The binding
oscillator (dark grey circle) of the Actor role is a relax-
ation oscillator focked in phase with the signature fre-
quency of John, thus representing the binding.
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Figure 7. Simplified Synchro-ROBIN network segment shows parallel paths over which eviden[iz}l a}ctivali(?n and
oscillator signature activation are spread for inferencing. Signature oscillators (light grey circles) and binding oscillators
(dark grey circles) are in the top plane. The rest of the figure is the same as Figure 3, with outputs after quiescence has been

reached in processing of sentence 51.

ture oscillator of Marijuana, representing the virtual binding
from the phrase “John put the pot inside the dishwasher”. Once
it is locked in phase, an inhibitory connection from it to the re-
lated left binding oscillator of Inside-Of's Object role causes
that oscillator to lock in phase, making the inference that the
Marijuana may be Inside-Of something. Similarly, the com-
peting oscillator signature bindings of Cooking-Pot are spread
across the parallel paths of the right binding oscillators. The
oscillator signatures continue to propagale, through synchro-
nization of corresponding binding oscillators, until stability is
reached and the inferences of Figure 1 have been made.

4.2. A More Detailed Look

There are a couple of special concems when using relaxation
oscillators as signature frequencies for role-binding. First of
all, as shown by [Vidal & Haggerty, 1987], the dynamics of
oscillator synchronization presents an attractor for each
rationally-valued frequency pair, forming a “devil’s staircase” of
stability regions. These stability regions become smaller as
the ratios become larger or smaller than unity. Since we are in-
terested in preserving the signature frequencies, the natural fre-
quencies of the signature oscillators and the binding oscillators
must be in a close enough range that their frequencies are locked
in phase on a 1:1 basis.

A difficult problem is caused by the nature of inferencing. In
general, the filler of a role can be inferred in several ways, The
fact that a Cooking-Pot is inside of a dishwasher, for example,
can be inferred from either the knowledge that somebody was
putting it inside the dishwasher or that the
$Dishwasher-Cleaning script was being used 1o clean it. Figure
& illustrates the problem of two binding oscillators (A and B)
feeding in as possible inference paths for another (),

The problem is that the dynamics of oscillator attraction
will often fail when two oscillators feed into another, even if
both driving oscillators are themselves locked in phase. The
extra inhibition may cause the receiving oscillator to either

lock into an output frequency slower than both inputs or o
reach no stable frequency at all.

A

Cc

Figure 8. The binding of binding oscillator C can be in-
ferred from either binding A or binding B.

In natural language understanding, however, it is generally
observed that one frame will not be inferred from two others a1
exactly the same instance in time. In sentence S1, the fact that
the Marijuana was Inside-Of the dishwasher was first inferred
from the fact that it was Transter-Inside of it. What is neces-
sary, then, is to shut off the alternative inference paths once the
inference (phase-locked signature oscillation} has been made.

Figure 9 shows the excitatory and inhibitory connections
between the binding oscillators of Figure 8 to guarantee a single
phasc-locking at once. Synchro-ROBIN’s binding oscillators
are modified rclaxation oscillators that do not have their own
internal energy input. They are therefore naturally quiescent
when they are not bound to a signature frequency. Instead, they
have a gated excitatory input {link 1) from an external oscillator
(D) that is naturally firing at a very rapid rate. The weighted
excitatory synapse from this oscillator, when active, acts as the
internal energy input for the binding oscillator.



Figure 9. Interaction between the binding oscillators of
Figure 8 used to assure gating of only one phase-locking

at a time. Solid black triangular connections are strong
imhibitory connections, while white triangular connec-
tions are excitatory.

When neither A nor B are active, C cannot be inferred and so
should itself remain inactive. Since the galed external input
link from D to C (link 1) can only be active when it receives ad-
ditional excitatory input from A (link 2) or B (link 3), C will
not receive its “internal energy input”, and will indeed remain
inactive and non-firing.

Consider now what happens when binding oscillator A be-
comes locked in phase (from some other inference), while B re-
mains inactive. First, the gated connection from D 1o C (1) will
become active, allowing C to start towards its natural frequency.
At the same time, the inhibitory connection from A (4) will
cause it to lock in phase with A’s signature frequency, perform-
ing the inference.

Binding oscillater B becoming aclive al a later time will
have no effect on C, however, because 1ts inhibitory link to C
(5) has iwself been disabled by the activity of C (6). The origi-
nal phase-locking inhibition frem A continues, however, since
the inhibition of link 7 has stopped link 4 from being inhibited
by the output spikes of C.

Note that there are no direct connections betwecn mutually-
exclusive binding oscillators. If such connections were em-

ployed, then 0(n2 ) connections would be required for 2 oscilla-
tors feeding into C. The scheme in Figure 9, however, requires
only Ofn} inhibitory connections.

With these types of inhibitory gated interconnections,
Synchro-ROBIN’s binding oscillators receive input from and
lock into phase with the first related binding oscillator that be-
comes active with an signature frequency, thus dynamically
propagating role-bindings for inferencing while avoiding
crosstalk. The precise timing of output firings, lost with stan-
dard value-passing connectionist models, is crucial to these
abilities and to the model's imperviousness to imperfect con-
nection weights.

5. CURRENT STATUS AND FUTURE WORK

ROBIN has been fully implemented using value-passing ele-
ments in the DESCARTES connectionist stmulator [Lange et al.,
1989]. DESCARTES is a development environment written in the
Common Lisp Object System that allows the flexible simula-
tion of large-scale heterogencous connectionist networks.
RoBIN's inferencing, plan/goal analysis, schema instantiation,
disambiguation, and re-interpretation abilities have been suc-
cessfully tested in two small domains, using natural language

inputs of one or two sentences in length that have been syntac-
tically preprocessed.

The use of relaxation oscillators for signature and binding
oscillators in Synchro-ROBIN has also been implemented n
DESCARTES. Dynamic role-bindings are propagated for inferenc-
ing by the synchronization of long paths of binding oscillators
using the gating structure of Figure 9.

In swnmary, there are several directions for future research:

Exploring More of the Features of Real Neural Oscillators:
The relaxation oscillators used in Synchro-ROBIN de not ap-
proach the richness of real neurons. More realistic models, such
as those of [Segundo & Kohn, 1981] or [Kirillov ef al., 1988],
might lead to more insight inte how synchromization is per-
formed.

Distributing Evidential Conceptual Nodes: The structure of
the network over which evidential activation is passed still uses
value-passing nodes. Replacing value-passing elements with
groups of spike-firing units for each evidential node ceuld help
approach the “grandmother node” problems inherent to localist
networks.

Network structure acquisition: non-local bindings allow
Synchro-ROBIN to create nove! network instances over its pre-
existing structure. Over time, repeated insiantiations should
cause modification of weights and recruitment of underutilized
units to alter network structure.

5.1. Distributed Signature Frequencies

There are limitations to using a single oscillator with a
uniquely-ideniifying frequency to represent each signature.
Large models could conceivably have thousands or hundreds of
thousands of separate concepts that they could recognize (such
as Marijuana, Cooking-Pot, Catfish, Guppy, John, John-
Wayne, John-Kennedy, etc). If each concept is to have a sin-
gle unique signature frequency, then there must be equally as
many separate frequencics. The time to reliably transmit and
lock into frequencies ranging up to the hundreds of thousands or
millions would clearly rule out any models’ preienses 1o
psychological plausibility.

A better solution is to use groups of oscillators to form dis-
wibuted representations of signatures. Figure 10 shows an ex-
ample where the signature for John is represented by the top
group of signature oscillators and their natural oscillation fre-
quencies. Similar concepts would have similar distributed pat-
terns of oscillation frequencies, with a unique pattern for each
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Figure 10. Groups of oscillators forming a distributed
representation of John's signature. These distributed
signature oscillations would also be propagated for in-
ferencing through phase-locking of connected binding
oscillators.



signature. A first pass at this might entail the use of microfea-
ture-like patierns, as in the model of [McClelland & Kawamoto,
1986}, but it would be preferable to have the signature patterns
learned over time, as done by [Miikkulainen & Dyer, 1988] for
value-passing backpropagation networks.

As shown in Figure 10, signatures represented with groups
of relaxation oscillators would be propagated for inferencing
through phase-locking of connected binding oscillators in ex-
acily the same way as for single signature frequencies.

6. CONCLUSIONS

Our value-passing localist model, ROBIN, is a spreading-acti-
vation model that approaches many of the problems of natural
language understanding, including those of inferencing and
frame sclection. The activation on the network’s simple
computational nodes is of one of two types: (a)evidential
activation, to perform disambiguation by indicating the like-
lihoed that a concept is selected, and (b) sighature activation,
to uniquely identify concepts and allow the representation and
propagation of dynamic rele-bindings not possible in previous
connectionist models.

This paper describes how the signature activations of ROBIN
can be handled with processing elements thal communicate via
output firings rather than the simple frequency-coded values of
most connectionist models. Our new model, Synchro-ROBIN,
uses relaxation oscillators to produce the signatures ihat iden-
tify concepts. A role-binding is creatced when a binding
oscillator becomes locked in phase with the signature frequency
of the bound concept. Chains of binding oscillators allow role-
bindings, in the form of signature oscillation synchronization,
1o be propagated for inferencing in a manner that is more robust
to noise than when using simple value-passing elements.
Using parallel paths of relaxation oscillators to propagale
signature frequencies and conventional value-passing nodes 1o
hand]e evidential activation, Synchro-ROBIN is able to perform
much the inferencing necessary in high-level conceprual tasks.
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