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Abstract

We argue that distributed representations must
satisfy 5 criteria in order to serve as an ade-
quate foundation for constructing and manip-
ulating conceptual knowledge. These criteria
are: automaticity, portahility, structure encod-
ing, semantic micro-content, and convergence,
In our approach, distributed representations
of semantic relations (i.e. propositions) are
formed by recirculating the hidden layer in re-
current PDP networks, Our experiments show
that the resulting distributed semantic repre-
sentations (DSRs) satisfy all of the above 5 cri-
teria. We believe that DSRs can help supply
an important building block in developing more
complex connectionist architectures for higher-
level inferencing, such as required in natural
language processing,.

1 Background and Issues

There has been growing concern over how dis-
tributed /holographic or localist/punctate representa-
tions should be in order to represent high-level knowl-
edge. While Feldman [Feldman, 1986} has given ar-
guments against both exireme punctate and extreme
holographic representations, PDP researchers, such as
Rumelhart and McClelland {Rumelhart and McClelland,
1986} have listed numerous advantages that distributed
representations have over localist representations. At the
same time, a number of techniques, e.g. back propaga-
tion [Rumelhart ef. al. , 1986-a] and extended back-
propagation [Miikkulainen and Dyer, 1988-a], have been
developed for forming distributed representations, in-
cluding: conjunctive and coarse codings [Hinton ef. al.
, 1986], microfeature based representations {Waltz and
Pollack, 1985][McClelland and Kawamoto, 1986], and
tensor product representations [Dolan and Smolensky,
1988){Smolenky, 1987].
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Developing distributed representations able to support
higher-level reasoning and represent conceptual knowl-
edge is not an easy task. Whereas a “von Neumann
symbol” starts with random bit string like ASCII code
and builds structural relationships between symbols to
represent conceptual knowledge, a distributed {or so-
called “subsymbolic™) representation ought to possess
both a structure and a semantics below the symbolic
level, namely, as a pattern in an ensemble of neuron-like
elements (i.e. creating a “connectionist symbol™).

2 Criteria for a Distributed Semantic
Representation

A distributed representation able to represent concep-
tual knowledge must have five features:

(1) Automaticily — The representation must be ac-
quired through some automatic learning procedure,
rather than set by hand. For instance, the hand-
coded microfeature based representation [MeClelland
and Kawamoto, 1986] does not meet this criterion.

(2) Portability - The representation should be global
rather than locally confined to its training environment.
That is, the representation learned in one training envi-
ronment should have structural/semantic invarnant prop-
erties so that it can be applied in another task environ-
ment. For example, the representation in Hinton’s fam-
ily tree example [Hinton, 1936] can be said to meet the
automaticity criterion, but not the portabilily criterion,
since it eannot be used in any other task.

(3) Structure Encoding — Feldman [Feldman, 1986] has
argued that any conceptual representation must sup-
port answering questions about structural aspects of the
concept. Yor example, part of the meaning of “irre-
sponsible” is that there was an obligation established
to perform an action and the obligation was violated.
To answer a question about the meaning of “irresponsi-
ble” requires accessing these constituent structures. Any
conceptual representation must have structural inforina-
tion in the representation itsell about the coustituents of
the concept and purely holographic representations do
not meet this criterion. The extended back-propagation
method, FGREP[Miikkulainen and Dyer, 1988-a;, can
be said to meet the first and the second criteria, but the
resulting FGREP representation is purely holographic.
We can not retrieve any structural information from the
representation itself. Thus representations of lexical en-



tries in the FGREP lexicon do not allow us to answer
questions about the constituents of any word’s concep-
tual structure. Hand-coded microfeatures are a good
representation according to this criterion, since at least
one can interpret the semantic content of each microfea-
ture in the representation.

(4) Micro-Semantics — Distributed representations
gain much of their power by encoding statistical correla-
tions from the training set, which are used to character-
ize the environment. These statistical correlations give
connectionist models the ability to generalize. To sup-
port generalization, distributed representations should
exhibit semantic content at the micro level, i.e. similar
concepts should end up (by some metric) with similar
distributed representations. This criterion provided the
original impetus for microfeature-based encodings, since
similar concepts are similar because they share similar
microfeature values.

(5) Convergence — A basic operation for any self-
organizing (possibly chaotic) representation is conver-
gence to a (possibly chaotic) attractor. At any one time,
the representation should have a stable pattern of activa-
tion over the ensemble of units in a stable environment,
and this pattern should converge to an attractor point
in the feature space [Hopfield, 1982].

3 Forming Distributed Semantic
Representations (DSRs) of Words

In this section we show how DSRs may be formed and
demonstrate their validity for the task of encoding word
meanings.

There are two alternate views on the semantic con-
tent of words: (1) The structural view defines a word
meaning only in terms of its relationships to other mean-
ings. (2) The componential view defines meaning as a
vector of properties (e.g. microfeatures). We take an in-
terim view — that meaning can be defined in terms of a
distributed representation of structural/functional rela-
tionships, where each relationship is encoded as a propo-
sition. Examples of propositions are verbal descriptions
of action-oriented events in everyday experiences.

3.1 Representing DSRs

The intuition behind DSRs is that people learn the
meanings of words through examples of their relation-
ships to other words. For example, after reading the 4
propositions below, the reader begins to form a hypothe-
sis of what kind of meaning the word “foo” should have.

s Propositionl: The man drinks foo with a straw,

e Proposition2: The company delivers foo in a carton.
o Proposition3: Humans get foo from cows.

e Proposition4: The man eats bread with foo.

The meaning of foo should be something like that of
“milk”. The interesting fact is that the semantics of
“foo” 1s not fixed, rather it is gradually refined as one ex-
periences more propositions in varying environments. To
develop DSRs based on propositions, we have to define
the structural /functional relationships between concepts
with respect to those propositions. For action-oriented

events describing proposiiions, we use thematic case rela-
tions, originally developed by Fillmore [Fillmore, 1968],
and extended in several natural language processing sys-
tems {Schank and Riesbeck, 1981]. We use the following
& thematic case relations which are similar to the ones
defined in [Fillmore, 1968]: agent, object, co-object, in-
strument, source, goal, location, and time. For example,
the DSR of “milk” is now defined as the composition ol
relationships, e.g. with respect to these 4 Propositions:

*milk* = F; ( G. (Object, *Proposition1*), G5,
(Object, *Proposition2*), G, (Object, *Propo-
sition3*), G, (Co-object, *Propositiond*), ...}

where *milk* is the meaning representation of “milk”;
F; is some integration function and G, is some coni-
bination function of structural/functional relationships
with respect to the corresponding propositions. In
the same way, each proposition is temporally defined
as the composition of the constituent thematic case
components that are themselves combinations of struc-
tural /functional relationships with their corresponding
meaning representations of words:

*propositionl* = F; ( G. {agent, *man*), G.
(verb, *drink*), G. (object, *milk*), <. (-
strument, *straw™*))

3.2 Learning DSRs

We have developed auto-associative recurrent PDIP
(ARPDP) networks for automatically learning 1}SKs.
The basic idea is to “re-circulate” the developing inter-
nal representation (hidden layer of the network) back
out to the environment (input and output layers of the
network). This idea has been suggested by various re-
searchers, e.g. FGREP [Miikkulainen and Dyer, 1433
a][Miikkulainen and Dyer, 1688-b], Recursively Reduced
Descriptions [Hinton ef. al. | 1986], Recursive Auto-
Associative Memories [Pollack, 1988], Sequential Con-
nectionist Networks [Jordan, 1986][Ebman, 1988], and
has been used in natural language question-answering
[Allen, 1988], parsing [Hanson and Keg], 1937] and sen-
tence comprehension [St. John and McClelland, 1938].
Figure 1 shows our system architecture, ARP.

The learning portion of the ARP architecture con-
tains two symbolic memories (Concexicon and Propo-
sition buffers) and two 3-layer ARPDP networks. The
input and output layers of each network has 3 banks of
units: bankl, bank2, bank3. After each of the 3 banks
is properly loaded, the DSR emerges in bankl by unsu-
pervised auto-associative BEP (Backward Error Propa-
gation) [Rumelhart et. al. 1986-a).

The DSR learning process consists of two alternat-
ing cycles: Concept Encoding and Proposition Encod-
ing. Below we informally describe each cycle. In each,
all concept and proposition representations start with a
DON'T CARE pattern, e.g. 0.5, when the activation
value range of each unit in network is 0.0 to 1.0. The
structural /functional relationship representation is fixed
using orthogonal bit patterns (for minimizing interfer-
ence).

Concepl Encoding Cycle:

1. Pick one concept to be represented, say CONIL.
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Figure 1: ARP Network Architecture for Learning DSRs

2. Select all relevant triples for CON1. In the *milk*
example, they should be triples like (*milk* object
propositionl) (*milk* object proposition2) (*milk*
object proposition3), etc.

3. For the first triple, load the initial representation
for CON1 into bank1; load the structural /functional
relationship into bank2, and load its corresponding
proposition to bank3. In the *milk* example, for
the first triple, bankl, bank2, and bank3 are loaded
with bit patterns for *milk*, object, propositionl
respectively.

4, Run the auto-associative BEP algorithm, where the
input and output layers have the same bit patterns.

5. Re-circulate the developed (hidden layer) represen-
tation into bankl of both the input/output layers
and perform step3d to step5 for another triple until
all triples are consumed,

6. Store the developed DSR into the concexicon and
select another word concept to be represented.

Proposition Encoding Cycle; Basically this cycle un-
dergoes the same steps as the Concept Encoding Cy-
cle except that, this time, we load bankl, bank2, and
bank3 with (respectively) the proposition to be repre-
sented, structural/functional r elationship, and its cor-
responding concept representation (DSR). The result of
the encoding is stored into the proposition buffer which
can be flushed and reused after we acquire all the neces-
sary stable bit patterns for all concepts.

Now the overall DSR learning process will be:

1. Perform the entire concept encoding cycle.
2. Perform the entire proposition encoding cycle.

3. Repeat stepl and step2 until we get stable patterns
for all concepts.

In this process,the composition function F; is embod-
ied in the dynamics of the Recursive Auto-Associative

Stacking operation [Pollack, 1988] and the combination
function G, is just a concatenation of two bit patterns.

4 Evaluation of Distributed Semantic
Representations

Does the learned distributed semantic representations
meet the aforementioned 5 criteria? It might be in-
tuitively clear that DSR satisfies criteria (1) through
(3). Demonstrating satisfaction of criteria (4) and (5)
is not as easy since semantic micro-content and conver-
gence both depend on the learning environment (i.e. the
propositions chosen).

We must consider two important conditions needed
to make DSRs work correctly: (a) Selected propositions
should reflect the real protocols by which people ac-
quire a given word meaning or other concept. (b) The
defined structural/functional relationships should pro-
vide ]the basic building blocks for word semantics(Schank,
1973

The DSR approach satisfies the five criteria:

(1) Automaticity: DSR is automatically learned by
using ARPDP networks, rather than set by hand.

(2) Portability: Since each DSR is learned without any
dependence on any particular task, its encoded propo-
sitional contents can be ported to any application envi-
ronment. As a result, the representation has structural
and semantic properties that are invariant over all task
environments.

(3) Structure Encoding: Each DSR was learned
by stacking the structural/functional relationship and
proposition pairs. These propositions again can be de-
coded to return the constituent relationships and con-
cepts. Therefore the representation itself supports the
answering of structural questions about concept.

The decoding process [Pollack, 1988] is the reverse pro-
cess of encoding: We load the concept representation in
the hidden layer of the ARP concept encoding network
and perform relaxation until we get the desired relation-
ship in bank2 and proposition in bank3 of the output
layer. Next, we load the resulting proposition in the
hidden layer of the proposition encoding network and
get back the constituent relationships and concept rep-
resentations.

Figure 2 shows our decoding architecture,

(4) Semantic Micro-Conlent: Our rationale for this
criteria is that similar concepts should function as similar
case roles for the similar propositions, so they should de-
velop similar distributed semantic representations when
starting from all same DON’T CARE patterns. For ex-
ample, the concept of *milk* functions in a similar case-
role to the concept of *juice* in the INGESTing type
propositions [Schank, 1973] than the concept of, say,
*man*. So *milk* and *juice* will end up acquiring
more similar distributed semantic representations.

(5) Convergence: This criterion depends on opera-
tional parameters such as learning rate, momentum fac-
tor, number of training epochs etc. in BEP network
learning algorithms. (See [Fahlman, 1988] for an empir-
ical study.) We have demonstrated convergence experi-
mentally.
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5 Experiment: Learning DSRs for
Nouns and Verbs

We conducted a number of experiments to see how well
ARPDP networks learned DSRs for nouns and verbs.
We made up over 100 propositions and analyzed their
case structures in order to load them into our network
architecture, ARP.

Figure 3 shows the case structure of propositions used.

Figure 4 shows the DSRs learned for a number of
nouns and verbs, The learned representations exhibit
semantic micro-content properties according to the Con-
cept categories. The result is a snapshot after 30 epochs.
By this point the representation has stabilized and con-
verged to certain attractor points. With excessive sim-
ulation epochs, the representations begin to reflect the
minute details and statistical biases of the simulation
data.

Figure 5 shows the similarity structure of the learned
DSHs in terms of their Euclidean distances. They form
clusters according to the concept categories along the
main diagonal.

Interestingly enough, the representation of each
propaosition exhibits also the similarity structures. Fig-
ure 6 shows parts of their representations. This repre-
sentation is a gestalt representation for each event and
could be used in a connectionist schema processing sys-
tem like reported in [Chun and Mimo, 1987).

DSRs show many similar characteristics to those re-
ported in [Miikkulainen and Dyer, 1988-a][Miikkulainen
and Dyer, 1988-b), but unlike FGREP representations,
DSRs appear to be more portable based on their encod-
ing of propositional content. Each DSR can also recon-
struct its constituent information through the decoding
process. Moreover, DSRs are learned independent of any
particular processing task, so the representations shouid
be useful in any task requiring access of the propositional
content of word meanings.

6 Decoding DSRs into Their
Constituents

We also conducted decoding experiments to demonstrate
the representation’s structure encoding property (using

p# proposition case-structure
1 man ate AV

3 man ate chicken AVO

9 man ate chicken with fork AVOl
19 bat ate AV
23 man ate chicken & home AVOL
35 man drank AV
37 man drank milk AVO
4 man drank mitk al home AVOL
45 dog drank AV

51 man drank milk with straw AVOI
55 man broke plate AVQ
58 man broke plate with ball AVOIL
71 ball broke plate VO
77 bat broke plate AVO
85 plate broke ov
87 man moved AV
89 man moved ball AVO
28 man moved ball from home AVOS
107 man moved ball to home AVOG
116 bat moved AV
120 bail maved ov

Figure 3: Proposition Types and their Case Struc-
tures. Note that the proposition number is not contigu-
ous. It shows only parts of the propositions actually
used. (A:agent V:verb O:object Liinstrument L:location
S:source G:goal)
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Figure 4; Learned DSRs of Nouns/Verbs with their Con-
cept Category. The experiment is done using momentum
accelerated backpropagation. Learning rate = 0.07; Mo-
mentum factor = 0.5; 30 epochs for each concept; one
epoch = 100 cycles of auto-associative backpropagation.
The value range is 0.0-1.0 continuous which is shown by
the degree of box fill-up.
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Figure 5: The Euclidean Distance 2 by 2 Matrix between
each learned DSR. of nouns and verbs, Each row/column
designates the 23 values for: man, woman, bat, chicken,
dog, wolf, cheese, spaghetti, milk, coke, fork, spoon,
straw, plate, window, ball, hammer, home, restaurant,
ate, drank, broke, moved (in this order).
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Figure 6: Learned Representations for Propositions
{Events). Learned under the same conditions as in Fig-

ure 4.
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Figure 7: Decoding Result for Concept Representations.
For each concept, the first row designates the orthog-
onal fixed representation of case-relations (bank2), and
the adjacent second row designates the representation
for the constituent propositions (bank3). The first col-
umn shows the first decoded result (stack-top) and the
second column shows their corresponding correct values,

for comparison.

the architecture shown in Figure 2). Figure 7 shows the
decoding results. Since we can think of each DSR as
a stack of (case-relation, proposition) pairs, the decod-
ing operation is like stack-popping operation. We get
constituent pairs in a Last-In-First-Out (LIFQ) fashion,

The decoding performance is good, as can be seen in
Figure 7. Each concept representation has been demon-
strated to contain its own structural information, such
as constituent case-relation and proposition pairs.

Figure 8 shows the decoding result for Proposition
Representations in the same way.

7 Current Status

The eventual objective of this work is to develop dis-
tributed knowledge representations that can be utilized
in high-level reasoning systems. Just as the von Neu-
mann symbolic representation is utilized as a build-
ing block in symbolic AI systems, we want to use
DSRs as a building block in connectionist or connection-
ist /symbolic hybrid models [Dyer, 1988] able to support
such tasks as natural language processing. One example
is a connectionist schema processing system. The prob-
lem of previous connectionist schema processing systems
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Figure 8: Decoding Result for Proposition Representa-
tions. The proposition number corresponds to the num-
ber shown in Figure 3. For each proposition, the first
row designates the case-relation representation and the
second row designates the constituent concept represen-
tation.

[Rumelhart et. al. , 1986-b][Chun and Mimo, 1987] is
that, while they have nodes for object/events, they do
not have any underlying semantic micro-representations
for those nodes.

DSRs can be used as a basic concept representation
scheme which can be integrated into event representa-
tions, as shown in Figure 9. We are currently perform-
ing experiments on application of DSRs to connectionist
schema processing. The use of DSRs for event/object
representations will create representations with semantic
micro-content and therefore exhibit more generalization
and fault-tolerance properties.

8 Conclusion

We have discussed 5 criteria that distributed represen-
tations must exhibit if they are to serve as building
blocks for higher-level knowledge processing tasks. Qur
distributed semantic representations (DSRs) have been
implemented using auto-associative recurrent PDP net-
works in an architecture called ARP and experiments
have shown that DSRs meet all 5 criteria. The next step
is to use DSRs as building blocks in a more complex,
high-level connectionist reasoning systems.
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