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Abstract:

In this paper we present a simple extension of the previously published Time Warp
mechanism to handle its internal storage management problems. We call it the
Cancelback Protocol, and it includes both fossil collection, the recovery of storage for
messages and states that can never again influence the computation, and cancelback,
the recovery of storage assigned to messages and states at times so far in the future
that their memory would be better used for more immediate purposes.

The Cancelback Protocol is significant because it guarantees that Time Warp is opti-
mal in its storage requirements. We prove that if memory is distributed just right
among the processors Time Warp will successfully complete a simulation using no
more space than it would take to execute the same simulation with the sequential
event list algorithm. This amount of memory is lower by a factor of two than the
only previously published result [Gafni 85]. Without this protocol (or equivalent)
Time Warp’s behavior can be unstable; hence the protocol should be considered as
an essential part of Time Warp mechanism, rather than simply a refinement.

In addition, we also prove, contrary to published claims in [Chandy 81], that conser-
vative algorithms, including all of the Chandy-Misra-Bryant (CMB) mechanisms
[Misra 86] are not optimal; they cannot necessarily execute a simulation in the same
amount of space as a sequential execution. In fact, in the worst case their space per-

formance can be surprisingly poor: a simulation requiring space n+k when executed
sequentially might require O(rk} space when executed on n processors by CMB.

1. Introduction

By now a great deal is known about the time performance of the Time Warp and
CMB mechanisms [Agre 89], [Beckman 89], [Berry 85], [Berry 86], [Chandy 79],
[Chandy 81], [Ebling 89], [Fujimoto 88], [Fujimoto 89], [Fujimoto 90], [Gafni 88],
[Gilmer 88], [Hontalas 89a], [Hontalas 89b], [Jefferson 84], [Jefferson 87], [Lakshmi 871,
[Leung 89], [Lin 8%a}, [Lin 89b], [Lin 90], [Lomow 88], [Lubachevsky 89], [Presley 89],
[Reed 1988], [Reiher 89], [Su 89], [West 87], [West 88], [Wieland 89]. However very
little is known about their space performance. In this paper we study the memory
requirements for various methods distributed discrete event simulation. We say



that a simulation mechanism X applied to simulation S requires an amount of
memory Mgy to execute if, for all possible executions of 8 under £, the simulation
correctly completes, but for any amount of memory less than mgg there is at least
one possible execution that runs out of memory. In myg we count all memory used
to hold the state of the simulation, and also the memory used to hold the event
notices or event messages. However, we do not count that constant amount of
memory per processor needed for certain secondary purposes, e.g. deadlock detection
in some Chandy-Misra-Bryant (CMB) protocols, null messages in other CMB

protocols, or GVT calculation and distribution in Time Warp. If Q be the standard
sequential event list mechanism for discrete event simulation then the minimal

amount of memory in which a simulation s can be executed to completion is Mqg.

Most descriptions and implementations of Time Warp simply rely on fossil col-
lection as the only storage management mechanism. Unfortunately fossil collection
alone (named by analogy with garbage collection because it recovers memory whose
contents are so old that they cannot have any future effect on the computation) can
be viewed as “storage management of the past”, and is not sufficient for stable mem-
ory management in Time Warp. Some additional mechanism is necessary for “stor-
age management of the future” to keep from overflowing memory with messages
and states associated with overly aggressive execution or incorrect lines of compu-
tation. In this paper we present a simple and complete storage management proto-
col for Time Warp called the Cancelback Protocol. We show that if mg is the
amount of dynamic memory (state, event list) needed to execute a simulation se-
quentially, then for any amount of memory m >= mg properly distributed among
the processors) Time Warp with this protocol can always execute the same simula-
tion to completion.

By contrast, memory requirements for conservative mechanisms are sometimes
much larger. We will give a family of examples to show that the Chandy-Misra-
Bryant simulation mechanisms are not only not optimal in their memory require-

ments, but can be very poor indeed: a simulation requiring space n+k when executed
sequentially might require O(nk) space when executed on n processors by CMB

We presume the reader is familiar with most of the concepts of the distributed-
memory Time Warp mechanism, including the notions of process (also known as

object or entity), virtual time, rollback, antimessage, global virtual time (GVT) and
fossil collection that were originally presented in [Jefferson 84]. For purposes of this
paper the term virtual time may be regarded as synonymous with simulation time.
There are two major versions of the Time Warp mechanism, the original distrib-
uted-memory version first described in [Jefferson 82] and [Jefferson 85], and the
shared-memory version with direct cancellation, first described in [Fujimoto 89] and
[Fujimoto 90]. In this paper we formalize the memory management problems in
terms of the distributed-memory variation of Time Warp. The Cancelback Protocol



is easily adaptable to shared-memory Time Warp, but we do not include the details
here.

Time Warp cannot optimize both space performance and time performance simul-
taneously. Although the Cancelback protocol can indeed run a simulation in no
more memory than is needed for sequential execution, when it does so its behavior
becomes similar to the sequential algorithm with the event list spread over many
processors. Because of communication overhead and excess rollbacks the execution
time will likely be considerably longer than that of the sequential algorithm on a
single processor. To achieve any speedup from parallelism it is still generally neces-
sary to have several times the minimal amount of memory. No comprehensive
performance study of the tradeoff between time and memory has been done, how-
ever. The primary significance of the Cancelback Protocol is likely to be that it pro-
vides a guarantee of robustness in its memory requirements.

Although we describe storage management problems in the context of Time Warp
applied to simulation, the issues are really of wider applicability to all optimistic
computational methods. An optimistic method is one that takes risks by perform-
ing speculative, possibly incorrect computation which, if correct, saves time and
costs memory, but which if incorrect, must be rolled back. In contrast, a conserva-
tive method is one that never indulges in speculative computation and hence
never has to roll back. Almost all parallel computation today is conservative; Time
Warp is the best-known optimistic method. Optimistic methods have completely
different storage management problems from conservative methods, and our dis-
cussion in this paper should serve as a model for analysis of other optimistic mech-
anisms.

The remainder of this paper is structured as follows. In Section 2 we study the space
requirements of conservative mechanisms and prove that they are not space opti-
mal. In Section 3 we discuss the message flow control problem in the context of
Time Warp and describe how it is fundamentally different from flow control in
conservative systems. In Section 4 we extend the discussion of flow control to the
larger problem of dynamic storage management in Time Warp not only for incom-
ing messages but also for outgoing messages and for saved states, and we present the
Cancelback Protocol formally . Finally, in Section 5 we prove that Time Warp with
the Cancelback protocol is space optimal.

2. Conservative methods are not space optimal

In their seminal paper [Chandy 81] the authors claimed without proof (in the
abstract) that their parallel execution mechanism is space-optimal, i.e. it needs no
more memory to complete a simulation using the CMB algorithms than the stand-
ard sequential event list algorithm requires. In this section we prove that this is not
so. It suffices to give a single example simulation for which this bound cannot be
met.
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Consider the simulation illustrated in Figure 1. In the terminology of the CMB
mechanisms there are four logical processes, A, B, C, and D, which communicate in
the topology shown. A and B communicate via two channels, as do C and D, but
there is no communication between the pairs except at initialization when A sched-
ules the initial event for C.

The pattern of event scheduling is shown in Figure 2. Each vertical line represents
virtual time for one of the four processes, while the non-vertical arcs represent

event scheduling (messages). Process A schedules events my through my for B at
low virtual times less than fp, while C schedules mgs through mg for D at high vir-
tual times greater than f,. The model is designed so that none of the activity in the
A-B pair overlaps in virtual time with any of the activity in the C-D pair. In addi-

tion, A and C each schedule three events for themselves to indicate when to wake
up and schedule other events, though these will play no significant role in our
analysis.

e
-
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Figure 1: Communication topology for example CMB simulation




A B C D

Figure 2: Event relationships in example CMB simulation. The vertical axes
are virtual time.

We now analyze the amount of storage necessary to execute this simulation using
the standard sequential event list algorithm. We need only count the memory
needed for event notices (corresponding to message buffers in parallel execution),
since CMB simulations take the same amount of state space when executed in paral-

lel as they do when executed sequentially. Notice that event my is scheduled at a
later virtual time than my through mg, but it must be processed at an earlier virtual

time; my thus preempts messages my-mz. (In the CMB paradigm it is not possible
for preempting event messages to be transmitted on the same channel as preempted
messages because each channel is presumed to be FIFO and messages in any given
channel must arrive in the order they are to be processed. But it is possible if the

preempting message, My, travels on a separate channel, which is why Figure 1
shows two channels between A and B)

To determine the storage requirement for this simulation we observe that at virtual
time t; when my is processed by B there must be memory for 4 event notices to
hold my through my. Since there must also be one to hold mp, we conclude that
this simulation needs 5 event notice buffers to execute up to time #». Similar argu-
ments show that C and D need four message buffers at time 4, but by that time all of

the storage involving A and B has been released. Hence, 5 event notices are nec-
essary and sufficient for sequential execution of the simulation in Figure 2.
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Consider now what happens if the simulation is executed in parallel by any of the
CMB family of mechanisms. After event message My has been sent the two subsim-
ulations A-B and C-D are completely disjoint and will execute independently in
parallel. This fact improves the simulation’s time performance, but it has negative
consequences for its space performance. Suppose the scheduling is such that the
C-D subsystem executes to time t3, just before sending mg. At time t3 there are 3
messages buffered, mg-m;. Message My and the 3 messages C sent to itself have all
been deleted, and mg has not yet been generated. Meanwhile, suppose the A-B sub-
system executes to virtual time fj. At this point process A has sent 2 event mes-
sages to B, my and my, which we can presume are buffered at B, and it is about to
send m3, as well as a message to itself. There are (momentarily) no messages
buffered at either A or C.

With A-B at time fp and C-D at time 3, a total of 5 event message buffers are in
use. But for either subsystem to make any further progress, more buffers are

needed. Process A needs to send m3 which must be buffered at B, and process C

needs to send mg which must be buffered at D. Although the entire simulation can
execute sequentially with five buffers, if its scheduling starts out this way under
CMB it cannot complete with 5 buffers. The problem is that to complete the

simulation using only five buffers, it is necessary for the A-B subsystem to use and

release four of them before C-D uses more than one. From this example we can
thus conclude that:

The CMB mechanisms are not storage optimal; they are not guaranteed to exe-
cute in the same amount of storage as the corresponding sequential execution.

This result does not depend on the assignment of processes or distribution of mem-
ory. No matter how processes and memory are distributed among the processors,
unless additional scheduling constraints are imposed it is always possible that this
simulation will fail to complete when given only the amount of memory needed
for sequential execution. We can generalize with the following result (similar to a
result proved in [Lin 89c]).

Theorem 1: There exists a simulation S such that

a) S is composed of n pairs of processes;
b)  each pair of processes needs k message buffers;
d S can execute in O(n+k) message buffers when executed sequentially;

d) but S requires O(nk) message buffers to guarantee completion when exe-
cuted by any of the CMB mechanisms.

Proof: The construction proceeds as follows: Take a two-process simulation such as
A-B in Figure 2 in which one message preempts k-7 others; the two processes then



require k buffers to complete. Construct simulation S as in Figure 3 from 1 “copies”
of that simulation, but modified so that (a) all of the n component simulations use
disjoint regions of virtual time, and (b) an initial message is sent to each component
to start it. Simulation &, with 2n processes, can execute sequentially using n+k-1
event notice buffers.

virtual time

A on

83

s2 209

s1

Figure 3: Simulation S constructed by joining n “copies” of subsimulation s;

Each S; executes in a different region of virtual time and requires kK message
buffers.

Now suppose we execute simulation S using a CMB procedure. After initialization
all of the n subsimulations s; execute independently, each of which requires k buf-
fers to complete. Suppose there are exactly n(k-1) buffers, and the timing is such
that each of the n components s; gets to the point where it is using k-7 buffers and
is about to send the message that will require buffer k. There is no global flow
control or storage management mechanism in a CMB simulation to prevent this
worst-case execution timing. Obviously the simulation will fail since none of the
subsimulations can make progress, and hence n(k-1)" buffers are not sufficient to
guarantee that S will complete. With n(k-1}+1 buffers, however, no matter how

execution is scheduled, one of the components will get the k7" buffer and will be
able to complete and will then release all of its storage so that the others will

complete as well. Hence, n(k-1)}+7 message buffers are necessary and sufficient for
guaranteed completion of this simulation by CMB mechanisms.

Thus, S is an example of a simulation that uses 2n processes and requires
n+k-1= O(n+k} buffers to execute sequentially, but requires n(k-1)+1 = O(nk) buf-
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fers to execute in parallel by any of the CMB mechanisms, as required in the
theorem.
End proof.

This result is quite strong, applying to a wide variety of conservative mechanisms
including all those published to date. Basically, any simulation mechanism will
have this problem if disjoint subsimulations can execute asynchronously, with no
storage management mechanism operating between them to guarantee higher pri-
ority to those storage requests pertaining to lower virtual times.

We should also note that for this example simulation the scheduling pattern that
requires the most storage is actually the most likely one, i.e. when all component
subsimulations Sj execute at the same speed and in parallel; the least storage is used
when the component subsimulations are executed sequentially.

One might ask how Time Warp would successfully execute simulation such as S in
Figure 3. The answer is that Time Warp might also get into the situation men-

tioned in the proof where both of the subsimulations hold k-7 buffers and are about
to request buffer k. But instead of failing, the Cancelback protocol would end up
sending back one or more of the messages at later times (such as mg-mg in Figure 2)

thereby freeing buffers for processes at lower times (e.g, A and B in Figure 2). No
such global mechanism is possible for conservative simulations precisely because
they are conservative, i.e. they cannot roll back. In conservative systems the act of
accepting a message for buffering at the receiver’s end is an act of commitment. No
matter how badly misallocated the buffer space is, it can only be reallocated after the
receivers process the messages in the buffers. A message cannot be regenerated by its
sender because its sender cannot roll back. Hence, conservative mechanisms have
far less flexibility in buffer management than optimistic mechanisms do, as we shall
see.

3. The problem of flow control in Time Warp

The storage management problem in Time Warp appears at first glance to be more
complex than that of conventional distributed systems, but we believe this just
reflects unfamiliarity with optimistic synchronization. Nevertheless, before we dis-
cuss the full storage management problem, we will describe a simpler problem, the
Time Warp analog of flow control, in order to expose the most important storage
management issues in a rollback-based environment. Considering flow control as a
special case of storage management amounts to confining our attention to the stor-
age bound up in the input queues of processes, ignoring the storage used in output
queues and state queue. The full storage management problem will be revisited in
Sections 4 and 5.

Flow control is usually formalized for conservatively-synchronized systems at a pro-
tocol level in which messages travel in reliable, order-preserving, unidirectional
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channels between processes, as illustrated in Figure 4. The flow control problem
arises when the sender produces data at a rate faster than the receiver can consume
it. Any fixed-size queue at the receiver side, no matter how large, will eventually
fill, at which point the sender must pause or data will be lost. It is the job of the
communication software to slow down the sender relative to the receiver, blocking
it when the queue is full (or about to become s0), and restarting it again when the
queue has room. Flow control protocols always involve some kind of feedback
from the receiving side to the sending side to indicate the state of the buffer. A full
queue must not be considered a rare or abnormal condition. Generally we can
expect senders to be faster than their receivers almost half of the time, and we
should thus expect up to half of all synchronization actions to be for flow control.

Buffer

O

Sender Receiver

Figure 4: Flow control between communicating processes

There are many flow control protocols for conservatively synchronized systems in
the literature [Chu 79]. Unfortunately, none of the known protocols can be applied
successfully to Time Warp; instead the entire problem of flow control must be re-
thought from first principles because many issues arise in optimistic systems that
have no analog in conservative systems. Among the differences are these:

(1) In conservative systems communication is usually organized into unidirec-
tional, order-preserving data channels, with each channel having separate
queueing at the receiver’s site so that flow control can be performed separately
on each channel. But in Time Warp there is no notion of a “channel”; any pro-
cess can send a message unexpectedly to any other process at any time. It does
not suffice to view this as an implicit complete graph of channels and then to
adopt a channel-based flow control paradigm, because then the total fixed costs
associated with flow control would grow quadratically with the number of pro-
cesses and Time Warp would not scale reasonably.

(2) In conservative systems once a message has been read by the receiver it can be
deleted, and its storage recovered. But in Time Warp a message that has been
read must still be saved in case the receiver rolls back and needs to reprocess it;
it cannot be committed until GVT advances to the message’s receive virtual
time (rvt). Hence message buffers are occupied longer under Time Warp than
under conservative systems, exacerbating the memory management problem.



10

(3) In conservative systems message routing and queueing is FIFO, at least along a
single channel. Traditional flow control protocols that block and restart the
sender generally depend on this FIFO queueing since blocking the sender for
flow control would be prone to deadlock if there were even a possibility that
some data in a channel had to be processed earlier than other data previously
sent along the same channel. But under Time Warp messages are not gener-
ally processed in the order of sending; they must be processed strictly in order of

rvt, regardless of the real time order in which they arrived or were sent.

In discussing storage management in Time Warp, we will assume the following
model. The simulation executes on a distributed-memory multiprocessor (of arbi-
trary communication topology) that is entirely devoted to one simulation, i.e. the
multiprocessor is not shared among independent jobs. Each processor, however, is
shared by a number of the processes in the simulation. Memory allocation for mes-
sages and states is done at the processor level, i.e. memory for all of the processes on
the same processor is allocated from a common pool. Finally, processes are statically
assigned to processors: the contents of the input, output, and state queues of a pro-
cess all reside in the memory of a single processor, and processes are not created,
destroyed, or migrated.

We illustrate a flow control problem for Time Warp in Figure 5. Consider process
A, which for simplicity we will assume is on a processor by itself. A message mar-
rives at A, but there is sufficient buffer space for only three messages and all three
slots are already filled. We assume, however, that there is always one “temporary”
buffer that can hold m momentarily so that its header can be inspected. m has an
rvt of 48, which is less than that of any message already enqueued. We can assume
that all four messages are “correct”, i.e. none of them will be cancelled later by anti-
messages and thus no buffer space will ever be released by ordinary cancellation.
None of the messages has yet been processed by the receiver. How should we
handle this arriving message?

One thought is that it is already too late for flow control because the fourth message
should not have been sent; its sender, B, should have been blocked by the operating
system and prevented from sending. But there are many reasons why that is an
unsatisfactory answer. First, under Time Warp any process could send a message to
A at any time. Since m may be the very first message that B ever sent, no protocol
could know it was coming. It is, of course, out of the question that all processors
should be notified whenever any one processor’s buffers are full; that would make
flow control a global action, and such a protocol would not scale up to a large num-
ber of processors.
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Chosen for sendback

sender B [ o D E
receiver A A A A 52
send time 45 40 ] 50 | 35
recelve time 48 55 | 53 52
full

Figure 5: Message M with a rvt 48, lower than any of those already enqueued,
arrives at process A, whose three buffers are already full.

In any case there is a more profound problem in this example: the arriving message
m carries an rvt less than those on the messages already enqueued, so m should be
processed before them. One might argue instead that one of their senders (C, D, or

E) should have been blocked even earlier, but those arguments fail because no flow
control protocol can predict the pattern of timestamps on arriving messages.

We cannot use a communication protocol in which the sender waits for an
acknowledgement or a timeout, allowing A to simply drop or NACK message m,

expecting B to resend it later when space is available. If m had the highest rvt of the
four messages that would be appropriate, but under the conditions in this example,
unless some action is taken space will never become available. We might hope, for

example, that A will process some of the messages in its queue and free space for the
arriving message. But although A may indeed process them, that processing will
probably be incorrect because m has a lower timestamp than they do. In any case
none of them can be fossil-collected, because their rvt’s are all greater than 48, while
GVT clearly remains less than or equal to 48 at least until after m is processed. Even
if a new estimate of GVT arrives it will not allow us to free space at A. The new

estimate of GVT will never exceed 48 until m has actually been processed, and it can-
not be processed until there is buffer space for it!

All blocking protocols for flow control have problems like these. Generally our ex-
perience is that blocking protocols are inappropriate for Time Warp; they do not
mesh elegantly with rollback synchronization, and it is usually better to look for a
natural rollback-oriented approach to any new synchronization problem.

We now sketch the behavior of the Cancelback Protocol applied to flow control is-
sues in Time Warp. Recall that in this section we confine our attention to the input
queue of a process, and do not address either the output queue or the state queue.
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In such situations as shown in Figure 5 it is apparent that either the simulation
must terminate with a fatal error or we must make room for the arriving message
by somehow removing one of those already enqueued. The Cancelback Protocol
chooses the message from D with send time 50 and returns it to D, making room for
m. In effect the protocol preempts one of the messages already enqueued in favor of
one arriving with a lower rvt. The message returned will travel backward in vir-
tual time, and enter the output queue of D, where it will cancel with the negative
copy saved there. This is the source of the name Cancelback Protocol.

Message cancelback may at first seem a bizarre concept, but further reflection should
persuade the reader that it is a natural mechanism for Time Warp, and is the mes-
sage analogue of process rollback. There is a symmetry between the treatment of
states and messages in Time Warp theory, and that theory would be incomplete and
unsatisfying if it were possible for the sender to undo (cancel) the sending of a mes-
sage, but not possible for the receiver to undo the receipt of one.

Message cancelback requires three steps:

a) The message chosen for cancelback is dequeued from the input queue of the
receiver.

b) It is transmitted in reverse back to its original sender. When it arrives, it is en-
queued in the sender’s output queue where it will annihilate with the corres-
ponding antimessage saved at the original time of sending.

c)  Finally, if the sender D has advanced beyond the sending virtual time (50 in the
example), it is rolled back to before it sent the message (i.e. to time 50), so that
when it re-executes forward it will regenerate and resend the message.

In step b) there is a slight complication: it is possible that the positive message at the
receiver’s input queue may be sent back while the negative message in the sender’s
output queue is sent forward as a result of an ordinary cancellation. If we are not
careful, the two messages will cross and neither will be annihilated when they reach
their destinations. To guard against that we assume there is a protocol that guaran-
tees that either the negative message cancels with the positive in the input queue of
the receiver, or the positive message cancels with the negative in the output queue
of the sender, but no other result is possible. There are many ways to do this, but the
details, while important, are lower level than we want to be concerned with.

This protocol does have the effect of slowing down senders with respect to receivers,
not by blocking and restarting them, but by causing the sender to roll back and re-

execute. In the example, if sender D has reached a virtual time greater than 50 at the
moment of cancelback, it rolls back to time 50 and then executes forward again, re-

generating the message. If there is still not enough room at A when it arrives the
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second time the message may again be sent back, possibly causing a second rollback.
Alternatively, a different message may be chosen for cancelback the second time,
perhaps causing a different process to roll back. Sometimes when the reverse mes-

sage arrives D may be at a virtual time less than 50 (because of some unrelated roll-
back), in which case the reverse message and its antimessage annihilate but D does

not roll back again. When D eventually crosses virtual time 50 in the forward direc-
tion it will, of course, regenerate the message and resend it.

In this particular example there is no choice about which message to send back.
Since a cancelback can (and often does) cause a rollback, the protocol must choose a
message whose send virtual time (Svt) is greater than the current instantaneous
value of GVT. In Figure 5 there is only one message in the input queue whose svt
is guaranteed (on the basis of local information) to be greater than GVT. In this
example we know that the true instantaneous value of GVT may be as high as 48
(the minimum of all rvt’s shown), but cannot be higher. If the message chosen for
cancelback were to have an svt less than 48, it might cause a rollback to a time lower
than GVT, which must be prohibited since GVT is defined to be a lower bound on all
future rollbacks.

The message chosen for cancelback need not have come from the same sender as the
arriving message. In this example, the arrival of a message from B is the proximate
cause of the problem, but a message from D is the one sent back. In fact it is possible
that the arrival at process Q of a message from process P might displace a message in
the input queue of a third process V on the same processor as P and cause it to be
sent back to a fourth process U. In conventional flow control protocols for conserva-
tively synchronized systems there is no analog of this behavior. And we should
bear in mind that flow control is only part of the full storage management problem
in Time Warp. In the full Cancelback protocol an output message or a state might
be chosen for cancellation instead of an input message, but we will say more about
that in Sections 4-5.

One might worry that the Cancelback Protocol, especially when mixed with the ordi-
nary use of rollback and cancellation for forward synchronization, could cause either
an infinite rollback (a cycle of one-step-forward, one-step-back), or else a domino-

effect cascade of rolibacks back to time -ec. We make one crucial observation: al-
though cancelback flow control may cause a rollback, it is always a rollback to a
virtual time greater than or equal to the local virtual time (lvt) of the receiver at
the moment of cancelback, and greater than or equal to the receive time of the in-
coming message for which space is being made. This property is shared by the ordi-
nary forward cancellation in Time Warp as well, and is the basis of the argument
that neither cascading rollback cannot occur.
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Another possible concern is that flow control based on message cancelback might
simply move the storage management problem from one process to another with-
out solving it; the sender’'s memory might also be full and hence it would be unable
to accept the reverse message. However, a reverse message always ends up annihi-
lating with its corresponding antimessage. Thus, the Cancelback Protocol not only
releases storage at the receiver’s site, it also releases storage at the sender’s site. This

is important because the message in A’s input queue chosen for cancelback may
come from another process on the same processor as A, or even from A itself!

One might question why, when a reverse message arrives at the sender, this proto-
col calls for annihilation. After all, the message is not cancelled for the usual rea-
son, i.e. that it is likely to be “incorrect”. Why not just buffer it at the sender, and
retransmit it later, without wasting time for a rollback and re-execution? Aside
from a little extra complexity there is nothing wrong with doing it that way, when
and if there is memory at the sender. But in general we must not assume that the
sender has memory to spare; the sender may be in extremis as well, or may become
so later. If the standard flow control action were simply to move a message from the
receiver's memory to the sender’s without annihilation, then the flow control prob-
lem would be rearranged spatially but not solved. In such a protocol the total
amount of memory in the system devoted to message buffers does not decrease
when memory becomes tight, so if senders in aggregate are faster than the receivers,
a crash would be inevitable. The Cancelback Protocol covers the general case; any
variation designed to avoid unnecessary rollback and annihilation is an optimiza-
tion, but rollback and annihilation cannot always be avoided

There is one final worry that one might have about this Cancelback Protocol. A re-
verse-message may cause the sender to roll back, re-execute, and then resend, only to
find that there is still not enough buffer space at the receiver, and the sender must
roll back, re-execute, and resend again. Although this cycle cannot repeat infinitely,
it can repeat any finite number of times, and it seems wasteful of processing cycles
and communication capacity. The processes are engaged in what we might call busy
cancelback, a term intended to be analogous to “busy waiting”. It would seem that a
protocol that blocks the sender until the receiver has space would be better than busy
cancelback. To answer this objection we first note that a process that rolls back
because of flow control is almost certainly not the global bottleneck process because,
as already explained, it rolls back to a time greater than or equal to instantaneous
GVT. Hence, the rollback occurs off the “critical path” of the simulation. Likewise,
even though forward and reverse messages may go back and forth over many cycles
during busy rollback, a properly designed Time Warp will give message routing
preference to messages with low time stamps. Thus, messages that are part of the
critical path of the simulation will have priority for communication resources over
messages that are part of a busy rollback circuit, and their progress will be unaffected.

Nevertheless, these arguments are not conclusive. Even though that part of the
simulation that is absolutely farthest behind cannot be affected by flow control, any
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other part of the computation can, and that may have a deleterious effect on the fu-
ture progress of the computation. It is definitely desirable to attenuate the “busy
cancelback” aspect of flow control if possible.

We consider this issue to be part of a larger performance strategy issue in Time
Warp, the allocation of processor resources. In general it is better to let a processor
go idle than to have it execute forward and roll back, thereby causing work for other
processors (e.g. interrupt traffic). Any processor that spends a large fraction of its
cycles doing computation that ends up being rolled back would be better off idle. We
believe that Time Warp should be designed to measure dynamically the effective
utilization of each processors (the fraction of time it spend on computation that gets
successfully committed) and feed that statistic back into its scheduling policy. A pro-
cessor with too low an effective utilization should be on-loaded with work from
other processors; or, failing that, it should be idled for some fraction of its time. In
the case of a processor engaged in busy-cancelback for flow control, this scheduling
policy would guarantee that the sending processor would take much longer each
cycle to resend the message. It would thus reduce the total bandwidth used by one
flow control action to an amount bounded by a small multiple of the bandwidth
used by a single message. Further discussion of the processor allocation and sched-
uling issues in Time Warp, however, are beyond the scope of this paper.

4. The Cancelback Protocol and full storage management problem in Time Warp

Flow control in Time Warp is not the entirety of the memory management prob-
lem. There are two other kinds of dynamic memory allocated by Time Warp: out-
put messages and states. Both contribute to memory management problems and
both must be unified with flow control before we have a complete memory manage-
ment strategy.

The Cancelback protocol is similar to one proposed in [Gafni 85]. The differences
between ours and hers are that (a) ours uses the original definition of global virtual

time (GVT) based on message rvt’s, instead of the modified definition based on

svt’s that she used; (b) ours allows a simulation to complete in half the memory of
hers, i.e. in the same space needed for sequential execution instead of twice the
space, and {(c¢) our algorithm and analysis are differently structured and argued.

Consider first the issue of output messages. Whenever a message is sent by a pro-
cess two anticopies are created, the positive copy transmitted to the receiver, and the
negative copy saved in the sender’s output queue. Consider the situation in Figure
6. In this case a single process sends messages to many receivers, and its output
queue overflows memory even though none of the input queues do. This problem
is exactly symmetrical to the usual flow control problem, but it has no analog in con-
servative communication protocols.
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Input Queue

Output Queus

Figure 6: A sender’s output queue can fill memory even if the receiver’s input
queues are all short.

Likewise, saved process states compete for the same dynamic memory as input and
output messages. Whenever an event completes, Time Warp saves the state of the
process in the state queue. If one or more processes execute too far forward in vir-
tual time the system may run out of memory because there are too many states.
Sophisticated implementations of Time Warp might save only state changes rather
than the entire state of a process, or save entire states but less often than after every
event. Both of those options trade time for memory, and thus make the storage
management problem less severe. The Cancelback Protocol can be adapted to either
of those designs, but here we consider only the case of full state saves after every
event because it is the worst case for memory management.

In the Cancelback Protocol messages and states are treated symmetrically. A state is
similar to a message-to-self, whose “send” virtual time (svt) is the time it is output

from an event (i.e. produced), and whose “receive” virtual time (rvt) is the time it
is input to the next event (i.e. used). The major difference between messages and
states is that since a state is always “sent” from a process to itself, Time Warp does
not have both input and output state queues, and does not explicitly represent both

a negative and a positive copy of a state. The initial state of any process has svt = -eo
and rvt equal to the virtual time of the first event; the final state has an svt equal to

the virtual time of the last event, and rvt = +e. When a process runs out of mes-
sages to receive from its input queue the standard Time Warp convention is that it

“terminates” (subject to later “untermination”) and its vt goes to virtual time +eo.
The state in use at this time is then considered to be the final state, with rvt = +oe.

As a result of the above discussion it should now be clear that a complete solution to
the memory management problem in Time Warp must treat input messages, out-
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put messages, and states in a single, unified manner. We now present the Cancel-
back Protocol that does that.

The Cancelback Protocol is designed under the following simplifying assumptions.
All of them can easily be lifted at the expense of complicating the protocol’s form
somewhat.

Al:

A2:

A3:

A4

Ab5:

All messages and states are the same constant length. We assume memory is
measured in units of “pages”, each of which is the proper length to hold exactly
one message or one process state. In any realistic system states tend to be much
larger than messages, and it would be natural to modify the protocol to con-
sider messages to be one page and states to be divided into several pages. The
reason we assume that all messages and states are equal in length is to avoid
dealing explicitly with growing and shrinking states or with memory fragment-
ation issues.

No zero-delay messages: For each event message m we assume that
m.svt < m.rvt, i.e. that the inequality is strict. This assumption avoids certain
semantic problems, and prevents any possibility of a causal cycle that takes zero
virtual time.

No multiple-message events: No two event messages arrive at the same re-

ceiver with the same rvt. This assumption avoids religious controversies over
the semantics of such an event.

Full states are saved after every event: Although Time Warp can save process
states less often than every event, doing so would slightly complicate commit-
ment and fossil collection.

Reliable message delivery: At all levels of protocol messages are delivered reli-
ably without loss, corruption, or duplication.

Despite these assumptions the Cancelback protocol is quite general; it avoids certain
restrictive assumptions that would oversimplify the memory management prob-
lem. It operates under the following “generality” assumptions:

Gl

G2:

G3:

No shared memory: Processors do not share memory; all levels of protocol
must be message-based and asynchronous.

Pooled dynamic memory: There may be any number of processes per processor,
and each processor’s dynamic memory is pooled for use on behalf of all of the
processes resident on it.

Explicit antimessages: Normally Time Warp simulations are considered to
send only positive messages overtly; negative messages are invisible to the
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simulation and are transmitted only to cancel incorrect computation. The
Cancelback protocol works, however, in an environment in which messages of
either sign can be explicitly sent by the simulation, with the opposite sign mes-
sage being retained in the sender’s output queue in case cancellation is neces-
sary. This feature is very useful for explicit cancellation of previously sched-
uled events. Hence, we do not assume that reverse messages are always posi-
tive.

The Cancelback Protocol must be described at three levels: the global level, the pro-
cessor level, and the process level. At the global level the only quantity of interest is

instantaneous global virtual time (GVT). GVT is a value that is always mathemati-
cally well-defined and plays a fundamental theoretical role in all commitment is-
sues. It was originally defined in [Jefferson 82] and [Jefferson 84], but here we extend
the definition to include messages travelling in the reverse direction from receiver
to sender.

Definition: At any instant of real time GVT defined to be the minimum of (a)
the local virtual times (Ivt’s) of all processes, (b) the rvt’s of all messages in

transit in the forward direction, and (c) the svt's of all messages in transit in
the reverse direction.

The most important properties of GVT are well established for Time Warp without
the Cancelback Protocol. They also apply to Time Warp with Cancelback. We list
them here without proof:

(@) GVT never decreases during a computation.

(b) No message in transit in the forward direction ever carries an rvt time stamp
strictly less than GVT, and no message in transit in the reverse direction ever
carries an svt time stamp strictly less than GVT.

(c) No rollback ever occurs to a time earlier than GVT.

The true instantaneous value of GVT cannot be known exactly in real time, but is
estimated repeatedly and asynchronously, using a protocol executed in the back-
ground (at higher scheduling priority) than the rest of Time Warp. The estimated

values (egvt) are broadcast to all processors and are guaranteed to satisfy the invari-
ant egvt <= GVT.

At the processor level there are several quantities of interest:

1. egvt(n): estimated GVT, i.e. the most recent estimate of GVT received at pro-
cessor n;
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2. pvt(n): processor virtual time, i.e. processor n’s “contribution” to GVT. pvi(n)
is defined to be the minimum of (1) the Ivt’s of all processes on this processor,
(2) the rvt’s of all messages (+ and -) in transit in the forward direction away

from this processor, and (3) the svt’s of all messages (+ and -} in transit in the
reverse direction away from this processor.

3. avail(n): available memory, i.e. the number of “pages” of unallocated memory
on processor N.

The various virtual time values used in Time Warp obey a number of invariants
(by definition) that are necessary later. For any processor n and for any process p
located on n the following invariants hold at all instants of real time:

egvt(n) <= GVT <= pvt(n) <= Ivi(p) 4.1
GVT = min,(pvt(n)) 4.2
pvi(n) <= mingen(ivi(p)) 4.3

For any message U in transit in the forward direction from node n
egvi(n) <= GVT <= pvi(n) <= u.rvt 4.4

For any message U in transit in the reverse direction from node n
egvt(n) <= GVT <= pvt(n) <= u.svt < u.rvt 4.5

The Time Warp system must have at least three execution priority levels. The low-
est level, Level 0, is the priority for user processes. Level 1 is the priority at which
the interrupt or trap routine runs for handling message arrivals and state saving.
This is the level at which the Cancelback Protocol runs. And Level 2 is the interrupt

priority at which the calculation and distribution of new egvt values occurs. This is
the only activity that can interrupt the Cancelback Protocol. The Cancelback Proto-
col itself is invoked at Level 1 by interrupt or trap at any of the three times when
dynamic storage is allocated: the arrival of a message in the forward direction, the
arrival of a message in the reverse direction, and the time that a state is saved.

A Time Warp process is considered to have four parts (in addition to its code) as
shown in Figure 7.
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Ivt: local virtual time (real)
in: input message queue (queue of messages ordered by rvt)
out: output message queue (queue of messages ordered by svt)

state: state queue (qQueue of states, ordered by rvt or svi)
Figure 7: The representation of a process

An item (message or state) has the fields listed in Figure 8 The same representation
is used for both states and messages so that a uniform protocol can handle both.
One item is presumed to take one “page” of memory. These fields are used in a

Pascal-like record syntax so that e.g. u.svt is the send virtual time of item u.

svt: send virtual time (real)

sndr: sender (process name)

rvi: receive virtual time (real)

rCvr: receiver (process name)

dir: direction (forward, state, or reverse)
sign: sign of message (+or-)

cancel: cancellation bit (Boolean)

text: text of message or state (any type)

Figure 8: The representation of an item (message or state)

If the code for the Cancelback Protocol were written out in full it would appear long-
er and more complex than it really is, so we have designed a programming notation
that is nonstandard in a number of ways. Three “macros” are used to collapse the
code along its lines of symmetry and avoid repetitious case analysis. These macros
must be expanded at “compile time” even in syntactic positions that are not
normally subject to macros.

destqueue(u) = case u.dir of

reverse: output;

state: state;

forward: input
endcase
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case u.dir of
reverse: u.svt;
state: u.rvi;
forward: u.rvt

endcase

vi(u)

dest(u) case u.dir of
reverse: u.sndr;
state: u.rcvr,
forward: u.rcvr

endcase

The full Cancelback Protocol is shown in Figure 9. We will first describe more of the
notation used in the protocol, and then describe its behavior.

when an item u arrives to be stored do:

process(dest(u)).lvt min= vi{u) ! Rollback or no-op (1)
process(dest(u)).destqueue(u) += u ! Enqueue; maybe annihilate (2)
while avail = 0 (3)
do
if dv: vi(v) < egvt (4)
then dequeue_and_delete(v) I Fossil collection (4)
else
if dv: v.svt >= pvt (5)
then dequeue_and_cancel(v) ! Cancel forward or back (5)
else
if egvt < pvt (6)
then await_egvt_update() ! Wait for egvt update (6)
else
fail("Out of memory”) ! Memory exhaustion (7)
endif
endif
endif
od

Figure 9: The Cancelback Protocol, which executes at an interrupt priority higher
than application code, but lower than egvt-calculation and distribution code.
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As an example of the compressed notation, Line 1 of the protocol reads:

process(dest{u)).lvt min= vi(u)

Informally this means “the Ivt of the process that is the “destination’ of message or
state U is min’d with the virtual time (v1) of u”. The assignment operator

amin=b
means
a=aminb.

When dest(u) and vt(u) are expanded using the macros above, this line is seen to
be an abbreviation for three cases, depending on whether the unit being allocated is
an arriving reverse message, a state being saved, or an arriving forward message. It
is equivalent to the following code:

case u.dir of

reverse: process(u.sndr).lvt min= u.svt;

state: process{u.revr).lvt  min= u.rvt;

forward: process(u.rcvr).lvt min= u.rvt
endcase

Depending on whether the arriving item u is a reverse message, a state, or a forward
message, then either the “sending” process’ Ivtis min'd with the svt of the item,
or the receiving process’ Ivt is min'd with the item’s rvt.

Another notation used is “existential quantification with variable binding”. In lines
4,5, and 6 of the protocol we have code of the form

if dv: P(v) then S(v)

The meaning of this form is: If there is at least one item (input message, output
message, or state) that is in the appropriate queue of some process on the current

processor and that satisfies predicate P, then bind (or assign) one such item to vari-
able v (chosen nondeterministically) and perform action S(v). If there is no such
item v, then do nothing. (The scope of binding to variable v is limited to P(v) and

S(v).)

In Line 4 the routine dequeue_and_delete(v) is called. This routine is purely local
in effect and deletes one item, recovering one page of memory.
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In Line 5 the routine dequeue_and_cancel(v) is called. In the case of a state this

means the same as dequeue_and_delete(v). In the case of a message, however, it
has a nonlocal effect: it means dequeue the message and send it forward if it came
from the output queue, or backward if it came from the input queue. This routine
must contain a low-level protocol that guarantees that if both the sender and
receiver of a message concurrently decide to dequeue_and_cancel their respective
copies, then the effect is as if one or the other is done, but not both. This can be done
by marking messages transmitted for cancellation purposes and making marked
messages “sticky” in one direction so that one of the copies is guaranteed eventually
to “catch” the other and annihilate with it. As a result, after dequeue_and_cancel
of a message we can assume that eventually the two anticopies will both be annihi-
lated in the one or the other process’” memory, possibly causing it to roll back.

Because this protocol has been highly compressed into 7 lines, we will describe its
operation informally line by line before proving any of its properties.

Line1

In Line 1 the virtual clock (Ivt) of the process is min'd with the virtual time of the
arriving message or state. For incoming forward messages or states Ivtis min'd
with the rvt of the message, while it is min'd with the svt of incoming reverse

messages. (Note, however, that since an “arriving” state has an rvt equal to Ivi,
this line is always a no-op for states.) Upon return from the protocol, execution will

proceed at the new value of Ivt. A rollback occurs whenever the min‘ing causes Ivt
to decrease.

Line 2

In Line 2 the arriving item u is enqueued in the appropriate queue of its destination
process. (The += operator is the Time Warp enqueueing operator.} If U is a message
travelling in the forward direction, it is enqueued in the input queue; if it is travel-
ling in reverse, it is enqueued in the output queue; and if it is a state being saved, it
is enqueued in the state queue. The enqueueing operator is, of course Time Warp-

style, which means sorted in order by vt, and with possible annihilation if a message
encounters its own antimessage. It is important to note that this enqueueing always
succeeds. It cannot fail because we presume that there is always enough memory on

entry to the protocol to buffer one item (state or message). In the normal case, avalil
will be decremented as a side-effect of this enqueueing, but when the enqueueing

results in annihilation, it is incremented. Hence we can assert that avail >= 1 be-
fore Line 2, and avail >= 0 after Line 2. The remainder of the code is devoted to
guaranteeing that avail >= 1 when we leave the protocol.
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Line 3

Line 3 is the beginning of a loop intended to ensure that avail >= 1 upon exit from
the protocol. The protocol fails if not even one page can be recovered. In most cases
the loop body will not execute at all, since there will be available space. On the occa-
sions when it does execute, it will probably do so only once, and then exit when
either Line 4 or 5 recovers a buffer. On rarer occasions Line 6 will execute, and since
that does not by itself release memory, control must transfer to the top of the loop.
Line 7 only executes when all recourse has failed and we are truly unable to contin-
ue execution.

The protocol is written in such a way that it recovers exactly one page of memory
and then exits. Of course a real implementation would probably find it useful to

modify this protocol somewhat and delete all items found in Lines 4 when an egvt
update arrives instead of just when a memory allocation occurs. But we consider
such a change to be at most an optimization.

Line 4

Line 4 is the code that performs fossil collection, i.e. the deletion of an old message
or state that cannot affect the future course of the computation. Because of the

macro vi(v) it really encodes three separate conditions: any input message vj such
that v;.rvt < egvt, or a state vg such that vg.rvt < egvt, or an output message vy
such that v,.svt < egvi, can be deleted, recovering one page of memory.

When applied to states Line 4 calls for the deletion of a state such that rvt < egvt.
Since the rvt of a state is defined to be the virtual time at which it is used as input to

an event, once rvt < egvt <= GVT the process can never roll back to use it again,
and the state can be deleted.

There is an important asymmetry inherent in Line 4 with regard to the treatment of
output and input messages. A message V in the input queue can only be deleted
when v.rvt < egvt, which is more restrictive than the condition for output mes-
sages, which can be deleted when v.svt < egvl. Hence, assuming for the moment
both the sender and receiver of a message have the same value for egvt (which is
not guaranteed, since egvt is updated asynchronously), then the situation can arise
when v.svt < egvt <= v.rvt, in which case the sender can commit (delete) the (an-
ti)message in its output queue but the receiver cannot commit the corresponding
message in its input queue. Because svt < egvt <= GVT, the sender will never have
to roll back and resend the message, and its copy can be deleted. But there is no
guarantee that rvt < GVT, and thus the receiver may yet have to process the mes-
sage, or roll back and re-process it. Thus, unlike previous Time Warp storage man-
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agement protocols, although message-antimessage pairs are created at the same mo-
ment in virtual time, they are not necessarily destroyed at the same moment.

Line 5

This line of code is the “cancelback” line that performs “flow control” and all other
storage recovery operations that are not associated with commitment. If Line 4 is
unable to release any memory, then Line 5 attempts to cancel a message or state
stored for some future virtual time in order to make some room now, at virtual

time pvt. If there is any item v in any process on this processor, whose vt is greater
than pvt, then it can be cancelled and re-produced later. To describe how and why
this works we consider three cases separately: v is an input message, v is an output
message, and V is a state.

If v is an input message, then Line 5 is exactly the flow control protocol discussed in

Section 3. Message V is cancelled, which in the case of an input message means that
it is removed from this input queue and sent in the reverse direction back to its
original sender’s output queue, where it will invoke this same protocol and prob-

ably cause a rollback and an annijhilation. Since only messages v with pvt <= v.svt
are chosen, and since GVT <= pvt, the message chosen cannot carry an svt less than
the value of GVT as of the moment of sending; and since by definition GVT cannot
increase beyond the svit of a message in transit in the reverse direction, a message
sent back for flow control will never cause a rollback to a time lower than GVT.

One important point is that message v chosen for cancelback may very well be u, the
one that just arrived and was enqueued in Line 2. The protocol then has the effect

of “rejecting” message U.

If v is an output message, then it is cancelled in the forward direction, Le. it is
removed from the output queue, and it is transmitted toward the receiver where it
will usually annihilate with its antimessage and possibly cause a rollback. Again,

only messages with pvt <= v.svt are chosen, and since from Eqn. 4.5 we know that
GVT <= pvt <= v.svt < v.rvt,

no message v will be transmitted in the forward direction with v.rvt <= GVT at the

moment of sending. Since GVT by definition cannot increase beyond the rvt of a
message in transit in the forward direction, no message cancelled by this Line can

cause a rollback to a time earlier than GVT.

Finally, if the item v chosen is a state, then its svt is the virtual time it was created.

“Cancelling” a state means deleting it and rolling back to time svt, just as though an
“antistate” were sent back from the object to itself to annihilate with the state. Some
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states may be future states, i.e. their svt is greater than the Ivt of the process to
which they belong. If so, such a state must be the product of the lazy rollback tech-
nique (also known as jump forward) [West 88]. In any case, since

GVT <= pvt <= v.svt, the rollback does not conflict with GVT.
Line 6

In this line the storage situation is desperate; neither fossil collection nor cancelback
have been able to release any storage. As long as egvt < pvt, there is a possibility

that a new update of egvt will arrive and allow the commitment of additional mes-
sages and states, thereby freeing some storage. Hence, the protocol at this point sim-

ply waits for a further update of egvt. No events are executed, no states are saved,
and no interrupts for forward or reverse event messages are accepted. The processor
goes completely idle except for interrupts invoking the higher-priority activity of
GVT estimation and dissemination. Since GVT is estimated repeatedly, a new esti-

mate, egvt, is guaranteed eventually to arrive. When it does the protocol loops
back to Line 3 and again attempts to free memory via fossil collection in Line 4.

(Line 5 are unaffected by the arrival of a new egvt) If Line 4 should fail again, and if

it is still the case that egvt < pvt, then Line 6 will be invoked again and the protocol
will wait again.

If, however, egvt = pvt at any iteration of the loop, then there is no sense in waiting
for a new egvt, because the value of egvt cannot increase; no events are executing
on this processor so pvt cannot increase, and egvt is bounded above by pvt. When

egvt = pvt the protocol has failed; this processor is unrecoverably out of memory.
We will analyze this event in Section 5.

One important point that bears repeating is that it is impossible for any processor to
wait forever in Line 6, because GVT estimation is accomplished in a separate proto-
col that is executed repeatedly at a higher priority. Hence, a new egvt value is

always guaranteed to arrive eventually, and thus deadlock at this level is impossi-
ble.

Line 7

When we get to Line 7 the protocol has failed. The only recourse is to signal the
user and to terminate the computation gracefully.

5. Analysis of the Cancelback Protocol

We now proceed to prove the main properties of the memory requirements of this
protocol. We will show that despite the fact that Time Warp normally keeps two
copies of each message (negative and positive), and normally has several versions of
each process’ state in memory at once, it can make progress in the minimal amount
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of memory provided that memory is properly distributed among the processors.
We formalize the result as follows:

Theorem 2: Let a simulation S be decomposed into processes $j, i=1..n, and let them
be assigned statically to processors pj, j=1..m by an assignment a such that afj) is
the set of all process indices i such that s; resides on processor p;. Assume processor
pj has memory Mj, and pi(t) is the amount of memory needed by process | at
virtual time t, i.e. the size of the state at virtual time t plus the sizes of all of the

event notices for s; that would be on the event list at virtual time t. Then under
Time Warp simulation with the Cancelback protocol execution can always complete

through a virtual time GVT =t as long as every processor has enough memory to
hold the messages and states that would be needed for the processes resident on it in
a sequential execution up to time t'. More precisely, Time Warp can execute a simu-

lation to the point where GVT> t' if

V<=t Vj z ic a()) ui(t)) <= M; 5.1

Proof: Suppose the protocol fails in Line 7, at virtual time t'. Then neither of Lines
4 or 5 has been able to release a page. From the conditions on Lines 4-5 we can con-
clude that the following statement holds when control reaches Line 7 on some pro-

Ccessor pj,
Vv: (egvt(j) <= vt(v) A v.svi < pvi(j)) 5.2

where v varies over all messages and states stored on processor p; in the input, out-
put, or state queue of any process. As defined in Section 4 we can separate this line
into the three cases encoded by the macro vi(v). If we consider three new variables,
V¢ ranging over states, V; ranging over input messages, and v, ranging over oufput
messages, then condition 5.2 is equivalent to the following conditions

Vvg: (egvi(j) <= vg.rvt A vg.svt < pvt(j)) 5.3
Vv (egvt(j) <= vi.rvt A visvt < pvi(j)) 5.4
Vvy: (egvt(j) <= vgo.svt A v,.svt < pvi(j)) 5.5

Furthermore, from the condition in Line 6 we know that egvt(j) >= pvt(j). Com-
bining this with invariant 4.1 that egvt(j) <= GVT <= pvt(j) we conclude that

egvt(j) = GVT = pvi(j)

whenever control reaches Line 7 on any processor pj. We can thus rewrite condi-
tions 5.3-5.5 as follows:
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Vg (GVT <=vgrvt A vg.svi< GVT) 5.6
VVi: (GVT <= Vvt A Vi.SVt < GVT) 57
Vvo: (GVT <= vg.8vt A vy.svt < GVT) 5.8

Let us examine the implications of these conditions separately.

Condition 5.6 says that at the time of memory exhaustion all states remaining in
memory have svt < GVT and have GVT <= rvt, where svt is the virtual time a
state is “produced” and rvt is the time it is “consumed”. Thus all states in memory
cover a virtual time interval containing GVT. In Time Warp there is at all times
exactly one state for each process that covers GVT, and each such state is correct

(committable) because it was created at a virtual time (Svt) strictly less than GVT.
Hence we conclude:

S1: The combined storage devoted to states on processor pj at the moment of
storage exhaustion is the same amount that would be needed for the states

of the processes on processor p; at time GVT if the simulation were exe-
cuted sequentially.

Condition 5.7 says that when storage is exhausted on processor pj, exactly those

input messages remain in storage such that svt < GVT and rvt >= GVT. As with
states, all of these messages are correct, i.e. the same as those that would be produced

by sequential execution, since their send times are less than GVT. But unlike states,
there may be any number of such input messages (including zero) for each process
on the processor. The critical observation is that there is a one-to-one correspon-
dence between the messages satisfying Condition 5.7, and the event notices that

would be on the event list at virtual time GVT if the simulation were executed

sequentially, because the contents of the event list at any time t in sequential execu-
tion is exactly the set of event notices that were scheduled at times strictly earlier

than t for future execution at times greater than or equal to t. Thus, if we neglect
the difference in the storage required by an event notice in a sequential execution
and the corresponding message in a parallel execution, we conclude:

S2: The combined storage used by input messages on processor p; at the mo-
ment of storage exhaustion is exactly the same as would be used by event

notices directed to the processes resident on processor p; at simulation
time GVT in a sequential execution.

Finally we can look at Condition 5.8. It says that at the moment of storage exhaus-
tion all output messages in memory on processor pj satisfy both svt < GVT and

svt >= GVT. These conditions are contradictory, and thus there can be no such mes-
sages. Of course, in sequential execution there is no notion corresponding to an
output message. Hence, we conclude
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S3: The storage used by output messages on processor pjat the moment of
storage exhaustion is 0, the same amount that would be devoted to output

messages at time GVT if the simulation were executed sequentially.

Combining the results $1-53 we conclude

S4: The combined storage used for all processes on processor p; at the mo-
ment of storage exhaustion is the same as would be used by the states and
event notices for the same processes at time GVT if the simulation were
executed sequentially.

At the moment of storage exhaustion in Line 7 the protocol’s extra internal buffer is
full holding item u, and counting that internal buffer the protocol is using exactly
the space the sequential algorithm would. But the internal buffer should be counted
as part of the constant storage that belongs to the operating system, and not the
dynamic storage that is charged to the simulation. Therefore, we see that at the
moment of storage exhaustion the dynamic storage used is exactly one page less on

processor pj than needed for sequential execution.

But if execution succeeds up to GVT=t', and if all processors together have enough
dynamic storage (properly distributed) for a sequential execution at time t’, then
from S4 we know that execution will proceed to GVT > {. From that we conclude
the theorem.

End proof.

6. Conclusions

In this paper we present a new and optimal storage management protocol for Time
Warp called the Cancelback protocol.

We have shown that the worst case memory performance for Time Warp with the
Cancelback protocol is far better than previously suspected, i.e. that it can execute
any simulation to completion in the same amount of memory as would be required
for sequential execution (if the memory is properly distributed among the proces-
sors), and hence that Time Warp is storage-optimal.

At the same time we proved that the worst case storage requirements for most paral-
lel conservative mechanisms, including the Chandy-Misra-Bryant family, is worse

than expected. We construct a family of simulations decomposed into n processes

that takes O(n+k) storage to execute sequentially, but O(nk) storage to execute under
any of the CMB protocols.
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We consider these results to be very counterintuitive and very important in the
continuing debate over the comparative advantages of optimistic and conservative
methods for parallel simulation.
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