Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

SOME IMPOSSIBILITY RESULTS IN INTERPROCESS
SYNCHRONIZATION

Yih-Kuen Tsay October 1989
Rajive L. Bagrodia CSD-890059

Some Impossibility Results in Interprocess
Synchronization!

Yih-Kuen Tsay
Rajive L. Bagrodia

3531 Boelter Hall
Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024,

Tel: (213} 825-0956

yihkuen@cs.ucla.edu

bagrodia@cs.ucla.edu

Abstract. In this paper we formally specify the problem of synchronizing asynchronous processes
and two strong fairness notions in a general model. We prove that strong interaction fairness is

impossible for binary (and hence for multiway) interactions and strong process fairness is impossible

for multiway interactions.

YThis research was supported by a grant from NSF (CCR 88 10376)

1 Introduction

The problem of synchronizing asynchronous processes in a distributed environment was introduced
in the context of the rendezvous construct proposed for CSP [Hoa78]. A rendezvous represents
synchronous communication between two processes in which the sender (receiver) process must
wait until the receiver (sender) process is ready to receive (send) the message. A process may be
ready to rendezvous with a number of other processes but may participate in at most one rendezvous
at a time. This form of communication is referred to as a binary interaction. Other researchers
have suggested an extension to binary interaction — multiway interaction ([FHT86, Cha87, BKS88,
Fra89]. A multiway interaction essentially allows a rendezvous to occur among an arbitrary (though
usually predetermined) number of processes.

A large number of algorithms have been devised to implement binary and multiway interactions
[Sis84, Bag89hb, BS83, Bag89a, CM88]. Three primary classes of properties are associated with such
algorithms: safety, liveness, and fairness. Although most existing algorithms satisfy the safety and
liveness properties, few implement fairness.

In this paper we formally specify the problem of implementing interactions in a general model.
We consider two fairness notions: Strong Interaction Fairness (SIF), which requires that, if an
interaction is enabled infinitely often, it be started infinitely often and Strong Process Fairness
(SPF), which requires that, if a process is ready to participate in some enabled interaction infinitely
often, it do so infinitely often. We prove that SIF is impossible for binary (and hence for multiway)
interactions and SPF is impossible for multiway interactions. In another paper [BT90] we give an
efficient algorithm for binary interactions with SPF., Although the impossibility results are proven
in a message passing model of distributed system, the results hold in any model where {a) each
process autonomously decides when and if it is willing to participate in some interaction and (b)
the model assumes low atomicity, i.e. in one atomic step, a process cannot both change its local
state and inform other processes of the change.

In [Fra86] Francez gives an extensive overview of fairness notions and demonstrates the effects of
some of them on program correctness. [AFKS88] proposes criteria for determining the appropriate-
ness of fairness notions in distributed languages. They conclude that, under the suggested criteria,
none of the common forms of fairness (including SPF and SIF) are appropriate for multiway inter-
actions and only SPF is appropriate for binary interactions. Our impossibility results corroborate
their conclusions. From an implementation perspective, Dijkstra[Dij88] contends that fairness is a
void obligation for language implementers in that it is impossible to detect if the obligation has been
fulfilled. The results of this paper show that under the assumptions of our model, some fairness

notions for interprocess synchronization are, in fact, impossible to implement.

The rest of the paper is organized as follows: Section 2 introduces the computational model and
notation used in the paper. Section 3 gives a formal specification of the interaction problem along
with the desired safety, liveness, and fairness properties. Section 4 gives the impossibility proofs

for the unsatisfiability of some of the fairness properties.

2 Model and Definitions
2.1 Program and Computation

A program essentially consists of a set of variables and a set of (state transition) rules. Each
variable may assume values in some domain, a subset of which is specified as possible initial values
of the variable. The state of a program is the tuple of values assumed by the program variables: an
initial state is a state satisfying the specification of initial values of the program variables. Each
rule is specified by a predicate on program states, called its guard, and a sequence of assignment
statements, called its body. A rule is enabled at a program state if the state satisfies its guard;
otherwise it is disabled.

A computation of a program starts from any initial state and goes on forever. In each step of
the computation, a rule is selected nondeterministically for execution. The body of the selected
rule is executed if the rule is enabled; nothing happens otherwise. The execution of a rule, enabled
or disabled, results in a deterministic state transition of the program. Thus, each computation
uniquely determines an infinite sequence of program states. To exclude computations where a
continuously enabled rule is indefinitely ignored, we postulate a fair selection criterion that each
rule of the program is selected infinitely many times in a computation.

We introduce some notations:

s (or &, so, s1, ... etc.) denotes a program state.

a, # denote infinite sequences of rules.

o, 1 denote infinite sequences of states.

z; denotes the i-th element of sequence z. We assume elements of a sequence are numbered
from 0.

z* denotes the suffix of sequence z starting from the i-th element, i.e. z;,741,2i12, -~

(s, z) denotes the sequence of states determined by the execution of sequence of rules z starting
from state s.

(s,z) denotes the last state in (s, z), assuming z is finite.

(z;y) denotes the concatenation of sequences z and y, assuming z is finite. From the definition
of the computational model, it follows that (s, (z;y)) = ((s,2),9).

z<y denotes that sequence z is a prefix of sequence Y.

A%

Init(D) denotes the set of initial states of a program D.

Rule(D) denotes the set of rules of D.

Rule®(D) = {a | VYr,k : 7 € Rule(D)A k> 0 :: (3:4 >k :: ai = 7)} is the set of all infinite
sequences of rules of D under the fair selection criterion. Note that Rule®(D) is a suffix closed set,
le.if o € Rule*(D) thenVi:i>0:4a' € Rule*(D).

Pref(Dy={z|3a:a € Rule"(D) 1z < a} is the set of all prefixes of sequences in Rule*(D).

Reach(D) = {s | 3¢,z : s' € Init(D) Az € Pref(D) 1 s = (8',z)} is the set of all states
reachable from initial states. It follows that Init(D) C Reach(D).

Comp(D) = {{s,a) | s € Mit(D)Aa € Rule™(D)} is the set of all possible computations of D,
Let Comp*(D) be the suffix closure of Comp(D). It is easy to see that Comp*(D) = {(s,a)| s €
Reach(D) A a € Rule*(D)}.

Branch(s) = {0 | 0 € Comp*(D) A 5y = s} is the set of all possible “futures” of the state s.

2.2 Temporal Logic

Our logic is a mixture of the branching time logic in [ES89] and the first-order temporal logic in
[Kro87].

We directly define the semantics of our logical language with respect to a program D; its syntax
is implicitly defined by these semantic definitions. Suppose a,b are predicates on program states and
P,q aTe assertions. ¢ is an infinite sequence in Comp™(D); recall that o' denotes its suffix Ti\Tit1,
Fity2, -+ In the following definitions, the logical operators -, A, and V and quantifiers V and 3,
when not occurring as part of an assertion, should be interpreted according to their meanings in

standard predicate calculus.

a|o = aatog (aisevaluated to frue at state oa) (A1)
plo = =(plo) (A2)
oplo = p|o? (A3)
Ople = Vi:i>0up|of (A4.1)
Oplo = 3i:i>20up|o (=-O-p|o) (A4.2)
Apl|o = V7:71€ Branch(oo) :p| T (A5.1)
Eplo = 3r:7 € Branch(ag) :p| 7 (= -A-p|a) (A5.2)
pVgla = (plo)viglo) (A6.1)
PAgle = (plo)Algle) (=-(-pV-g)|o) (A6.2)
poglo = (-pvy)le (46.3)
peoglo = ((p>aA(g—p)|o (A6.4)
(a Until b) |0 = (—na[a)v(fli:izﬂ::(b|cr")/\(Vj:05j<i::a[a-f)) (A7.1)
(a Unless b) | o = (OaV (a Until b)) | o (A7.2)

(Notice that “(a Until b) | o” is true if ais “currently” false (i.e. a is false at oq) regardless of
the truth value of b; similarly for “(a Unless b) | ¢.” In conventional temporal logic, both assertions
would be false if a and b are currently false. This modification is motivated by the ease of its usage
in specifying safety properties of programs.)

A guantified assertion is interpreted as muitiple occurrences of the assertion with the quantified
variables being replaced by their possible values. “Vz : Q(z) :: p(2)) | ¢” is evaluated to true if
all occurrences of p(z) with z satisfying (z) are evaluated to true. An important constraint on the
predicate Q(z) is that its truth value does not depend on program states. Similarly, “(3z: Q=) =
p(z)) | 0” is evaluated to true if at least one occurrence of p(z) with z satisfying Q(z) is evaluated
to true. (For brevity, assertions are often written without explicit quantification; they are assumed
to be universally quantified over all values of the free variables.)

The properties of a program D are mostly expressed by statements of the form “pinD,” where
pis an assertion.

pinD = Vo:0€ Comp*(D):p|o (=0Opin D) (P1)

The following are some logical rules that will be used in this paper. They are presented without
proofs and the reader is referred to [Kr687, ES89] for a discussion of their validity.

O(p A) < (Op ADg) (T1)
(aAAp) & A(a A p) (T2)
(G(p — ¢) A Bp) - Og (T3)
(a Unless (bV ¢)) = ((a Unless b) v (a Unless c)) (T4)

2.3 Program Composition and Distributed Programs

Progra.ms can be combined to produce composite programs in a natural way. Each component
program of a composite program will be referred to as a module. The set of variables (rules)
of the composite program is the union of the sets of variables (rules) of all component modules.
Variables belonging to more than one modules are termed shared variables. A constraint on program
composition requires that each shared variable be initialized “consistently” by all sharing modules.
A program composed of programs F and G is denoted by F]G. Note that F and G may themselves
be composite programs. For clarity, the state of a module in a composite program will be referred
to as the local state of the module.

We consider programs where program modules are functionally divided into two categories:
processes which do significant computations and channels which simply relay messages. The shared
variables of a program may only be shared between a process and a channel; processes do not
share variables, neither do channels. Each of such shared variables is a queue where messages are

appended by one sharing module and extracted by the other; the queue is called output queue for

4

the former module and input queue for the latter. A message is sent if it is extracted by a channel
from the output queue of a process; a message is received if it is appended by a channel to the input
queue of a process. We assume a channel always extracts and appends a given message in separate
steps. (Note that the notions of process and channel are relative to a program. A module in a
process, which shares variables with other modules in the same process, is NOT a process of the
entire program; analogously for modules in a channel.)

Programs composed in the above manner are called distributed programs. A distributed program

models a distributed system with message passing.

3 Multiway and Binary Interaction Problems

The multiway interaction problem abstracts the basic issues, namely synchronization and mu-
tual exclusion, in implementing the symmetric, nondeterministic, synchronous communication con-
structs of programming languages like CSP [Hoa78], Script [FHTS86], and IP [Fra89] on a distributed
architecture. An anthropomorphic version of this problem, called committee coordination, can be
found in [CMS8S].

Consider a set of processes and a set of interactions defined among them. Each interaction
18 a nonempty subset of processes representing some synchronization activity of its members. A
process can be in active, idle, or commit state. An active process may autonomously become idle
and wait to participate in some interaction. (Note that, in general, it is impossible to determine
when, or if, an active process will become idle.) An interaction is enabled if all of its members are
idle; it is disabled otherwise. Only enabled interactions can be started — synchronization. An idle
process will transit to commit state only after an interaction of which it is a member is started.
A process can participate in at most one interaction — mutual exclusion. A process in commit
state can become active only after the interaction in which it participates is terminated — another
synchronization.

The binary interaction problem is a special case where each interaction has exactly two members.

3.1 Problem Specification

We adapt the UNITY format of problem specification [CM88]: Let USER refer to a set of asyn-
chronous processes (including the channels) and OS refer to the (distributed) scheduler that im-
plements synchronizations among the asynchronous processes in USER. The composite program
USER]OS is referred to as P. We use the temporal logic language introduced in section 2 to specify
the properties of USER and P as well as the constraints on OS.

We assume processes in USER are numbered 1 through n and the i-th process is denoted by

user;; analogously for OS. p; = userifos; denotes the i-th process in P. We shall refer to a process
in USER as a user, a process in OS as an o0s, and a process in P as a process. An interaction among
user;, users, and usery is represented by {i,j,k}. T is the set of interactions defined among users;
each element of Z is a nonempty subset of {1.2,...,n}. Two interactions are said to be conflicting if
they have at least one common member. The set of all interactions of which a process is a member
is referred to as the interaction set of the process.

Each user and the corresponding os share two variables: a boolean array called flag and variable
state which may assume the value active, idle, or commit. The three states of a process correspond
to a user that does not want to participate in any interaction, a user that is waiting to participate
in some interaction, and a user that has committed itself to a specific interaction. Each component
of flag corresponds to an interaction in the user’s interaction set. Interaction Iis started if one of
its members, say p;, sets flag! to 1 and is terminated if flag? is set back to 0 for all members of I.

We introduce some abbreviations for commonly used predicates:

active; = (state; = active), similary for idle; and commit; (d1)
enable! = (Vi:ie I:idle) (d2)
sync! = (3itieIuflagl =1) (d3)
ElILJ] = (I#JAINJ #¢) (d4)

All assertions are assumed to be universally quantified over all values of their free variables. In
the remainder of this section, we formalize the behavior of a user process, the constraints imposed

on the scheduler and the safety, liveness, and fairess properties desired in the composite program.

3.1.1 Specification of USER

This part specifies the behavior of the USER program at its interface with the OS and also specifies
some properties that are guaranteed when USER is composed with the OS.

For each user, state is initialized to active and each component of flag to 0. An active user may
autonomously transit to idle — (ul). user; becomes idle due to the execution of a sequence of rules
local to user; — (ul.1) and it is always possible that, from a certain point of computation of the
composite program, user; never become idle — (ul.2). An idle user may transit to commit only
after some interaction in its interaction set is started — (u2) and the user transits from commit
back to active only after the interaction is terminated — (u4). (u4.1) and (u4.2) state that it
is always possible (though not necessary) for an interaction to be eventually terminated and all
members of the interaction eventually become active. When an interaction is started, all members
will eventually transit to commit — {(u3). A user may not start an interaction — (u5).

active; Unless idle; in USER (ul)

active; — ECidle; in user; (ul.l)

active; — EQactive; in P (ul.2)
wdle; Unless commit; A(AT:4 € I sync’) in USER (u2)
syncl - OWi:ie I commit;) in P (u3)
commit; Unless active; A (VI :i €I —syne!) in USER (u4)
syne! = EO-syne! in P (ud.1)
commsit; — ECactive; in P (u4.2)
(flag! = 0) - O(flag! = 0) in USER (u5)

3.1.2 Specification of P

This part specifies the safety and liveness properties that must be provided by the composition of
USER and OS.

The safety properties require that only enabled interactions can be started — (ppl) and that
conflicting interactions cannot be started simultaneously -— (pp2). As a consequence, an enabled
interaction remain enabled unless itself or a conflicting interaction is started — (pp3) and an active
process does not participate in any interaction — (pp4). The liveness property requires that if an
interaction [is enabled, either I or a conflicting interaction be eventually started; in conjunction

with (u3), 7 will eventually be disabled — (pp5).

—syne! Unless enable! in P (pp1)
EB[I,J} ~ ~(sync! A sync?) in P (pp2)
enable! Unless sync! v (37 : E[I,J]:sync!)in P (pp3)
active; = (VI :i € I ~sync!) in P (pp4)
enable! — O=-enablel in P (pp5)

3.1.3 Constraints on OS

The only shared variables between user; and o8, are state; and flag,. For each os, state is initialized
to active and each component of flag to 0 (consistent with the initialization in USER). An os may
not change the state of a user so that the properties (ul), {(ul.1), (u2), and (ud4) are preserved in
the composite program P. Furthermore, an os may not terminate an interaction — (ol).

(flag! = 1) — o(ftag! = 1) in OS (o1)
3.2 Fairness

The notion of fairness in the problem specification is weak. A user is said to be ready if some

interaction in its interaction set is enabled. The problem specification allows starvation: from a

-1

certain point of computation, a user may become ready infinitely many times but never participate
In any interaction. Also, an interaction may be enabled infinitely many times but never be started.

We are interested in two stronger fairness notions: Strong Process Fairness (SPF) and Strong
Interaction Fairness (SIF). SPF asserts a user that is infinitely often ready will infinitely often
participate in some interaction. SIF asserts an interaction that is enabled infinitely often will be
started infinitely often. It can be shown that SPF with (u3) subsumes (pp5).

ready; = (31 :1 € I :: enable!) in P

SPF = OCready; » OO(3I:i€ I :sync!)in P

SIF = OOenable! —» OOsynel in P

4 Impossibility Results

We call an additional property satisfiable if there exists an OS satisfying the original specification
such that the additional property also holds; otherwise it is unsatisfiable. We shall show that
“SIF ¢n P” (or simply SIF) is unsatisfiable for the binary (hence for multiway) interaction problem
and SPF unsatisfiable for the multiway interaction problem., We prove a property unsatisfiable
by showing that, for any OS meeting the problem specification, Comp(P) always contains some
computation violating the assertion in the statement of the property.

We first introduce some important properties of distributed programs.

4.1 Characteristics of Distributed Programs

Suppose D is a distributed program. Let @ be the composition of some of the processes in D and
Q the composition of all processes in D not in Q. Note that Q and Q do not share any variables
according to the definition in section 2.3. s{ Q] denotes the projection of state s on @, i.e. the
local state of Q at s. The following two lemmas describe conditions under which the projections
of (possibly different) states of D on Q are equivalent. These results are the jdeas behind fusion
of computations in {CM86), which is one of the basic techniques in our impossibility proofs and in
others, e.g. [FLP85],

Lemma 1 If (s[Q] = s'[Q]) A = € Pref(Q), then (5,2)[Q] = (¢',2)[Q].

Proof. According to our model, the execution of a rule of a program results in a deterministic state
transition of the program. Starting from the same state, a program will reach a unique state after

the execution of the same sequence of rules. Since @ is a program, the lemma follows. End of Proof.

Lemma 2 If (s[Q] = s'[Q]) A 2 € Pref(Q), then s[Q) = (s',2)[Q].

8

Proof. From the assumption, @ and @ do not share any variables. Also, by the definition of
program, rules in @ may only reference variables in Q and cannot change the value of any variable
in Q. The lemma follows directly. End of Proof.

4.2 Impossibility Proofs

In the following proofs, we consider a case where P has three processes p;, Pj, and pr, where
pi = user;os; and similarly for pj and pi; T = {I,J,K}, where I = {id}, J = {j,k}, and K = {k,i}.
We show that SIF is unsatisfiable for this P.

Lemma 3 If interaction I is enabled and usery is active at some point of computation, then there

ezists a possible future in which interaction I is started before J and K. In other words:

(enable! A activer) — E((enable! Unless synel) A Osynel) in P.
We prove this lemma later.

Theorem 1 SIF is unsatisfiable for the binary (and hence multiway) interaction problem.

Proof. In any reachable state s of P where all users are active, we are able to construct an infinite
sequence of rules a, & € Rule™(P), such that (TOenableX A O-syncX) | {s,a), which violates SIF.
(~(SIF in P) = 30 : 0 € Comp*(P) = (31 : I € T :: OCenable! A O-sync! | #).) The construction
proceeds in phases; each phase consists of four stages. During each phase all interactions are
enabled at least once but only I and J are started. At the end of each phase the program reaches
a state where all users become active again. To satisfy the fair selection criterion, each rule in P is
selected at least once in each phase. Starting from a state so where all processes are active, each
phase goes as follows:

Stage 1: Apply (ul.l) first to user; then to user; (or the other way around) to obtain a sequence
x1 consisting of rules of user; and user; such that (idle; A idle;) at (sg,21). From (d2), enable! at
(80,21). Those rules of user; and user; not selected can be arranged in arbitrary order to form a
sequence z3. Let s; = (s,(%1;22)). As (z1;z2) contains rules from only user; and user;, due to
(u2) and (u5), no interaction is started hence enable! at s1; and, since activey at sp and (zy;z,)
does not contain any rules in usery, from lemma 2, we get activey at sy.

Stage 2: Given (enable! A active) at 81, from lemma 3, there exists a sequence ¥; of rules in P
such that synel at (s1,91) and =sync’ A =syneX at all states in (81, y1). Without loss of generality,
we assume y; = (yo;7), where ris a rule of os; or 0s;j, and ~synel at (s$1,%0). From (ppl), enable! at

(s1,40). Assume that activeg at all states in {s1,31). According to (ul.1), there exists a sequence

of rules in usery such that idley at (81.{y0;¥2)), hence (enable! A enable’ A enablef) at (s1,(vo:12)).
(If idley at some state in (sy,3,), then y, is simply the empty sequence.)

From lemma 2 (replacing s and & in the lemma by (s1,%0), Q by os;Jos;, @ by osk, and z by
v2), (s1.90)[0sillos;] = ((s1,%0),32))[osilos;], which is to say (s1,y0)[0s]0s;] = (81,(%03y2)){o0si0s;).

From lemma 1 (replacing s by (s1,%), by (s1,(y0i32)), @ by os;flos;, and z by r),

((s1:90),)losJos;] = ((s1,(voswa))n)losilos;]. As ((s1,90),7) = (s1,(30ir)) and y1 = (3o0ir), we
get (s1,1)[0sifos;] = (s1,(y0i9257))0sifos;]. Let s3 = (s1.(goivair)).

Since sync! at (s1,1), the preceding statement implies sync! at s,. (1)

Also, from lemma 2, idle; at (81,(yo;y2)) implies idley at 3. (2)

Those rules of P except user; and user;, not selected in the sequence {yo;y2;r) can form an
arbitrary sequence y3. As y; does not contain any rules of user; or user;, from lemma 2 and (1),
synel at all states in {s2,y3), which implies ~syneX at all states in (82, y3), due to (pp2). According
to (u2), (01), and (2), idle; at (s2,y3). Let 53 = (s4,53). So,

(syncl A idler) at sj. (3)

Stage 3: Interaction Iwas started in the previous stage at state (s1,41). By virtue of (u3), user;
and user; transit from idle to commit; by (u4.1), interaction Iis terminated, and by (u4.2), user;
and user; transit from commit to active. Similar to Stage 1, apply (ul.1) to user; such that user;
becomes idle again; however user; remains active. Let z be the corresponding sequence and s4 =
(83,2). idle; at 34 and active; at s4. From (3) and lemma 2, idle; at s4. So, (enable’ A active;) at
S4.

Stage 4: Similar to Stage 2, interaction J is started and, similar to Stage 3, both p; and p
eventually become active. Let w be the sequence and s5 = (s4,w). All processes are active at 8s.

All interactions are enabled in Stage 2 and interaction J is enabled in Stage 3. Interaction [Iis
started in stage 2 and interaction Jis started in Stage 4; while interaction K is never started. Repeat
the four stages indefinitely, we obtain an infinite sequence o such that (O0OenableX A O-synch) |
{s0,a). Each rule in P is selected at least once either in Stage 1 or Stage 2, so a € Rule*(P).

End of Proof.

Theorem 2 SPF is unsatisfiable for the multiway interaction problem.

Proof. Add one process p; to P and change K to {k,,{}. We obtain an instance of multiway
interaction problem.

At some point of computation, assume that p; transits to idle, while other processes remain
active. Since p; may participate only in interaction K , in order to satisfy SPF, interaction K should

be started infinitely often if it is enabled infinitely often. Ignore py altogether and treat this problem

10

as implementing SIF for the equivalent binary interaction problem. The conclusion follows from
theorem 1. End of Proof.

The following is the proof of lemma 3:

Assume the contrary; from definitions (A6.3) and (A5.2),

do : 0 € Comp*(P) :: (enablel A activer} A A—((enable! Unless syncl) A Osynel) | o.

Fix o and expand the assertion in the above statement using (T2) and (A5.1) to get

V7 : 7 € Branch(oy) :: enable! A activer, A ~((enable! Unless syncl) A Csynel) | 7. (1)
For any such 7, elaborating the third conjunct using (A4.2), we get

~(enable! Unless syne!) v O-synel 7. (2)
Since there are only three interactions I, J and K, from (pp3),

enable! Unless (sync! v syne’ v sync®) | r. (3)
(enable! Unless syne’) v (enable! Unless (syne? v sync®)) | r, from (T4).

From this, (2) implies that

(enable! Unless (syne’ v syncf) v O-synel | 7. (4)
In other words, interaction 7 will never be started or will be disabled due to J or K being started.
37’ : 7' € Branch(oy) :: Qactivey | 7, from (ul.2) and (A5.2). (5)
O(activer — (-syne’ A ~syncX)) |+, from (pp4) and (P1).

O(=syne? A =syncK) | ' (= (O-sync’ A O-syncK) | '), from (5), (T3), and (T1). (6)

Denable! v O-syncl | 7, from (4), (6), and (A7.2).

—Oenable! | +/, from (pp5).

O-synel | 7/, from the above two statements.

enable! A O-syncl A O-syne’ A O-syne |+, from the preceding statement, (1), and (6).
enable! A O-(sync! v syne’ v syne) | 7, from (T1).

With this and (3), we conclude that Oenable! | 7/, which violates (pp5). End of Proof.

References

[AFKS88] K. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed pro-
gramming. Distributed Computing, 2(4):226-241, 1988.

[Bag&9a] R.L. Bagrodia. Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering, pages 1053-1065,
September 1989.

11

[Bag89b)

[BKS8S]

[BS83)

(BT90]

[Cha87]

(CM86]

[CMS8s]

[Dijas]

[ES89)]

[FHTS6]

[FLP85]

[Fra86]

[Fraso]

R.L. Bagrodia. Synchronization of asynchronous processes in CSP. 4ACM Transactions

on Programming Languages and Systems, 11(4):585-597, October 1989,

R.J. Back and R. Kurki-Suonio. Distributed cooperation with action sytstems. ACM
Transactions on Programming Languages and Systems. 10(4):513-554, October 1988,

G. Buckley and A. Silberschatz. An effective implementation of the generalized input-
output construct of CSP. ACM Transactions on Programming Languages and Systems,
5(2):223-233, April 1983,

R.L. Bagrodia and Y.-K. Tsay. An efficient algorithm for fair interprocess synchronization.

Technical report, Computer Science Department, UCLA, June 1990.

A. Charlesworth. The multiway rendezvous. ACM Transactions on Programming Lan-

guages and Systems, 9(3):350-366, July 1987,

K.M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52,
1986.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison- Wesley,
1988.

E.W. Dijkstra. Position paper on “fairness”. ACM SIGSOFT, 13(2):18-20, April 1988.

E.A. Emerson and J. Srinivasan. Branching time temporal logic. In J.W. de Bakker,
W.P. de Roever, and Rozenberg G., editors, LNCS 354: Linear Time, Branching Time
and Partial Order in Logic and Models for Concurrency, pages 123-172. Springer-Verlag,
1989,

N. Francez, B. Hailpern, and G. Taubenfeld. Script: A communication abstraction mech-

anism. Science of Computer Programming, 6(1):35-88, January 1986,

M.J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. JACM, 32(2):374-382, April 1985,

N. Francez. Fairness. Springer-Verlag, 1986.

N. Francez. Cooperating proofs for distributed programs with multiparty interactions.

Information Processing Letters, 32(5):235-242, September 1989.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. CACM, 21(8):666-677, August 1978.

[Kré87) F. Krdger. Temporal Logic of Programs. Springer-Verlag, 1987.

[Sis84] A.P. Sistla. Distributed algorithms for ensuring fair interprocess communication. In Pro-
ceedings of the Third Annual ACM Symposium on Principles of Distributed Computing,
pages 266-277, 1984,

13

