Computer Science Department Technical Report
Artificial Intelligence Laboratory
University of California
Los Angeles, CA 90024-1596

SCRIPT RECOGNITION WITH HIERARCHICAL
FEATURE MAPS

Risto Miikkulainen October 1989
CSD-890058

SCRIPT RECOGNITION WITH HIERARCHICAL FEATURE MAPS ~

Risto Miikkulainen
Artificial Intelligence Laboratory
Computer Science Department
Umniversity of California, Los Angeles, CA 90024
risto@cs.ucla.edu

Abstract

The hierarchical feature map system recognizes an input

story as an instance of a particular script by classifying it at
three levels: scripts, tracks and role bindings. The recogni-
tion taxonomy, i.e. the breakdown of each script into the
relevant tracks and roles, is extracted automatically and
independently for each script from story examples in an un-
supervised learning process. The process resembles human
learning in that the differentiation of the most frequently
encountered scripts become gradually the most detailed.
The resulting structure is a hierachical pyramid of feature
maps. The number of input lines and the self-organization
time required are considerably reduced compared to ordi-
nary single-level feature mapping. The system is capable of
recognizing incomplete stories and recovering the missing
events.

1 Introduction

Script theory postulates that people organize the knowl-
edge of everyday routines in the form of scripts [Schank and
Abelson, 1977], [Bower et al., 1979]. Scripts are schemas of
often-encountered, stereotypical sequences of events. Com-
mon knowledge of this kind makes it possible to efficiently
perform social tasks such as visiting a restaurant, visit-
ing a doctor, shopping at a supermarket, traveling by air-
plane, attending a meeting, etc. People have hundreds,
even thousands of scripts at their disposal. Each script
divides further into different variations, or tracks. For ex-
ample, there is a fancy-restaurant track, a fast-food track
and a coffee-shop track for the restaurant script.

In machine understanding of stories based on scriptal
knowledge the script is represented as a causal chain of
events with a number of open roles [Schank and Abelson,
1977, [Cullingford, 1978]. Applying this knowledge to a
story requires identifying the relevant script and matching
its roles with the story. Entering, seating, ordering, eating,
paying and leaving form a causal chain for the restaurant
script. The roles in this script are customer, restaurant,
food, etc. Once the script has been identified and its roles
have been filled, the sentences of the story are matched

*This research was supported in part by an ITA Founda-
tion grant and by grants from the Academy of Finland and the
Finnish Science Academy. The simulations were carried out
on equipment donated to UCLA by Hewlett Packard. Special
thanks go to Michael Dyer for valuable comments on an earlier
draft of this paper.

3-D input vector

I 3-D input weight vector

Image of the input vector

(the maximally responding unit)
2-D neighborhood

Figure 1: A self-organizing feature map network. A
mapping is formed from a 3-dimensional input space onto a
2-dimensional network. The values of the input components,
weights and the unit output are shown by gray-scale coding.

against the events in the script. Events which are not
mentioned in the story but are part of the causal chain
can be inferred.

A topological feature map [Kohonen, 1984] is a large
adaptive system which consists of a number of process-
ing units in a laminar organization (figure 1). The map
is formed in an unsupervised learning process. The input
data is first quantified along a number of features, forming
an input space of N-dimensional vectors. Input items are
randomly drawn from the input distribution and presented
to the network one at a time. All units receive the same
input and produce one output, proportional to the simi-
larity of the input vector and the unit’s parameter vector
(which is also called the input weight vector of the unit).
The unit with the maximum response is taken as the im-
age of the input vector on the map. The parameter vector
of this unit and each unit in its neighborhood are changed
towards the input vector, so that these units will produce
an even stronger response to the same input in the future.
The parallelism of neighboring vectors is thus increased at
each presentation, a process which results in a global order.

The processing units of the resulting network are sensi-
tive to specific items of the input space (figure 2). Topo-
logical relations are retained: two input items which are
close in the input space are mapped onto units close in
the map. The distribution of the parameter vectors ap-
proximates that of the input vectors. This means that the
most common areas of the input space are represented to

Travel

Restaurant J

Shopping

Figure 2: A single level map of script-based stories.
The first letter of a label indicates the script (R=restaurant,
T=travel, S=shopping), the second letter stands for the track
{F=tfancy-restaurant, C=coffee-shop-restaurant,
S=fast-food-restaurant etc), third letter for the main acior
(J=John, M=Mary), and the last for the two different bindings
of a track-specific role {see description of the data in section
3.1). Labels indicate the image of each story.

a greater detail, i.e. more units are allocated to represent
these inputs. The dimensionality of the map is determined
by the definition of the neighborhood, i.e. whether the
units are laid out in a line (1-D) or on a plane (2-D) ete. If
dimensionality is reduced in the mapping, the dimensions
of the map do not necessarily stand for any recognizable
features of the input space. The dimensions develop auto-
matically to facilitate the best discrimination between the
input items.

Feature maps have several potentially useful properties
for script recognition. The classification performed by a
feature map is based on a large number of parameters (the
input weights), making it very resistant to noise. This
suggests that incomplete or somewhat unusual event se-
quences can be correctly recognized. The map is contin-
uous, and can represent iterms which are between estab-
lished categories. In other words, scripts can have soft
boundaries. The differences of the most frequent input
items are magnified in the mapping, i.e. the variations
of the most common event sequences are more finely dis-
criminated. Finally, the process requires no supervision
and makes no assumptions of the content of the input sto-
ries. The properties of the stories which best distinguish
between scripts and their variations are determined auto-
matically, and may be very different for different kinds of
scripts.

On the other hand, scripts are hierarchical representa-
tions. Each seripl class consists of a number of {racks, and
each track can be instantiated with different role bindings.
Hierarchical feature maps can be used to make the hier-
archical taxonomy explicit. The hierarchical architecture
also cuts down the number of redundant system param-
eters (input weights) and speeds up the computationally
intensive training by effectively dividing the task of form-
ing a script taxonomy into subgoals.

N-D input vector——[JEIFIEFETEE]]
e

N input lines

N/r, input lines #

Figure 3: A hierarchical feature map system.

2 Hierarchical feature maps

The self-organizing process [Kohonen, 1982b], [Kohonen,
1984) produces a representation of the input space where
the input data is spread out spatially on eg. a 2-
dimensional sheet. The map represents most directly in-
put spaces which are continuous and unstructured. If the
data is hierarchical, the map reflects this through topo-
logical order. For instance, the map of taxonomical data
essentially displays the minimal spanning tree of the data
items, curved to fill in the whole area of the map [Kohonen,
1982a]. Or, if we form a mapping of script-based stories,
different. variations of the scripts are mapped near each
other (figure 2). Knowing what the hierarchical taxonomy
of the data is, it is easy to see that the spatial layout of the
map reflects the taxonomy. However, it is hard to extraci
the taxonomy from the map alone.

With hierarchical feature maps the taxonomy can be
made explicit. The highest level of the hierarchy is first
laid out on a single map by the ordinary self-organizing
process (figure 3). A small map size forces the process to
make only a gross, high-level classification. The units in
this map stand for the highest level categories.

For each unit in the top-level map, there is another
feature map beneath it, and similarly for each unit in
the second-level map. The system of maps thus forms a
pyramid-like structure. A lower map in the structure re-
ceives as its input only those input items which belong to
the category represented by its parent unit. In other words,
the unit which *wins” the input item passes this item down
to its submap. The lower map forms a subcategorization
of these input items, mapping the differences within the
category. The complete hierarchical classification of an in-
put item is indicated by the maximally responding units
at each level of the hierarchy.

Input representations in a cognitive system often have
some discrete structure, such as e.g. role specific assem-
blies. If the data is hierarchical, the items belonging to
the same category have a number of componets in com-

Form of
transportation

Passenger Destinatlon
; REETHTENE LIS ¥ REEiE
R HEEITHERE R EDTEER
BIE GEENND EERNEE: AR LB EDE LU A ERCEERENA

Lines to be passed on

U

Figure 4: Compression of the input lines.

mon. These components can be dropped from the input
to the next-level map. The higher-level map acts as a filter,
choosing the relevant items for each submap and compress-
ing the representation of these items to the most relevant
components before passing them on for a more detailed
mapping.

Each unit has to determine independently which of its
input lines are the most relevant in distinguishing between
items of the category. It has to find the lines with the most
varialion between the items it wins. These lines are differ-
ent for different units. For example, a unit which stands
for the train track of the travel script, wins only items
which have train as the form of transportation (figure 4).
The values on the input lines which code the form of trans-
portation do not change from one input to another. On the
other hand, the passenger and destination may be different
in different stories, and lines representing these roles have
a lot of variation. These lines alone are sufficient to deter-
mine the role bindings of the track, and they are therefore
passed on to the next map.

In self-organizing a hierarchical feature map system, it
is most efficient to start the process at the highest level,
and include a lower level only when the higher level has be-
come ordered. This way the set of inputs to the lower level
stays constant, and no work is wasted on inputs which
will eventually be classified into another category. Each
unit determines its own compressed set of input lines dur-
ing the last epoch before the lower level is included. In
our implementation, the lines of each unit were simply or-
dered with respect to the variance over the inputs won
during that epoch, and a fixed fraction »; was chosen at
each map level i. This means that usually only a few lines
of the representation for e.g. passenger are passed on to
the next level (the ones with the highest variance), not the
whole representation. Instead of a fixed fraction, a vari-
ance threshold could also be used, in which case the extent
of the compression would adapt to the input data.

Self-organizing a hierarchy of small maps instead of a
single large one means dividing the classification task into
subgoals, which is an efficient way to reduce complexity.
A story representation is first classified as an instance of
a script, then as a track within the script etc. Within
the script (or track), only a subset of the inpui repre-
sentation needs to be examined to refine the classification
further. The relative differences between the items are
greater, making the self-organization easier.

In a single-level map all units need to receive the com-
plete representations of all input items (figure 1). Modify-
ing the weights is costly, because the initial neighborhood
must cover almost the entire map [Miikkulainen, 1987]. In
a hierarchical map system, the maps at lower levels re-
ceive only small subsets of the original input lines, and
the neighborhoods are always small because the maps are
small at all levels (figure 3). This reduces the training time
considerably.

The hierarchical feature map technique actually gives
us a continuum of classification systems. At one extreme
there is the single-level feature map, which produces a
topological layout of the input space. At the other ex-
treme there is a hierarchy of two-unit maps, which forms a
statistically balanced divisive clustering tree of the input
jtems: the inputs are first divided into two equally large
classes, each class is further divided into two parts etc. If
enough is known about the structure of the input space, a
hierarchical feature map archilecture can be chosen, which
self-organizes to direcily represent the hierarchical seman-
tics of the inpul space.

3 Simulations

3.1 Input data

The script recognition system was trained with simple ver-
sions of the restaurant, shopping and travel seripts, with a
total of nine tracks, listed below. Two fillers (John, Mary)
were used to fill the PERSON rele in all tracks. In addition,
the restaurant tracks had two fillers each for the FOOD roles,
shopping tracks had two fillers each for the ITEM roles and
travel tracks two fillers each for the DESTINATION roles.
The fillers are listed next to the track name below. The
actual input stories were generated by replacing the role
pnames with different combinations of fillers. The system
had to extract the hierarchical taxonomy from the repeated
presentation of the resulting 36 stories,

Fancy-restaurant track : lobster,steak

PERSON went to a fancy-restaurant.
Waiter seated PERSON at a table.
PERSON asked the waiter for FANCY-FOOD.
PERSON waited for the FANCY-FOOD.
PERSON ate the FANCY-FOOD.

PERSON paid the waiter.

Coffee-shop-restaurant track : spaghetti,fish

PERSON went to a coffee-shop-restaurant.
PERSON sat down at a table.

PERSON asked the waiter for COFFEE-FOOD.
The waiter brought PERSON the COFFEE-FOOD.
PERSON ate the COFFEE-FOOD.

PERSON paid at the cashier.

Fast-food-restaurant track : hamburger,fries

PERSON went to a fast-food-restaurant.
PERSON waited in line for the cashier.
PERSON asked the cashier for FAST-FOOD.
PERSON paid the cashier.

PERSON ate the FAST-FOQOD.

PERSON threw away the trash.

Clothing-shopping track : shoes,hat
PERSON went to a c¢lothing-store.
PERSON locked for a CLOTHING-ITEM.
PERSON compared CLOTHING-ITEM prices.
PERSON tried a number of CLOTHING-ITEMs.
PERSON chose the best CLOTHING-ITEM.
PERSON paid at the cashier.

Electrical-shopping track : TV,radio
PERSDN went to an electrical-store.
PERSON asked the cashier for an ELECTRICAL-ITEM.
PERSON asked questions about the ELECTRICAL-ITEM.
PERSON compared ELECTRICAL-ITEM prices.
PERSON chose the best ELECTRICAL-ITEM.
PERSON paid the cashier.

Grocery-shopping track : fruit,meat
PERSON went to a grocery-store.
PERSON chose a shopping-cart.
PERSON chose a number of GROCERY-ITEMs.
PERSON compared GROCERY-ITEM prices.
PERSON waited in line for the cashier,
PERSON paid the cashier.

Airplane-travel track : JFK,DFW
PERSON checked-in at the airport.
PERSON waited for the boarding.
PERSON got-on the plane.
The plane took-off from the airport.
The plane arrived at the PLANE-DESTINATION.
PERSON got-off the plane.

Train-travel track : NYC,DC
PERSON bought a ticket at the railway-station.
PERSON waited for the train.
PERSON got-on the trainm.
The conductor punched the ticket.
The train arrived at the TRAIN-DESTINATION.
PERSON got-off the train.

Bus-travel track : town,beach
PERSON went to the bus-stop.
PERSON waited for the hus.
PERSON got-on the bus.
PERSON paid the driver,
The bus arrived at the BUS-DESTINATION.
PERSON got-off the bus.

Each story in the training set is represented by the con-
catenation of the case-role representations of its sentences
(figure 5). A case-role representation consists of assemblies
of components, with distributed patterns in the assemblies
indicating the fillers of the surface-semantic roles of the
sentence. The input for the feature map system thus con-
sists of the surface semantics of the sentences of the story.

The case-role representations were formed by a separate
front end, the backpropagation-based word-parser network
from the DISPAR. system [Miikkulainen and Dyer, 1989].
This network reads in the input sentences sequentially
word by word, developes distributed representations for
the words, and produces a case-role representation as its
output. The resulting word representations reflect the reg-
ulari]ties in the use of the words [Miikkulainen and Dyer,
1988).

The two different instances of the filler words (John,
Mary etc.) were formed from a common stem. The first
component of the corresponding role word (PERSON etc.),

Recipient| Patient

Patnt-attr] Location
g CRERIN cDERIEER: HHE
[Jokn _ [went |
T T TH T
UG -ERSINEE HEE S % I
rices
ET TR aiﬂll SEBE- & I
_

i TR 11 3% &3
—
BRE :ERBAN 3:i0E B 8%

cloth-st M
1

)

paid

Figure 5: Story representation. A story is represented by
a 360-dimensional vector, which consists of 6 sentence case role
representations, each 6 x 10 = 60 -dimensional. This particular
story is an instance of Clothing-shopping track, with PERSON =
John, CLOTHING-ITEM = shoes.

developed by the word-parser, was replaced by 0.0 for one
and 1.0 for the other. The purpose was to give these words
approximately the same surface semantics {which is coded
in the representation) while keeping the representations
unique [Miikkulainen and Dyer, 1989].

The word representation consisted of 10 units and
the case-role representation of 6 assemblies (agent, act,
recipient, patient, patient-attribute and location)
(figure 5). Each story contained 6 events, making the input
vectors 6 X 6 x 10 = 360 ~dimensional.

3.2 The resulting map hierarchy

A three-level pyramid of feature maps was used to form
the recognition taxonomy (figure 6). The highest level con-
sisted of a 2 x 2 map, the next level of four 2 x 2 maps, and
the lowest level of sixteen 3 x 3 maps. Of the 360 input lines
to the first level, each unit independently determined the
54 lines with the highest variance (15%), and passed them
on to the second level. Of these 54 lines, each second-level
unit passed on 10 (20%) to the lowest level.

The top-level developed into a map of the different script
classes. In a 2 x 2 map, the restaurant, shopping and
travel stories were mapped onto different corners. The
second level distinguishes between the different tracks of
each script. The compressed input vectors to this level
consist mostly of the differences in the order of events,
and of the most unique case-role assignments. At the bot-
tom level, the different role-binding combinations are sep-
arated. The bottom-level feature maps display topological
ordering: the PERSON role is differentiated along one axis,
while the other axis is used to separate the bindings of the
other open role of the track. Note that these dimensions
were discovered by the mapping itself, and they are differ-
ent for different scripts. The compressed input vectors to
the role-binding level consist mainly of the first compo-
nents of the filler words (either 0.0 or 1.0), which provide
for the best differentiation between fillers.

The outcome of the self-organizing process is somewhat
sensitive to the system parameters. To get a clean three-
level classification into scripts, tracks and role bindings
the maps must have approximately the right size and each
input must be approximately as frequent in the input data.

Scripts

Tracks

Figure 6: The resulting map hierarchy.

If, for instance, the highest-level map is too large, or one of
the script classes is far more frequent than the others, the
different tracks may get separated already at the highest-
level map.

However, even if the parameter settings are not ideal, the
script recognition works the same. The system uses whai-
ever architecture is given to establish the best classification
of the tnput data. The configuration parameters may need
to be experimentally adjusted to achieve the desired se-
mantics for the levels of the hierarchy, but the function of
the recognition system is fairly robust.

The script taxonomy can be used to recognize a story as
an instance of a particular script, track and role binding.
The images of the input story at each level of the hierarchy
give this classification. The system can correctly classify a
story even if a number of events are missing (left blank in
the representation). This is a consequence of the general
redundancy of the system: the incomplete input is still
closest to the correct script, and is classified as such.

3.3 Reproducing stories

It is possible to reproduce the story from its representation
in the feature maps. In the self-organizing process the
input weight vectors have become approximations of the
input veectors [Kohonen, 1984]. The weight vector at each
unit is thus a representation of the average story in the
category the unit stands for. The weights at different levels
of the hierarchy represent different levels of abstraction of
the story.

The weights of the image unit at the top level repre-
sent the skeleton of the script, where the different tracks
and role bindings have been averaged out. The weights
at the input lines which were passed on to the next level
are averages over all input items. When these weights are
replaced with the corresponding weights of the image unit
at the next level, the track becomes established. At this
point the story is otherwise complete but the role bind-
ings are still unspecified. For example, in the place of the
actor name (John or Mary) there is the representation of
the general actor (PERSON), which is an average of the two.
The bindings are finally established when the lowest-level

weights are combined with the representation.

This technique can be used to produce a full paraphrase
of an incomplete story, i.e. to fill in the missing events,
The stery is first classified as an instance of one of the
stories known to the system. The weights for this classifi-
cation are then read out, forming the full paraphrase. For
example, the story

John bought a ticket at the railway-statiom.
John got on the train. The train arrived at
NYC.

is classified as an instance of the travel script, train track,
with PERSON = John, TRAIN-DESTINATION = FYC. Reading
out the weights gives the full instantiation of the script:

John bought a ticket at the railway-station.
John waited for the train. John got on the
train. The conductor punched the ticked. The
train arrived at NYC. John got off the train.

Note that the maps contain several units which are not
images of any particular input item. These extra units are
necessary for the self-organizing process to develop a mean-
ingful topological organization of the map. The weights on
these units end up representing stories which are between
the actual inputs that the system has seen. In some cases
they may be meaningful abstractions or generalizations,
extracting the similarities of the items around them in the
map. Such a unit between two script units, for example,
can represent uncertainty about the script class the incom-
plete input story belongs to. Certain events can be safely
filled in, and they are specified in the weights of this unit.
Others are uncertain, and the corresponding weights of the
unit do not represent anything in particular. In most cases
though, the uncommitted units do not represent anything
useful. A combination of e.g. the airplane-travel script
and the cake-baking script is not anything that occurs in
real life.

4 Discussion

In an earlier paper we have described a connectionist script
reader system DISPAR (DIStributed PARaphraser, [Miik-
kulainen and Dyer, 1989]), which is based on backpropa-
gation learning of a slot-filler representation of the story.
An external supervisor decides on a fixed set of slots (such
as customer, food, who-to-pay etc.), and tells the system
what the correct fillers should be for each story. A dis-
advantage of this approach is that the number of different
scripts the system can represent is limited. All the vari-
ations of all stories 1) must be known in advance and 2)
must be represented in the fixed number of slots.

With hierarchical feature maps, it is possible to recog-
nize and represent a large number of different scripts, and
the system determines automatically what is relevant for
the taxonomy. The stories are classified into script classes,
tracks, and different role bindings based on the statistical
similarities in the input representations. The breakdown
of each script is independent of the others. Tracks and
roles are developed which facilitate the best discrimina-
tion between the stories of the script, and these are usually

different for different scripts.

On the other hand, the classification is purely statistical.
There is no way to include semantic information to guide
the process, as in the supervised learning approach. All
relevant information must be included in the input vectors.
Also, since the relevant roles are determined separately for
each script, the common roles end up being represented
multiple times. Each script in our data has a role for the
main actor, but this role has to be mapped separately on
every map at the lowest level. Half of each role map is
dedicated to stories with John as the main actor, the other
half with Mary (figure 6).

The self-organizing process resembles a human learner
in building the script taxonomy. The process begins by
establishing a gross ordering of the input data, dividing
the input into a few large categories [Miikkulainen, 1987],
i.e. the most prominent and regular event sequences are
recognized as the first rudimentary scripts. For example,
the restaurant and the shopping stories are first grouped
together, separate from the travel stories. These categories
become gradually more refined, as more attention is paid
on the details. The more frequently a certain kind of inpul
occurs tn the input data, the more of ils details become
significant. The restaurant and shopping stories together
are twice as numerous as the travel stories, and what used
to be different variations of the shopping-restaurant script
eventually become scripts on their own right.

The role binding at the lowest level of the mapping takes
place in a somewhat limited sense. Once the story has been
recognized, the bindings are consistent and plausible (in
the weight representation), making high-level inferencing
possible [Dyer, 1988]. However, all the role-filler combina-
tions must be mapped out in advance. While this is not
a problem for certain roles (representing a closed set of
variations of the script), roles like PERSON should be open
for any person name. The current system cannot bind ar-
bitrary representations into roles, it must have seen the
bindings before in the training daia.

The hierarchical feature mapping technique makes most
sense when the input data is strongly hierarchical, and
the architecture of the system matches this hierarchy. In
the extreme case of a uniform distribution of independent
continuous variables there is nothing to be gained by using
hierarchies. If enough is known about the structure of the
input data, it should be possible to choose an architecture
from the continuum between the single-level map and bi-
nary clustering, which efficiently reflects the structure of
the input space.

If the input data has the enough structure, the reduc-
tion of the required input connections and the speed-up of
the self-organization can be quite dramatic. In the script
recognition system, there were 4 x 360 = 1,440 connec-
tions to the highest level, 16 x 54 = 864 to the second, and
144 x 10 = 1, 440 to the bottom level, a total of 3,744 input
connections. A comparable single-level mapping (figure 2)
with 144 units for the same data required 51,840 input
connections. Self-organizing the single-level mapping took
about 9.5 hours on an HP 900/350 workstation, while the

hierarchical mapping was complete in three minutes, a dif-
ference of two orders of magnitude.

5 Future work

It would be desirable to develop a more general represen-
tation for the input stories. A large number of units in the
current representation are always blank, and the represen-
tation is extremely sensitive to the order and number of
events. Instead of simple concatenations of a fixed number
of event representations, the system should be able to read
time sequences of event representations of undetermined
length. One possible approach is to use a feature map of
events as a front end. The events would be presented to
this map sequentially, and would form a trajectory on the
map. This trajectory (i.e. the composite response pattern
on the front end map) would form the input to the script
recognition system.

It might be possible to develop a mechanism for auto-
matically adjusting the sizes of the maps or the depth of
the hierarchy according to the input data. Two different
inputs should always be mapped onto different units at the
lowest level. This constraint could be used to self-organize
the system architecture, in addition to the current self-
organization of the individual feature maps.

The primary function of the system is to build a taxon-
omy which allows recognizing a story as an instance of a
particular script, track and role binding. Higher-level sys-
tems such as a paraphraser or a question answerer could
be built based on this representation. It might be pos-
sible to extract the information the self-organized system
has found about the relevant tracks and roles, and use
this to automatically generate training data for supervised-
learning based higher-level systems, thus combining the
advantages of both approaches.

6 Conclusion

The hierarchical feature map system recognizes an input
story as an instance of a particular script by classifying it at
three levels: scripts, tracks and role bindings. The recogni-
tion taxonomy, i.e. the breakdown of each script into the
relevant tracks and roles, is extracted automatically and
independently for each script from story examples in an un-
supervised learning process. The process resembles human
learning in that the differentiation of the most frequently
encountered scripts become gradually the most detailed.
The resulting structure is a hierachical pyramid of feature
maps. The number of input lines and the self-organization
time required are considerably reduced compared to ordi-
nary single-level feature mapping. The system is capable of
recognizing incomplete stories and recovering the missing
events.

References

[Bower et al., 1979] Gordon H. Bower, John B. Black, and
Terrence J. Turner. Scripts in memory for text. Cog-
nitive Psychology, (11):177-220, 1979.

[Cullingford, 1978] R. E. Cullingford. Scripf Applica-
tion: Computer Understanding of Newspaper Stories.
Technical Report 116, Yale University, Department of
Computer Science, 1978. Ph.D. dissertation.

[Dyer, 1988] Michael G. Dyer. Symbolic NeuroEngineer-
ing for natural language processing: a multilevel re-
search approach. In J. Barnden and Jordan Pollack,
editors, Advances in Connectionist and Neural Com-
putation Theory, Ablex Publ., 1988. (in press).

[Kohonen, 1982a] Teuvo Kohonen. Clustering, taxonomy,
and topological maps of patterns. In Proceedings of
the Sizth Internationel Conference on Patiern Recog-
nition, IEEE Computer Society Press, 1982,

[Kohonen, 1982b] Teuvo Kohonen. Self-organized forma-

tion of topologically correct feature maps. Biological
Cybernetics, (43):59-69, 1982,

[Kohonen, 1984] Teuvo Kchonen. Self-Organization and
Assoctative Memory, chapter 5. Springer-Verlag,
Berlin; New York, 1984,

[Miikkulainen, 1987] Risto Miikkulainen. Self-Organizing
Process Based on Lateral Inhibition and Weight Re-
distribution. Technical Report UCLA-AI-87-16, Arti-
ficial Intelligence Laboratory, Computer Science De-
partment, University of California, Los Angeles, 1987.

[Miikkulainen and Dyer, 1988] Risto Miikkulainen and
Michael G. Dyer. Forming global representations
with extended backpropagation. In Proceedings of
the IEEE Second Annual International Conference on
Neural Networks, IEEE, 1988.

[Miikkulainen and Dyer, 1989] Risto Miikkulainen and
Michael G. Dyer. A modular neural network architec-
ture for sequential paraphrasing of script-based sto-
ries. In Proceedings of the International Joint Con-
ference on Neural Networks, IEEE, 1989,

[Schank and Abelson, 1977] Roger Schank and Robert
Abelson. Secripts, Plans, Goals, and Understanding
- An Inquiry into Human Knowledge Structures. The
Artificial Intelligence Series, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1977.

