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ABSTRACT OF THE DISSERTATION

Architectural and Compiler Support for Efficient Function Calls
by

Miquel Huguet
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989

Professor Tomés Lang, Chair

With the current trend towards VLSI load/store architectures, registers have become
one of the critical resources for increasing processor performance. One of the important
factors which influences the design and use of a register file is the overhead produced
by the register saving and restoring (RSR). This dissertation investigates the support
that the architecture can provide to implement efficient function calls for single-window
architectures combined with the support that can be provided by the compiler. Several
architectural policies which reduce the RSR overhead for single-window architectures
are presented. These policies make use of dynamie information to determine which
registers have been used during program execution. They are evaluated and compared to
the conventional static policies for single-window architectures (to save/restore registers
at the caller or at the callee) and to the already-existing schemes for multiple-window
architectures (fixed-size windows, variable-size windows, and multi-size windows). We
show that one of our dynamic policies reduces significantly the RSR traffic with respect
to the conventional static policies and that most of its activities are performed in parallel

with the main CPU activities.

Six new compiler optimizations to reduce the RSR traffic are also presented. Two
of them are intra-procedural and are based on live-variable analysis. The other four are
inter-procedural and their goal is to find a register assignment so that unnecessary RSR
can be eliminated. These optimizations are also evaluated and compared to the already-

existing intra-procedural optimizations (leaf functions and live-variable analysis) and to



other inter-procedural register allocation schemes. The inter-procedural optimizer not
only reduces the RSR traffic, but also the global scalar traffic and the return-address

traffic.

We show that a combination of both architectural and compiler support, i.e., our
dynamic policy with either intra-procedural or inter-procedural optimizations, is the
best approach; it generates less data memory traffic than when only either architectural

or compiler support is provided. Also, it simplifies the compilation process.

Both the architectural and the compiler policies have been evalnated with a new
tool, the Block-and-Actions Generator, which substantially reduces the overhead intro-
duced by a conventional simulator, the tool traditionally used to obtain these types of
measurements. The Block-and-Actions Generator’s main advantage is that, since the
execution time is substantially reduced, large fypical programs can be measured—the
NROFF word processor, the SORT program, the VAX-11 assembler, the Portable C
Compiler, and SPICE, a VLSI circuit simulator.

xxii



Chapter 1

Introduction

In this introductory chapter we offer first a description of the problem that this disser-
tation addresses and a summary of our contributions towards its solution (Section 1.1).
Second, we present our tool to perform the measurements discussed in this work (Sec-
tion 1.2) and the programs measured (Section 1.3). Finally, we give the general outline
of this dissertation (Section 1.4).

1.1 The Problem and Our Research Contributions

With the current trend towards VLSI load/store architectures, registers have become
one of the critical resources to increase processor performance [Patt82b, Radi82, Henn84,
Patt85a]. Recent advances in compiler technology, especially in register allocation opti-
mization [Chai82, Ankl82, Chow83, Wall86, Stee87, Chow88], have resulted in better use
of the register set because the compiler can allocate more scelar variables to registers.
The use of registers reduces the data memory traffic, because whenever operands are
already available in processor registers, no memory address has to be calculated and
no memory access has to be generated. The use of registers also reduces the instruc-
tion memory traffic because shorter addresses are used, and for load/store architectures
no load (store} instruction has to be generated to fetch (transfer) the operand from (to)
memory. However, registers have to be saved every time a procedure or function is called,
and restored when the function returns (see Figure 1.1). It has been observed that one
of the important factors which influences the design and use of the register set is the
overhead produced by the register saving and restoring (RSR).

For instance, Lunde [Lund77] affirms that the BLISS compiler spends 25% of its
execution time compiling the program “Treesort” in call administration. Patterson and
Séquin [Patt82b] have weighted the relative frequency of C-langnage [Kern78] statements
to conclude that 12% of the statements are calls and that they correspond to 33% of
the machine instructions and to 45% of the memory references. (These numbers have
been computed from the average number of instructions and references per statement



allocate a block for passing parameters
save environment registers (pc, fp, ap)

save registers for variables 1o be preserved
allocate an activation block
CALL

‘\ deallocate the activation block

restore registers for variables to be preserved
restore environment registers (pe, fp, ap) < RET
deallocate the block of parameters passed

Figure 1.1: Operations to Be Performed on a Function Call

generated by the C compilers for VAX-11, PDP-11,! and MC68000.) The RSR overhead
becomes more significant for languages such as C, which encourage the use of functions.

To reduce the RSR overhead some current processors rely on hardware support,
such as multiple-window register files [Patt82b, Kate83, Unga84, Atki87, Ditz87c), intra-
procedural optimizations [Radi82, Chow84], and/or inter-procedural optimizations [Wall86,
Stee87, Chow88, Rich89].

Multiple-window architectures have divided the register file into a set of banks or
windows. When a function is called, a new window of registers is made active [Site79a,
Dann79, Lamp82|, so that registers have to be saved only when no more free windows
are available in the register file. In contrast, processors with the conventional general-
purpose register file directly addressable by each function are classified as single-window
architectures,

Although multiple-window architectures produce a large reduction in the RSR traffic
[Patt82a, Patt82b, Hugu85a, Flyn87], they have three main drawbacks: they use a large
chip area in a VLSI implementation or a large number of chips in a MSI/LSI implemen-
tation; they increase the amount of processor context to be saved on context switching;
and they increase the processor cycle-time due to the long data busses [Henn84, Sher84).
These drawbacks are discussed in Subsection 2.1.1.

Due to these drawbacks, several processors prefer to have the conventional single-
window register file and rely on compiler optimizations to reduce the RSR overhead,
such as live-variable analysis [Hech77, Aho86] and leaf-function optimization (as used
in the compilers for MIPS [Chow86] and for HP-Spectrum [Cout86b]). These opti-
mizations are discussed in Subsection 2.1.3.4. However, the compiler complexity is in-
creased. To reduce the cost of developing an optimizing compiler for every language
and every machine [John81], current research on optimizing compilers pursues the in-
dependence of the optimizations from both the source language and the target machine

'VAX-11 and PDP-11 are trademarks of Digital Equipment Corporation.



[Perk79, Alle80, Ausl82, Tane83, Powe84]. This is also true for the algorithms which
perform register allocation [John75, Site79b, Leve83, Chow83].

This dissertation investigates both the support that the architecture can provide to
implement efficient function calls in single-window architectures and the support that can
be provided by the compiler. By architectural support we mean the hardware included
in the processor to implement a specific RSR operation which would be executed much
more slowly if it was implemented by the standard set of machine instructions provided.
The algorithms which describe the operations to be performed in hardware are called
architectural policies. Similarly, compiler support refers to the (software) algorithms
provided by the compiler to reduce the number of RSR operations to be performed
during execution.

The Measurements

Both the architectural and the compiler policies have been evaluated with a new tool:
the Block-and- Actions Generator (BKGEN). BKGEN drastically reduces the overhead
introduced by a conventional simulator—the tool traditionally used to obtain these types
of measurements. Section 1.2 presents BKGEN and Subsection 2.1.5 comments on the
overhead introduced by conventional simulators. The main advantage of BKGEN is
that, since the execution time is substantially reduced, large typical programs can be
measured. The typical UNIX? programs measured are: the NROFF word processor, the
SORT program, the VAX-11 assembler (ASM), the Portable C Compiler for VAX-11
(VPCC), and SPICE, a VLSI circuit simulator. More information on these programs
is given in Section 1.3. Since SPICE has different characteristics than the other four
programs (as we mention in Section 1.3 and show in Section 4.3), the measurements
presented in this dissertation are usually given separately for SPICE and for the average
of the other four programs.

Three compilers have been used in this dissertation to evaluate the data memory traf-
fic generated and the traffic reduction obtained by our new architectural and compiler
policies.® These compilers are: the Portable C Compiler, PCC [John79], the Amsterdam
Compiler Kit, ACK [Tane83], and the GNU C Compiler [Stal88]. These compilers have
been modified to generate code for six different register configurations. These configu-
rations correspond to when the register allocator has 6, 8, 12, 16, 24, and 32 registers
available for variables to be preserved across function calls (e.g., local scalar variables).
The overall data memory traffic generated by these compilers for the above-mentioned
programs is divided into the following six categories: local scalar traffic, RSR. traf-
fic, global scalar traffic, return-address traffic, parameter-passing traffic, and non-scalar
traffic. The traffic caused by expression evaluation is ignored because expressions are
evaluated with a small number of registers (see Subsection 2.1.4).

*UNIX is a registered trademark of AT&T.
*Each policy has not been evaluated with every compiler, although we expect that similar results
would be obtained for any compiler (see Sections 4.2 and 4.5).



RSR Architectural Support

This dissertation presents six new architectural policies to reduce the RSR overhead for
single-window architectures. These policies make use of dynamic information to know
which registers have been used during program execution. They are evaluated and com-
pared to the conventional static policies for single-window architectures (to save/restore
registers at the caller—named Policy A—or at the callee—named Policy B) and to the
already-existing schemes for multiple-window architectures (fixed-size windows [Kate83],
variable-size windows {Ditz82], and multi-size windows [Hugu85a]).

We show that one of the dynamic policies, Policy G, is our best candidate for
implementation since it is the one that generates the least RSR traffic. Policy G has
between 12% (when 24 registers are available to the allocator) and 31% (for 6) of the
RSR traffic generated by Policy B and between 5% (for 24) and 20% (for 6) of Policy A.
In addition to reducing the RSR traffic, Policy G also reduces the number of registers
to be saved/restored during context switching. We also show that when the register set
size is increased, the static Policies A and B generate even more RSR traffic, while this
is not the case for the dynamic Policy G. The implementation of Policy G is sketched to
show that most of its activities are performed in parallel with the main CPU activities.

RSR Intra-Procedural Optimizations

Two new intra-procedural (i.e., performed per function) compiler optimizations are also
presented to reduce the RSR traffic. These are based on live-variable analysis: one is
for Policy A and the second for Policy G. These optimizations are also evaluated and
compared to the already-existing compiler optimizations: live-variable analysis and leaf
functions. When intra-procedural optimizations to reduce the RSR traffic are performed,
we conclude the following:

1. Policy G with leaf-function optimization (Policy G-If) is the policy which gener-
ates the least traffic for any program and for any of the three compilers used in
this dissertation. For instance, with the GNU C Compiler, Policy G-if has between
13% and 42% of the RSR traffic generated by the best intra-procedural static pol-
icy (Policy B-If) for the average of the four programs and between 31% and 48%
for SPICE.

2. When only compiler support is provided, our measurements have indicated that
there is no best approach for performing the register saving and restoring, either at
the caller or at the callee. Depending on the program characteristics, one approach
can perform better than the other. Thus, the compiler should let the programmer
decide which of the two approaches is the most suitable for a specific application.

3. Our measurements have not shown the necessity for having more than 12 registers
available to the allocator for non-numeric applications because the reduction in
local scalar traffic obtained with a larger number of registers is balanced with the



increase in RSR traffic. This is not the case for numeric applications, like SPICE,
because of its heavier register use.

4. When 12 registers are available to the allocator, the overall data memory traffic
reduction, when both architectural and compiler support are provided, is 15% for
the average of the four programs and 8% for SPICE with respect to when only
compiler support is provided.

Inter-Procedural Optimizations

To reduce the RSR traffic further, four new inter-procedural (i.e., applied to the whole
program) compiler optimizations are also presented. One inter-procedural optimization
is based on the dynamic Policy G, the other three on static intra-procedural policies.
Their goal is to find a register assignment such that unnecessary RSR can be eliminated.
Register assignment decides the registers to be used by the variables that have been
selected for allocation in a previous phase by the intra-procedural register allocator.

Our inter-procedural optimizer not only reduces the RSR traffic, but also the global
scalar traffic and the traffic caused by the return address. The inter-procedural optimizer
uses a dynamic ezecution profile of the programs to obtain a better overall data memory
traffic reduction. When inter-procedural optimizations are performed, we conclude the
following:

1. The Global Policy G with leaf-function optimization {Policy GE&-If) is the pol-
icy which generates less RSR traffic than any of the three proposed static inter-
procedural policies. For instance, with the GNU C Compiler, the best inter-
procedural static policy has between 445% (when 12 registers are available to the
allocator) and 816% (for 32) of the RSR traffic generated by Policy G&-If for the
average of the four programs and between 103% and 155% for SPICE.

2. When only compiler support is provided, our measurements have indicated that
there is no best approach for performing the register saving and restoring among
the three static inter-procedural policies. Thus, the inter-procedural optimizer
should have all of the policies available to select the most suitable for a specific
application. Still, this increases the complexity of the inter-procedural optimizer.
On the other hand, Policy G8-lf not only generates the least RSR traffic, but also
is the easiest inter-procedural policy to implement,

3. The RSR traffic becomes smaller for larger register sets for all four inter-procedural
RSR policies. Thus, the inter-procedural optimizer can efficiently use a larger
register set. This is not the case when only intra-procedural optimizations are
performed,

4. For a 32-general-purpose-register file and for the average of the four programs,
the overall data memory traffic reduction when both architectural and compiler
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Figure 1.2: Gathering Measurements for the PM on the EM

support are provided, versus when only inter-procedural compiler support is avail-
able, is 14%. The overall data memory traffic reduction with respect to the intra-
procedural optimizer with Policy G-lf is 21%. For SPICE, the overall data memory
traffic generated when both architectural and compiler support is provided is the
same as the one generated when only compiler support is provided. The reason for
this will be discussed in Section 5.5.

Therefore, since Policy G8-If usually generates the least data memory than any static
inter-procedural policy (with the exception of SPICE), both architectural and compiler
support (i.e., Policy G5-If) is the best approach to reduce the overall data memory traffic
and to simplify the compilation process.

1.2 The Block-and-Actions Generator

Conventional simulators used for collecting dynamic measurements are limited by their
execution speed because several hundred instructions are required to decode, interpret.
and measure each simulated instruction (see Subsection 2.1.5). To be able to measure
large typical programs we have designed a new tool for collecting architectural measure-
ments: the Block-and-Actions Generator (BKGEN).

Given a program to be measured (in a high-level language), the goal of BKGEN
is to run directly an executable version of this program on an existing machine (EM)
while collecting measurements for the proposed machine (PM). This executable version is
obtained directly either with the EM compiler or with a combination of the PM compiler
and an assembly-to-assembly translator. The choice between these alternatives depends
on the EM and PM compiler technology and the type of measurements to be obtained
(as we will discuss below). BKGEN also collects the PM events to be measured (called
actions). Each EM basic block of instructions is assoctated with a PM block of actions
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s0 that when the program is executed, it collects the measurements associated with the
PM (see Figure 1.2).

To present how BKGEN is implemented we explain first how to associate EM blocks
to PM blocks and actions; afterwards, we discuss the size of a block and the interception
code that has to be added to each EM block to perform the measurements.

If a number is associated with each block, then the execution flow of a program
can be described by the sequence of block numbers. This flow depends mainly on the
original program structure, the transformations performed by the compiler, and the
input data, but usually not on the processor architecture (some exceptions are discussed
in [Hugu87}). Thus, the flow for both the EM and the PM is generally the same. In
this case, each block of code for the EM is mapped to a block of code for the PM. This
mapping can be performed as follows:

1. If the compiler technology used for the PM is the same as (or similar to) the one
used for the EM, then it is probable that both compilers generate the same number
of blocks and equivalent control flow instructions. If both programs were executed
and the trace of executed blocks was identical, we would say that we have a valid
mapping (see Figure 1.3). In this case, it is posstble to execute machine language
instructions of the EM directly and measure the architecture characteristics of the
PM.

2. Otherwise, we have an invalid mapping. In this case, the assembly code of the PM
has to be translated to the assembly code of the EM (see Figure 1.4). The com-
plexity of the translation depends on similarities between instruction sets. Thus,
additional overhead is introduced which depends on the number of EM instruc-
tions that have to be executed per PM instruction. However, the overhead is
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always smaller than for a simulator because only a few instructions have to be
executed here per simulated (PM) instruction. This is the approach taken by
(Chow86, Cort87b] (see Subsection 2.1.5).

Since we have always been able to find a valid mapping for the measurements that we
have taken so far, the reader is referred to {Hugu87] for more information on the second
alternative.

The size of the block and the interception code depends on the type of measurements
that are being performed. Measurements can be classified into the following three types:

I

II

I

Measurements that are independent of the order of execution of the instructions.
Examples are: opcode frequency, addressing modes distribution, register usage,
memory traffic caused by local scalar variables, traffic caused by register saving
and restoring with static policies.

Measurements that are dependent on the sequence of instructions executed, but
independent of the state of the machine. In this case, the measurements do not
depend on the values that are being computed during program execution. Exam-
ples are: frequency of pairs of opcodes, nested stack depth, branches taken or not
taken, number of instructions executed between branches, traffic caused by register
saving and restoring with dynamic policies, traces of instruction addresses.

Measurements that are dependent on the state of the machine. In this case, the
function that is collecting the measurements needs to access the values computed
during execution. Examples are: memory addresses generated for data, distribu-
tion of operand values for the multiplier, branch distances.



For measurements of Type III, each EM block corresponds to only one PM instruction
because the PM state has to be updated after the EM instructions (associated with a
PM instruction) have been executed. Since our measurements are of Types I and II
and the complexity of BKGEN for measurements of Type III is greater than the one
for the former types, we concentrate our attention on BKGEN for measurements of
Types I and II. The reader is referred once more to [Hugu87] to find more information
on BKGEN for measurements of Type III.

For measurements of Types I and II, the block corresponds to a basic block (as defined
in Subsection 2.1.3). The advantage of grouping the PM instructions in a block is that
the overhead caused by the EM instructions which are collecting the measurements is
reduced since these EM instructions have to be executed once per PM block rather than
once per PM instruction.

For measurements of Type I, the interception code consists of incrementing a counter
associated with the block number, because it is only necessary to know how many times
each block has been executed. (The order of instructions or blocks is not significant.)
When the program finishes its execution, the number of occurrences of each event is
computed as the product of the number of executions of each block by the number
of event occurrences per block (given by the actions file). The use of this scheme for
measuring the frequency of executed instructions for new machines was proposed by
Weinberger [Wein84].

For measurements of Type II, the interception code consists of a call to a measurement
function. This function can either (a) produce an execution trace of the blocks or (b)
compute the measurements during program execution. The selection between these
alternatives depends on the specific measurements and the overhead associated with
their processing per block. Our experience with BKGEN has shown that it is more
efficient to perform the measurements during program execution (in-line) due to the
large overhead for writing a file of several Mbytes and the amount of disk space required
for it; this case is shown in Figure 1.5.

To estimate the overhead introduced by the different alternatives we have counted
the number of executed instructions in the SORT program.* As we will show in Subsec-
tion 2.1.5, this can be considered the simplest type of measurement and, therefore, the
observed overhead is the minimum overhead introduced by the different measurement
techniques. The overhead generated is 1.5 times its normal execution time when the
interception code only counts the number of times that a block has been executed, 8.4
times when the measurements are performed in-line, and 11.5 times when the sequence
of block numbers is written to a file [Hugu87]. In contrast, the same measurement us-
ing the UNIX ptrace system call and implementing the tracer as an exception handler
produces an overhead of 1,540 and 540 times, respectively.

To have a correct and successful execution of the measured programs, the interception
code must not change the state of the EM (i.e., the registers, the condition codes, etc.).

*Note that this is a Type [ measurement. The reason for performing this measurement as Type Il is
only to estimate the overhead introduced.
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The reader is referred to [Hugu87] to see how this is done on VAX-11.

The overhead introduced for the Type I measurements is very small—only a few
instructions to increment a counter while preserving the machine state per block. For
Type II, the overhead depends on the measurements that are being performed. However,
since the measurement function is called only once per block and the events to be mea-
sured are given directly by the actions file, the overhead is always substantially smaller
than for a simulator. For instance, the overhead to measure the RSR traffic generated by
the static and the dynamic RSR policies is, on the average, 30 times the normal program
execution.

In conclusion, the block-and-actions generator lets the designer measure many of
the same events that can be measured by a simulator, an emulator, or a step-by-step
instruction tracer. The effort to develop this new tool is not greater than the effort
to develop a simulator, an emulator, or an instruction tracer. Since BKGEN directly
executes machine code for the machine on which the measurements are performed, the
execution time for obtaining measurements that do not depend on the machine state
is significantly smaller than the execution time required to simulate the same program.
Thus, for these types of measurements the designer can obtain meaningful dynamic
characteristics of typical programs.

1.3 Programs Measured

In this section we first review some of the standard benchmarks that have been used to
perform architectural evaluations and comment on why we do not use them. Afterwards,
we present the large typical programs that we have selected to perform our evaluations.
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In many cases the programs used as benchmarks are either small specific programs,
such as the Ackermann’s function [Wich76], LINPACK [Garb77], the Hanoi Towers, the
Quicksort, the Fibonnacci Numbers, the Erastothenes Sieve [Gilb81], and the Puzzle
Program [Beel84], or synthetic programs that either reflect some high-level language
characteristics, such as the CFA benchmarks [Full77] and Dhrystone [Weic84], or measure
some architecture characteristics, such as Whetstone [Curn76]. Programs of the first type
are too small to be considered typical of any real system behavior, while those of the
second type can only be representative of the characteristics considered in their desiga.

Our first measurements on several of the above-mentioned programs show that the
results obtained from benchmarks might not be representative of real system behavior
[Hugu85aj. For instance, the RSR traffic caused by Policy G for some of these bench-
marks either is zero or has little variation from the traffic caused by Policy B. This
is not the case when the large typical programs are measured. Some other authors
(Levy82, Chow83, Colw85, Patt85b, Hitc86, Laru86, Wall88, Wong88] have also pointed
out the limitations of these benchmarks for evaluating certain architecture features.

Table 1.1 shows some large programs used by some other studies. Small programs
are enclosed in parentheses. Since only [Cort87a, Cort88] have used a fast simulator to
perform their measurements, we have to assume that the simulation time required for
the other studies was large since this is not reported in the papers and/or the number
of different alternatives measured was small (to reduce the overall simulation time).

The large typical programs that we have selected to perform our measurements are
written in C [Kern78]. C has been selected because it is widely used for system pro-
gramming [Feue82], it has a type flexibility that allows to program system functions
traditionally coded in assembler [Kern81, Post83), it has been used to implement UNIX,
it can be used as an intermediate language for other block-structured languages such
as ADA [Hill83], and it has been used to implement other languages such as LISP and
PROLOG. No attempt is made in this work to generalize the measurements obtained
for the C programs. The reader is referred to [Weic84] or {Huck83] for a comparison of
the characteristics of different programming languages to C. The programs are:

ASM. The UNIX assembler for VAX-11 (as), assembling one of the machine-independent
Portable C Compiler modules (allo.s). ASM has 177 functions defined and executes
29,453 function calls.

NROFF. The UNIX nroff word processor, formatting one third of the manual page
entry for the FORTRAN 77 compiler. NROFF has 300 functions defined and
executes 379,831 function calls.

SORT. The UNIX sort program, sorting a file with 2,250 numbers. SORT has 68
functions defined and executes 142,448 function calls.

VPCC. The UNIX Portable C Compiler (ccom) for VAX-11, compiling one of its ma-
chine-independent modules (allo.c). VPCC has 337 functions defined and executes
154,071 function calls.

11



| Reference | Description ]

¢ First Pass of the Portable C Compiler
[Ditz82] | ¢ UNIX word processor
 Second Pass of the PCC (generating PDP-11 code)
e VLSI design ruler checker
[Blom&83] | e« UNIX Portable C Compiler
e (Puzzle and TAK—heavy recursive function)
[Tami83] | « UNIX Portable C Compiler
¢ (Puzzle and Towers of Hanoi)
#» LISP—Spice Lisp system from CMU
[Laru86] | « SLC—SPUR Lisp Compiler (based on Spice Lisp)
e RSIM—circuit simulator
{Band87] | e UNIX system programs:
cat, comm, diff, echo, mv, nroff, pr, rm, and wc
¢ Portable C Compiler for RISC
[Cort87a] | « NROFF—UNIX word processor
[Cort88] | ¢ YACC-—parser generator
o LEX—lexical analyzer
e AS—UNIX assembler for VAX-11
¢ CCOM-—main part of the UNIX Portable C Compiler
¢ COMPACT—adaptive Huffman code file compressor
[Eick87] | « EQN,TBL,NROFF—UNIX equation, table, and word processors
e INDENT—C source program indenting program
o PI—Pascal interpreter code translator
¢ SORT—UNIX sort program
® YACC—parser generator
e CCAL—emulates a desk calculator
e Compare—compares 2 text files and indicates differences
[Flyn87] | « PCOMP—compiles PASCAL programs and generates P-code output
» PASM—assembles the P-code output
e Macro—macro processor for SCALD

Table 1.1: Large Programs Measured by Some Other Studies

SPICE. A VLSI circuit simulator (“translated” to C from FORTRAN), simulating a
unidirectional ratioless shift cell. SPICE has 1,171 functions defined and executes
175,567 function calls,

SPICE is a program that has different characteristics than the previous ones because it
was originally written in FORTRAN. SPICE has fewer function calls, larger basic blocks,
and heavy floating-point variable usage (see Section 4.3). Thus, we prefer to isolate this
program from the rest. For this reason, in Section 1.1 we commented on the results for
the average of the four programs (ASM, NROFF, SORT, VPCC) and for SPICE.

In some parts of this dissertation we use averages from our previous measurements.
These are reported in [Hugu85a] and correspond to only three of the programs (NROFF,
SORT, and VPCC). These measurements do not include the library functions which
these programs use. However, we expect that the conclusions obtained would be the
same if the library functions were included.

12



1.4 Organization of this Dissertation

The outline of the dissertation is the following: Chapter 2 presents a detailed summary
of the work performed in this area (multiple-window architectures, register allocation
and assignment, performance evaluation of new architectures, etc.) and of some related
work that is not directly discussed in this dissertation (CISCs versus RISCs and cache
memories versus registers).

Chapter 3 presents the six architectural policies to reduce the RSR traffic as well
as the implementation sketch for Policy G. The RSR traffic generated by these policies
is compared with the RSR. traffic generated by the standard Policies A and B when no
optimizations are performed. Only one compiler is used to perform the evaluation, the
Portable C Compiler, because similar results would be obtained with the other two.

Chapter 4 presents the two new intra-procedural RSR policies and compares them
with the existing RSR policies (live-variable analysis and leaf-function optimization). All
three compilers are used to evaluate these policies. The RSR traffic generated is also
compared to the RSR traffic produced by multiple-window architectures.

Chapter 5 introduces our inter-procedural optimizer. First, the traffic reduction
obtained by each optimization (for global scalar traffic, for the return-address traffic, and
for RSR traffic) is discussed separately. Afterwards, the independent optimizations are
put together and the optimal partition of the general-purpose register set is evaluated.
Only one compiler is used to perform the inter-procedural evaluations, the GNU C
Compiler, since it is the one which generates the least overall data memory traffic when
intra-procedural optimizations are performed.

Finally, Chapter 6 summarizes the contributions of this dissertation and suggests
areas for future work.
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Chapter 2

Previous and Related Work

2.1 Previous Work

This section presents the previous work that has been performed in the following areas:

o Multiple-window architectures.

o Single-window architectures.

e Register allocation and assignment and RSR policies.
e Performance studies on register allocation.

e Performance evaluation of new architectures.

These are discussed in turn.

2.1.1 Multiple-Window Architectures

With recent technological advancements it is possible to have a large number of registers
on a single chip [Site79a). To reduce the register saving and restoring traffic multiple-
window architectures have the large register file divided into register windows. Every time
that a function is called, a new window is made available [Site79a, Dann79, Lamp82] so
that no RSR has to be performed. When there are no more windows available (i.e., an
overflow condition is detected), one or more windows must be transferred to memory
[Tami83]. Similarly, when a function returns and there are no more windows in the
register file (i.e., an underflow condition is detected), one or more windows have to be
transferred back from memory. Windows might overlap to pass parameters through
registers so that data memory traffic is further reduced [Patt82bh).

In this section, we first describe the general organization of a register file with multiple
windows. Second, we present three schemes to divide the register file into windows: fixed-
size windows [Kate83], variable-size windows [Ditz82], and multi-size windows [Hugu85a).
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Figure 2.1: Multiple-Window Register Files

We comment on the drawbacks that fixed-size and variable-size windows have and how
they are reduced by the use of multi-size windows and of a shift-register file. We also
mention a different approach to reduce these drawbacks: the dribble-back register file
[Site79a]. Finally, we discuss some evaluation studies that have been performed on
multiple-window architectures.

Figure 2.1 shows the organization of a register file with multiple windows. The
programmer (i.e., the compiler) sees the general-purpose register set divided into the
following groups:

o A group of common registers to all the functions. The compiler has to preserve
(if necessary) the contents of these registers to prevent them from being destroyed
across function calls.

* A group of registers for the incoming arguments (IA) of the function. One of these
registers contains the return address.

o A group of local registers. These registers are preserved across function calls (as
well as the incoming registers).

s A group of registers for the outgoing arguments {(OA) for the function that might
be called.

The window size is defined as the number of new registers that are allocated per call.
Thus, the size of the window is the number of local registers plus the number of over-
lapped registers (i.e., OA registers). In the figure we can also see the overflow stack,
OVFSTK, where windows are transferred on overflow.

Most register file designs use fired-size windows because of the simplicity in the
implementation: C/70, RISC I and II, PYRAMID 90x, C1200, SOAR, SPUR, the LISP-
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[_ Processor Description References
s 8 general-purpose registers
no overlapped/common registers
C/70 s register file size = 1024 (Kral80, BBNS81]

(BBN Computer Co.)

number of windows = 128
NO overflow exception detection

RISCT & 11

(Univ. of California,
Berkeley—UCB)

o 32 general-purpose registers
window size = 16
overlapped registers = 6
common registers = 10 (r0 = @)
o register file size = 128 + 10
number of windows = 7+
circular buffer organization

[Piep81, Fitz87]
(Laru82, Patt82a]
[Patt82b, Séqus2]
[Blom83, Kate83]
[Patt83, PeekB3]
[Pond83, Tami83)
[PattB4, Sher84)

CRISP

(AT&T Bell Labs.)

¢ variable-size windows

# registers mapped to memory

o register file size = 32

o 7 special registers {psw, pe, ...)

[Ditz82, Bere87a]
[Bere8Thb, Ditz87a)
[Ditz87b, Ditz87c]

Pyramid 90x

(Pyramid Technology)

s 64 general-purpose registers
window size = 32
overlapped registers = 16
common registers = 16

s register file size = 5124 16
number of windows = 15%
circular buffer organization

[PTCB83, Raga83]

C1200

{Celerity Computing)

¢ As Pyramid, but with 8 register files
for fast context switching
o 4096 registers

[CEL8S, Olle85]

e 32 general-purpose registers

SOAR window size = 8 (all overlap) [Unga84, Samp83]
8 special regs. (r{6 = 0; r17-r23 for OS) | [Samp86, Unga836]
8 common registers
(UCB) o register file size = 64 4 16 [Adam85, Chen85]
e general-purpose registers as RISC II [Gibs85, Hans85]
SPUR # 15 floating-point registers [Katz85, Ritc85]
e 7 special registers [Tayl85, Vill&s)
(UCB) (psw's, pc’s, reg. window ptis.) [Hill86, Tayl86]
e variable-size windows [Wood86, Borr87]
s registers in the Execution Unit:
Dragon 128-stack regs, 16 auxiliary, 12 constant {Atki8T)
e registers in the Instruction Fetch Unit:
(Xerox) 15-element stack of pc’s and context ptrs.
e register file size = 64
LISP-Machine window size = 8
overlapped registers = 4 {Aboa87)
(Univ. of Miami) circular buffer organization
SPARC ¢ variable register file size = 40-520
32-general purpose registers {Garn88]
{Sun) window size = 16 (8 overlapped)

Table 2.1: Multiple-Window Processors
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Machine, and SPARC (see Table 2.1;! this table also gives a detailed list of references
for the reader interested in knowing more about these systems). The main drawback
with fixed-size windows is the number of unused registers in the file. For instance, we
have measured three C programs (the NROFF word processor, the Portable C Compiler
for VAX-11, and the SORT program) and have shown that, on the average, RISC has
10.9 registers unused per function (for a window size of 16) and Pyramid has 26.8 (for
a window size of 32) [Hugu85¢]. These unused registers not only waste area in the chip,
but also have to be saved and restored on overflow, on underflow, and on context switch.

Variable-size windows [Ditz82] assign per function the exact number of registers
required for the variables selected for allocation. Thus, no unused registers are present
in the file. Only two of the machines in Table 2.1 (CRISP and Dragon) use variable-size
windows. Although variable-size windows utilize the register file more efficiently because
the exact number of registers required is allocated, their implementation significantly
increases the complexity of the processor: large register addresses are required in the
instruction, two more machine instructions are required to execute a function call (one
to allocate a window at function entry and a second to detect underflow after return),
and more overhead is incurred to map a virtual register address to a physical register
address [Hugu85a).

Although a multiple-window register file has been shown to be effective in reducing
the memory traffic due to saving and restoring of registers in function calls/returns
[Patt82a], the resulting register files have the following three drawbacks:

1. They use a large chip area in VLSI implementations [Henn84]. For instance, for
RISC II [Kate83] the percentage of the chip area dedicated to register storage is
27.5% and to the decoders is 5.8%.

2. They increase the size of the context to be saved during context switching, since
all the windows in use have to be saved [Henn84]. For instance, for the programs
mentioned above, we have shown that, on the average, 70 registers have to be saved
on context switching for RISC II and 211 for Pyramid [Hugu85c].

3. They increase the processor cycle-time due to the increase in the length of the data
busses [Henn84, Patt85a). This length is proportional to the size of the register
file. For instance,

o Sherburne [Sher84] claims that the datapath cycle time increases with the
square root of the register-file size.

o Ditzel et al. [Ditz87b] say that the access time for register files larger than 16
or 32 increases about 30% when the register-file size is doubled.

'The calculation of the number of windows per register file requires some explanation. Let us consider,
for instance, the 128-register file for RISC. Although the register file has exactly 8 windows (128 registers
+ 16 registers per window), the table indicates that it has only 7. This is because the first window in
the file has 22 registers allocated (16 locals + 6 incoming registers) and, therefore, the eighth window is
going to cause an overflow condition.
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Figure 2.2: 64-Shift-Register File with Three-Size Windows

That is, for small register files (16 or 32) the other components in the datapath
determine the basic processor cycle time. However, for larger ones the access time
to the register file is critical in determining the processor cycle time.

To reduce these drawbacks we have previously proposed the combination of two

L

approaches {Hugu85a, Hugu85b, Hugu85c}:

Multi-size windows: Instead of having only one window size (i.e., a fixed-size window),
we have several sizes so that the best suited window is selected for the registers
required by the function. Two-size windows (i.e., to have two window sizes) have
also been proposed by Furht [Furh85, Furh88].

Shift-register file: This is a modification of the implementation of the circular-buffer
register file {Kate83], which is used in most of the processors indicated in Table 2.1.
Read and write operations are only performed on the registers of the top window.
Registers are pushed (shifted down) when a function is called and popped (shifted
up) when a function returns. In this case, the data busses are connected only to
the top window so that the access time depends only on the register set, and not
on the number of windows. For instance, Figure 2.2 shows a 64-register file with
three-size windows of 4, 8, and 12 registers.

Multi-size windows differ from variable-size windows in that, by default, the smallest
window is always allocated when the call is performed. Thus, if the callee does not
require any more registers, no specific machine instruction is required at the callee to
allocate a window. We have shown that when a 4-register window is allocated by default,
75% of the executed functions do not have to issue an instruction to increase the window
size [Hugu85a). Moreover, no explicit machine instruction is required to detect underflow
after return. The standard return instruction detects an underflow condition when the
largest window is not present in the register file.
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Multi-size windows have essentially the same implementation complexity as fixed-size
windows, but provide a better register utilization. For instance, a three-size window (4,
8, and 12) has, on the average for the three programs mentioned above (NROFF, SORT,
and VPCC}, 1.1 registers being unused; on the other hand, a fixed-sized window with
12 registers has 7.9. Moreover, for a 64-register file with three-size windows, the average
number of registers saved per function call (0.06) doubles the average saved for a 512-
register file with fixed-size windows of 32 (0.03) as used in PYRAMID and CELERITY.
The implementation of multi-size windows produces, for the same overhead in register
saving and restoring, a reduction in both the number of registers (windows) in the file
and the size of the context to be saved. Therefore, two of the drawbacks (area required
and context size) given by Hennessy [Henn84] are reduced.

Multi-size windows are also more suitable for general-purpose processors. Since dif-
ferent programming languages might use different window sizes, multi-size windows offer
the flexibility of selecting the most appropriate one. For instance, measurements on C
and PASCAL programs taken for RISC have shown that the most appropriate fixed-size
window has 16 registers (with 10 local registers and 6 overlapped registers) [Patt82b],
while measurements on Smalltalk programs taken for SOAR have shown that a window
of 8 registers (with no local registers and 8 overlapped registers) is the most appropriate
[Unga84]. Moreover, different application programs might also use different window sizes.
For instance, our measurements have shown that a window size of 4 is large enough for
98% of the executed functions in NROFF, but for only 38% in the Portable C Compiler.

When the register file is implemented with shift registers, the area is further reduced
and the access time becomes almost independent of the number of windows in the register
file. It has been shown [Trem87)] that the area for a 128-register file implemented as a
circular buffer is 25% larger than the area required with shift registers and that the time
of a READ operation has been reduced by 35%.

While multi-size windows reduce the three mentioned drawbacks, they do not com-
pletely eliminate these drawbacks. Thus, it is necessary to investigate alternative ap-
proaches to reduce the RSR overhead for the conventional single-window architectures.
We will turn to these approaches in Chapter 3.

A different approach to reduce the above-mentioned drawbacks has been mentioned
by some other authors [Site79a, Kate83, Good85, Stan87]: the dribble-back register file.
The dribble-back register file has a smaller number of windows than the conventional
register file with the circular-buffer organization. The windows which are not currently
used are saved/restored in the background. That is, these windows are saved /restored
not by explicit instructions on overflow/underflow, but by the processor when it is ex-
ecuting register-to-register operations and, thus, the memory port is idle. In this case,
more data memory traffic might be generated, but this is not significant since it uses
cycles on which the memory would not be used. Frazier [Fraz87] has shown that a
dribble-back register file (he calls it a trickle-back register file) can also be implemented
with multi-size windows. The advantage is that the register file can be even smaller.
However, at this moment it is not clear that a dribble-back register file will improve
processor performance, because of the extra hardware required for its implementation
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and because no dynamic measurements are available (to the knowledge of the author)
to show that the window saving/restoring can be performed in parallel with program
execution.

Finally, let us comment on some other performance studies made on multiple-window
architectures. These can be classified into three categories:

1. Studies that compare the execution speed of different processors [Piep81, Patt82a,
Patt82b]. These comparisons are done across different machines. The machines
have different instruction sets, different numbers of registers, different cycle times,
different hardware technology, and the programs measured were compiled by dif-
ferent compilers. Therefore, from the results obtained (execution time) we cannot
determine the performance benefit provided by multiple windows.

2. Studies that compare the data memory reduction obtained by a processor with and
without multiple windows using a non-optimizing compiler [Hitc85, Eick87]. These
comparisons give an estimation of the data memory traffic reduction obtained for a
given processor with a single-window register file and with a multiple-window reg-
ister file (with fixed-size windows) when a non-optimizing compiler is used. Both
papers conclude that multiple-window architectures generate less memory traffic
than single-window architectures. However, non-optimizing compilers usually per-
form an efficient register allocation for multiple-window architectures with hard-
ware support to eliminate the alias problem [Kate83], but not for single-window
architectures. The reason for this is discussed in Subsection 2.1.3.1. Thus, the
combination of a single-window architecture and an optimizing compiler provides
a different conclusion as we will see in Chapter 4.

3. Studies that compare the data memory reduction obtained by a processor with and
without multiple windows using an optimizing compiler [Wall88]. The discussion
of this approach is postponed until Subsection 2.1.4, after our discussion of inter-
procedural optimizers.

2.1.2 Single-Window Architectures

In spite of the RSR traffic reduction that multiple-window architectures offer, several
designers prefer to have a conventional general-purpose register set (see Table 2.22). The
motivation for this is the drawbacks mentioned earlier in Subsection 2.1.1 for multiple-
window architectures.

Traditionally, single-window processors rely on compiler optimizations (such as live-
variable analysis and leaf functions) to reduce the register saving and restoring overhead.

?Notice that the CLIPPER processor has been classified as a single-window architecture although
its authors claim that it is a multiple-window architecture. The reason is that each bank of registers is
completely independent of the others. The usage of each bank is determined by the CPU operation mode
(system or user) and the type of arithmetic operation to be performed (integer or fioating point). Thus,
the register file has been partitioned in three independent general-purpose {single-window) register sets.
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[ Processor [ Description | References |

IBM 801 ¢ 12 general-purpose registers [Radi82, Chan8g]
RIDGE 32 ® 16 general-purpose registers [Basa83, Folg3]
(Ridge Computers) RID&3a]
® 16 general-purpose registers Henn82, Gros83]
MIPS » 6 special regs.: pc, su (psw), Ma (process id.), | [Henn83a, Henn83b]
Ap (addr. mapping), Lo (shift amount), [(Gros84, Przy84)
{Stanford Univ.) Hi (for * and =) DeMo86, Mous86]
MIPS-X e 32 general-purpose registers Chow87hb}

(Stanford Univ.)

» 32 general-purpose registers (rff = )

® 25 control regs. (system state information)
Spectrum ¢ 16 floating point regs. (FP coprocessor) [Birn85, Maho86)
e 8 space regs. (to form virtual addresses) [Fotl87]
(Hewlett-Packard) | e 3 special regs.: pe, psw, instr. addr.
e 3 banks of 16 registers each:

CLIPPER 16 for user & 16 for system (32 bits) [Sach85, Neff86}
& for floating point (64 bits)
(Fairchild) & 3 special regs.: pc, psw, system status
Titan ® 63 general-purpose registers [Wall87]
(DEC)

Table 2.2: Single-Window Processors

These are discussed in Subsection 2.1.3.4. To our knowledge, the research presented in
Chapter 3 is the first work on architectural support to reduce this overhead. In this
section we comment on the only architectural support being offered nowadays for single-
window architectures: the grouping of several of the operations mentioned in Figure 1.1
in a few machine instructions,

Some authors [Stre78, Bere82] have claimed that some relatively recent architectures
have an efficient calling mechanism: instead of having to specify instructions to perform
register saving and restoring explicitly, it is done implicitly by the call and return in-
structions. Both the program size and the instruction memory traffic have been reduced
because fewer instructions are needed to code high-level-function calls and returns, and
fewer instructions have to be fetched. However, the data memory traffic is not reduced
because the registers must still be saved and restored by the call and return instructions
in the same way that they were saved and restored by simpler instructions. However,
with this approach the total number of cycles required to perform the register saving
and restoring might be reduced. For instance, the instruction can pipeline the reading
from the register file and the writing to memory (and vice versa).

2.1.3 Register Allocation and Assignment

For load/store architectures the efficient use of the register set is important to obtain
a high performance. For these architectures, register-to-register instructions are exe-
cuted in one machine cycle while load/store instructions require more than one. Thus,
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load /store architectures expect the compiler to allocate as many operands as possible in
registers so that loads and stores are minimized. The responsibility for this relies on the
register allocator.

The register allocator is divided into two phases. In the first one, the register alloca-
tion phase, the allocator selects the scalar variables to be allocated to registers. Scalar
variables with an alias problem (as it will be defined in Subsection 2.1.3.1) or scalar
variables of a certain type (for instance, double floating-point variables if the general-
purpose register set does not have 64-bit registers) are discarded by the allocator. All
scalar variables which can be stored in registers rather than in memory are selected as
candidates for allocation. The number of candidates is independent of the number of
registers available to the allocator. During this phase, the allocator also keeps track of
the variable usage. This information is used to select among the candidates the ones
which will be assigned to physical registers. This assignment is performed in a second
phase, the register assignment phase. The advantage of having two phases instead of
only one is that register allocation can be done before code generation and, therefore,
can be machine-independent [Site79a, Chow83, McKu84].

Both phases, register allocation and assignment, are traditionally performed at the
beginning of the compilation process when the high-level source language is translated
into assembly code (see Figure 2.3). Thus, the register allocator does not have a global
view of the program, but a partial one limited to the module being compiled. This is
something that we have to keep in mind during this discussion to understand the lack
of “global” knowledge of the allocator.

In this section we discuss the problem of allocating programmer-defined scalar vari-
ables to registers, we introduce the previous work performed in both phases (register
allocation and assignment), we comment on the partition of the register set usually done
by the compiler, we present the conventional register saving and restoring policies (to
save/restore registers at the caller and to save/restore registers at the callee), and we
examine the implementation characteristics of some register allocators for load/store
architectures.

2.1.3.1 Register Allocation and the Alias Problem

In this subsection we discuss the problem of allocating programmer-defined scalar vari-
ables to registers when only one pass is performed by the compiler through the source
code. We also mention how this allocation problem is solved either when more than one
pass is performed or when some hardware support is provided.

One-pass compilers [Aho86] cannot allocate programmer-defined scalar variables to
registers because of the alias problem. This occurs when the memory address of a variable
is loaded into a pointer or passed as a parameter to a function. In this case, this variable
might be referred either by its name or through its address. As a consequence, if the
compiler assigns this variable to a register, two copies will be available and the compiler
could not guarantee its consistency. The reason for this is that the compiler only performs
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one pass through the program and, therefore, the storage class (memory or register) of
a variable has to be decided at function entry without any knowledge on the variable
usage in the function. That is, for one-pass compilers, both the register allocation and
assignment phases are performed simultaneously.

Furthermore, one-pass compilers generate code once each statement has been parsed.
Thus, only local optimizations per statement are performed (e.g., arithmetic computa-
tions of constants are performed during compilation time). To optimize the code further,
a peephole optimizer [Aho86] is used once the assembly code has been generated. A peep-
hole optimizer improves the code per basic block: eliminates redundant loads and stores,
performs some algebraic simplifications, substitutes standard instructions for more effi-
cient ones, etc. A basic block is a group of sequential instructions where control flows
from the first instruction to the last one without branching outside the block, except
from the last instruction (see Figure 2.4) [Back67]. Since no control-flow information is
available across basic blocks, a peephole optimizer cannot allocate programmer-defined
scalar variables to registers even though at this phase the alias information could be
known.

To be able to allocate programmer-defined scalar variables (in one-pass compilers)
some programming languages (like C [Kern78] and BLISS [Wulf71]) let the programmer
specify which local scalar variables he/she wants to be allocated to registers per function.
These variables are called register variables. The address operator cannot be applied to
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register variables so that no alias can be defined for them. Notice that the programmer
can only specify a register allocation for local scalar variables, not for globals. The
reason for this is to prevent a programmer from allocating a few global scalar variables
permanently to registers.

On the other hand, multi-pass compilers are able to select for allocation the variables
without alias, which have been detected in the first pass. Moreover, in the first phase the
compiler collects some information on the variable usage (e.g., the number of times that
the variable is referred in the function) to help the register allocator select the variables
to be assigned to registers so that the least data memory traffic is generated.

Multi-pass compilers only analyze the source code once. In the first pass, an interme-
diate code is generated to be used by the following passes. This is to prevent the devel-
opment cost of an optimizing compiler for every language and every machine [John81].
Machine-independent and language-independent optimizations can be performed directly
on the intermediate language. Thus, the register allocator is portable from different
source languages to different machines [Perk79, Alle80, Ausl82, Tane83, Powe84]. This
is the situation shown in Figure 2.5,

Hardware support can be provided to solve the alias problem in multiple-window
architectures [Kate83]. In this case, one-pass compilers perform a more efficient register
allocation.® Each register is mapped to a memory location so that the compiler can allo-
cate all local scalar variables defined by the programmer to registers (if enough registers
are available in the window), not only the ones explicitly defined by the programmer.
When the address of a variable in a register is generated, its memory-mapped address is
used so that the variable name and its alias refer to the same location.

As we said in Subsection 2.1.1, the alias problem has to be taken into account to
compare the data memory traffic generated by a program in a multiple-window archi-
tecture (with hardware support to solve the alias problem) with the one generated in a
single-window architecture when a one-pass compiler is used. The data traffic reduction
for the former with respect to the latter is a consequence not only of the RSR traffic
reduction due to the multiple windows, but also of the number of local scalar variables
allocated to registers. In Section 4.4, the RSR traffic generated by an intra-procedural
optimizer compiler is compared to the one produced by multiple-windows architectures.

2.1.3.2 Local and Global Register Allocation

This subsection presents the two types of register allocation approaches which can be
performed by the compiler: local and global. One-pass compilers can only perform local
allocation while multi-pass compilers can perform both.

*Notice that hardware support could also be provided for single-window architectures. In this case,
the registers assigned per function should be saved/restored for every call in the corresponding mapped
memory locations. Thus, this alternative is not attractive for single-window architectures due to the
high RSR overhead generated. In contrast, for multiple-window architectures a register window has to
be saved/restored only on overflow/underflow.
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(1) Local allocation. The scalar variables selected for allocation are defined either in
an arithmetic expression [Naka67, Redz69, Seth70, Beat74, Seth75] or in a basic block
{Horw66, Lucc67, Frei74, Davig84, Hsu87, Good8s).

For allocation of registers during expression evaluation, the allocator goal is to min-
imize the number of instructions required to perform the evaluation of the expression
and the number of registers needed to carry it out. The compiler expects that if the
smaller number of registers available is used, the number of variables that have to be
loaded/stored to memory is minimized.

For block allocation, the allocator goal is to minimize the number of loads and stores
for the variables which must be brought to registers. These variables must be loaded to
registers because code is being generated for a load/store architecture {Hsu87] or because
they must be loaded into an index register [Horw66, Lucc67). Since the pattern of future
references to the variables is known at compile time (inside the block}, these algorithms
are similar to the optimal page replacement strategy proposed by Belady [Bela66).

Local allocation is useful for temporary variables because these are generated inside
the basic block and can be destroyed once the block exits. Variables that have to be
preserved across blocks (i.e., live variables) have a “main” copy in memory. They must
be loaded in each block that uses them and stored back if they are modified. Thus, local
allocation performs poorly for these types of variables. One-pass compilers only perform
local allocations for arithmetic expressions. Once the assembly code has been generated,
a peephole optimizer can optimize the code per basic block (see Subsection 2.1.3.1).

(2) Global allocation. While local allocation is performed intra-block, global alloca-
tion is performed inter-block. Data-flow analysis (Aho86, Ryde86] is performed to detect
the live variables in each block. Live variables do not need to be stored on block exit
and do not need to be loaded at block entry (if they have been loaded previously). The
use of the name “global” is ambiguous because it might refer to three different scopes
where register allocation can be performed:

1. In a region. The region usnally corresponds to a set of blocks in a loop [Lowr69,
Day70, Beat74, Kim78]. The allocator tries to minimize the number of load and
stores in the loop, moving them from the most frequent executed blocks to the
least frequent ones (if possible).

2. In a function or procedure (intra-procedural). In this case, the local scalar vari-
ables defined by the programmer and by the compiler in the whole function or
procedure are candidates for allocation [John75, Chai81, Ankl82, Miro82, Chow83,
Cout86b, Kess86, Laru86]. Since the compiler generates code for each function
independently of the others, registers have to be preserved across function calls.
The conventional register saving and restoring policies used for this purpose are
discussed in Subsection 2.1.3.4.

3. In the whole program (inter-procedural). To perform inter-procedural register allo-
cation the program call graph (i.e., the relation of which function calls which) is
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its partition, it allocates the temporary values to pseudo-registers. These pseudo-
registers will compete later for physical registers with the pseudo-registers gener-
ated by the intra-procedural allocator.

For multiple-window architectures with fixed-size or multi-size windows the partition
of the register set is (almost) determined by the architecture. The maximum number of
parameters to be passed through registers is fixed by the number of overlapped registers.
For the to be destroyed variables, the compiler can use the OA registers or the common
registers. Common registers can be used to allocate global scalar variables only if inter-
procedural allocation is performed because an intra-procedural register allocator does
not know which global scalar variables have an alias. Local registers and the free IA
registers (i.e., registers which have not been used to pass any parameter) are used for
the to be preserved variables. A compiler for multi-size windows has to allocate the most
suitable window depending on the number of variables to be preserved. Coloring can be
performed to reduce the number of registers in a window and to increase the number of
variables that will be assigned to registers.

Variable-size windows give the compiler more flexibility because no restriction on the
number of parameters to be passed through registers is imposed by the architecture and
the exact number of registers required by the function can be allocated {with the only
limitation being the maximum window size). Coloring can also be performed to reduce
the number of registers in the window. Moreover, the use of the catch instruction (the
instruction that is executed at the caller after return to indicate the number of registers
to be restored in case of underflow [Ditz82]) can be optimized. For instance, the catch
between a function call and a return can be eliminated because there are no references
to the registers after return {Band87]. In this case, the restoring traffic might be reduced
if registers are not present in the register file.

2.1.3.4 Conventional Register Saving and Restoring Policies

The conventional register saving and restoring policies only apply to intra-procedural
register allocators for single-window architectures. They do not apply to multiple-window
architectures windows because these are saved/restored during overflow/underflow or
during program execution for dribble-back register files (see Subsection 2.1.1) and to
inter-procedural allocation because there are as yet no conventional RSR policies since
it is a current research topic. Subsection 2.1.3.5 mentions the RSR alternatives available
for inter-procedural allocators.

There are two conventional register saving/restoring policies for intra-procedural al-
location:

1. To save the registers in the caller (before the call) and restore them upon return
(after the call). We call this approach Policy A. If live-variables analysis has
been performed [Hech77, Aho86], only registers which contain live variables are
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saved/restored. Otherwise, all the registers defined in the function have to be
saved/restored.

X

To save the registers in the callee (at function entry) and restore them before (or
during) the return. We call this approach Palicy B. This policy is usually used
with two partitions so that all the TBP registers defined in the function are saved
and restored, but the TBD registers are used without having to save/restore them.
Moreover, if the function is a leaf function (i.e., it does not call any other function),
then the TBD registers can be used to assign variables [Chow86, Cout86b]. In this
case, no (or a few number of ) TBP registers have to be saved/restored.

For a particular register saving/restoring policy, a threshold is defined at which the
register allocator bases its decision to assign a variable (or pseudo-register) to a physical
register. The goal is to prevent the case where the traffic generated by a variable in
memory is less than the RSR traffic generated when this variable is assigned to a register.
This threshold is easier to determine for Policy B than for Policy A, because for the
former a variable assigned to a register generates two memory references every time that
the function is called. Thus, if the variable is referred to at least twice during function
execution, less data memory traffic is generated when the variable is assigned to a register.
On the other hand, for Policy A a variable assigned to a register is saved/restored at each
call, if it is alive when live-variable analysis is performed. Thus, the traffic reduction
depends on the number of calls generated and the number of times that a variable is
referred to. These numbers are more difficult to estimate during compilation time than
the simple two references for Policy B.

Although compilers currently use these conventional policies, the author has only
been able to find one performance evaluation study which compares both of them. McKu-
sick [McKu84] has evaluated the size and execution time of the whole set of UNIX utilities
for both policies. Since instructions to save/restore the registers must be specified in ev-
ery call instruction for Policy A and only once (at the entry point) for Policy B, the
programs compiled with Policy A were 8% larger than the ones compiled with Policy B.
Moreover, since the running time of the programs was not much different, McKusick
concluded that Policy B is more efficient.

However, the compiler that he used to perform these measurements, the Graham-
Granville compiler {Henr84), is a one-pass compiler and, therefore, only explicitly-defined
variables are allocated to registers. Moreover, no live-variable analysis is performed by
the compiler, and thus all the assigned registers in the function have to be saved/restored.
As a consequence, McKusick’s conclusion might be true for a non-optimizing compiler,
but not for an optimizing one with live-variable analysis. In fact, this is what we found
from our work: when neither live-analysis optimization is performed for Policy A nor
leaf-function optimization for Policy B, Policy B always generates less RSR traffic than
Policy A, as we will show in Chapter 3. However, when these optimizations are per-
formed, this is no longer true, as we will show in Chapter 4.
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2.1.3.5 Register Assignment

In this phase, the pseudo-registers with the variables selected for allocation have to be
assigned or mapped to a physical register. This mapping depends on how the general-
purpose register set has been partitioned by the compiler writer as discussed in Subsec-
tion 2.1.3.3. In this subsection we present two approaches for intra-procedural register
assignment, and then summarize how three specific intra-procedural register allocators
assign variables to registers. Last, we discuss two approaches for inter-procedural register
assignment.

When more pseudo-registers (with a priority above the RSR threshold and with
disjoint live times if coloring is used) are available than physical registers, the compiler
can:

1. Assign only a group of pseudo-registers to physical registers and assign the remain-
der of these pseudo-registers to memory (based on some static usage frequency).

2. Insert an instruction to release a “busy” physical register in a specific block (i.e.,
to store a register to memory) so that it can be loaded with the variable required
in this block. In this case, another instruction to load this variable to a register
will have to be inserted later when the variable is needed. These instructions are
referred as spill instructions.

In the former case, data memory traffic is generated for the variables that have not
been allocated to registers, while in the latter, it is generated for the spill instructions.
Although the second approach seems more attractive because it allows the sharing of
registers by all the variables defined in the function, it might generate more data memory
traffic. The author has not been able to find any study to confirm or deny this hypothesis.
The three compilers used in this dissertation use the first approach so that we have not
been able to compare these two approaches; thus, we have left this evaluation as an open
topic for discussion (see Section 6.2).

The register assignment depends on the optimization degree of the compiler. From
all the possible register allocation combinations which have been presented in Subsec-
tion 2.1.3.2, in this subsection we will only comment on three intra-procedural allocators.
These allocators cover the three possible partitions of the register set and correspond
to current compiler technology. Thus, our discussion is simplified without any loss of
generality.

1. Omne-pass compiler with local register allocation and with programmer hints for
local scalar variables. This is used by the Portable C Compiler® [John78, John79).
The compiler uses two independent partitions. If the programmer has specified
more register variables than the number of TBP registers, only the ones defined

®Intra-procedural register allocation is performed in this case by the programmers themselves, since
the compiler only assigns explicitly-defined register variables to registers (see Subsection 2.1.3.1).
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first are assigned to physical registers. The reason for assigning the first-defined
register variables is that only one pass is performed so that the storage class of a
variable is determined when its definition is found (see Subsection 2.1.3.1). Notice
that the compiler does not use spill instructions.

2. Intra-procedural allocation without local allocation. This is used by the PL.8
Compiler [Chai81]. The compiler uses a unique partition. Optimizing variables,
local scalar variables, and temporary values that have been allocated to pseudo-
registers compete for the same pool of physical registers. Variables with disjoint
lifetimes are assigned to the same register. When no more registers are available,
the register selected to be spilled is the one with more interferences in the color
graph (i.e., the node with more arcs).

3. Intra-procedural and local allocation. This is used by the machine-independent
UOPT optimizer [Chow83]. The UOPT optimizer uses two dependent partitions.
When the local allocator has used all its registers, it allocates the temporary values
to pseudo-registers. Individual registers for each allocator can be shared if they
have disjoint lifetimes. The priority of a variable is considered to decide which
register to spill (in contrast to Chaitin’s allocator [Chai81]).

We now present two approaches for assigning pseudo-registers allocated by an inter-
procedural optimizer. These are:

1. To assign only the variables that fit in the register partition. This is the approach
followed by Wall [Wall86]. In this case, a variable is selected based on:

(a) the priority of the function where the variable is defined and

(b) the priority of the variable with respect to the other variables defined in the
same function.

Notice that in this case, no RSR traffic is generated.

2. To combine intra-procedural register allocation with inter-procedural register as-
signment. This is the approach taken by Steenkiste [Stee87] and Chow [Chow8§].
Registers are assigned first for the leaf functions in the call graph. Second, registers
for the callers to the leaf functions are assigned. The registers assigned are the ones
that are not being used by the function descendants. If both the caller and all its
descendants have enough free registers in the partition, no RSR instructions have
to be generated. The process continues until the descendants have exhausted the
registers in the partition. In this case, RSR instructions (Policy A with live-variable
analysis) have to be inserted to preserve registers across function calls.

Notice that the RSR instructions are eliminated only from the functions at the
bottom of the call graph. Steenkiste claims that this is a valid approach for LISP
programs since 60-70% of the calls are done to leaf functions or their immediate
ancestors (for 10 small programs and 3 large ones). However, this might not be
true for any programming language or application. For this reason, Chow’s register
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allocator has a priority criterion which defines when a register has to be taken by
the function at the bottom (so that the register saving/restoring instruction can
be eliminated) and when the register has to be left for a function up in the call
graph.

In Section 5.4 we present our approach, which also combines intra-procedural register
allocation with inter-procedural register assignment. QOur goal is to perform a disjoint
register assignment for the functions that generate the most RSR traffic, not neces-
sarily the ones at the bottom of the call graph. A comparison of our approach with
Steenkiste’s and Chow’s register allocators is given in Subsection 5.4.1 and with Wall's
in Subsection 5.5.1.

Table 2.3 shows the characteristics of several register allocators for some of the pro-
cessors given in Tables 2.1 and 2.2. The contents of the table should be self-explanatory,
except for the notation sp = fp = ap, which means that the stack pointer is used as
frame pointer and as argument pointer. When the function’s activation record is fixed
during its execution and, therefore, locals and parameters are referred with respect to

the stack pointer, no environment register has to be saved/restored across function calls
[Wulf75].

2.1.4 Performance Studies on Register Allocation

No major performance study has been found in the literature that compares the alter-
native register allocation approaches discussed in the previous section. In this section
we comment on a few individual evaluation studies of register allocators. Our goals with
these studies are:

¢ To determine a suitable size of the register file based on the number of registers
required by the local and intra-procedural allocators.

» To evaluate the percentage of data memory references eliminated when variables
are assigned to registers.

The measurements obtained by different studies cannot be easily compared, because the
performance methodology used by each study is different: some are static while oth-
ers dynamic; some include RSR traffic while others ignore it; some include the traffic
generated by both local and intra-procedural allocators while others only the traffic gen-
erated by the latter; etc. Also, the size of the programs measured and the programming
languages used are different.

Local Allocators

Davidson and Fraser {Davi84] have shown that a local optimizer with only 3 registers
available generates only 22 spill instructions compiling the Y compiler (a 3500-line pro-
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| Compiler for ] Description | References
¢ Portable C Compiler (one-pass compiler; intra-procedural)
¢ register allocation: Sequential by definition
alias problem solved by hardware
s register set usage: r0 = 0
ri-r3: environment registers (rf = sp)

RISCTI & II r4-r%: temporary values (to be destroyed) [Miro82]
r1{~ri&: incoming arguments & return address fTami83)]
ri6-r25: local regs.; ri6 = fp = ap
r26-r31: only used for outgoing args.

o 1 window transferred on overflow /underflow

e register allocation by graph coloring [Chai81]
iBM 801 (intra-procedural; Policy A with live information) [Ausl32)

* parameter passing through registers [Chaig?2)

e only integer register variables allocated

* register set usage: r{~r3: to-be-destroyed registers

RIDGE 32 r6-r13: to-be-preserved registers (r1/ = ret. addr.) [RID83b]

rli{=sp;ri5=fp = ap
¢ reg. allocation by priority-based coloring (intra-procedural) | [Chow83]
MIPS » parameters passed through registers (up to 4) [Chow84]
e leaf-function optimization [Chow86]
esp=fp=ap [Chow88]
# one pass compiler (intra-procedural allocation)
e IA regs.: 2 for return address & value
6 for arguments & to-be-preserved variables
SOAR o OA regs.: 2 for return address & value [Bush87)
6 for callee args. & to-be-destroyed temporaries
¢ no usage indicated for common registers
e reg. allocation based on [Chow83] (intra-procedural)
e register set usage:
commeon: 2 dedicated for loads/stores in spill
SPUR 6 (unspecified) special usage [Laru8é)
TA: 1 for return address & 1 for number of args. :
4 for parameter passing
local: 1 dedicated to point vector for constants
9 available (plus free IA regs.)
OA: only used for parameter passing
e intra-procedural register allocation {Policy B)
16 regs. to-be-preserved & 13 regs. to-be-destroyed [Cout86a]
HP-Spectrum 3 environment registers (sp Z fp) [Cout86h]
» parameters passed through registers (up to 4) [MagesT7]
e leaf-function optimization [Mage88]
¢ stack compression by live/dead analysis
CRISP # catch instruction optimization [Band87)
esp=fp=ap
¢ inter-procedural register assignment
Titan 52 registers available [Wallg6]
no register saving/restoring overhead

Table 2.3: Features for Several Register Allocators
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gram written in Y). Thus, they concluded that the number of registers required for local
register allocation is small.

Our measurements on three C programs (NROFF, SORT, and the Portable C Com-
piler) showed that 2 TBD registers are enough to evaluate 95% of the executed arithmetic
expressions and that 3 TBD registers are enough to pass parameters through registers
for 98% of the executed functions [Hugu85a].

Flynn et al. [Flyn87) have measured the number of registers required by Chow's
local allocator [Chow83] for five large PASCAL programs (a desk calculator emulator,
a comparator for two text files, a PASCAL compiler, a P-code assembler, and a macro
processor). They concluded that the data memory traffic generated by the local allocator
does not become smaller for more than 2 TBD registers. In this case, 18% of the (stack)
data memory traffic is eliminated.

Therefore, the number of registers required by a local allocator is small. For this
reason, we ignored local allocation in this dissertation.

Intra-Procedural Allocators

The design of a register set was studied by Lunde [Lund77). He measured six algo-
rithms coded in four different programming languages (ALGOL, BASIC, FORTRAN,
and BLISS) and concluded that the register set should include two floating-point accumu-
lators, two fixed-point accumulators, and eight registers for simple fixed-point operations.
Since the average number of registers used by the compilers for these algorithms was 3.9,
these numbers seem appropriate for the compiler technology available at that time.

We also studied the size of the general-register set for C programs [Hugu85a]. We
measured the number of local scalar variables defined per (executed) function in NROFF,
SORT, and VPCC to estimate the number of TBP registers for intra-procedural allo-
cators (when neither live-variable analysis or leaf-function optimization is performed).
Our old measurements showed that 75% of the functions have up to three local scalar
variables (including the arguments passed to the function), 12% have between 4 and 6,
9% have 7 or 8, and 3% have between 9 and 14. Therefore, our measurements indicated
that there is no reason for having more than 12 TBP registers available to the allocator.

Chow [Chow83] has measured the percentage of variables assigned to registers and
the percentage of variable references found in registers by his priority-based coloring
algorithm for two different machines, DEC-10 and MC68000. The compiler has 9 registers
available for the first machine and 6 data and 4 address registers for the second. The
programs measured were 12 small programs (Towers of Hanoi, Queen, Puzzle, Quicksort,
Erastothenes Sieve, etc.). On the average, the compiler assigns 76% of the variables to
registers for DEC-10 and 86% for MC68000. These variables account for 77% and 87%
of the (static) variable references to memory, respectively. The difference between the
number of variables assigned to registers is not due to the extra register available in
MC68000, but to the register saving/restoring policy. The compiler for DEC-10 uses
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Policy A and Policy B for MC68000. Chow claims that the allocation cost (i.e., the
threshold) is lower for Policy B and, therefore, more variables are allocated.

Flynn et al. [Flyn87] have measured the number of registers required by Chow’s
priority-based coloring allocator (for the five PASCAL programs given above). They
concluded that the data memory traffic (including RSR traffic) generated by the intra-
procedural allocator does not become smaller for more than 8 TBP registers. For 2 TBP
registers, 30% of the (stack) data memory traffic is eliminated; for 4, 35%; and for 8 and
up, 37%.

Larus and Hilfinger [Laru86] have also measured the performance of Chow’s register
allocation algorithm for LISP programs in SPUR. They have eliminated Chow’s local
allocator so that temporary variables are also allocated by the intra-procedural allocator.
The programs measured were the Spice LISP interpreter, the LISP compiler for SPUR,
and a circuit simulator. As we indicated in Table 2.3, the optimizer has 9 local registers
available, plus the free IA registers. On the average, the compiler has to color about
42% of the functions and only has to insert spill code for 5% of them. Thus, about 95%
of the defined functions require up to 11.5 registers (9 locals plus an average of 2.5 free
TA registers). They also investigated the number of registers required by the allocator
for only one of the programs (the SPUR LISP Compiler). They concluded that 70% of
the defined functions need up to 5.4 registers, 92% need up to 8.4, 97% need up to 11.4,
and 99.1% need up to 14.4 registers.®

Inter-Procedural Allocators

Wall [Wall86] used 52 registers for his inter-procedural allocator. He has measured six
programs: four small ones (Livermore Loops, Whetstone, Linpack, and the Stanford
Benchmark Suite) and two medium-sized ones (a logic simulator and a timing verifier).
Since we do not consider the behavior of small programs typical of a real system workload
(see Section 1.3), we concentrate our attention on the last two. Once register allocation
has been performed, 73% of the dynamic memory references generated without register
allocation have been eliminated for the simulator and 52% for the verifier.” To increase
the number of memory references eliminated, Wall performs intra-procedural coloring,®
execution profiling (to know the number of memory references generated by each variable
s0 that a better variable selection can be performed), and a combination of both. In this
case, the percentage of dynamic memory references eliminated is 83% (coloring), 92%
(profiling), and 95% (both) for the simulator and 61%, 78%, and 83% for the verifier,
respectively. In a later paper [Wall88], Wall compared his inter-procedural register allo-
cator with multiple-window register files and concluded that the overall memory traffic
is equivalent for both schemes.

®These numbers have been computed adding the 3, 6, 9, and 12 local registers with the average of [A
registers which do not contain any argument (2.4).

"These percentages are given over “[the loads and stores] that we can remove by keeping some scalar
variable in a register instead of memory,” not over the total data memory traffic.

*He calls it “local” coloring (sic).
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Steenkiste [Stee87] has implemented his inter-procedural register allocator on MIPS-X
for LISP. He has measured 10 small LISP programs. When only intra-procedural reg-
ister allocation is performed, 55% of the stack references are eliminated (including RSR
traffic). When inter-procedural register assignment is made, only 22% of the stack ref-
erences remain. Since his register assignment is simpler than Wall’s and the number of
registers used is also smaller, we expect that the traffic reduction would be smaller for
larger programs.

Flynn et al. [Flyn87] have also measured the number of registers required by Steenkiste’s
inter-procedural register allocator (for the five PASCAL programs giver above). The
compiler eliminates 47% of the data memory traffic for local scalar variables (including
the RSR traffic) when 8 registers were available to the inter-procedural allocator, 55%
when 16, 60% when 32, and 62% when 64. There is no data memory traffic reduction
for more than 64 TBP registers.

Chow incorporated an extension of Steenkiste’s inter-procedural allocator to his intra-
procedural optimizer {Chow88]. The optimizer eliminates between 4.5% (for awk, a 2,500-
source-line program written in C} and 57.6% (for calc, a 500-source-line program written
in PASCAL) of the scalar load and store instructions. However, the inter-procedural op-
timizer generates more traffic (16%) for the Portable C Compiler because some loads and
stores are moved up to the call graph to functions which are more frequently executed.
Chow claims that this problem could be solved if dynamic information were available.

Therefore, as we said at the beginning, we cannot compare the performance of these
register allocators based on the measurements available. Our conclusion from this dis-
cussion is that recent advances in compiler technology make it possible to use efficiently
a larger register set by the register allocator. For this reason, modern pProcessors are
increasing their number of general-purpose registers: 16 registers for RIDGE 32, MIPS,
and CLIPPER; 32 for RISC, MIPS-X, SOAR, SPUR, IBM 801, and HP-Spectrum; and
64 for PYRAMID 90x, CELERITY C1200, and Titan. As we will discuss in Chapters 3,
4 and 5, there is no need for having more than 12 TBP registers for the non-numeric
programs measured (ASM, NROFF, SORT, and VPCC) unless the dynamic Policy G
and/or the inter-procedural optimizations are available.

2.1.5 Performance Evaluation of New Architectures

To design a new processor or to modify an existing one, designers need to estimate
the influence of specific architecture features on the performance of the processor. To
perform these estimates, it is necessary to measure the the dynamic behavior of typical
programs. The measurements let the designer (1) discover which architecture features
are critical in the design so that these features can be tuned to improve performance; (2)
compare several implementation alternatives of the same architecture; and (3) compare
the performance of different architectures.

For the processor that is being designed, called the Proposed Machine (PM), a model
that defines the processor characteristics must be used. Traditionally, this model is de-
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fined either by a simulator or an emulator. (For existing processors one can use software,
firmware, or hardware monitors [Svob76, Ferr78); however, these are not discussed in this
dissertation because we are interested in the development of new processors.) The ma-
chine where the measurements are performed is called the Ezisting Machine (EM). In
this section we present the tools that are currently used for collecting measurements: sim-
ulators, emulators, and step-by-step instruction tracers. We describe their limitations
and introduce a new generation of measurement tools for architectural evaluation.

In a simulator the processor characteristics are described in a high-level language or
in a specialized language [Chu74] such as ISPS [Barb81]. On the other hand, an emulator
uses the microprogrammable features of an existing general-purpose microprogrammable
machine to describe the new processor. The advantage of a simulator versus an emulator
is that the former is easier to design, to modify, and to maintain. These characteristics
are important if we need a flexible tool for studying several architectural modifications.
Moreover, since a simulator is written in a high-level language or a specialized language,
it is portable to different general-purpose processors (if a compiler for the language is
available) and does not require a general-purpose microprogrammable Processor.,

The main disadvantage of a simulator is its execution time. Since several hundreds
of machine language instructions are required to decode, interpret, and measure each
simulated instruction, the total execution time of the simulated program is several orders
of magnitude larger than if the program were executed directly [Tami81, Rose84]. For
instance, the execution time of the Berkeley RISC simulator simulating some of the CFA
benchmarks {Full77] varies from approximately 100 to 400 times their normal execution
time [(Hugu87]. Therefore, the simulation time of typical programs is prohibitively large,
and, as a consequence, designers tend to simulate only small programs. These programs
might not be representative of a typical system workload (see Section 1.3).

Some machines provide a trace option that transfers execution control to an excep-
tion handler after each instruction is executed. This is provided mainly for debugging
purposes, but can also be used for collecting dynamic measurements (Eick87, Hsu87].
The modifications that can be simulated with this method are limited because the in-
structions cannot be modified since they must be executed by the machine itself. For
instance, a tracer can measure the performance of a multiple-window register file in a
single-window architecture because no information has to be included in the instruction
itself for this architectural modification. However, since the number of bits in the in-
struction for the register number cannot be changed, the measurements obtained by this
method are limited to a maximum window size equal to the existing register-set size.

The advantage of using a tracer instead of a simulator for collecting measurements
is that the instruction is directly executed by the machine so that the tracer only needs
partially to decode and interpret each instruction to extract the measurements which
are being collected. On the other hand, a major disadvantage of using the tracer is that,
due to operating system overhead, it is too slow for measuring large typical programs.
For example, consider two possible implementations of the tracer on a VAX-11 [DECT79}
under 4.3BSD UNIX. In the first scheme, the tracer controls the execution of the program
being measured and examines its state using a set of system calls (ptrace [UNI&1]). In the
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Figure 2.7: Gathering Measurements with the Step-by-Step Instruction Tracer

second scheme, the trace bit of the processor status word is set and the tracer is defined as
the exception handler for trace exceptions. Figure 2.7 shows this second implementation.
The execution time for counting the number of machine instructions executed® for the
UNIX SORT program is 1,540 times its normal execution time when ptrace is used!® and
540 times when tracer is implemented as the trace exception handler.

Although the instructions are executed directly by the EM instead of being inter-
preted by a simulator, the overhead introduced by the operating system and the limita-
tions on the measurements which one can perform make this alternative less attractive
than simulation.

Therefore, the simulation time of typical programs is prohibitively large and, as a
consequence, designers tend to simulate only small programs. For this reason, we have
designed a new tool for collecting architectural measurements: the Block-and-Actions
Generator (BKGEN). This has been presented in Section 1.2. Here we will discuss similar
alternatives to a simulator known to the author.

Campbell [Camp85] has implemented a fast simulator for the MC68000. This simu-
lator works as follows: (1) the programs measured are compiled to MC68000 assembly
code; (2) the assembly code is decompiled to C; (3) code is inserted to perform the mea-
surements; and (4) the “high-level” program is translated to the EM assembly code to be
executed. To reduce the overhead even further, measurements are collected for the whole
basic block. This generates less overhead than performing the measurements for each
simulated instruction. Campbell concluded that the overhead introduced by the simula-
tor is between 6 and 28 times the normal execution of the programs measured: a simple
incrementing loop, the CFA H benchmark, and a recursive solution to the Knight’s Tour

®This can be considered the simplest type of measurement and, therefore, the observed overhead is
the minimum overhead introduced by the different measurement techniques.

'®Note that no operating system call to examine the state is necessary for counting the number of
instructions executed. In measurements where we need more detailed information about each instruction,
the overhead would be much larger.
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problem.

To verify the code generated by the MIPS compiler (before the hardware was avail-
able) an objet-to-object translator from MIPS (the PM) to VAX-11 (the EM) was de-
signed. This is called Moxie {Chow86). Moxie translates MIPS instructions to VAX-11
instructions as well as MIPS UNIX system calls to VAX UNIX system calls. Moxie
also provides tracing facilities which perform instruction counting and cache simulation.
MIPS code is “simulated” at the rate of 600K instructions per second. Since MIPS is
an 8-MIPS machine [Gima87], the overhead introduced is about 13 times the normal
execution of the programs.

Cortadella and Llaberfa [Cort87b] have implemented an assembly-to-assembly trans-
lator from RISC to VAX-11. Each RISC basic block is identified by a unique block
number and translated to VAX-11 code. At the beginning of each block, code is in-
serted to obtain the program execution trace given as the sequence of block numbers
executed. Once the execution trace is known, measurements for different PMs can be
obtained because the program behavior is the same for any machine. Cortadella and
Llaberia have measured the execution time of a small program (Quicksort) running in
MicroVAX.II (2 seconds) with a conventional simulator (15 minutes) and with their new
assembly-to-assembly translator (6 seconds). Therefore, they have reduced the overhead
from a factor of 450 to a factor of 3.

May [May87] has implemented MIMIC, a fast simulator for the IBM 370 on an
IBM RT PC. The simulator receives executable IBM 370 code. Instead of interpreting
each instruction as a conventional simulator would do, MIMIC performs incremental
translation. Basic blocks are grouped in a code block. The code block corresponds to an
execution sequence such that the code block is reachable from outside ounly at its first
instruction and it can be exited through its last. Thus, a code block could correspond to
a procedure. Once the code block has been translated, it is directly executed. When the
code block exits, the destination block is located. If it has already been translated, direct
execution proceeds; otherwise control-flow analysis is performed to determine the largest
grouping of basic blocks, the new code block is translated, and then direct execution can
proceed.

The advantage of this approach to the previous ones is that the translator has in-
formation with respect to the whole code block so that a better use of the resources
(EM registers) is made, because the other approaches translate each PM instruction
individually. Thus, MIMIC can perform “global” register allocation rather than the lo-
cal allocation used by the previous two approaches. May concluded that the ezpansion
factor, i.e., the number of EM instructions executed per PM instruction is between 2.7
and 4.4 for the two large programs measured (an interpreter and a file encipher/decipher
program).
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2.2 Related Work

There are two topics that are closely related to registers, but that are not discussed
m detail in this dissertation. For this reason we did not want to include them in the
previous section. These are:

¢ The advantages of having registers in the processor instead of having a unique
memory address space with a cache memory to obtain fast access to the operands.

e The selection of the most appropriate instruction format to address the general-
purpose registers,

In this section we offer a general discussion on these topics and some references where
the interested reader is referred to obtain more information.

2.2.1 Cache versus Registers

Cache memories effectively reduce the processor data memory traffic [Smit82]. Data
memory traffic can be divided into three different streams:

o Instructions.

e Global scalar variables and non-scalar data {arrays and structures either local or
global).

» Local scalar variables and compiler generated variables which perform expression
evaluation and store optimizing variables for loop-invariant expression, for common
subexpressions, etc.

Although most prefer having a cache for the first two streams, there is some debate
about the best alternative for the local scalar variables. Some architects would prefer to
have a unique address space (memory) with a cache memory for fast access to operands
[Ditz82, John82, Wirt86], while some others would have two address spaces (memory
and registers) [Kate83, Hugu85a, Hsu87).

The drawbacks for having registers are:

1. Registers have to be saved/restored on function calls with the overhead that we
have already mentioned in Section 1.1.

2. Registers can only store scalar data.

3. Registers are not equivalent to memory, thus, some operations performed on mem-
ory data might not be applied to data on registers. For instance, the address
operator cannot be applied to a variable assigned to a register unless hardware
support is provided (see Subsection 2.1.3.1).
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4. Registers increase the complexity of the compiler because of the multiple passes
required for register allocation, while stack architectures simplify the compilation
process, mainly for code generation. This results in smaller and faster compilers.
For instance, the Lilith PASCAL compiler is one third the size of the Motorola
compiler [Wirt86].

While both cache memory and registers are valid methods to get fast access to
operands, there are still advantages for having registers:

1. Cache memories create overhead because they check whether the data is available.
Furthermore, if the data is not available, the processor has to wait for a new block
from main memory.

2. Cache memories do not reduce the instruction length because a full address speci-
fication is still required to refer to a local (stack) operand. The address of a local
variable stored in the activation record is usually specified as a displacement rela-
tive to the frame pointer. Fewer bits are required to specify a register address than
to specify the displacement.

3. The addressing mode specifier has to be decoded and the operand address has to
be computed every time the instruction is executed. This overhead can be reduced
if the virtual address of the operands (once computed) is stored in the instruction
cache [Nort83, Ditz87c|.

4. It has been shown that the reference pattern for local operands is different than
the one generated by global references [Hsu87). In a similar way that a split
instruction/data cache increases system performance [Smit85], the removal of local
scalar operands from the data cache might make its design parameters more tailored
to cbtain a better performance.

5. When local operands are stored in registers by the compiler, fewer addressing
modes are necessary to be provided by the architecture {Chow87a).

We believe that the advantages for having registers outbalance their drawbacks and
that the compiler complexity for a register-oriented machine is not a significant argument,
because:

¢ The complexity of the compiler is reduced by having machine-independent register
allocators [John75, Leve83, Chow83].

o With the current trend toward providing cache control instructions to the compiler
to reduce unnecessary data memory traffic for dead data [Radi82, Birn85] or toward
performing live-variable analysis and static frequency usage to increase the cache
hit ratio [Band87], the cache memory is no longer hidden at the compiler. Thus, the
complexity of the compiler has to be increased to manipulate the cache memory.
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Therefore, we conclude that registers will still be provided in future processors and
that we have to study the mechanisms (in hardware and software) to reduce their main
drawback: the overhead caused by register saving and restoring.

2.2.2 Instruction Format (RISC versus CISC)

There has also been major discussions among computer architects about what is the most
appropriate instruction format: 0-address, 2-address, register-to-memory, or memory-to-
memory [Myer77, Schu77, Keed78b, Myer78, Keed78a, Site78, Keed79, Myer82, Keed83,
Wong89]. At the beginning of this decade, several processors (RISC I and II, IBM
801, MIPS, etc.) were introduced with a new architectural design style called Reduced
Instruction Set Computers (RISC) to counter the tendency of increasing the complexity
of the processors (which are called CISCs, Compler Instruction Set Computers).

There is some debate on the elements which define a Reduced-Instruction-Set-Com-
puter approach [Hopk84, Patt85a, Wall85, Taba86, Gima87]. Patterson {Patt85a] has
characterized the existing RISCs as having the following: operations are only register-to-
register; memory operands must be loaded first to a register to be operated; instruction
decoding is simpler; operations and addressing modes are reduced: and branches avoid
pipeline penalties. The primary goal is to execute fast the small number of instructions
which occur frequently [Alex75, Shus78, Swee82, McDa82, Wiec82, Clar82]. As a conse-
quence, the previous controversy about instruction format is now centered around RISC
and CISC architectures and the direction that computer architects should take in their
designs [Patt80, Clar80, Nort83, Heat84, Colw85, Patt85b, Davis?, Flyn87, Borr87].

With the appearance of the RISC architectures, a general-purpose register file of
16 or 32 registers became the de facto standard for modern processors. It seems that
choosing the number of registers is based on on the instruction format provided by the
processor: 2-register-address architectures have 16 registers (due to the limitation of
the 16-bit instruction format to specify a register-to-register operation} and 3-register-
address architectures have 32.

Since it has been claimed [Chow87a, p. 300] that:

The goal of any instruction format should be:

1. Simple decode,
2. simple decode, and
3. simple decode.

Any attempts at improved code density at the ezpense of CPU performance
should be ridiculed at every opportunity.

the 3-register-address instruction formats have become the de facto standard for today’s
RISC processors. For instance, MIPS-X has eliminated the 2-address instructions its
predecessor (MIPS) had.
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However, some architects, mainly pro-CISC designers, claim that the addition of
more instruction formats reduces the program size [Davi87, Flyn87]. The advantages of
a smaller program size need to be recognized: the reduced space required to store the
program (in disk); the reduction in the number of pages in memory which is necessary
to keep the program working set; and, most importantly, the reduction in the size of the
instruction buffer. For instance, Flynn et al. [Flyn87) have shown that the addition of
a memory-to-register format to a simple load-store architecture can cut the instruction
buffer size by half yet still offer the same performance (given as the hit ratio). This is
important for VLSI systems because the area available in the chip is limited.

Therefore, it seems that this problem is still open to debate. To be able to increase the
complexity of the instruction format with the addition of register-to-memory instructions
the following should be true:

1. The decode phase of the processor (in a pipelined system) should be able to in-
terpret more complex instruction formats without increasing the processor cycle
time.

1o

The number of operations required to execute the instruction (number of reads
and writes from the register file) should not increase the number of stages in the
pipeline (versus a simple load-store architecture).

However, if this is not the case, we can expect that the 3-register-address instruction
format will provide the highest throughput rate (1 instruction per cycle except loads
and stores).
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Chapter 3

RSR Architectural Support for
Single-Window Register Files

With an intra-procedural register allocator, the conventional register saving/restoring
(RSR} policies used in single-window architectures are: to save/restore registers at the
caller (Policy A), to save/restore them at the callee (Policy B), or a combination of
both. These policies were introduced in Subsection 2.1.3.4. Policies A and B are called
static because they both save and restore the registers that have been defined by the com-
piler without taking into account the usage of these registers during program execution.
In this chapter we propose six architectural policies that make use of dynamic informa-
tion to reduce the RSR traffic, we compare the architectural support required by each
dynamic policy, and we select one (Policy G) as the best candidate for implementation
and comparison.

To evaluate the RSR traffic reduction obtained for each policy it is necessary to havea
specific register allocation and assignment performed by the compiler. The alternative of
presenting each policy with each possible register allocation scheme is discarded because
it would be too repetitive and confusing. Thus, we have selected a register allocation
scheme based on the register allocation performed by the Portable C Compiler (PCC)
{John79, Lion79, Ritc79, Kess83). This scheme has already been used to evaluate sev-
eral register saving/restoring schemes by some other authors [Patt82b, Kate83, Eick87,
Hsu87], although it is not optimal for an optimizing compiler, because the overall traffic
can be reduced with a better selection of which local scalar variables should be allocated
to registers (see Subsection 2.1.3 and Section A.1). However, since we are now just con-
sidering RSR traffic and not overall traffic, this scheme is still useful for evaluating the
RSR traffic reduction caused by each policy because it implies a heavy register usage.
Moreover, in Section 4.2 we will verify that the conclusions obtained hold for two others
register allocation approaches (one used by the Amsterdam Compiler Kit [Tane83] and
the second used by the GNU C Compiler [Stal88]).

The PCC standard intra-procedural register allocation only allocates to registers
integer and pointer register variables [Kern78] explicitly defined by the programmer
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Restore saved registers
Save registers on return if aiready | when first read
on return used by caller by caller
on call A
if defined in caller {M}
on call B
if defined in callee {M}
on call
if defined in callee and C
used in exterior levels {M, TBS}
when used by callee D
if used in exterior levels {TBS, CU}
on call
if defined for callee and E G
used in exterior levels and
not yet saved {M, TBS, CU} {M, TBS}
when used by callee
if used in exterior levels F H
and not yet saved {TBS, CU} {TBS, CU}

M register Mask given at the function entry point
(to indicate registers defined by the function)
CU  Current Usage mask
(to indicate registers used by the current function)
TBS To-Be-Saved mask
(to indicate registers used by the exterior levels)

Table 3.1: Register Saving/Restoring Policies

(see Subsection 2.1.3.1). Consequently, our measurements show that, on the average,
only 31% of the defined local scalar variables are allocated to registers and there are
1.94 registers assigned per executed function when there are 6 to-be-preserved (TBP)
registers. This number increases only to 2.0 when the number of TBP registers is 32.
In this case, the traffic for the local scalars which have not been allocated accounts for
36% of the total data memory traffic generated by the local scalar variables. To increase
the register usage the register allocation policy has been modified so that local scalar
variables are assigned to registers! while there are TBP registers available. The scalar
variables considered for allocation not only include integer and pointer variables (as PCC
does), but also characters and short integers. As we mentioned in Section 1.3, the four
programs measured (ASM, NROFF, SORT, and VPCC) do not use scalar floating-point
variables. In this case, the local data traffic has been reduced to zero when there are
32 TBP registers available.

Moreover, the PCC intra-procedural register assignment policy has also been mod-
ified. PCC always assigns registers in the same order for each function. Thus, some
registers are assigned more frequently than others. Since the dynamic policies require
that the intersection of registers defined by the caller and by the callee be as small as

"Our previous measurements have showed that the alias problem can be ignored in performing this
type of measurement since the number of variables with an alias is insignificant [Hugu®5a).
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Figure 3.1: Relation among the Register Saving/Restoring Policies

possible, registers are assigned in a round-robin fashion. As a consequence, consecutively-
defined functions will use different registers while these functions have less local scalar
variables than the number of TBP registers available. This does not guarantee having
disjoint registers for a caller and a callee, but it increases the probability for doing so. In
Subsection 5.4.4, we show an inter-procedural optimization for a more efficient register
assignment policy.

Table 3.1 shows the two static and the six dynamic policies to save/restore registers
for single-window architectures. They are named from A through H. Since the objective
is to reduce the RSR memory traffic, the approaches are presented in order from the more
conventional ones to those that we expect will produce the least traffic. Register usage is
defined by a mask so that each bit in the mask has associated with it one of the general-
purpose registers to be preserved across function calls. Table 3.1 also shows the masks
required for each RSR policy. The static mask M indicates the registers that have been
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defined in the function. This mask is created by the compiler and included in the code
section of the program. The dynamic masks CU and TBS indicate the dynamic usage
of the registers during program execution. A detailed description of the way the masks
are used in each policy is given in Sections 3.1 through 3.3.

Figure 3.1 shows a graph with the relation among policies. Each policy reduces
the RSR traffic generated by its predecessor(s) with the addition of more architectural
support (i.e., hardware). The figure is divided into three parts according to the storage
location where the registers are saved by each policy:

1. Policy A saves the registers in the caller’s activation record before performing the
call (see Figure 3.2.a), thus the callee always receives a clean register set.

2. Policies B, C, and D save the registers in the callee’s activation record (see Fig-
ure 3.2.b). In these cases, only the registers that are required by the callee need to
be saved (how the registers are saved/restored for Policies C and D is discussed in
Section 3.2). Registers are restored before the activation record is destroyed, i.e.,
before the return instruction, even though the caller might not need them.

3. Policies E, F, G, and H save the registers in the activation record of the function
that has defined them, i.e., used them, so that they do not have to be restored
until this function becomes active. Notice that this function is not necessarily
the immediate caller (see Figure 3.2.c). The architectural support required to
perform this saving/restoring and a description for each of these policies are given
in Section 3.3.

Figure 3.1 also specifies where the registers are saved (before the call, at function entry,
or when the register is first written) and restored (after the call, on return, or when the
register is first read). This is also discussed in detail in Sections 3.1 through 3.3.

Table 3.2 shows the RSR traffic caused by each policy for six register-set configura-
tions of TBP registers (6, 8, 12, 16, 24, and 32). The RSR traffic is normalized with
respect to Policy B since this is the conventional policy used when no optimizations are
performed (these will be discussed in next chapter). The column for Policy B shows
the RSR traffic generated per function enclosed in parentheses. In addition to the RSR
traffic generated by each program, an average traffic for the four programs is also given
(labeled 4 P.). This average has been computed as the sum of the total traffic for each
program divided by the sum of the number of function calls in each program. In gen-
eral, the measurements discussed in the text correspond to this average. Measurements
for SPICE are shown in Section 4.3, once the intra-procedural optimizations have been
presented,

To compare the different architectural policies we just consider the RSR traffic be-
cause the data traffic caused by global variables, local scalar variables not assigned to
registers, local arrays and structures, etc., is identical for all the policies (for a given
register-set configuration). Thus, the RSR traffic allows us to measure the data memory
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0. Policies

regs. | program A B C D E F G H
ASM 1.20 1.0 (9.67) 0.75 0.68 0.75 0.56 0.23 0.21
NROFF || 1.36 1.0 (4.71) 0.64 0.71 050 0.41 0.19 0.17
6 SORT 2.87 1.0 (4.18) 0.89 099 0.89 0.88 0.56 0.55
VPCC 1.18 1.0 (7.60) 0.81 0.72 0.68 0.53 0.39 0.30
4 P. 1.52 1.0 (5.44) 0.74 0.75 0.64 0.53 031 0.27
ASM 1.49 1.0 (10.11) 0.74 0.67 0.74 0.56 0.23 0.21
NROFF || 1.43 1.0 (4.73) 0.67 0.63 040 0.33 0.17 0.15
8 SORT 3.20 1.0 (5.00) 0.91 0.98 091 0.90 0.47 90.47
VPCC 1.19 1.0 (8.73) 0.78 0.67 0.62 046 0.36 0.25
4 P. 1.66 1.0 (5.88) 0.75 0.71 0.58 0.48 0.29 0.24
ASM 205 1.0(10.22) 0.72 0.64 0.68 050 0.20 0.18
NROFF || 1.44 1.0 {(4.74) 0.61 0.51 0.37 0.28 0.12 0.10
12 SORT 3.52 1.0 (6.60) 0.82 0.92 0.76 0.75 0.40 0.39
VPCC 1.25 1.0(8.91}) 0.74 0.66 047 040 025 0.22
4 P. 1.86 1.0 (6.25) 0.70 0.65 0.50 0.43 0.23 0.21
ASM 2.52 1.0 (10.22) 0.63 0.56 0.63 0.43 0.16 0.13
NROFF 1.44 1.0 (4.74) 0.41 0.38 0.23 0.19 0.10 0.08
16 SORT 3.62 1.0 (8.15) 0.64 078 0.47 0.41 0.18 0.14
VPCC 1.29 1.0 (9.03) 0.76 0.58 0.38 0.28 0.22 0.16
4 P. 2.01 1.0 (6.59) 0.58 0.55 0.36 0.29 0.16 0.12
ASM 3.31 1.0(10.22) 0.62 0.55 0.58 039 0.14 0.12
NROFF || 1.44 1.0 (4.74) 0.39 030 0.13 0.12 0.06 0.06
24 SORT 3.65 1.0(8.93) 055 050 033 0.28 0.13 0.12
VPCC 1.31 1.0 (9.10) 0.60 0.49 0.29 0.24 0.16 0.14
4 P. 2.11 1.0 (6.76) 0.51 0.42 0.26 .22 0.12 0.10
ASM 4.08 1.0 (10.22) 0.59 .53 0.58 0.37 0.15 0.12
NROFF || 1.44 1.0 (4.74) 0.32 030 0.13 0.12 0.05 0.05
32 SORT 3.65 1.0 (8.93) 0.66 0.57 0.50 0.41 0.21 0.18
VPCC 1.31 1.0 (9.10) 0.64 046 0.29 021 0.17 0.12
4 P. 2.16 1.0 (6.76) 0.52 0.43 0.31 0.24 0.14 0.11

Table 3.2: RSR Traffic Relative to Policy B
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reduction given by each policy. However, to select one of the dynamic policies for imple-
mentation we have also to consider the traffic caused by the environment registers (ER).
In addition to the return address (i.e., the program counter) which must be saved and
restored each time a function is called, some dynamic masks have to be save/restored
depending on the policy. The masks that need to be saved/restored are boldfaced in
Table 3.1. This is considered a fized cost per function. No traffic is accounted for other
environment registers ( frame pointer and/or argument pointer) because we assume that
the activation record size is fixed during function execution so that locals and parameters
are referred to with respect to the stack pointer [Wulf75]. Figure 3.3 shows the RSR traf-
fic for the average of the four programs including the traffic caused by the return address
and the masks. The measurements that are usually mentioned in the text correspond
only to the RSR traffic without the ER traffic because special compiler and architec-
tural support is proposed to reduce the return-address traffic (see Subsection 4.1.3 and
Section 5.3).

From Figure 3.3 we conclude that the dynamic Policy G is our best candidate for
implementation since it is the one that generates the least RSR traffic. Policy G has
between 12% (when 24 registers are available to the allocator) and 31% (for 6) of the
RSR traffic generated by Policy B and between 5% (for 24) and 20% (for 6) of Policy A.
In addition to reducing the RSR traffic, Policy G also reduces the number of registers
to be saved/restored during context switching. We also show that when the register set
size is increased, the static Policies A and B generate more RSR traffic while this is not
the case for the dynamic Policy G.

Sections 3.1 through 3.4 present the architectural support required for each policy
and the RSR traffic reduction given by each one. They also discuss the measurements
given by Table 3.2 and Figure 3.3. Finally, Section 3.5 comments on the implementation
of Policy G.

53



ENTRY( ;)

l ENTRY(f;)

I / savRegs(M") /
CALL f;, M!

T restRegs( M*) \

i RET

RET

Figure 3.4: Policy A

3.1 Static Policies A and B

Policies A and B are the conventional RSR policies for intra-procedural allocators (see
Subsection 2.1.3.4). Policy A saves all the registers defined in the caller when a function
is called, and restores the saved registers when the function returns (see Figure 3.4). The
registers to be saved/restored can be specified in three ways:

1. By explicit instructions. One instruction per register to be saved/restored. In this
case, no mask is needed,

2. By an explicit instruction to perform the saving and by a second to perform the
restoring. In this case, a mask in the instruction is used to specify the registers to
be saved/restored.

3. By a mask given in the call instruction. In this case, the same mask (in the call
instruction) can be used when the function returns. This is the case shown in
Figure 3.4,

The most appropriate specification depends on instruction format provided by the ma-
chine (see Subsection 2.2.2). For our discussion we assume that registers are saved [restored
by a mask M given in the call instruction for Policy A or at function entry and in the
return instruction for Policy B (see below).

In Policy B, the registers defined in the callee are saved at function entry, and these
saved registers are restored upon return (see Figure 3.5). The registers to be saved can
be specified in a mask located at the function entry point. Since the return instruction
must know which registers to restore, the same mask can be duplicated on each return
instruction. The alternative approach of saving the register mask at function entry is
discarded because it generates two extra memory references for each function call.
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As we can see in Table 3.2, Policy B is systematically better than Policy A because
the register set is cleaned before each call for Policy A, while for Policy B some of the
registers might be dirty upon entry and only the ones needed by the callee are forced to
be cleaned. However, when live-variable analysis is performed, Policy A performs better
than B for some programs (see Subsection 4.1.1).

Notice that for ASM and SORT, the register saving/restoring traffic for Policy A
is about four times the one for Policy B when 32 registers are available, because both
programs have a main function with a large number of variables. For instance, the parser
for the assembler requires 32 registers. This function is only called once so that 32 regis-
ters have to be saved/restored for Policy B (assuming the largest register set). However,
this functions generates 11% of the calls and, therefore, Policy A has to save/restore 32
registers for each call.

It is also worth noticing that due to the nature of these saving/restoring policies
there is an increase in RSR traffic when the number of registers is increased from 6 to
32. In contrast, we will see that there is some reduction in the dynamic policies.

3.2 Policies C and D

The large register saving/restoring traffic for Policies A and B is due to the fact that all
registers defined for a function are saved, irrespective of their use, that is, a register is
saved even if it has not been used previously. To reduce the RSR traffic in Policies C
and D a register is saved only if it has been used in ezterior levels (i.e., by one of
the functions which is currently active). The management of these policies requires a
dynamic mask (TBS = To-Be-Saved) which specifies the registers that have been used
in those levels. This mask has a bit associated to each register; this bit is set when the

55



ENTRY(f, MYy | e~

— - sa.vRegs( TBS N M%) |
NTRY(f;, M7) ! save TBS [
T —~ ’ TBS — TBS — M/ '
! .
write(r;) | TBS «— TBSU {r;} |
CALL f; : S

{\ 1 - /:-_T;S;_;B_S__.;
: RET M/ o |
e

l restRegs( TBS N M7)

RET M*

Figure 3.6: Policy C

L Set Operations Hardware Implementation
TBS NnM TBS AND M
TBS UM TBS OR M
TBS — M TBS AND NOT M
TBS — TBS u{r} SET THBS <i>
TBS — TBS —{r} RESET TBS <i>

Table 3.3: Hardware Implementation for Set Operations

register is written. The algorithms to describe the dynamic policies (like the one given
in Figure 3.6 for Policy C) use set operations (union, intersection, difference) between
the masks. Table 3.3 describes the correspondence between the set operations and their
hardware implementation with AND, OR, and NOT primitives and SET and RESET
operations on SR flip-flops for the masks.

In Policy C a register is saved during a call if it is defined for the callee and has been
used by exterior levels. The registers saved are restored on return (see Figure 3.6). The
architectural support for this policy consists of the dynamic mask TBS and one static
mask M per function. During a call, the registers that correspond to the intersection of
both masks are saved, TBS is also saved, and finally the bits corresponding to the saved
registers are cleared. When a register is written the bit of the TBS mask is set. During
return TBS is restored and the intersection of both masks determines which registers to
restore. Note that this mask saving/restoring increases the data traffic (see Figure 3.3).

As we mentioned at the beginning of this chapter, this policy (and the other dynamic
policies} would perform better if disjoint registers are assigned to the caller/callee func-
tions. The smaller the intersection, the fewer registers that have to be saved/restored.
For this reason, when the number of TBP registers increases, the RSR traffic may de-
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crease although the number of locals assigned to registers also increases. Qur mea-
surements show a RSR traffic reduction of 14% when the number of TBP registers is
increased from 6 to 24 (i.e., when almost all the local scalar variables have been allo-
cated). This is a characteristic for all the dynamic policies, but not for the static ones
(see Figure 3.3). Notice that there is a 2% RSR traffic increase from 24 registers to 32.
This is a consequence of the round-robin assignment. We show that the inter-procedural
optimization proposed in Subsection 5.4.4 prevents this to happen.

Table 3.2 shows the register saving/restoring traffic for Policy C with respect to
Policy B. Policy C has between 70% and 74% of the RSR traffic generated by Policy B
when there are between 6 and 12 TBP registers and between 52% and 58%, when there
are between 16 and 32. Thus, a larger register set gives us a larger traffic reduction with
respect Policy B. However, if the mask traffic is considered, then the implementation of
Policy C cannot be justified for smaller register sets (12 TBP registers or fewer) because
it generates more traffic than Policy B (between 102% and 108%). This is not the case for
larger register sets. Policy C has between 91% (for 16 TBP registers) and 86% (for 32)
of the RSR. traffic and the mask traffic generated by Policy B.

Some authors have proposed to implement this RSR policy directly by the compiler
without any architectural support [Stee80, Cohe88]. In this case, the compiler has to
generate code to perform the operations indicated above (in Figure 3.6). One register
is selected to be used as the TBS mask. Before each call, one instruction is generated
to indicate the registers which are alive at the call (i.e., the registers which might have
been written during program execution). The callee performs the intersection of both
masks to determine the registers to be saved and restored. This implementation has an
advantage with respect to when it is implemented by the architecture: dead registers are
not saved. However, it has the following two drawbacks:

1. Live registers might have not been written for this specific execution path, but they
will be saved. Remember that live registers are computed following all possible
paths to the call.

2. [t increases the instruction memory traffic because more operations have to be
explicitly executed by the program.

In Subsection 4.1.4 we propose an optimization for Policy C so that dead registers are
not saved. In this case, the data memory traffic generated by the dynamic Policy C with
this optimization is less than the one produced by a direct implementation of Policy C
by the compiler because of the first mentioned drawback. Since in Subsection 4.1.4 we
conclude that the dynamic Policy C should not be implemented because the increase in
instruction memory traffic does not compensate for the reduction of data memory traffic
obtained, a direct implementation of Policy C by the compiler cannot be justified either.

In Policy C registers are saved at function entry, whether the register is going to be
used or not. To reduce the traffic further, Policy D saves the registers when they are
going to be written instead of saving them at function entry.
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Two dynamic masks are required in this case: TBS, as before, and CU (Current
Usage) to indicate the register usage in the current function. This last mask is required
for the restoration. The architectural support required for this policy is used for manip-
ulating both masks and detecting whether a register has to be saved when it is going
to be written. During the call, both masks are saved, the TBS is ored with the cu,
and the CU is set to zeroes. When a register is written both masks are checked: if the
register has been used in an exterior level but not in the current function, then it is saved
before being written. On return the intersection of both masks determines the registers
to restore and both masks are restored (see Figure 3.7).

Although two dynamic masks have to be saved /restored, this does not imply that four
memory references are always generated per function (as Figure 3.3 shows). Depending
ou the register-set configuration and the machine word size it might be possible to pack
both masks in a single word (e.g., a 32-bit word and a 16-TBP-register set configuration).
In this case, only two memory references would be generated. (We decided to show
the most general case in Figure 3.3 to emphasize the fact that both masks have to be
saved frestored.)

Since Policy D does not require a static mask at function entry, it is necessary to
have some other way of differentiating between TBP registers and TBD registers. Two
alternatives exist for this differentiation: the separation can be fixed, or it can be specified
by a global mask. The second solution allows more flexibility because each compiler is
allowed to have its own partition of the register set.

Table 3.2 shows the RSR traffic for Policy D. Policy D generates between 93% and
95% of the RSR traffic produced by Policy C when 8, 12, and 16 TBP registers are
available, 82% when 24, and 83% when 32. The performance for 6 registers has been
a surprise since Policy D gives an unexpected, slightly higher average RSR traffic than
Policy C {0.7%). This is caused by the ASM and SORT programs. Policy D generates
110% of the RSR traffic produced by Policy C for each of these programs. Moreover,
Policy D for SORT also generates more RSR traffic for 8 (8%), 12 (13%), and 16 registers
(22%). An example which reflects how this situation might happen is given in Figure 3.8.
Policy C would save register r3 at the entry point of the second function (since it would
have been used previously) and, therefore, no further saving /restoring would be required
at the entry point of the third function (since the register would not have yet been used).
However, Policy D would save/restore the register r3 every time that the third function
is called. This might happen for SORT and ASM.

SORT has only one function with 18 local scalar variables. However, this function
accounts for 20% of the calls and is heavily used (i.e., it generates 70% of the local
references and 78% of the calls). Thus, when there are from 6 to 16 registers available,
this function always has the whole set of registers assigned. If the registers are saved at
the entry point of this function, it is more likely that this 80% of the functions being
called will find a smaller intersection with the registers previously used.

ASM also has two functions with a larger number of local scalar variables. One is
the parser with 32 local scalar variables. The parser generates 11% of the calls and 9%
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Figure 3.9: Policy E versus Policy D

of the local references. The other is one of the scanner functions with 18 local scalar
variables. This one generates 49% of the calls and 24% of the local references. Thus,
this could explain the abnormal behavior of Policy D with respect to Policy C when a
small set of registers is available.

3.3 Policies E, F, G, and H

Better use of the registers can be made and the RSR traffic reduced by implementing
other policies which reduce the unnecessary saving and restoring of Policies C and D.
Consider for example the situation in Figure 3.9: in Policy D register r3 is saved and
restored every time that fi is called from f;, even if it is not used by f;. It is clear that
it is sufficient to save it once in f; and restore it when returning to f;. This is exactly
what Policy E does. In this section we discuss the architectural support necessary to
determine the address where the register has to be saved, we present the operations
performed, and the masks required, by each policy, and we compare the RSR traffic
generated.

The register is saved in the activation record of the outer function which last used
it (fi in the example). To do this, the architecture has associated with each register a
pownter (RP) which is loaded with the current frame pointer (plus an offset associated to
each register number) each time a register is written. This pointer is used to determine
the memory location in which the register has to be saved. For instance, Figure 3.10
shows the values of the register pointers associated to registers r; through r4 when the
portion of the “program” given on the top of the figure has been executed. As you can
see, Ip4 is pointing to the f; frame since ry was last written in f;, rps and rp, to fj,
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Figure 3.11: Policy E

and rpy to fi. There is a drawback to this policy: storage space for each register has to
be provided in each frame because the fp offsets where the register has to be saved are
directly computed by the architecture.

Policy E requires the use of all three masks: the static M mask, the TBS mask, and
the CU mask. When a register is written the corresponding bit for both the TBS and
the CU masks are set to 1 (see Figure 3.11). A register is saved at function entry if its
bit in both the TBS mask and the M mask for that function are 1 (as in Policy C). The
TBS bits for the registers saved are cleared to indicate that the registers do not need to
be saved (until they are written again). Also, the caller’s CU mask is also saved to keep
track of the registers that have been used.

To determine when a register is to be restored, the caller’s CU mask is needed. When
returning, the TBS bits associated to the saved registers are cleared and the caller’s CU
mask is restored. Then, if the CU mask has the bit set and the TBS mask indicates
that it has been saved (i.., it is zero), the register is restored (see Figure 3.11).

The RSR traffic produced by Policy E can be reduced still further by the following
mechanisms:

1. Save a register when it is used (written) instead of at function ertry (as in Pol-
icy D). This is Policy F. This policy uses two dynamic masks in a fashion
similar to Policy D. However, only one mask, CU, needs to be saved /restored (see
Figure 3.12).

2. Restore a register when it is needed (read) instead of at function return. This is
done in Policy G. Note that in this case the restoring has to be done during
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Figure 3.12: Policy F

execution of the instruction. This policy, like Policy C, uses the static mask and
the dynamic TBS mask, but the TBS mask does not need to be saved/restored
across function calls (see Figure 3.13).

3. Combination of (1) and (2). This is Policy H. This policy uses both dynamic
masks and CU must be saved/restored across function calls to know which regis-
ters have been used by the current function (see Figure 3.14). Observe that this
information is given by the static mask for Policy G, which is available in both the
call and the return instructions.

The minimum RSR traffic occurs with Policy H, because

¢ a register is not saved until the moment that it needs to be written and it was
already used, and

® a register is not restored until the moment that it needs to be read.

This is the best that the architecture can provide. The restoring policy is optimal since
it only restores registers whose value is needed during program execution. However, the
saving policy is not optimal since dead registers (i.e., registers for which the first operation
to be performed on them after the return is a write) are saved by this policy. A dead
register is saved because the architecture does not know that its value can be destroyed
since it will never be read by the function which used it. An optimizing compiler that
performs live-variable analysis [Aho86, Hech77] knows this and, therefore, it could issue
an instruction to clear the bits in the TBS mask associated to dead registers. In this
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case, the registers would not be saved. Notice that this can be done for each dynamic
policy. This optimization is discussed in Subsection 4.1.4 for Policies C and G.

The saving/restoring traffic produced when using these policies is shown in Table 3.2.
Policy H has between 21% and 27% of the RSR traffic generated by Policy B for 6, 8, and
12 registers, 10% for 16, and 12% for 24. As we noted above, the RSR traffic reduction
becomes more significant for larger register sets. However, Policy H has the drawback
that one mask has to be saved and restored, which increases the overall traffic (see
Figure 3.3). Because of this, we select Policy G as the best candidate for implementation
(discussed in Section 3.5).

Since Policy G is the dynamic policy to be considered for implementation, it is
interesting to compare the RSR operations to be performed with the ones performed by
one of the conventional static policies. We have selected Policy B because it generates less
RSR traffic than Policy A when no live-variable analysis is performed (see Section 3.1).

Policy G as well as Policy B perform the register saving/restoring at the callee side
(see Figure 3.1). However, while Policy B saves the whole set of registers defined in the
function, Policy G only saves the registers that have been used (i.e., written) by the
functions in the exterior levels. Once a register is saved, it is marked unused so that it
is not saved again until a write operation is performed on it. Moreover, the register is
not saved in the current function’s activation record (as happens in Policy B), but in
the activation record of the function that was using it (see Figure 3.10). In this manner,
the register does not have to be restored when the function returns (as in Policy B),
but when the function that was using it needs it (i.e., reads it). No explicit instruction
is required for the restoring since it is performed implicitly when the register is read
and is not present (see Figure 3.13). Notice that the register is not restored if the first
operation to be performed after return is a write. Policy G generates from 12% of the
RSR traffic produced by Policy B (for 24 TBP registers) to 31% (for 6).

In addition to reducing the RSR traffic, the dynamic Policy G also reduces the num-
ber of registers to be saved/restored during context switching. While multiple-window
architectures and single-window architectures with the conventional static policies have
to save/restore the whole register file, an architecture with the dynamic Policy G has
only to save the TBP registers that are currently used (i.e., they have been written) and
the whole set of TBD registers. The whole set of TBD registers has to be saved {and
restored when the process is rescheduled to run) because they are not part of the TBS
mask? (since we do not want to save them across function calls). The TBP registers
needed by the process (i.e., registers that were alive when the process was switched) are
restored dynamically when a machine instruction reads them.

The drawback of Policy G with respect to H is that it saves registers that are defined

?To avoid saving/restoring the TBD registers, a mask can also be provided. The corresponding bit of
a TBD register is set to one when the register is written. This bit should be reset when the content of
the register becomes dead. This could be performed by an instruction before a system call (which might
cause a context switch} or by providing a bit per source register in the instruction format to indicate
when the mask has to be reset. Since context switching is an unfrequent operation and the number of
TBD registers is usually small, these alternatives cannot be justified.
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in the function although they might not be used during the current execution of the
function. These registers will be restored afterwards even though the content of the
register is the same as the value being restored. However, this situation can be detected
because the address in the register pointer is equal to the address being generated for the
testoring® (since no write has been performed in the register). In this case, the restoring
could be aborted. Since the average number of restoring operations per function is small
(e.g., 0.8 when 12 TBP registers are available) we decided to ignore this situation in the
implementation of Policy G and to perform the restoring anyhow.

Policy G generates between 108% (for 12 registers) and 130% (for 16) of the RSR
traffic produced by Policy H. However, when the ER traffic is also considered, Policy G
generates between 32% and 50% of the traffic produced by Policy B and between 59%
and 83% of Policy H. Therefore, Policy G is the best dynamic policy because no mask
has to be saved/restored.

3.4 An Example for the Eight RSR Policies

Figure 3.15 illustrates the eight policies described. On the left, the “program” being ex-
ecuted is given. It indicates the function calls and returns and the operations performed
on registers. For each policy we indicate the registers that are saved (5) and restored

(R).

3.5 On the Implementation of Policy G

It could be the case that although the total number of data memory references becomes
smaller, the total time to execute the program is larger because either the processor
cycle time has increased as a consequence of the extra hardware required for Policy G
or more processor cycles are required to execute the operations associated to Policy G.
In this section we consider the implementation for our dynamic policy in a RISC-like
processor. RISC II has been chosen because it is well documented [Kate83, Chapter 4].
A few modifications have been made in order to implement Policy G in RISC II; for
this reason, we call it a RISC-like processor. These modifications are mentioned below.
We show that the operations required by Policy G are performed in parallel with the
main CPU activities in our RISC-like processor and that the number of cycles required
to perform the register saving/restoring operations are the same as the ones required by
the conventional static policies.

While RISC II saves and restores each register individually, i.e., with store and load
instructions, this cannot be done in our RISC-like processor because the registers to be
saved are given by the intersection of the mask provided by the instruction with the

*A mask cannot be used to detect this situation and to prevent the restoring because it would need
to be saved/restored across function calls.
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Figure 3.15: Example of RSR Traffic Caused by the Different Policies
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TBS mask (see Figure 3.13). Thus, for our RISC-like processor, the registers to be
saved are indicated by a mask M given by the instruction savRegs generated by the
compiler at function entry. This mask is duplicated in the return instruction to avoid
its saving/restoring (as proposed in Section 3.1).

When a single instruction is used to save a set of registers, the data memory transfers
can be pipelined. For instance, SOAR saves/restores an 8-register window in 9 cycles
rather than the typical 16 cycles it would take using individual load and store instructions
[Unga84, p. 191]. However, Ungar et al. claim that:

In retrospect, these multi-cycle instructions added considerable complezity to
the design, and the benefits may not prove to be worth the costs.

This could be the reason why none of the single-window processors listed in Table 2.2
provides such instructions. Thus, we assume that no pipelining occurs in our RISC-
like processor for the data memory transfers (i.e., each data memory transfer takes 2
processor cycles).

Similar to RISC II, instructions have 3-register addresses and the processor is imple-
mented with a 3-stage pipeline and with a 4-phase clock: in the first stage the instruction
is fetched from memory; in the second, the operands are read from the register file and
operated; and in the third, the result is written back to the register file. If necessary,
internal forwarding is performed for the last computed result. The register file read is
performed in the first clock phase and the register write in the third.

Our RISC-like processor has the frame pointer* (fp) implemented as a specialized
register rather than being part of the general-purpose register file as in RISC IL In this
case, instructions to add/subtract a constant with the activation record size are needed
as well as to read/write the frame pointer from/to memory. This is necessary for the
implementation of Policy G.

Figure 3.16 shows the data section of the processor. A few RISC II data-path compo-
nents are not shown in the figure although they should also be available in our RISC-like
Processor:

¢ Input and output latches for the ALU.

Multiple PCs to implement the 3-stage pipeline (LASTPC and NEXTPC).
The 32-bit cross-bar shifter.

Several other RISC II registers (DIMM, IMM, OP, etc.).

Although they have been eliminated to simplify the figure, they do not represent any
loss of generality for our discussion.

The added components required for the register saving/restoring policy have been
put in a dashed box. These are:

*Also used as the argument pointer and the stack pointer. See the discussion on this at the beginning
of this chapter.
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Figure 3.16: Implementation of Policy G

. A set of registers RP to contain the pointers. One pointer is required for each

TBP register. For this reason, the size of the RP register file is smaller than the
general-purpose register file since the latter also includes the TBD registers.

. A register to store the TBS mask.

. An adder to compute the address of the memory location where the particular

register is saved in (or restored from) the activation record. This address is obtained
as the sum of the frame pointer (stored in the specialized register fp) and the
register number (shifted according to the memory-word size). We call this adder
the address adder.

One multiplexer (MUX3) to select the register pointer to be accessed. The number
of the register pointer (shifted according to the memory-word size) is the one added
to the frame pointer.

. A priority encoder of the AND of both masks to determine the next register to save.

This should already exist to implement the instruction savRegs in the RISC-like
processor.

. Logic to determine whether to restore 0, 1, or 2 registers. This consists of two

multiplexers and one AND gate.

Moreover, notice that the sizes of two of the existing multiplexers (MUX,; and MUX;)
have been increased: one to select the register number to be used to address one of the
ports in the general-purpose register file (R) and the other to select the output to the
external port.
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Figure 3.18: RISC-like Pipeline with Restoring

not written until the third stage, a hazard condition arises when the destination register
of the current instruction is used as one of the source registers for the next one. However,
the control unit already has to detect this situation to perform forwarding. Thus, the
“false” restoring signal (because the corresponding bit has not been written yet) can also
be detected and ignored.

If no-restore = 0, it is necessary to restore one or two registers. This restoration is
done as normal register loads from memory, using as addresses the frame pointer plus
the corresponding register numbers. This address is computed during the processor cycle
of the aborted instruction as illustrated in Figure 3.18. Notice that since the address
adder is required to compute this address, the RP write from the previous instruction
has to be delayed by one processor cycle. After the register or registers are restored,
the instruction is executed in the normal way. Since the restoring is performed in two
processor cycles (as a conventional load instruction would do), no extra cycles are added.

Figure 3.19 highlights the critical path for a restoring operation: once the restoring
operation is detected, the instruction should be aborted (not shown in the figure), the
address of the TBP register to be restored computed, and this address sent to the external
port. Notice that the address is not written to the RP register file until the restoring is
performed (i.e., the general-purpose register is written; see Figure 3.18).

For the instruction savRegs, the priority encoder generates, in sequence, the register
numbers of those that have to be saved. For each of them, the corresponding pointer
is transferred to the external port followed by the register value. A memory write is
performed and the corresponding bit of the TBS cleared. The clearing of this bit makes
the priority encoder produce the next register number. The prefetched instruction is
not loaded in the IR until the end saving condition is reached. Only one gate has
been introduced in the data-path and we expect that this will not be critical because the
restoring address has to be available at the beginning of the second cycle (see Figure 3.20).

For a context switch the registers are saved in the corresponding activation records
so that the registers RP never have to be saved/restored. When the context has to be
restored, the TBS is set to zero and no registers are restored. When the register is needed
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(i-e., it is read), then the register is loaded and its associated RP register is initialized.

The implementation described indicates that the additional hardware required for
this saving/restoring policy consists mainly of a register set for the pointers and of an
adder. The cost, in additional modules in a LSI implementation or circuit area in a VLSI
implementation, is justified by the reduction in RSR traffic provided by the policy. With
a gate-delay analysis it seems that the basic processor cycle is not increased by these
additions because they are decoupled from the main datapaths and the operations which
have to be done during normal register reads and writes overlap with the normal cycle
when they are performed. However, in a VLSI implementation of a specific processor it
is possible that the cycle time is affected because of:

1. The increased area which might imply longer buses and, therefore, larger commu-
nications delays [Scha89)].

2. The increased size of the multiplexors MUX; and MUX,, which might imply a
slight increase in the critical path if these multiplexors are part of the critical
path.

3. The increased fan-out of several drivers (fp, regSrcl, regSrc2, and regDst) which
have to be directed to the specific modules required by Policy G.

The effect of these factors on the processor cycle time depends on many design require-
ments and constraints for a given implementation. Although an implementation was
performed, the effect of Policy G in this implementation could not be generalized to
other alternative implementations—even for the the same architecture. It might be that
the added circuitry does not affect the critical path for this specific processor implemen-
tation. On the other hand, if it does, the (expected small) increase in the processor
cycle time is justified by the reduction of the off-chip references that will increase the
overall system performance. Since alternative implementations are possible, the imple-
mentation of Policy G to determine this effect on the processor cycle time for a specific
implementation has been left open for discussion (see Section 6.2). However, we expect
that the information provided above will encourage the reader to consider the inclusion
of Policy G in his/her design.

3.6 Summary

When no compiler optimizations are performed to reduce the RSR traffic, our measure-
ments show that:

1. Policy G reduces the register saving and restoring traffic with respect to the con-
ventional static policies used by most processors. Policy G has between 12% (for
24 TBP registers) and 31% (for 6) of the RSR traffic generated by Policy B and
between 5% (for 24) and 20% (for 6) of Policy A.
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2. As expected, an increase in the number of registers to be preserved across function
calls implies an increase in the RSR traffic for the conventional Policies A and
B. However, this is not true for the dynamic Policy G. When there are 32 TBP
registers, the RSR traffic generated for Policy G is 54% of the one generated when
there are 6. On the other hand, in the same situation, the RSR traffic generated for
the Policies A and B is 176% and 124%, respectively. Consequently, the overall data
memory traffic is not reduced for a larger register set when the conventional static
RSR policies are used because the reduction in local scalar traffic is compensated
by the increase of the RSR traffic (see Section 4.5).

Our measurements have also shown that when registers are saved/restored at the
callee (Policy B), less RSR traffic is generated than when they are saved/restored at the
caller. Policy A generates between 152% (for 6 registers) and 216% (for 32) of the RSR
traffic produced by Policy B. As we will see in the next chapter, this is not the case
when live-variable analysis is performed.

Finally, the implementation of Policy G has been considered. We have shown that the
activities required by Policy G are performed in parallel with the main CPU activities
(with the exception of one additional gate to generate the register numbers for the
savRegs instruction) and that the number of cycles required to perform the register
saving/restoring operations are the same as the ones required by the conventional static
policies. Although the feasibility of the implementation of Policy G depends on many
design requirements and constraints, we have not found any major drawback for which its
implementation should be discarded. Therefore, we encourage the designer to consider
its inclusion in his/her design.
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Chapter 4

RSR Intra-Procedural
Optimizations

Chapter 4 presents four intra-procedural optimizations to reduce the register saving
and restoring (RSR) traffic for single-window architectures. These optimizations can be
performed together with the eight RSR policies described in Chapter 3. Our goal is to
compare the RSR traffic reduction offered by these optimizations without architectural
support (i.e., for the static policies) and with architectural support (i.e., for the dynamic
ones). From these eight policies, we only consider four policies for optimization: A, B, C,
and G. The static Policies A and B are the conventional ones (see Subsection 2.1.3.4) and
several optimizations have already been implemented (discussed below). The dynamic
Policy G is our best candidate for implementation because it generates the least memory
traffic (see Section 3.3). The dynamic Policy C has also been selected because it requires
less architectural support than Policy G (although it has to save/restore a control mask
on every function call) and some authors have proposed implementing this RSR policy
directly by the compiler without any architectural support at all [Stee80, Cohe88].

For each of these policies we explain how the compiler can help to reduce the RSR
traffic and we discuss the resultant reduction in RSR traffic. These measurements are
obtained with the same register allocation and assignment approach used to measure
the RSR traffic reduction by the architectural policies given in Chapter 3. That is,
all local scalar variables are allocated to registers (if enough registers are available)
and registers are assigned in a round-robin fashion. Afterwards, we also compare the
RSR traffic reduction for other register allocation schemes (Section 4.2). Although two
of the optimizations presented are not original (discussed below), we expect that our
work will offer a systematic way of measuring the traffic reduction obtained by each
optimization. We were not able to find in the current literature this type of evaluation
for typical programs. The results available are usually either static measurements or
dynamic measurements of small programs which might not be representative of typical
programs (see Section 1.3).

Two existing intra-procedural optimizations are discussed and evaluated: live-vari-
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able analysis {Hech77, Aho86] for Policy A (renamed A-live) and register assignment
in leaf functions for Policy B (renamed B-If), Policy C (renamed C-If), and Policy G
(renamed G-If). Moreover, two new optimizations—based on live-variable analysis—are
also presented. One is for Policy A-live (renamed A-lvOpt) and the other for Policies C
and G (renamed C-live and G-live), although the latter could be used for any other
dynamic policy.

There exists a third optimization to reduce the register saving/restoring traffic: inline
ezpansion (also called procedure integration) [Sche?7, Alle80, MacL84, Stee87, Hwu89).
This optimization substitutes the call to a function by the function itself. In this case, no
RSR traffic is generated since the call itself is eliminated. This optimization is not con-
sidered in this dissertation because the performance gain obtained by this optimization
cannot be given by the reduction in RSR traffic (as we have done for the architectural
policies in Chapter 3 and we do for the other intra-procedural optimizations in this
chapter) because several other factors have to be taken into account; for example, the
reduction in the number of functions defined, the increase in the number of variables
defined per function after the expansion, the variation in the hit/miss ratio and in the
page-fault ratio due to the expansion, etc. Moreover, more RSR traffic might be gener-
ated for the function that has been expanded since more registers might be required due
to the expansion. Constant propagation [Wegm85, Call86] can be used to reduce the
number of variables required after the expansion and to reduce the code size generated
(because some computations can be performed at compile time).

We show that our dynamic Policy G with leaf-function optimization (Policy G-If)
generates the least RSR traflic with respect to the optimized static policies for any of the
three compilers measured (PCC [John79], ACK [Tane83], and GNU [Stal88]). Moreover,
the same conclusions have also been reached when, instead of using general-purpose
applications (like ASM, NROFF, SORT, and VPCC), we use a numerical application
(SPICE) with a heavy floating-point variable usage. (These programs have been briefly
described in Section 1.3; see Section 4.3 for an explanation on the differences between
these programs.)

Our measurements have also shown that for the static policies, there is not a best
approach for performing the register saving and restoring-—either at the caller (Policies A,
A-live, and A-lvOpt) or at the callee (Policies B and B-1f). Although on the average
Policy B-If performs better than any of the policies of type A, this is only true for some
of the programs measured and for some register-set configurations (see Sections 4.1, 4.2,
and 4.3).

We compare the RSR traffic generated by our best optimized dynamic Policy G-If to
the one generated by the already-existing schemes for multiple-window architectures:
fixed-size windows [Kate83], variable-size windows [Ditz82], and multi-size windows
[Hugu85¢] (Section 4.4). Since our goal is to have a small register file (32 general-
purpose registers) to avoid an increase in the processor cycle time (as discussed in Sub-
section 2.1.1), we show that a single-window register file with Policy G-1f generates less
RSR traffic than a multiple-window register file with multi-size windows, which is the
best scheme for a multiple-window register file.
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Finally, we measure the overall data memory traffic reduction obtained with the
optimized policies and estimate the speed-up factor for a RISC-like processor with Policy
G-If in comparison to the static policies (Sections 4.5 and 4.6). We show that when
intra-procedural register allocation and assignment are performed, our measurements do
not indicate any reason to have more than 12 to-be-preserved (TBP) registers in the
general-purpose register set for non-numeric applications (i.e., ASM, NROFF, SORT,
and VPCC). For SPICE, a larger number of TBP registers may be used as we will
discuss in Section 4.5,

4.1 Compiler Support to Reduce the RSR Traffic

This section discusses four different optimizations performed at function level. The com-
piler generates code per function without any knowledge of the register usage required by
the functions which might be called or the functions which might call the current one.
Two of the optimizations (live-variable analysis and live-variable analysis optimized)
are performed on Policy A and discussed in Subsections 4.1.1 and 4.1.2. Leaf-function
optimization is applied on the static Policy B and on the dynamic Policies C and G
(Subsection 4.1.3). Finally, an optimization based on live-variable analysis is presented
for the dynamic Policies C and G (Subsection 4.1.4).

As we said above, the compiler used to evaluate these optimizations is the same used
to perform the evaluations for the architectural policies. The compiler has not been
modified to incorporate these optimizations since our goal is not to obtain a production
compiler, but to measure the performance of the different compiler optimizations. These
have been measured using BKGEN (see Section 1.2) which has turned out to be a flex-
ible tool to let us measure not only several architectural configurations, but also these
intra-procedural optimizations. For instance, to measure the leaf-function optimization,
the actions file (which indicates the events to measure per block) is modified as follows:
the masks that indicate the read and write operations performed on the TBP regis-
ters (per block) are cleared if these registers can be transferred to the to-be-destroyed
(TBD) registers (for the whole leaf function). Thus, the same actions file generated to
measure the RSR traffic without leaf-function optimizations can be used without hav-
ing to recompile the programs. Also, the same BKGEN function available to measure
the architectural policies can also be used. (A detailed discussion on how BKGEN has
been used to measure each intra-procedural optimization is outside of the scope of this
dissertation.)

4.1.1 Policy A-live

This is the standard intra-procedural register allocation for Policy A implemented by an
optimizing compiler when variables are assigned to registers for the whole scope of the
function [Aho86]. While the unoptimized Policy A saves and restores all the registers
defined by the function, Policy A-live only saves and restores a subset of them: the ones
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write (ry)

write (rp)

write (r3) A A-live

read (r2) ' save(ry,rg,r3) T save(r;) !

CALL f; be-zzz==-==4 Loz ==

write (r3) JL restore(ry,r2,r3) | ! restore(r;) J'
data memory operations
performed by each policy

read (r1) write (r1)
write (r3)
read (ra)

Figure 4.1: Policy A-live versus Policy A

which are needed (i.e., read) after the call (once the function has returned). Registers
that are written before being read (in all the possible paths after the call) do not need
to be saved/restored. These registers are called dead or killed. In contrast, registers
that are first read in any of the possible paths after the call are called live registers. An
optimizing compiler performs live-variable analysis to find the live/dead information and
only saves/restores the live registers (see Figure 4.1).

Table 4.1 shows the RSR traffic for Policy A-live with respect to the standard Pol-
icy B (as given in Table 3.2). Policy A-live always generates less RSR traffic than the
unoptimized Policy A. Policy A-live has from 38% of the RSR traffic generated by Pol-
icy A when there are 32 TBP registers available to 53% when there are 6. We deduce
that the RSR traffic reduction is larger for a larger register set because the number of
live variables at the call does not increase at the same rate as the number of variables
allocated to registers per function. This is a consequence of having all possible local
scalar variables allocated to registers.

Although Policy A-live generates, on the average, less RSR traffic than Policy B,
this is not true for every measured program. Policy A-live always generates less RSR
traffic than Policy B for NROFF and VPCC because almost all the executed functions
in these programs require a small number of registers. For instance, 99% of the functions
executed in NROFF require 6 TBP registers and 94% of the functions executed in VPCC
require 8. As a consequence, the RSR traffic generated by Policy A-live is about half of
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no. Policies Policy
regs. | program A Alive A-lvOpt B

ASM 120 063 033 [1.0 (9.67)
NROFF [[1.36 044 024 |10 (4.71)
6 | SORT || 287 254 163 |10 (4.18)
VPCC [ 1.18 050 040 |10 (7.60)
4P || 152 080 051 | 1.0 (5.44)
ASM [ 149 o071 039 | 1.0 (10.11)
NROFF | 143 050 028 |10 (4.73)
8 | SORT [ 320 213 137 |10 (5.00)
VPCC | 119 049 037 |10 (8.73)
4P. [ 1.66 0.9 050 |10 (588)
[ ASM [ 2.05 080 045 |10 (10.22)
NROFF | 1.44 050 028 |10 (4.74)
12 | SORT | 352 1.61  1.04 |10 (6.60)
VPCC [ 1.25 049 037 |10 (8.91)
4P. || 186 075 048 |10 (6.25)
ASM [[252 1.10 051 | 1.0 (10.22)
NROFF || 144 050 028 |10 (4.79)
16 | SORT [ 362 131 085 {10 (8.15)
VPCC || 1.29 048 036 |10 (9.09)
4P. || 201 074 046 | 1.0  (6.59)
ASM [[331 1.14 053 [ 1.0 (10.22)
NROFF | 1.44 050 028 |1.0 (4.74)
24 | SORT {365 155 091 |10 (8.93)
VPCC | 1.31 048 038 |10  (9.10)
4P. | 211 081 048 | 1.0 (6.76)
B ASM [[4.08 133 057 |10 (10.22)
NROFF [[ 144 050 028 |10 (4.74)
32 | SORT [[365 155 091 |10 (8.93)
VPCC || 1.3t 048 036 | 1.0 (9.10)
4P. [[216 083 049 |10 (6.76)
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;_ENTI‘RY_ (Fi {rs)) |

| write(rs) |
| | A-live A-lvOpt
T L O R TN
| | :- restore(rs) J'
' | TS T
save(rs)

| | CALL f, —— be=====J

| restore(rs) !
I 4  FP A i 4
b AL | i (L
| - | iL restore(rs) ! lL restore(rz) !
| ! deta memory operations
| read(ra) | performed by each policy
L e — - —

Figure 4.2: Policy A-lvOpt versus Policy A-live

the one generated by Policy B for any of the register-set configurations.

On the other hand, Policy B always generates less RSR traffic than Policy A-live
for SORT. As we mentioned in Section 3.2, SORT has a function which requires 18
TBP registers. This function accounts for 20% of the calls and generates 70% of the
calls. Since these 70% calls are to functions with only one TBP register, Policy A-live
generates more RSR traffic than Policy B because, on the average, there are more live
registers in a call for this 18-defined-register function than registers defined for the other
ones (only 1).

Policy B for ASM also generates less RSR traffic than Policy A-live for larger register
sets (16 TBP registers or more). It does not behave exactly like SORT because the
functions being called have a larger number of registers defined so that Policy B itself
generates a significant amount of RSR traffic (the largest among the four programs).
Thus, only for larger register sets is the average number of live registers in a call greater
than the average number of registers defined per function.

4.1.2 Policy A-live Optimized (A-lvOpt)

Policy A-live generates some unnecessary RSR traffic. For instance, let us consider the
situation shown in Figure 4.2. The function currently being parsed has three consecutive
calls, that is, three calls without unconditional or conditional branches between them.
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| program " static | dynamic |
ASM 13.9% 1.3%
NROFF || 21.1% 5.5%
SORT 18.9% 19.3%
VPCC 23.3% 15.9%
4 P. 20.5% 10.4%

Table 4.2: Percentage of Consecutive Calls

Register r3 is written before the first call and it is read after the third one. Since it is
alive at each call, Policy A-live saves/restores it in every consecutive call. However, it
is only necessary to save it at the first call and to restore it upon return from the third
one. This is done by Policy A-live Optimized (renamed A-lvOpt). This optimization
can be applied not only to the consecutive calls, but also to the non-consecutive calls
obtained following all possible paths, as we will discuss next.

Policy A-lvOpt saves only the registers with live variables that have been written
since the last time that they were saved (following all possible paths to the specific call
instruction in the function currently being processed) and restores only the ones that
will be read after the function returns (again following all possible paths until the next
call or return instructions). Thus, Policy A-lvOpt eliminates the unnecessary RSR traffic
of saving a register whose content has already been saved and of restoring a register that
will not be read by the instructions that might be executed before the next call.

This optimization is easier to implement for consecutive calls. In this case, a peephole
optimizer could do it without having to collect control-flow information to follow all
possible paths. However, the number of consecutive calls is small: 21% of the calls are
consecutive and those account for 10% of the executed calls (see Table 4.2). For this
reason, we prefer to implement this optimization following all possible paths.

While in Policies A and A-live, registers can be saved at the top of the stack (from
where they are restored after return), Policy A-lvOpt requires that registers always be
saved /restored at/from a compiler-fixed displacement in the frame (for a given function).
This is necessary to restore a register saved by a previous call. Since the activation record
or frame of an active function is fixed during all its lifetime,! this additional requirement
does not increase the compiler complexity.

Table 4.1 shows the RSR traffic for Policy A-lvOpt with respect to the standard
Policy B. On the average, Policy A-lvOpt generates between 59% and 64% of the RSR.
traffic produced by the standard Policy A-live and between 49% and 51% of Policy B.
Notice that for ASM Policy A-lvOpt always generates less RSR traffic than Policy B and
that for SORT it generates less RSR traffic when at least 16 TBP registers are available
(in contrast with Policy A-live).

Figure 4.3 shows the RSR traffic for Policies A, B, A-live, and A-lvOpt. Policy

'This is necessary to use the stack pointer as frame pointer and argument pointer (see Subsec-
tion 2.1.3.5).
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Fignre 4.3: RSR Traffic for Policies A-live and A-lvOpt

A-lvOpt is not only the static policy that generates the least RSR traffic, but also
the one whose RSR traffic generated grows slower when the register set size is increased.
When there are 32 TBP registers, the RSR traffic generated is 118% of the one generated
when there are 6. On the other hand, for Policies A, A-live, and B, the RSR traffic for
32 registers is 176%, 129%, and 124% of the one for 6, respectively.

4.1.3 Policies B, C, and G with Leaf Functions

An optimizing compiler can reduce the register saving/restoring traffic during function
calls by changing the assignment of variables to registers for leaf functions. A function
is said to be a leaf when it does not have any call instruction in its definition body.
Since these functions are not going to generate any other call, the variables selected
for allocation are assigned to registers that can be destroyed across functions rather to
registers that must be preserved. In this case, if enough TBD registers are available, no
RSR traffic is generated. Let us discuss first how the traffic generated by the environment
registers (ER) can be reduced by this intra-procedural optimization and, afterwards, how
the traffic produced by the TBP registers can be reduced.

ER Traffic Reduction

The ER traffic for Policies A, B, and G is caused by the return address (RA) traffic and
for Policy C by the RA traffic and the TBS (To Be Saved; see Section 3.2) mask traffic.
To reduce the RA traffic the architecture can provide call and return instructions that
save/restore the return address in a register (rather than to the stack). This register is
called the link register. When the callee is not a leaf function, the return address (i.e.,
the link register) is saved to the stack (to free the register for the calls that this function
might perform). Notice that during execution it might happen that no call is generated.
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| program | static | dynamic |
[ASM [[30.7% | 19.4%
NROFF f 24.7% 15.4%
SORT 45.6% 77.9%

VPCC 22.6% 18.1%
4 P, 26.7% 28.8%

Table 4.3: Percentage of Leaf Functions

ENTRY (F1, {R1, ..) ENTRY (F2, {R1, ..}) ENTRY (F3, leaf fm.)
saveRegs (R1, ...) saveRegs (R1, ..)
call R1, F2 / call R1, F3 /
restRegs (R1, ...) restRegs (R1, ...)
retum R1 return Rl return Rl

R1 = link register
Figure 4.4: Leaf-Function Optimization for the Return Address

However, even in this case, the link register is saved anyhow because Policies B, C, and G
save the registers at function entry.

On the other hand, when the callee is a leaf function, the return address can remain
in the register and no RA traffic is generated (see Figure 4.4). This optimization can
also be performed for Policies A-live and A-lvOpt if the register with the return address
is saved at the function entry and restored before return for non-leaf functions, i.e., this
register is saved/restored with a Policy B-If approach rather than with the respective
A-live or A-lvOpt. As we can see in Table 4.3, on the average, 29% of the functions do
not need to save/restore the return address when it is stored in a register by the call
instruction. This optimization can also be applied to the TBS mask for Policy C.

TBP Registers Traffic Reduction

Table 4.4 shows the RSR traffic generated by Policies B, C, and G with leaf-function
optimization relative to the standard Policy B. Policy C includes the saving/restoring
traffic of the TBS mask for every function (2 data memory accesses per function call)
while Policy C with leaf-function optimization includes it only for non-leaf functions.
Leaf measurements have been taken for 2 different numbers of TBD registers, 4 and 6.
The suffixes -1f4 and -1f8 have been added to each policy to denote the number of TBD
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no. Policies Policies Policies
Tegs. | program B B-ff4 B-If6 | C Clf4 CIf6]| G G-If4 G-lf6
ASM 1.0 (9.67) 0.89 085095 080 077]023 019 0.19
NROFF || 1.0(4.71) 086 0.84] 107 0.92 091]019 0.17 0.17
6 | SORT | 1.0(4.18) 063 063|137 072 0.72(056 028 0.2
VPCC || 1.0(7.60) 0.92 088[1.07 094 092|039 034 033
4P. 1.0 (5.44) 0.84 082111 089 087031 024 0.24
ASM [l 1.0(10.11) 0.89 0.86] 094 080 076]023 020 019
NROFF || 1.0(4.73) 0.86 0.84|1.09 0.97 0.96|0.17 0.16 0.16
8 | SORT | 1.0(5.00) 069 069|131 069 0.69[047 028 0.28
VPCC || 1.0(8.73) 0.93 0.90 | 1.01 092 090036 032 0.32
4P. 1.0 (5.88) 0.86 0.84]1.09 089 0838]029 024 023
ASM [ 1.0(10.22) 0.89 086[091 078 075]0.20 019 0.19
NROFF || 1.0(4.74) 0.86 0.841.03 092 0.91]0.12 011 0.1l
12 | SORT | 1.0(6.60) 0.76 0.76 | 1.12 0.71 0.71|0.40 022 0.22
VPCC || 1.0(8.91) 093 0.90|096 087 084025 022 0.20
4P 1.0(6.25) 086 084|102 0.85 083 | 023 017 0.7
ASM [ 1.0(10.22) 0.39 0.36] 083 075 073]0.16 015 0.5
NROFF | 1.0(4.74) 0.86 0.84[083 071 070{0.10 0.9 0.08
16 | SORT | 1.0(8.15) 081 081|089 069 069|018 018 0.18
VPCC || 1.0(9.03) 0.93 0.90]|0.98 0.90 088|022 022 022
4P. 1.0 (6.59) 0.87 0.85| 0.89 0.77 076]0.16 0.15 0.15
ASM [ 1.0(10.22) 0.89 0.86] 082 0.76 072]0.14 013 0.13
NROFF | 1.0(4.74) 0.86 0.84|081 071 071|006 006 0.06
24 | SORT || 1.0(8.93) 0.83 0.83|078 052 052|013 011 0.11
VPCC || 1.0(9.20) 093 090|082 076 076|016 016 0.16
4P. 1.0(6.76) 0.87 0.86 | 0.81 0.68  0.67 [ 0.12 0.1 0.11
ASM [[1.0(10.22) 0.89 086]079 072 072]0.15 014 0.14
NROFF [ 1.0(474) 086 084[074 063 062005 005 0.04
32 | SORT || 1.0¢(893) 083 083|089 063 063|021 616 0.6
VPCC || 1.0(9.10) 093 09008 079 079|017 017 0.17
4P. T"10(676) 087 0.36]082 068 068]0.14 012 0.12

Table 4.4: RSR Traffic for Leaf-Function Optimization Relative to Policy B
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Figure 4.7: Example for Policy G-live

sets (see Figure 4.6). Policy B-If has 94% (97%) of the traffic generated by Policy C-If
when there are 6 (8) TBP registers available. However, for a larger register set Policy
C-If performs better: on the average, it has from 99% of the Policy B-If traffic when 12
TBP registers are available to 78% when there are 24 and 32. Notice that Policy C-If
generates less traffic than Policy B-If for every single measured program when there are
at least 16 TBP registers.

As we have already discussed in Chapter 3, less RSR traffic is generated for the
dynamic Policy G when more TBP registers are available, but not for the static Policy B.
This is still true for the optimized RSR traffic. Leaf-function optimization benefits both
policies so that the RSR traffic reduction for G with respect to B (69%-86%) is similar
to the one for G-1f with respect to B-1f (71%-88%).

4.1.4 Policies C-live and G-live with Leaf Functions

The dynamic Policies C and G save the registers defined in the function if they have
been used in the exterior levels. It is possible that, although the register has already
been used, it is a dead register (as defined in Subsection 4.1.1). Thus, its content can be
destroyed and it is not necessary to save/restore the register. Notice that Policy C saves
and restores a dead register, but Policy G only saves it (it does not restore it because it
will never be read).

The callee does not know which registers are alive for the caller because code is
generated per function (as we discussed in Subsection 2.1.3; see Figures 2.5 and 5.2).
Thus, the compiler has to generate an extra instruction before the call to clean the bits
of the TBS mask associated with the dead registers. For example, in Figure 4.7 the
register 71 used in f; is dead when this function calls f;. To avoid the saving operation
{since the register was previously written), the bit associated to this register in the TBS
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no. Policy C Policy G
regs. | program -if ] -lvl dlv2 Jlv3d -lvd4 J.l -If | -lvi o -lv2 lvd -lv4
ASM [[ 429 [2.86 3.07 3.63 3.76 || (1.81) ] 0.60 0.69 073 0.76
NROFF 5.47 | 341 3.67 490 5.08 || (0.79) | 0.51 0.60 0.88 0.96
6 SORT 2.54 | 241 241 247 2.47 || (1.18) { 0.95 0.95 0.96 0.96
VPCC 2.74 | 1.56 1.68 2.24 2.45 || (2.62) | 0.61 0.65 0.86 0.91
4P 3.68 2.39_ 2.54 3.22 3.38 || (1.31) | 0.64 0.69 0.88 0.92
ASM || 407 [ 261 2.63 2581 3.2 || (1.98) | 0.55 056 0.63 074
NROFF || 5.92 | 3.50 4.09 5.17 5.27 |  (0.78) | 0.59 0.68 0.91 0.96
8 SORT 2.46 | 2.04 2.28 2.28 2.28 ([ (1.40) | 0.82 094 0.94 0.94
VPCC 2.84 | 1.66 1.79 222 230 | (2.83) ] 0.65 0.69 0.86 0.89
4 P. 3.76 | 2.34 262 3.15 3.23 || (1.40) | 0.66 0.73 0.88 0.91
ASM || 4.09 | 2.37 240 253 2.74 || (1.95) | 0.47 0.49 051 0.6l
NROFF 842 | 533 5.72 7.96 8.06 | (0.52) | 0.56 0.66 0.93 0.98
12 SORT 3.17 | 1.96 2.01 2.01 2.68 || (1.47) | 0.78 0.78 0.78 0.94
VPCC 3.88 | 210 2.40 2.88 2.99 || (1.99) | 0.63 0.66 0.83 0.86
4 P. 4.86 | 2.90 3.13 3.90 4.12_‘_ (1.09) | 0.64 0.68 0.82 0.90
ASM 4.99 | 3.10 3.11 3.24 3.26 || (1.54) | 0.57 0,57 0.58 0.59
NROFF 8.00 | 5.19 5.59 6.93 7.02 || (0.42) | 0.49 0.61 0.94 0.98
16 SORT 3.86 | 2.21 247 2.47 3.14 || (1.47) | 0.78 0.78 0.78 0.94
VPCC 4.13 | 2.07 2.37 3.10 3.22 || (1.97) | 0.69 0.72 0.83 0.86
4 P. 496 | 2.87 3.16 3.78 4.04 (1.02) | 0.66 0.70 0.83 090
ASM 5.59 5-55 332 3.46 3.46 || (1.38) | 0.45 0.45 0.45 045
NROFF || 11.76 | 8.04 9.39 11.20 11.36 || (0.28) | 0.55 0.68 0.90 0.98
24 SORT 482 | 247 2.88 295 295 || (0.96) | 0.92 0.92 0.92 092
VPCC 487 (252 295 3.61 3.78 || (1.43) | 0.62 0.66 0.79 0.83
4P. 6.39 | 3.75 434 5.04 5.15 || (0.72) | 0.67 0.72 0.82 0.85
ASM [[ 507 [ 3.25 3.26 3.31 3.33 || (1.46) ] 0.59 060 0.60 0.6l
NROFF || 12.36 | 8.18 8.64 9.98 10.12 | (0.24) { 0.60 0.71 0.90 0.97
32 SORT 3.82 { 265 2.67 292 359 { (1.47)]078 0.78 078 0.94
VPCC 457 | 2.30 2.64 3.21 3.30 |} (1.56) | 0.66 0,70 0.80 0.83
4 P. 5.56 | 3.42 3.64 4.17 447 Y (0.83) 1 0.69 0.72 0.79 0.88

Table 4.5: RSR Traffic for Policies C-live and G-live Relative to Policy G-1f
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minimum number of bits to be cleared in the TBS

no. | program L bit 2 bits 3 bits 4 bits
regs. def. exe. | def. exe. | def. exe. | def. exe.
ASM 43.6 683|272 4791152 151 8.6 129
NROFF | 453 69.2 (229 557} 7.2 230 34 1.7
6 SORT f} 46.3 2221213 221 79 11| 49 1.1

VPCC | 58.4 706 | 31.7 555 |19.7 167|109 7.8
4 P. 514 60.0 ] 28.1 48.6| 151 16.9| 82 34

ASM 59.2 93.3 | 34.7 655|209 54.0| 141 214
NROFF [l 46.4 69.3 | 23.5 557 | 89 235| 3.7 1.7
8 SORT 524 41.6 | 26.2 22.1 | 128 221 | 7.3 221
VPCC 59.1 72.2 | 33.0 566|213 17.5] 14.8 12.0

4 P. 556 653 | 30.7 495 17.7 232|115 89

ASM 61.9 93.6 | 369 66.0{250 59.5|17.3 51.9
NROFF || 46.5 69.3 [ 23.5 55.7| 9.0 235| 4.1 1.7
12 SORT 54.9 41.6 1 28.7 40.0| 16.5 40.0| 9.1 221
VPCC 69.5 72.2|33.6 566216 17.5]| 155 12.2

4 P 56.5 653|315 53.2| 189 27.0] 127 10.2

ASM 62.2 93.6| 374 7T0.0| 253 63.2|19.4 574
NROFF || 46.5 69.3 | 23.5 55.7| 9.0 235 41 L7
16 SORT 54.9 41.6 | 28,7 40.0 | 16.5 40.0 | 9.1 22.1
VPCC 59.6 72.2 | 33.6 56.6 | 21.7 175|155 122

4 P. 56.6 653|316 53.3|1%.0 27.2] 13.2 104

ASM 62.8 936|378 70.1|255 63.3|19.9 614
NROFF || 46.5 69.3 235 557 9.0 235 41 1.7
24 SORT 54.9 41.6 | 28.7 40.0 ) 165 40.0 | 9.1 22.1
VPCC 59.6 7221 33.6 56.6 ] 21.7 17.5| 15.5 12.2

4P, 56.8 65.3 ( 31.7 53.3|19.1 27.2( 13.3 10.6

ASM 63.5 93.7( 388 7T0.1( 26,5 63.5| 20.3 616

NROFF || 46.5 69.3 | 23.5 557 9.0 235 4.1 1.7
32 SORT 54.9 41.6 | 28.7 40.0 ( 16.5 40.0 | 9.1 22.1
VPCC 59.6 72.2 | 33.6 566 (217 175 155 12.2

4 P, 56.9 65.4 319 53.3(193 272|134 106

|

Table 4.6: Percentage of Calls which Issue a Clear-TBS Instruction
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Figure 4.9: RSR Traffic for Policy G-live with Clear-TBS Instruction Traffic

smaller than the one generated by Policy G-If (see Figure 4.8). However, when we
account the number of cycles required to execute the extra instructions, there is no
reduction in the number of cycles required (see Figure 4.9). This is true for every
measured program when there are at least 16 TBP registers. Thus, we conclude
that our measurements do not justify the implementation of this optimization for
Policy G-If.

2. Policy C-lvl generates between 58% and 65% of the Policy C-If RSR traffic (in-
cluding the optimized traffic caused by the dynamic mask). If we compare the
traffic generated by Policies C-If and C-lvl with the RSR traffic for Policies B-If
and A-lvOpt, our measurements do not justify the implementation of either Policy
C-1f or C-lvl (see Figure 4.10), because:

(a) For small register sets, both static Policies B-If and A-lvOpt generate less
RSR traffic than Policy C-If and Policy A-lvOpt generates less traffic than
Policy C-lvl. The lack of any real reduction in RSR traffic is a consequence
of having to save/restore the dynamic mask.

(b) For larger register sets, Policy A-lvOpt still generates less traffic than Policy
C-1f and although Policy C-lv1 generates less RSR traffic than Policy A-lvOpt,
the total number of execution cycles required by Policy C-lv1 is larger than
the one required by Policy A-lvOpt because of the additional instructions
needed to manipulate the dynamic mask. This is also true for Policies C-lv2,
C-lv3, and C-lv4,

Note: without architectural support the dynamic mask has to be updated by ex-
plicit instructions generated by the compiler. These instructions should perform
the operations given in Figure 3.6. In this case, the implementation of Policy C is
even less attractive because of the additional cycles required to execute the oper-
ations that would be performed in parallel if architectural support were provided
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Figure 4.10: RSR Traffic for Policy C-live

(e.g., the set/reset operations on the TBS mask). Thus, we do not agree with
others [Stee80, Cohe88} who would implement this policy.

One additional advantage of this intra-procedural optimization is that it reduces the
average number of registers being used and, therefore, the average number of registers
to be saved/restored during context switching. This is shown in Figure 4.11. How-
ever, this does not change our previous conclusions since context switching is performed
infrequently.

4.1.5 Summary

The RSR traffic for the optimized Policies B-If, A-live, A-lvOpt and G-if is shown in
Figure 4.12. This figure does not show the RSR traffic for Policies C-live and G-live
because of the increase in processor cycles required by the additional instructions to be
executed by this optimization compared to the cycles eliminated by the RSR operations
which the compiler is able to remove. When we compare the optimized policies, we
conclude the following:

1. When an optimizing compiler is used with live-variable analysis, it is better to
save/restore registers at the caller rather than at the callee. Policy A-live generates
between 85% and 95% of Policy B-1f RSR traffic and Policy A-lvOpt between 53%
and 61%.

However, as we have discussed in Subsection 4.1.1, this is not true for every mea-
sured program. Policy B-lf for SORT performs better than Policy A-live for any
register-set configuration and better than Policy A-lvOpt for a small register set.
For ASM, Policy A-lvOpt always has less RSR traffic than Policy B-If, but Policy
A-live generates more RSR traffic when 16 or more TBP registers are available (see
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Figure 4.12: RSR Traffic for Optimized Policies

Figure 4.13). For NROFF and VPCC, both Policies A-live and A-lvOpt reduce
the RSR traffic significantly with respect to Policy B-If. Therefore, we would like
the compiler to decide which policy would be the most appropriate for a given
program. Since this cannot be done with intra-procedural register allocation and
assignment because the compiler does not have a global view of the program, the
compiler should provide an option so that the programmer could specify the policy
to be selected.

2. An optimizing compiler with one of the static policies generates, in general, less
RSR traffic than an optimizing compiler with the dynamic Policy C (not shown in
Figure 4.12). Policy A-lvOpt has between 51% and 64% of the traffic generated
by C-lf. Policy B-If has between 85% and 91% of the C-If traffic when up to 12
TBP registers are available; however, Policy C-If performs better than B-1f for 16
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Figure 4.13: ASM RSR Traffic for Optimized Policies

(98%), 24 (86%), and 32 (88%) registers. Therefore, the register saving/restoring
traffic reduction obtained by the cheap dynamic Policy C does not justify its im-
plementation.

3. The optimized dynamic Policy G, G-lf, generates less RSR traffic than the best
static one. Policy G-If has between 47% (for 6 TBP registers) and 22% (for 24) of
the RSR traffic generated by Policy A-lvOpt.

4. Policy G-If is the only optimized policy whose RSR traffic decreases for larger
register sets. When there are 32 registers to be preserved across function calls, the
RSR traffic generated is 63% of the one generated when there are 6.

Notice that the last two conclusions were also reached in Section 3.6 where no optimiza-
tions were performed.

Since the reduction in RSR traffic for Policy G-If is significant with respect to Policy
A-lvOpt (22-47%), it seems reasonable to implement the dynamic Policy G.

4.2 A Comparison with Other Register Allocators

To verify that our previous conclusions are still valid for other register allocation ap-
proaches, we have measured the RSR traffic reduction with two other compilers: the
Amsterdam Compiler Kit (ACK) [Tane83, ACK85] and the GNU C Compiler [Stal88]. In
this section, we first describe the register allocation approaches taken by these compilers*
and afterwards we compare the RSR traffic generated.

*Both compilers have been modified to generate code for different register sets and to perform round-
robin register assignment as it has been described for PCC.
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ACK has an intra-procedural register allocator with Policy B-If as the conventional
register saving/restoring policy. Local scalar variables of type char, short, and double
as well as other local scalar variables with an alias are not considered for allocation.
The selection of which local variables are allocated to registers is based on static linear
priority,” i.e., frequently-used variables have a higher priority to be assigned to registers
(see Section A.1). Asin PCC, there is no sharing of registers among local variables per
function. That is, once a variable is assigned to a register, the register is exclusively
dedicated to this variable although the variable may not be alive during the whole scope
of the function.

GNU has also an intra-procedural register allocator with Policy B-If as the con-
ventional register saving/restoring policy. All local scalar variables without aliases are
considered for allocation. The register allocator performs live-variable analysis so that
local variables which are alive in any of the function calls are assigned to TBP regis-
ters; otherwise, to TBD registers. Notice that since a leaf function does not have any
call, local variables are assigned to TBD registers directly by the allocator and not by
a peephole optimizer, as it is done in ACK. Since the allocator knows the live/dead
variables, local variables with disjoint lifetimes share the same register (see Section A.2).
The selection of which local variables are allocated to registers is a function based on
the static linear priority of the variables and their live range.

Table 4.7 shows the RSR traffic for Policies B-If and G-If for both compilers and for
Policies A-live and A-lvOpt for the GNU compiler® relative to PCC Policy B-If. Let us
discuss first each policy separately.

Figure 4.14 shows the RSR traffic generated by Policy B-If for the three compilers.
As we can see, the RSR traffic generated by ACK is very similar to the one generated
by PCC. On the average, ACK generates between 93% (for 24 TBP registers) and 96%
(for 6) of RSR traffic produced by PCC. This traffic reduction occurs because ACK does
not allocate local scalar variables of type char and short to registers. ACK generates less
RSR traffic than PCC for all programs but SORT (see Table 4.7), because ACK fails
to perform leaf-function optimization for a parameter defined of class register by the
programmer in a function which receives 40% of the calls.

On the other hand, GNU generates between 54% (for 32) and 61% (for 6) of the
RSR traffic produced by PCC. GNU reduces the RSR traffic further because it shares
registers among local scalar variables. Thus, we conclude that live-variable analysis
should be performed to reduce the average number of registers used in a function since
this reduces significantly the RSR traffic caused by Policy B.

*In static linear priority, each occurrence of the variable is counted as one independently of the place
where it occurs {i.e., whether the variable is inside a loop). In contrast, when variables are selected by a
static weighted priority, variables inside a loop have more weight than variables outside. In Section A.1
we evaluate the selection of variables by static linear priority and we conclude that our measurements
do not show the need for having a more complex selection.

®The ACK RSR traffic for Policies A-live and A-lvOpt could not be measured because the compiler
uses global jumps to implement the switch statement. These jumps cannot be traced by our BKGEN to
obtain the live-variable information.
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no. PCC ACK GNU

regs. | program B-If B-If G-lf | A-live A-IVOpt B-If G-If

ASM [[1.0 (857)[0.78 020 065 046 064 026

NROFF || 1.0 (4.06) | 0.93 0.17 | 0.67 041 043 0.11

6 | SORT || 1.0 (2.62)|1.20 046 | 3.62 256 0.99 0.48

VPCC |[1.0 (6.97)] 093 035| 070 056 072 0.39
4P. [[10 (459)|0.96 027 1.02 071 061 026

ASM 1.0 (9.02) | 0.77 0.27 | 0.79 0.53 0.65 0.25
NROFF || 1.0 (4.09) [ 0.93 0.18 | 0.67 0.41 0.43 0.06
8 SORT 1.0 (3.44) | 1.22 0.38 | 3.24 2.14 0.98 0.37
VPCC 1.0 (8.09) | 0.89 0.27 | 0.71 0.55 0.65 0.31

4 P. 1.0 (5.04) { 0.94 0.24 | 1.05 0.71 0.60 0.20

ASM [ 1.0 (9.12) [ 0.77 024] L17 _ 063 065 025
NROFF || 1.0 (4.09) | 0.93 0.14| 068 042 043 0.03
12 | SORT || 1.0 (5.04)[1.15 030 2.8¢ 170  0.82 0.19
VPCC [ 1.0 (827)[ 089 025| 071 055  0.64 0.23
| 4P 10 (540)[ 095 021] 113 072 059 0.4

[ ASM [[1.0 (9.12) [ 0.77 0.16 | 1.43 0.69  0.65 0.23
NROFF || 1.0 (4.09) | 0.93 0.12 | 0.68 042  0.43 0.02
16 | SORT | 1.0 (6.60) | 1.11 o022 217 1.30  0.63 0.18
VPCC | 1.0 (8.39) | 0.89 0.23| 0.70 0.54  0.63 023

4 P. 1.0 (5.74) [ 0.95 018 1.08 0.68 055 0.14

ASM 1.0 (9.12) ] 0.77 021 1.43 069 065 022
NROFF || 1.0 (4.09) [ 0.93 o0.10 | 068 042 043 0.01
)
)

24 SORT 1.0 (7.37) | 1.00 0.20 | 1.94 1.16 0.56 0,02
YPCC 1.0 (8.46) | 0.92 0.16 | 0.69 0.53 0.62 0.13
4 P. 1.0 (5.92) )093 0.15} 1.05 0.66 0.54 0.07

ASM 1.0 (9.12) | 0.77 0.14 | 1.43 0.69 0.65 0.22
NROFF [l 1.0 (4.09) | 0.93 0.08 | 0.68 0.42 0.43 0.01
32 SORT 1.0 (7.37) | 1.00 0.09 | 1.94 1.16 0.56 0.01
VPCC 1.0 (8.46) | 0.95 0.21 | 0.69 0.53 0.62 0.17

4 P. 1.0 (5.92) | 0.94 0.13| 1.05 0.66 0.54 0.07

Table 4.7: RSR Traffic Generated by ACK and GNU Relative to PCC Policy B-If
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Figure 4.14: RSR Traffic for Policy B-If

Figure 4.15 shows the RSR traffic generated by Policy G-If for the three compilers.
As we can see in the figure, for some register configurations ACK generates less RSR
traffic than PCC and for others the opposite is true. These small differences in RSR
traffic are due to the register assignment performed by each compiler and the dynamic
behavior of Policy G. As for Policy B-If, GNU generates the smallest traffic. The traffic
reduction is more significant for larger register sets: GNU generates 90% of the RSR
traffic produced by PCC when 6 TBP registers are available, 70% for 12, and 53%
for 24, because with GNU registers are shared by the variables with disjoint lifetimes.
Since the average number of registers used per function decreases, the probability of
having a disjoint register assignment between caller and callee increases.

Figure 4.16 shows the RSR traffic generated by Policies A-live and A-lvOpt for PCC
and GNU. GNU generates more RSR traffic than PCC for both policies. GNU has
between 108% and 129% of the RSR traffic produced by PCC for Policy A-live and
between 118% and 129% for Policy A-lvOpt. Thus, even though GNU uses, on the
average, fewer registers per function, more registers are alive (i.e., the variables assigned
to registers) for GNU than PCC. The increase of the number of live registers by GNU
is due to the compiler-defined variables generated by GNU, but not by PCC (e.g., for
common expressions, loop-invariant removal).

If we compare the RSR traffic generated by the optimized Policies B-1f, A-live,
A-lvOpt, and G-lif for the GNU compiler, as we did in Subsection 4.1.5 for PCC, we

obtain similar conclusions (see Figure 4.17):

1. Although on the average Policy B-If generates less RSR traffic than both Policies
A-live and A-lvOpt, this is not the case for every single program as it was not for
PCC. Policy A-lvOpt is the static policy which generates the least RSR traffic
for ASM, NROFF, and VPCC for both compilers PCC and GNU. As we said, a
compiler with an intra-procedural register allocator should provide an option to let
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Figure 4.16: RSR Traffic for Policies A-live and A-lvOpt

the programmer decide which is the most appropriate policy to be used for each
specific application.

2. The dynamic Policy G-If generates less RSR traffic than the static policies. Policy
G-If has between 13% (for 24 TBP registers) and 42% (for 6) of the RSR traffic
produced by Policy B-If and between 10% (for 24) and 36% (for 6) by Policy
A-lvOpt.

Moreover, this last conclusion is also true for ACK with respect to Policy B-1f (since
Policies A-live and A-lvOpt are not available). Policy G-} generates between 13% (for 32)
and 28% of the RSR traffic produced by Policy B-If.

In conclusion, the intra-procedural optimizations presented in Section 4.1 can be
used by any intra-procedural register allocator to obtain a reduction in the RSR traffic
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Figure 4.17: RSR Traffic for GNU Compiler
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Figure 4.18: VAX-11 Instructions per Executed Basic Block

generated. The conclusions obtained for the intra-procedural optimizer are valid for
all three register allocators used in this dissertation, although the exact RSR traffic
eliminated by each policy is slightly different.

4.3 A Comparison with SPICE

In this section we compare the best static optimized Policies (A-live, A-lvOpt, and B-If)
with the best dynamic one (G-If) using SPICE and the GNU C Compiler. SPICE is a
circuit simulator which was originally written in FORTRAN and has now been recoded
in C. We have separated this program from the other four (ASM, NROFF, SORT, and
VPCC) because:

98



memory traffic

45
40
351 GNU compiler
30 4
25 . B ap
20 - SPICE
15 1 lsv: local scalars
10 A gsv: global scalars
nsv: non-scalars
5 1 pars: parameter passing
0 o s _ (ER not inctuded)

instrs Isv nsv gsv pars
Figure 4.19: Data Memory Traffic per Executed Function

% function:
451
40
35 GNU compiler
B asp
SPICE
TBP regs.

Figure 4.20: To-Be-Preserved Registers Required per Executed Function

o Since SPICE was originally programmed in FORTRAN, it has larger basic blocks
(3.7 VAX instructions for SPICE versus 2.5 for the four programs; see Figure 4.18)
and fewer function calls (46 VAX instructions per call for SPICE versus 37 for the
four programs).

¢ SPICE has four times the local scalar variable traffic generated by the four pro-
grams (see Figure 4.19). Thus, as we will discuss in Section 4.6, a more significant
data memory traffic reduction is obtained for SPICE with a larger register set.

o SPICE relies heavily on floating-point variables. Since most of these variables are
local doubles, more registers are required per function (see Figure 4.20). On the
average, the GNU C compiler uses 5.9 registers per executed function for SPICE
and 3.2 for the other four programs. Moreover, functions that require more than
32 registers generate 64% of the local scalar variable traffic for SPICE while only
1% for the other four.
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Figure 4.21: RSR Traffic Generated by the GNU C Compiler for SPICE

The reason for selecting only the GNU C Compiler to perform this comparison is be-
cause GNU is the only compiler designed to assign both float and double local variables
to registers. The Portable C Compiler does not assign any floating-point variable to
registers, and ACK only assigns floats,

Figure 4.21 shows the RSR traffic for the four policies. From the figure, we conclude
the following: ‘

1. Policy B-lf generates less RSR traffic than both Policies A-live and A-lvOpt for
larger register sets (16 or more registers); however, Policy A-IvOpt generates less
RSR traffic for smaller register sets. This can be explained as follows:

(2)

For small register sets, the average number of variables assigned to registers
alive at each call is greater than the average number of registers used per
function. Usually it is the case that the callers use more registers than the
callees and, therefore, Policies A and A-live generate more RSR traffic than
Policies B and B-If (see Sections 3.1 and 4.2). However, since not all of the
registers with live variables are needed between calls, Policy A-lvOpt produces
less RSR traffic than both Policies A-live and B-If.

For larger register sets, more local variables are assigned to registers and,
therefore, the number of registers with live variables keeps increasing when
more registers are available. Moreover, as we said above, since callers tend to
use more registers than callees, policies of type A need to save/restore more
registers than policies of type B. Policy A-live has 200% of the RSR traffic
generated by Policy B-If for 16 TBP registers, 267% for 24, and 350% for 32.
Although not all the registers need to be saved/restored between calls, Policy
A-lvOpt also has to save/restore, on the average, more registers than Policy
B-lf. However, the RSR traffic generated does not increase as significantly
as with Policy A-live: Policy A-lvOpt has between 107% of the RSR traffic
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generated by Policy B-If (for 16 TBP registers) and 144% (for 32).

2. The RSR traffic for both Policies A-live and A-lvOpt grows rapidly when more
TBP registers are available. This was not the case for the other four programs
(compare Figure 4.21 with Figure 4.17). When there are 32 TBP registers, Policy
A-live for SPICE has 419% of the traffic produced when there are 6, while for the
other programs it has 132%, and Policy A-lvOpt has 257% for SPICE versus 119%
for the other four. However, this is not the case for Policy B-If (117% for SPICE
versus 114% for the other four): since the callers have more register usage than
the callees, more registers have to be saved/restored for policies of type A.

3. With SPICE, Policy G-If is still the policy that generates the least RSR traffic.
Policy G-If has between 21% (for 32 TBP registers) and 63% (for 6) of the RSR
traffic generated by Policy A-lvOpt and between 31% (for 32) and 48% (for 8) by
Policy B-lf. Moreover, an increase in the number of TBP registers does not imply an
increase in the RSR. traffic for Policy G-1f. This is also the case concerning the four
other programs (see Subsection 4.1.5 and Section 4.2). However, the RSR traffic
reduction is not as significant for SPICE as for the average of the other programs
due to SPICE’s heavier register. When there are 32 TBP registers available, Policy
G-If for SPICE has 87% of the traffic produced when there are 6 while for the four
programs it has 37%.

In conclusion, even for a program with a heavy register usage, the dynamic Policy G-If
generates less RSR traffic than the static Policies A-live, A-lvOpt, and B-1f. Moreover,
the heavier register usage does not prevent the round-robin register assignment algorithm
from using disjoint registers between caller and callee so that the RSR traffic is reduced
when more TBP registers become available.

4.4 A Comparison with Multiple-Window Register Files

In this section we compare the RSR traffic generated by our best policy for single-
window architectures (Policy G-1f) with the three existing schemes for multiple-window
architectures: fixed-size windows [Kate83], variable-size windows [Ditz82], and multi-
size windows [Hugu85c]. As we mentioned in Subsection 2.1.1, a larger register file with
multiple windows almost eliminates the RSR traffic [Hitc85, Hugu85a, Eick87], but this
file has a negative effect on the processor cycle time [Sher84, Ditz87b]. To prevent this
negative effect, a 32-register file might be more convenient and, in this case, we will show
that our Policy G-If generates the least RSR traffic.

The RSR traffic has been measured with two C compilers: PCC and GNU. The
reason for selecting both compilers is that PCC assigns one local scalar variable per
register while GNU performs live-variable analysis and allows register sharing for local
scalar variables with disjoint lifetimes (see Section 4.2). Thus, we can evaluate the RSR
traffic reduction offered when live-variable analysis is performed and registers are shared.
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no. PCC GNU
regs. | program fs12 ms3 vs fs12 ms3 Vs
ASM 4.060 2.439 0.520 | 4.060 2.248 0.399

NROFF f 11.898 1.380 0.193 | 11.8908 1.153 0.018
32 SORT 4754 0.201 0.040 | 4.754 1.086 0.006
VPCC 8.578 3.470 0.786 | 8.559 2,378 0.379

4 P. 9.404 1.647 0.305 ] 9.400 1.452 0.110

ASM 0.183 0.008 0.002 | 0.183 0.005 0.000
NROFF 2.041 0.147 0.000 | 2.041 0.033 0.000
64 SORT 0.008 ¢.008 0.001 | 0.008 0.001 0.000
VPCC 1.424 0.529 0.161 1.411 0.273 0.082

4P 1.419 0.196 0.036 [ 1.416 0.078 0.018

Table 4.8: RSR Traffic for Multiple-Window Register Files
The RSR traffic have been measured for the following configurations (see Table 4.8):

¢ 32 and 64-register files.

e Pixed-size windows of 12 registers (labeled fs12). One window is transferred to
(from) memory on overflow (underflow). Our measurements have shown that a
12-register window is enough for 96% of the executed functions for the PCC and
for 100% for the GNU compiler. However, most of the registers are being unused:
on the average, PCC has 7.9 unused registers per window and GNU, 9.4.

3-size windows of 4, 8, and 12 registers (labeled ms3). On overflow, only the
smallest window required is transferred to memory.” On underflow, the largest
window (12 registers in this case) is always transferred. Multi-size windows reduce
the average number of unused registers to 1.31 for the PCC and to 2.18 for the
GNU compiler.

Variable-size windows (labeled vs) of maximum size 12. In this case, the exact
number of registers is transferred since both instructions to expand the window
and instructions to check for underflow are made explicit by the compiler. No
compiler optimizations like the ones proposed by [Band87] have been implemented
to reduce the RSR traffic even further (for instance, the instruction to check for
underflow can be eliminated if the caller does not need to use the TBP registers
because it is going to return).

"This policy generates less RSR traffic than the policy of always saving the largest window on overflow,
the policy proposed originally [Hugu85a). However, it generates more overflows. For instance, for a 32-
register file, 19% of the calls generate an overflow exception for the former policy versus 17% for the
latter (using PCC). To decide which policy is the best we should consider not only the RSR traffic, but
also the number of cycles taken by the exception handler. However, in this section we show only the
results for the first policy to simplify the raw data discussed.
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Lprogram” PCC ] GNU I
" ASM || 93.9% | 26.4%
NROFF | 10.0% 1.5%
SORT 22.1% | 22.1%
VPCC || 56.4% | 37.0%
4 P, 26.1% | 14.4%

Table 4.9: Percentage of Functions which Must Expand the Window Size

Figure 4.22 shows the RSR traffic generated by the four programs for the above
configurations plus the RSR traffic generated by Policy G-If when 24 TBP registers are
available.® As we can see, variable-size windows generate the least RSR traffic. However.
it we consider that each function requires almost two extra memory cycles due to the
two extra instructions.? then the overall number of cycles required will be worse than
the ones required by both multi-size windows and Policy G-If.

For multi-size windows our measnrements show that, on the average, 26% of the
executed functions are required to issue an instruction to expand the window size to more
than 4 registers for the PCC and 14% for the GNU compiler (see Table 4.9). Thus, most
of the time only two instructions are necessary (as in fixed-size windows) to implement the
function-call protocol when the allocator does not require more registers for a function.
For this reason, the number of cycles necessary to execute the instructions for handling
the register file plus the ones to perform the RSR traffic required by multi-size windows
is smaller than for variable-size windows. For instance, for the GNU compiler, multi-size
windows have 75% of the cycles required by variable-size windows for a 32-register file,

®We assume that a 32-register file is divided into 24 TBP registers and 8 environment and TBD
registers. For this reason Figure 4.22 only shows the RSR traffic for Policy G-If with 24 TBP registers.

®We said “almost” because as we mentioned above, some optimizations have been proposed to elimi-
nate the instruction to check for underflow [Band87}.
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no. PCC GNU
regs. | program fs12 ms3 vs fs12 ms3 vs

ASM [ 16.9% 285% 7.1% | 16.9% 22.4% 6.4%
NROFF || 49.6% 17.3% 4.8% | 49.6% 14.4% 0.6%
32 SORT 198%  1.7% 0.6% | 198% 9.1% 0.1%
VPCC || 35.7% 37.7% 9.3% | 35.7% 28.3% 6.9%

4P || 392% 19.1% 5.0% | 30.2% 16.7% 2.2%

ASM 0.8% 0.1% 0.0%{ 08% 0.1% 0.0%
NROFF 85% 1.8% 0.0%| 85% 04% 0.0%
64 SORT 0.0% 0.1% 0.0% | 0.0% 0.0% 0.0%
VPCC 59% 54% 1.4% | 59% 34% 1.1%

4P 5.9% 2.2% 0.3%| 59% 1.0% 0.2%

Table 4.10: Percentage of Overflows in Multiple-Window Register Files

and 11% for a 64-register file.

When registers are shared by local scalar variables with disjoint lifetimes, more func-
tions fit in the smallest window size so that fewer instructions to expand the window size
have to be issued for multi-size windows (see Table 4.9; also, notice the large difference
that sharing registers makes for ASM). Consequently, fewer overflows are generated
(see Table 4.10). The GNU compiler has 88% of the RSR traffic generated by PCC
for a 32-register file and 40% for a 64-register file. This RSR traffic reduction is also
significant for variable-size windows: 36% and 50%, respectively. On the other hand,
the RSR traffic generated for fixed-size windows should be identical for both compilers.
However, there is a slight difference due to the RSR traffic generated by VPCC, which is
caused by a different implementation of a few library functions in both compilers. Thus,
architectures with fixed-size windows cannot benefit from sharing registers, except when
there are more local scalars than registers.

Thercfore, although variable-size windows generate the least RSR traffic, multi-size
windows require less cycles to implement the function-call protocol and, as a result, they
provide the best performance for multiple-window register files. Let us now compare
multi-size windows with Policy G-If. This comparison is performed in two steps: first,
we consider only the RSR traffic and, second, we evaluate the cycles which perform these
RSR operations.

If we just consider the RSR traffic generated for a 32-register file, Policy G-If has
44% of the RSR traffic produced by 3-size windows for PCC and 27% for GNU.

Let us now consider the processor cycles required by these two schemes. We already
discussed above that 3-size windows require 0.26 extra cycles per function call for the
PCC and 0.14 for the GNU compiler due to the extra instruction which must be issued
to expand a window (see Table 4.9). For Policy G, no extra cycles are required for the
saving/restoring operations (see Section 3.5). In this case, Policy G-If requires 38% of
the processor cycles necessary for 3-size windows with PCC and 24% with GNU.

104



no. PCC GNU
regs. | program || fs12 ms3 vs fs12 ms3 vs

ASM 28,00 28.72 21.11§ 28.00 25.44 18.44
NROFF || 28.00 27.81 22.001{ 28.00 27.70 17.53
32 SORT 28.00 30.99 26.64 1 28.00 30.18 22.45
VPCC 28.00 29.13 23.81 | 28.00 29.44 22.42

4P, 28.00 28.78 23.30 | 28.00 28.48 19.63

ASM 34.50 35.00 29.47 | 34.50 35.49 25.48
NROFF || 47.77 43.37 27.74 | 47.77 40.86 18.34
64 SORT 43.08 45.15 34.54 | 43.08 42.76 34.58
VPCC 47.61 44.48 33.37 | 47.61 44.27 32.67

4P, 46.24 43.63 30.41 | 46.24 41.76 25.05

Table 4.11: Average Number of Registers To Be Saved During Context Switching

memeory iraffic
on context switching

25 4 RF size = 32
4 P.

201 PCC

15 4 GNU

2

fs12 ms3 vs§ G-If
Figure 4.23: Average Number of Registers To Be Saved During Context Switching

Policy G-lf has an additional advantage over the other configurations: the smallest
average number of registers which need to be saved during context switching. Table 4.11
shows the average number of registers to be saved during context switching for each
program. Notice that for a 32-register file with fixed-size windows of 12 registers, exactly
28 registers need to be saved, that is, 2 windows of 12 registers each plus 4 overlapped
registers. As we can see Figure 4.23, for a 32-register file, Policy G-If has 26% of the
traffic for 3-size windows with PCC and 28% with GNU. The numbers shown in the table
and in the figure do not include either the TBD registers, which will have to be saved for
each configuration, or the return address for Policy G-If, because specific architectural
or compiler support can be provided for the return address (see Section 5.3).

In conclusion, when a small 32-register file is available, a single-window register file
with Policy G-l generates less RSR traffic than a multiple-window register file with
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multi-size windows, which is the best scheme for a multiple-window register file.

4.5

Overall Data Memory Traffic Generated

In this section the overall data memory traffic reduction is compared for Policies A-live,
A-lvOpt, B-If, and G-lf. This evaluation is performed using two compilers, PCC and
GNU, and the two sets of programs: the average for the four programs (ASM, NROFF,
SORT, and VPCC) and SPICE. ACK has not been included in this discussion because
the RSR traffic generated by Policy B-If for ACK is similar to the one for PCC (see
Figure 4.14). This is also the case for the global scalar traffic, but not for the local scalar
traffic or for the traffic caused by the non-scalar variables.

ACK generates less local scalar traffic than PCC when the number of TBP registers
is small (i.e., up to 12), because ACK selects the variables to allocate based on
static linear priority, while PCC does it by the order of definition specified by the
programmer (see Section A.1). For larger register sets, the traffic is similar for
both compilers.

ACK generates more than twice the PCC (and GNU) traffic caused by non-scalar
variables. This can be justified because the goal of ACK is to be portable across
different languages and machines.

For these reasons, we decided not to include ACK in our evaluation.

Figure 4.24 shows the distribution of data memory references for the four programs
measured and for SPICE when no register allocation is performed for local scalar vari-

ables:

local scalar variables, global scalar variables, non-scalar variables (i.e., arrays and
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Figure 4.25: Overall Data Memory Traffic with PCC for the Four Programs

structures), and parameter passing. The figure does not show the traffic caused by the
saving and restoring of the return address because it is always two memory references per
executed function, except when leaf-function optimization is performed (as we discussed
in Subsection 4.1.3) or when multiple PCs are provided or inter-procedural optimization
is performed (as we will discuss in Section 5.3). No traffic is taken into account for tem-
porary variables since these operatjons are performed in a small number of registers.'?
As we can see in the figure, when local scalar variables are not allocated to registers (le.,
only local allocation is performed per basic block; see Subsection 2.1.3.2), the largest
portion of the traffic is caused by local scalar variables. For the four programs, local
scalar traffic accounts for 61% for PCC and 42% for GNU over the total data memory
traffic while for SPICE, it is 60% and 61%, respectively.!! Therefore, a compiler with
an efficient intra-procedural register allocation and assignment policy (which also gener-
ates little register saving and restoring traffic) can cut in about half the memory traffic
required by a program.

Figures 4.25, 4.26, and 4.27 show the overall traffic generated per function when we
eliminate the traffic caused by the pushing of parameters in the stack by passing them
through registers'? for the average of the four programs with PCC and GNU and for
SPICE with GNU. The common traffic (black boxes) corresponds to the traffic caused by
the non-allocated local scalars, the global scalars, the non-scalar (arrays and structures)
variables and to the return-address traffic; that is. to the overall traffic minus the RSR
traffic. Notice that the reduction in the common traffic seen in the figure corresponds to
the local scalar traffic reduction since this is the only traffic which decreases for a larger

““Qur previous measurements on three of the five programs measured (NROFF, SORT, and VPCC)
showed that two registers are enough to evaluate 95% of the arithmetic expressions {Hugus5a).

""The GNU compiler generates less local scalar traffic than PCC because the latter only assigns locals
to TBP registers, but the former assigns dead locals to TBD registers while using the TBP registers for
live locals (see Section 4.2). Thus, even when no TBP registers are available, the GNU compiler can
reduce the local traffic by assigning dead locals to TBD registers.

'?A small aumber of registers (4) is enough to pass parameters through registers [Hugu85a, Narg89).
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number of TBP registers. Let us comment first the measurements for the average of the
four programs and, afterwards, for SPICE.

Since only local scalar variables are allocated by PCC (see the introduction of Chap-
ter 3), the traffic reduction in Figure 4.25 corresponds to these when more of them
are assigned to registers. Notice that almost all of them have been allocated when 16

TBP registers are available (since there is only a slight traffic reduction for the common
traffic).

On the other hand, Figure 4.26 shows that when local scalar variables with disjoint
lifetimes share the same register, even fewer TBP registers are required (see Section A.2).
As we can see in the figure, the traffic remains almost constant for Policies A-lvOpt and
B-1f; however, this is not the case for Policy A-live due to the significant increase in
RSR traffic that we already mentioned in Section 4.2 (see Figure 4.17). Also, notice that
although the common traffic gets smaller when the number of TBP registers is increased
from 6 to 12, there is no overall data memory traffic reduction for Policies A-lvOpt and
B-1f because the reduction in traffic for the non-allocated locals is compensated for by
the increase in RSR traffic.

Therefore, it seems that for the four programs, both compilers do not require a
register set with more than 8 TBP registers when the static policies are used to perform
register saving and restoring. A larger number of TBP registers (for the measured
programs) can only be justified when the dynamic Policy G is implemented. For instance,
the overall traffic generated by Policies A-lvOpt, B-If, and G.lf with the GNU compiler
when 24 TBP registers are available is 101%, 100%, and 94%, respectively, compared to
when there are only 8 TBP registers available.

Moreover, if we compare Policy B-If (the best static policy) with Policy G-If using the
GNU compiler, there is also no reason to increase the number of TBP registers beyond
12. This is because the RSR traffic generated by Policy G-1f for 12 is already small (for
instance, 0.76 memory references per function for the average of the four programs) and.
therefore, the traffic ratio with respect to Policy B-lf remains almost the same when
more TBP registers are available. For instance, for the average of the four programs, the
overall traffic generated by Policy G-If is 85% of the one produced by Policy B-If for 12
TBP registers, and 83% for 24.

However, this is not the case for SPICE as we can see in Figure 4.27. The more
TBP registers are available, the more double variables GNU can assign to registers. In
this case, the compiler can make use of a larger number of TBP registers. Even though
the RSR traffic increases for the static policies when a larger number of TBP registers is
available (as we have discussed in Section 4.3; see Figure 4.21), the overall traffic becomes
less and less for Policies A-lvOpt, B-1f, and G-If because the compiler can assign more
local scalars to registers (see Figures A.2 and A.4). For instance, the overall traffic
generated by Policies A-IvOpt, B-lIf, and G-If when 24 TBP registers are available is
of 95%, 89%, and 86%, respectively, compared to when there are only 8 TBP registers
available.
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Figure 4.28: Overall Data Memory Traffic Distribution

Figure 4.28 shows the distribution of the overall data memory traffic for the average
of the four programs and SPICE when code is generated with the GNU C Compiler
with 12 and 24 TBP registers. Only two RSR. policies are shown in the figure: Policy
B-1f'% and Policy G-lf. When only compiler support is provided, i.e., the best of the two
static policies (Policy A-lvOpt or Policy B-If), 33% of the data memory traffic generated
by the average of the four programs and 40% by SPICE is eliminated. Notice that the
non-allocated local scalar traffic plus the RSR traffic is 23% for the average of the four
programs and 44% for SPICE of the overall data memory traffic; in contrast, when no
intra-procedural register allocation is performed for local scalar variables, the local scalar
traffic accounts for 42% and 61%, respectively (see Figure 4.24).

When both architectural and compiler support are provided (i.e., Policy G-1f}, 43%
of the data memory traffic generated by the average of the four programs and 45% by
SPICE is eliminated. In this case, the local scalar traffic plus the RSR traffic accounts
for 10% and 38% of the overall traffic, respectively. The data memory traffic generated
with both architectural and compiler support is 85% for the average of the four programs
and 91% for SPICE of the one produced with only compiler support.

3 The reason for mentioning Policy B-If rather than Policies A-live or A-lvOpt is that Policy B-If
generates the least RSR traffic for the average of the four programs and for SPICE (see Figures 4.26
and 4.27),
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In conclusion, our measurements have shown that for non-numeric applications (as
a compiler, a sort program, a word processor, and an assembler) a register set with
between 8 and 12 TBP registers should be sufficient for intra-procedural optimizers with
(i.e., Policy G-1f) or without architectural support (i.e, the best static Policy A-lvOpt or
B-If for a given application). For numerical applications (such as SPICE), if the compiler
can assign floating-point variables to general-purpose registers, a larger number of TBP
registers is justified.

4.6 Speed-Up

In this section we evaluate the speed-up that we might obtain for a RISC-like machine,
This evaluation is performed using the PCC and the GNU compilers and the two sets
of programs, the average for the four programs and SPICE, as we did in the previous
section. First, we comment on the model we have used to evaluate the speed-up for a
RISC-like machine, and, second, we discuss the speed-up factor for Policies A-lvOpt,
A-live, B-If, and G-If.

To estimate the speed-up obtained by Policy G-If we assume that each register-to-
register instruction is executed in one cycle, that load/store instructions require one or
two extra cycles to access memory, and that the processor cycle time is not affected by
the implementation of Policy G (see Section 3.5). The reason for considering the two
memory speeds is that if the processor cycle keeps getting reduced, then it is possible
that two extra cycles will be required to access memory because of chip bandwidth
limitations. The execution time (T') of a program with N instructions is given by:

T = N(1 + ¢{non-allocated local scalars + global scalars + non-scalar variables + RSR})
where ¢ is the number of extra cycles required to access memory.

As we mentioned in the previous section, no traffic is taken into account for param-
eter passing. Figure 4.29 shows the speed-up obtained by Policies B-1f, A-live, A-lvOpt,
and G-lf when 12 TBP registers are available with respect to a machine without TBP
registers. The speed-up factor is shown for the two different memory speeds mentioned
above. The maximum speed-up shown is obtained when the RSR traffic has been com-
pletely eliminated as well as the traffic caused by the return address. For instance, this
would be the case when an infinitive register file is provided with 13-register, fixed-size
windows (12 for the TBP registers and one for the return address). From the figure, we
conclude the following:

1. The speed-up factor is more significant for PCC than for GNU, because PCC does
not assign any local scalar variables to registers when there are no TBP registers
available. Once TBP registers become available, locals are assigned and, therefore,
the data memory traffic is reduced and the program is executed more quickly. On
the other hand, GNU assigns dead local scalars to TBD registers so that even when
no TBP registers are available, the local scalar memory traffic is less for GNU than
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for PCC (see Figure 4.24). Thus, the overall data memory traffic reduction is less
for GNU when TBP registers become available and the speed-up factor is smaller.
If GNU did not assign local scalar variables to TBD registers, then the speed-up
factor obtained by GNU would be similar to the one obtained by PCC.

. The dynamic Policy G-I provides the higher speed-up factor and is the one which

comes closer to the maximum possible speed that can be obtained.

The speed-up of Policy G-If with respect to the static policies is better appreciated in
Figure 4.30. As basis for comparison we have selected Policy B-If since this is the static
policy which generates the least traffic with GNU for the average of the four programs
and for SPICE. When 2 cycles are required to access memory, Policy G-If has a speed-up
factor of between 1.04 (for GNU SP) and 1.08 (for PCC 4P) and when 3, between 1.05
(for GNU SP) and 1.12 (for PCC 4P).

Finally, let us consider the speed-up factor for a greater number of TBP registers.
This is shown in Figure 4.31 for the four programs and for SPICE for 12, 16, and 24
TBP registers with respect to Policy B-If with 12 TBP registers. From the figure, we
conclude the following:

1.

The speed-up factor for the static Policies A-live and A-lvOpt with respect to
Policy B-If becomes worse due to the increase in register saving/restoring traffic
(see Figures 4.17 and 4.21).

. The speed-up factor for the dynamic Policy G-If increases with a larger register

set due to the RSR traffic reduction. This increase is significant for SPICE (from
1.04 for 12 TBP registers to 1.08 for 24), but not for the four programs (from 1.05
to 1.06), because SPICE is the only program for which the overall data memory
traffic becomes smaller for more than 12 TBP registers (see Figure 4.27).
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Chapter 5

Inter-Procedural Optimizations

Chapter 5 shows how the remaining overall data memory traffic after performing intra-
procedural compiler optimizations (see Chapter 4) is reduced even further with inter-
procedural compiler optimizations. As in the previous chapter, our goal is to compare
the RSR traffic reduction offered by these optimizations without architectural support
(i.e., for the static policies) and with architectural support (i.e., the dynamic Policy G).

Figure 5.1 shows the remaining data memory traffic after performing intra-procedural
optimizations for the average of the four programs (ASM, NROFF, SORT, and VPCC; on
the top) and for SPICE! (on the bottom). The RSR policies used to compute the overall
data memory traffic are the static Policy B-If {on the left) and the dynamic Policy G-1f
(on the right). Policy B-lf has been selected rather than either Policy A-live or A-IvOpt
because it is the static policy that generates the least traffic for the average of the four
programs and for SPICE with the GNU C Compiler (although not for every program
and compiler; see Subsection 4.1.5 and Section 4.2). Also, the GNU C Compiler is the
only compiler used in this chapter to evaluate the inter-procedural optimizations since
it is the one that generates the least overall data memory traffic and that assigns double
variables to registers (see Section 4.5). As we can see in the figure, scalar traffic still
accounts from 51% to 61% of the overall data memory traffic.2 These are the percentages
of data memory traffic that we expect to reduce with our inter-procedural optimizer.

While an intra-procedural optimizer parses and generates code per function, the inter-
procedural optimizer has a global view of the whole program (see Subsection 2.1.3.2). In
this case, the compiler can assign some global scalar variables to registers (as discussed in
Section 5.2) and perform some better register assignment policies for the return-address
register (as discussed in Section 5.3) and for the intra-procedural allocated local scalar
variables (as discussed in Section 5.4}, so that the overall data memory traffic is reduced.
In order to obtain this:

1. We determine the number of registers required for global scalar variables and eval-

!'See Section 4.3 for a discussion of why we have separated this program (SPICE) from the other four.
®Figure 5.1 is a copy of Figure 4.28. See Section 4.5 for a detailed discussion of the figure.
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uate the data memory traffic reduction obtained. We show that most of the global
scalar traffic is produced by a few variables and, therefore, the global scalar traffic
is significantly reduced if these variables are assigned to registers rather than to
memory. For instance, 8 registers can cut the global scalar traffic by 49% for the
average of the four programs and by 44% for SPICE. More registers might be used
to reduce the global scalar traffic further, as we will see in Section 5.2. However,
since our goal is to have a 32-register file to avoid that its access time has a nega-
tive effect on the processor cycle time (see Subsection 2.1.1}, we only mention the
traffic reduction for a small number of registers.

Moreover, we also discuss how to select the global variables to be allocated to reg-
isters. We show that static information as used for intra-procedural allocators (see
Section A.1) is not enough and that a dynamic ezecution profile of the program
is necessary to obtain a more efficient register allocation. The use of dynamic
information to perform some compiler optimizations has already been mentioned
[Fish84, ENi86] and Wall [Wall86] has already used it for its inter-procedural reg-
ister allocator (see Subsection 2.1.4).

. We determine the number of registers required to keep the return address {(RA)
in a register, rather than storing it into memory when a function call is made,
and we evaluate the data memory traffic reduction obtained. As we mentioned in
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Subsection 4.1.3, this optimization is possible when the call and return instructions
keep the return address in a register rather than saving/restoring it to/from mem-
ory. As for global scalar variables, we show that with a few registers (4) the traffic
caused by the saving/restoring of the return address is cut in half for the average
of the four programs and by 90% for SPICE, when a dynamic execution profile of
the program is available.

3. We present new global register assignment policies to eliminate unnecessary register
saving/restoring for the static Policies A-live, A-lvOpt, and B-If (named A®-live,
AB.lvOpt, and BS-If, respectively), and to obtain a better disjoint register assign-
ment for the dynamic Policy G-lf (named G&-1f). We show that, by using a dynamic
execution profile of the program, each policy reduces its RSR traffic significantly.
Moreover, while for an intra-procedural optimizer there is no reason for having more
than 12 TBP registers for non-numeric applications (see Figures 4.26 and 4.27),
this is not the case for the inter-procedural optimizer because more registers can
be used to reduce the RSR. traffic.

For the average of the four programs, we show that when a 32-register file is par-
titioned with 16 TBP registers, 8 registers for globals, and 2 registers for the return
address, the inter-procedural optimizer eliminates 21% of the overall data memory traf-
fic when both architectural and compiler support are provided (i.e., the dynamic Policy G
as presented in Section 3.3) and 22% when only compiler support is available. Moreover,
when both architectural and compiler support are provided, the overall data memory
traffic generated is 86% of the one produced when only compiler support is available.

For SPICE, however, the data memory traffic is the same with and without architec-
tural support, as we will discuss in Subsection 5.5.2. In this case, there is no benefit for
providing the dynamic Policy G. In spite of this, we will show that the combination of
both architectural and compiler support (i.e., Policy G8-If) provides the best approach
to reduce the overall data memory traffic for most cases. Moreover, Policy G&.If sim-
plifies the compilation process and reduces the data memory traffic independently of
the characteristics of the programs (e.g., the percentage of recursive functions in the
program).

No optimization is proposed for the non-scalar traffic because these have already
been performed by the intra-procedural optimizer {common subexpression elimination,
loop-invariant removal, etc.). We expect that since part of the data memory traffic has
been eliminated, fewer conflicts will occur in the cache memory. Thus, the performance
of the overall system will increase. However, we have left this as an open topic for
discussion {see Section 6.2). Moreover, we have not looked neither for alternative register
allocation schemes (e.g., as coloring) to reduce the local scalar traffic for SPICE (see also
Section 6.2).

The outline for this chapter is the following: Section 5.1 presents our approach in how
the inter-procedural optimizations should be implemented in the compilation process.
Sections 5.2, 5.3, and 5.4 discuss the optimizations to be performed to reduce the global
scalar traffic, the return-address traffic, and the register saving and restoring traffic,
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respectively. Section 5.5 shows how the general-purpose register set should be partitioned
to obtain the maximum overall traffic reduction. This section also presents the speed-up
factor that we might obtain for a RISC-like machine. Readers who are not interested
in the implementation details of the optimizer can go directly to Section 5.5. Finally,
Section 5.6 summarizes the most important results obtained in this chapter.

5.1 The Inter-Procedural Optimizer

In this section we present how the inter-procedural optimizer should be incorporated
in the compilation process and what information should be made available to it. Since
C is a modular programming language and modules are compiled independently (see
Figure 2.3), the following steps are taken to perform inter-procedural optimization:

1. The program is compiled with intra-procedural optimization. During compilation
the following information is added to a common data base®:

¢ Functions defined per module (F = {fi, f2,..., fp}).

e Variables allocated per function (V' = {vi,v},...,v% }, Vf; € F). We assume
that all registers are of the same type and that there is a unique general-
purpose register set with n TBP registers ({r;,72,...,7s}) for local scalar
variables.

e For each call instruction in f; we keep the following:

— The function that is called (¢ — j means that f; calls f;).

— For Policy Ag-live, live-variable information at each call (L;_,;).

— For Policy A8-lvOpt, the registers assigned by the intra-procedural allo-
cator to be saved and restored at each call* (S;..,; and R;..;).

Notice that, in a given function f;, multiple calls to the same function f;
generate different L;_;, 5;_.;, and R,_.; sets even though this is not reflected
in our notation.’

¢ Functions which are called indirectly through a pointer. When a call to a
function is made through a pointer and no data-flow information is available
to determine which set of functions might be called, we have to assume the
worst case: any function might be called [Weih80, Coop86]. In this case,
it is not possible to apply the static inter-procedural optimizations because
no disjoint register assignment can be found (since all the functions might

3This information could also be collected by a high-level-language-parsing editor as the one proposed
by [Coop86]. _

*We also assume that the intra-procedural assignment is performed sequentially. That is, if V' =
{vi,v},...,vi,) is the set of variables selected for allocation in function f; and {r1,72,...,7a} is the set
of TBP registers, then variable vl is assigned to register 7y, v to r3, and so on. The reason for this
assignment is given in Subsection 5.4.2.

3 A subindex may be added to denote a different call for each i — j: however, we do not do it to keep
our notation simple.
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be called). To limit the scope of indirect calls to a (expected small) set
of functions, data-flow analysis must be performed to provide the functions
which are called through a pointer.

¢ Global scalar variables defined (to perform global scalar variable allocation as
discussed in Section 5.2).

Once all the user modules have been compiled, the source modules for the library
functions, which are required by the program, are also compiled. The process of
detecting which source modules need to be compiled for a given program and where
these are stored should be done automatically (i.e., invisible to the user). Thus,
a library for the sources should be kept in a similar way than the library for the
objects [UNI81). For each source module the data base is also updated with the
corresponding information.

2. The executable program is run and profile information is collected and added to
the data base. This can be performed as described for BKGEN in Section 1.2. The
profile information includes:

o The frequency of execution for each call instruction (Q;— ;). This is to estimate
the RSR traffic generated by this call.

o The frequency of usage for each global variable.

Section 5.2 shows why static information is not enough to perform inter-procedural
optimizations and a dynamic execution profile is required.

3. Once the above information is available, the inter-procedural optimizer generates
the program’s call graph and performs register allocation and assignment for global
scalar variables as described in Section 5.2, register assignment for registers with
the return address as described in Section 5.3, and register assignment for TBP
registers as described in Section 5.4. For Policies A8-live, A%-lvOpt, and BE-If,
the registers which are saved and restored unnecessarily are detected (as discussed
in Subsections 5.4.1, 5.4.2, and 5.4.3) and marked for optimization. For Policy
G5.1f the optimizer only needs to perform the disjoint register assignment since the
unnecessary register saving/restoring is automatically removed by the dynamic
behavior of Policy G (see Section 3.3).

The information on register assignment and unnecessary register saving/restor-
ing computed by the inter-procedural optimizer is kept in the data base for the
assembler as we can see in Figure 5.2. If we compare this figure with Figure 2.3,
the main difference with the standard compilation process is that all modules must
be compiled before being assembled.

4. Finally, the assembly modules are translated to object code in such a way that:

e Register assignment is changed as defined by the inter-procedural optimizer.

¢ Instructions that perform unnecessary register saving/restoring are removed.
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Figure 5.2: The Inter-Procedural Optimizer in the Compilation Process
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Notice that the source modules do not need to be recompiled for inter-procedural
optimization.

Although the inter-procedural optimization makes the compilation process more com-
plex, it can be justified because of the reduction in the data memory traffic obtained.

5.2 Register Allocation for Global Scalar Variables

In this section we discuss the data memory traffic reduction obtained when an inter-
procedural optimizer allocates some global scalar variables with no alias (see Subsec-
tion 2.1.3.1) to registers. Variables are assigned for the whole program so that no load-
ing/storing traffic is generated. We show that:

1. A few registers are enough to obtain a significant reduction in the data memory
traffic caused by the global scalar variables.

2. When a dynamic execution profile is used to select the variables to allocate, a
larger reduction is obtained than when static information is used.

Notice that since the allocated variables are going to be assigned to registers during
the whole program, the critical decision is the selection of which variables should be
allocated. Once this decision has been made, the assignment of these variables to registers
is straight forward. For this reason, in this section we use register allocation and register
assignment in an interchangeable way.

The global scalar variables assigned to registers have been selected according to the
following criteria:

Static: By static linear frequencies. The selected variables are the ones which have been
more frequently (statically) referred in the program. No weight is given to the
variables accessed inside loops. This is the policy used by the GNU and ACK
intra-procedural allocators (see Section A.1).

Profile: A dynamic execution profile has been obtained using three different inputs to
each program (as indicated in Table 5.1). Also, an average execution profile has
been computed from these three execution profiles. The advantage of using an av-
erage profile rather than any of individual profiles is discussed afterwards. The av-
erage profile has been calculated so that each execution profile is equally weighted.
These are labeled prof. 1, prof. 2, prof. 3, and prof. avg., respectively.

Optimal: By dynamic execution frequencies. The execution frequencies correspond to
the specific execution of the program for the input data given in Section 1.3. Since
the more frequently used global scalar variables are assigned to registers, this is the
optimal criterion for their selection. This criterion is similar to the Belady’s optimal
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program “ prof. 1 prof. 2 prof. 3
irees.c—a module from | nf.c-—a module from the sort.c—the sor Drogram
VPCC || the Portable C Compiler | nroff word processor (1000 (900' source linesl)) 5
(1700 source lines) source lines)
ASM trees.s—the assem- nl.s—the assembly code sort.s—the assembly
bly code for trees.c for ni.c code for sort.c
SORT sort a 90-entry password | sort 2250 4-field records | sort 600 6-field records
file by user ID with the options +7 -2 with the options +3 -1 -r
NROFF format the article format the manual page | format a set of problems
{Hugu87] for csh with equations
SPICE bipole, digsr, {oronto—three circuits published in {John87] to use SPICE as
a floating-point benchmark

Table 5.1: Input Data for Profiling the Measured Programs

page replacement algorithm [Bela66] (because the “future” program behavior is
known in advance) and it is used to evaluate the performance of the above criteria.

Table 5.2 shows the global scalar traffic remaining for each program when 1, 2, 4, 8,

16, or 32 global scalar variables are assigned to the corresponding number of registers.
The traffic is normalized with respect to the global scalar traffic generated when no
global scalar variables {g¢gsv) are assigned to registers. From the table we conclude the
following;:

1. When profile information is used to allocate global scalars (for any of the three

sets of input data discussed above), the traffic generated is always less than the
traffic produced when static information is used (see also Figures 5.3 and 5.4).
Therefore, the selection of which global scalar variables should be assigned to
registers cannot be based on static linear priority, as it is done for intra-procedural
register allocation (see Section A.l), because static information does not provide
reliable information about which global scalars are the most frequently used during
program execution.

. Since the program is expected to run under different input data, it is difficult to find
a single input data to be representative for all program executions. For this reason,
we selected an average of the three profiles obtained as the criterion to allocate
global scalar variables. We expect that different runs activate alternative program
paths so that, on the average, the register allocation performed benefits different
programs runs, not a single type. As we can see in the table and in Figures 5.3
and 5.4, the selection performed with the average profile is very close to the optimal
for almost every program and any number of registers. The exceptions are NROFF
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no. register

regs. | allocation ASM NROFF SORT VPCC 4 P. || SPICE
0 | (gsv traffic) [ 1(6.02) 1(7.25) 1(1.18) 1 (1.54)[1(4.73) ][ 1(3.11)

static 0.87 1.00 1.00 0.63 0.96 1.00

prof. 1 0.85 0.99 0.84 0.63 0.95 0.89

1 prof. 2 0.85 0.89 0.84 0.63 0.86 0.89

prof. 3 0.85 0.89 0.84 0.63 0.86 0.89

prof. avg. 0.85 0.89 0.84 0.63 0.86 0.89

optimal 0.85 0.89 0.67 0.63 0.86 0.89

static 0.82 0.98 0.84 0.63 0.94 0.98

prof. 1 0.73 0.97 0.76 0.54 0.92 0.83

2 prof. 2 0.73 0.82 0.68 0.54 0.79 0.82

prof. 3 0.73 0.82 0.68 0.54 0.79 0.82

prof. avg. 0.73 0.81 0.68 0.54 0.78 0.82

optimal 0.73 0.81 0.51 0.54 0.77 0.82

static 0.77 0.92 0.84 0.62 0.89 0.94

prof. 1 0.59 0.85 0.27 0.41 0.77 0.72

4 prof. 2 0.61 0.69 0.27 0.42 0.64 0.70

prof. 3 0.59 0.69 0.27 0.41 0.64 0.70

prof. avg. 0.59 0.89 0.27 0.41 0.64 0.70

optimal 0.59 0.69 0.18 0.41 0.64 0.70

static 0.53 0.86 0.41 0.47 0.79 0.94

prof. 1 0.43 0.77 0.05 0.30 0.68 0.56

8 prof. 2 0.43 0.60 0.06 0.30 0.54 0.56

prof. 3 0.41 0.51 0.04 0.33 0.47 0.56

prof. avg, 0.43 0.56 0.06 0.30 0.51 0.56

optimal 0.41 0.51 0.04 0.30 0.46 0.56

static 0.44 0.71 0.04 0.43 0.64 0.93

prof. 1 0.21 0.57 0.01 0.17 0.50 0.31

16 prof. 2 0.20 0.42 0.00 0.18 0.37 0.30

prof. 3 0.23 0.31 0.00 0.19 0.28 0.30

prof. avg. 0.21 0.42 0.00 0.18 0.37 0.30

optimal 0.20 0.31 0.00 0.17 0.28 0.30

static 0.31 0.48 0.0¢ 0.29 0.43 6.93

prof. 1 0.05 0.28 0.00 0.07 0.24 0.03

32 prof. 2 0.04 0.21 0.00 0.08 0.18 0.02

prof. 3 0.05 0.13 0.00 0.09 0.12 0.03

prof. avg. 0.05 0.17 0.00 0.07 0.15 0.02

optimal 0.04 0.13 0.00 0.06 0.11 0.02

Table 5.2: Global Scalar Traffic Reduction
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Figure 5.4: Global Scalar Traffic for SPICE

with 8 or more registers and SORT with 4 or less registers.

3. Even though the number of global scalars is usually large (39 for SORT, 119 for
ASM, 138 for VPCC, 237 for NROFF, and 307 for SPICE), there are only a few
globals which generate most of the traffic. For instance, 50% of the global scalar
traffic is generated by 2 variables for SORT and VPCC, 6 for ASM, 8 for NROFF,
and 10 for SPICE. Therefore, a few registers are sufficient to significantly reduce
the global scalar traffic. As we can see in the table, more registers might be used
to reduce the global scalar traffic further. However, since our goal is to have a
small register file, we have only mentioned the traffic reduction for a small number

of registers for global variables.

Finally, one more consideration on the number of registers to be used for global scalar
variable allocation. Since each program has a different data memory traffic distribution,
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it is convenient not to have a fixed partition of the general-purpose register set (i.e., a
fixed number of registers for global scalar variables). In this case, the inter-procedural
optimizer can distribute the general-purpose registers available between the registers
required for global scalars and the ones required by the optimizations discussed in the
next sections so that the least data memory traffic is generated. For instance, 44% of
the data memory traffic generated by NROFF corresponds to global scalars and 28%
to local scalars. On the other hand, for VPCC these percentages are 5% and 51%,
respectively. Thus, the optimizer could use more registers for globals for NROFF and
fewer for VPCC. Let us postpone this discussion until we have commented on the other
two inter-procedural optimizations and come back to it afterwards (in Section 5.5).

In conclusion, a dynamic execution profile has to be used to obtain a good allocation
for global scalars. In this case, a few registers are sufficient to significantly reduce the
global scalar traffic. For instance, 8 registers can cut the global scalar traffic by 49% for
the average of the four programs and by 44% for SPICE. On the other hand, if only static
information is used, the traffic reduction will be 21% and 6%, respectively. More regis-
ters can be used to reduce the traffic even further. However, we have to consider that the
total number of general-purpose registers available is limited and it might be more con-
venient to use them to reduce the return-address traffic or the register saving/restoring
traffic as we will discuss in Section 5.5 (once the inter-procedural optimizations to reduce
the return-address traffic and the RSR traffic will have been presented in Sections 5.3
and 5.4).

5.3 Return-Address Inter-Procedural Optimization

In Subsection 4.1.3 an intra-procedural optimization to reduce the traffic caused by the
saving/restoring of the return address (RA) was mentioned. To perform this optimiza-
tion, call and return instructions are required to keep the return address in a register
(called the link register) rather than storing it in memory by the call instruction itself.
In this case, non-leaf functions save the link register to memory at function entry and
restore it before return, but leaf functions do not have to perform this saving/restoring
since the link register is not needed by the leaf function (see Figure 4.4).

An inter-procedural optimizer can have multiple link registers available so that the
RA saving/restoring is eliminated not only for leaf functions, but also for non-leaf ones.
In this section we first discuss how the RA traffic elimination is performed by an inter-
procedural optimizer; second, we mention the effect of recursion and indirect calls on the
call graph; third, we evaluate the data memory traffic reduction obtained by different
numbers of link registers; and, finally, we compare this optimization with the alternative
approach of having architectural support (i.e., multiple PCs) to reduce the RA traffic.
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Figure 5.5: Function Execution Frequency in a Call Graph

An Example of RA Traffic Elimination

Figure 5.5 shows the call graph for a program,® where the nodes represent the functions
and the directed arcs, the calls. The percentages inside each node correspond to the
function execution frequencies. Functions in the call graph have been grouped according
to their height, that is, the number of descendents (or callees) in the longest path from
this function to a leaf. Notice that all leaf functions have zero height. For this call
graph, if only one link register is available, 20% of the RA traffic is eliminated since this
is the percentage of leaf functions executed. This is the traffic reduction obtained by an
intra-procedural optimizer as we discussed in Subsection 4.1.3.

When more link registers are available, an inter-procedural optimizer can use them for
the non-leaf functions. In this case, the RA saving/restoring traffic can be eliminated for
those functions for which their link register is not used by any of the function descendents.
Notice the following:

¢ All the callers of a given function must use the same link register.

SNotice that the call graph is acyclic; that is, there are no recursive functions. Let us assume for
this moment that this is the case; afterwards, we will discuss what happens with recursive functions and
indirect calls.
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Figure 5.6: Register Assignment with Three-Link Registers

¢ Functions at the same height can share the same link register because they are not
simultaneously active.

For instance, Figure 5.6 shows the assignment of three link registers to the functions at
the bottom of the call graph. In this example, 60% (= 30%+10%+20%) of the RA traffic
is eliminated. The functions at height 3 and up could use any of the three link registers
available. Since for these functions the link register has always to be saved/restored,
only one link register is used for all of them (R1I in this example).

Not all the link registers need to be assigned necessarily to the functions at the
bottom of the call graph. That is, the RA memory traffic can be eliminated for all
the functions at any given height whenever their descendents do not use the same link
register. By obtaining a dynamic execution profile {as discussed in Section 5.2), it is
possible to select the group of functions, at a given height, which are the most frequently
used for the profiled input data and assign to them the additional link registers. For
instance, with the register assignment shown in Figure 5.7, the RA traffic is reduced by
90% (= 40% +30% +20%) in this example. Notice that in this case, functions at height 1
must use register R1 as their link register.
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Figure 5.7: A Better Register Assignment with Three-Link Registers

{ program | % ftns. |

ASM 2.8%
NROFF | 49.6%
SORT | 1.1%
VPCC | 34.5%
4P | 34.6%
[ SPICE | 0.1% |

Table 5.3: Percentage of Functions in a Cycle
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Recursion and Indirect Calls

In the above example the call graph was acyclic. This is not the case when the program
has recursive functions. For recursive functions, no RA traffic can be eliminated for the
functions inside the cycle caused by the recursion, because the same link register is used
by the function (or functions) which is (are) called recursively. Thus, the link register
has always to be saved/restored. Table 5.3 shows the percentage of functions inside a
cycle for the measured programs. As we can see, for some programs (SPICE, SORT, and
ASM) the percentage of functions in a cycle is small and they do not have any impact
in the RA traffic reduction which might be obtained. However, this is not the case for
NROFF and VPCC. For NROFF, even if an infinite pool of link registers were provided,
the RA traffic could be cut only by half and for VPCC, by one third. To reduce the
RSR traffic for this type of programs, architectural support should be provided, as we
will discuss at the end of this section.

If the program has indirect calls, the optimizer needs to perform date-flow analysis to
determine the functions which can be reached from this indirect call. All these functions
must use the same link register independently of their height because they will be called
from the same call instruction. Since the number of indirect calls for the measured
programs is small, this has not been taken into account for the measurements discussed
next.

RA Memory Traffic Reduction

Two different register allocation approaches have heen evaluated to reduce the RA traffic.
These are similar to the ones used for global scalar variables (see Section 5.2):

Prof. Avg.: This corresponds to the average profile also used for the allocation of global
scalars.

Optimal: This corresponds to the optimal allocation.

A static allocation has not been evaluated (as we did for the global scalar variables)
because the most frequent called functions are not at the bottom of the call graph:

¢ For the four programs, Figure 5.8 shows the distribution of the calls to functions in
the call graph. The call graph of each program has been divided into four regions
such that each region includes one fourth of the maximum height. Region I includes
the main function and Region IV includes the leaf functions with height zero. As
we can see, only SORT has 79% of its executed functions in the last region. VPCC
and NROFF have more than half of their executed functions in the third region
while ASM has them in the second.

o For SPICE (not shown in the figure), 89% of the executed functions have height
two or less (out of 2 maximum height of 37).
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Figure 5.9: RA Traffic Reduction for the Four Programs

Since a selection based on static information will benefit only programs whose functions
are concentrated at the bottom of the call graph (i.e., SORT and SPICE), we have only
used dynamic profile information because a better selection is obtained for programs
whose traffic is evenly distributed throughout the call graph as well as for those whose
traffic is concentrated at the bottom.

Table 5.4 shows the RA traffic reduction obtained by each program for the two
selection mechanisms mentioned above and for different number of registers. From the
table we conclude the following:

1. In general, the register allocation based on the average profile is close to the opti-
mal. On the average for the four programs, the RA traffic generated by the average
profile allocation is from 100% to 110% of the optimal traffic (see also Figure 5.9).
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no.

register

regs. | allocation ASM NROFF SORT VPCC | 4P SPICE
0 (RA traffic) [ 1 (2.0) 1(2.0) 1(2.0) 1(2.0)|1(20)]| 1(2.0)
1 prof. avg. 0.81 0.85 0.22 0.82 0.71 0.56
optimal 0.81 0.85 0.22 0.82 0.71 0.56

2 prof. avg. 0.75 0.73 0.22 0.65 8.60 0.44
optimal 0.39 0.71 0.03 0.65 0.60 0.24

3 prof. avg. 0.72 0.59 0.03 0.62 0.52 0.43
optimal 0.27 0.59 0.01 0.55 0.52 0.11

4 prof. avg. 0.61 0.57 0.01 0.58 0.51 0.10
optimal 0.21 0.57 0.01 0.52 0.47 0.08

5 prof. avg. 0.19 0.55 0.01 0.48 0.49 0.08
optimal 0.16 0.55 0.01 0.48 0.45 0.06

6 prof. avg. 0.16 0.55 0.01 0.47 0.47 0.05
optimal 0.12 0.53 0.01 0.45 0.43 0.03

7 prof. avg. 0.16 0.54 0.01 0.47 0.45 0.02
optimal 0.09 0.53 0.01 0.42 0.41 0.02

8 prof. avg. 0.14 0.54 0.01 0.45 0.41 0.02
optimal 0.06 0.52 0.01 0.40 0.40 0.01

10 prof. avg. 0.08 0.53 0.01 0.45 0.40 0.01
optimal 0.03 0.51 0.01 0.37 0.38 0.00

12 prof. avg. 0.04 0.52 0.01 0.42 0.38 0.00
optimal 0.02 0.50 0.01 0.36 0.37 0.00

14 prof. avg. 0.04 0.51 0.01 0.42 0.37 0.00
optimal 0.02 0.50 0.01 0.35 0.36 0.00

16 prof. avg. 0.04 0.51 0.01 0.41 0.36 0.00
optimal 0.02 0.50 0.01 0.35 0.36 0.00

20 prof. avg. 0.02 0.50 0.01 0.39 0.35 0.00
optimal 0.02 0.50 0.01 0.35 0.35 0.00

24 prof, avg. 0.02 0.50 0.01 0.36 0.35 0.00
optimal 0.02 0.50 0.01 0.35 0.35 0.00

28 prof. avg. 0.02 0.50 0.01 0.35 0.35 0.00
optimal 0.02 0.50 0.01 0.35 0.35 0.00

32 prof. avg. 0.02 0.50 0.01 0.35 0.35 0.00
optimal 0.02 0.50 0.01 0.35 0.35 0.00

Table 5.4: RA Traffic Reduction with Inter-Procedural Optimization
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Figure 5.10: RA Traffic Reduction for ASM

2. ASM is the exception to the previous rule, with a significant difference when a small
number of registers are available (between 2 and 4) as we can see in Figure 5.10.
The 2, 3, and 4 most frequent executed variables do not coincide with the most
frequent variables used in the execution profile. However, this is not the case when
at least the 6 most frequent variables are considered.

3. The number of registers required to eliminate most of the RA traffic is usually small
for non-recursive programs. For instance, with four registers 90% of the RA traffic
is eliminated for SPICE, 99% for SORT, and about 60% for the other programs.

Notice that for NROFF and VPCC, a significant increase in the register set size
does not correspond with a significant reduction in the RA traffic. For instance,
doubling the number of registers from four to eight, the RA traffic eliminated
increases from 43% to 46% for NROFF (out of a 50% maximum reduction) and
from 48% to 55% for VPCC (out of 65%).

Compiler versus Architectural Support

The RA traffic reduction provided by the optimizer depends on the characteristics of the
program. These program’s characteristics are:

1. The percentage of functions in cycles. As we said above, no RA traffic can be
eliminated for these functions. For instance, half of the executed functions in
NROFF are in a cycle. This implies that in the optimal case, only half of the RA
traffic can be eliminated.

2. The distribution of the functions by height. If the most frequently executed func-
tions are concentrated in a small set of heights for any possible program execution,
then a few registers are enough to reduce the RA traffic significantly. Otherwise, a
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no,
regs. || NROFF SORT VPCC | 3P

0 1(2.0) 1(2.0) 1(2.0)]1(20)

4 0.36 0.00 0.24 0.30
8 0.04 0.00 0.08 0.04
16 0.00 0.00 0.00 0.00

Table 5.5: RA Traffic Reduction with Multiple PCs

larger register set (between 8 and 16 registers) is necessary to obtain a significant
traffic reduction (90% or more). For instance, this is the case for ASM as we can
see in Figure 5.10.

To overcome these constraints a register file with multiple PCs can be provided. The
multiple PCs are handled as a multiple-window register file with a register window of
size one (see Subsection 2.1.1). Thus, no memory traffic is generated while there are no
overlows or underflows.

Table 5.5 shows the RA traffic reduction with multiple PCs, The traffic has been
computed from our previous measurements [Hugu85a, Table 3.5]. As we mentioned in
Section 1.3, these only included NROFF, SORT, and VPCC. For this reason, Table 5.5
only shows these programs and not ASM and SPICE. Since we expect similar results
for these two programs, we have not repeated the measurements.

If we compare Table 5.5 with Table 5.4, the RA traffic is much smaller for any register-
set configuration when architectural support is provided. However, data memory traffic
is not the only parameter to be considered in order to compare both alternatives. The
cost of processing an overflow (or underflow) condition has also to be taken into account.
The cost is defined by these parameters:

1. Processor interrupts. An overflow condition stops the current processor execu-
tion flow and control is passed to a function handler to process the exception.
On the other hand, when the optimizer has not been able to eliminate a RA
saving/restoring instruction, a memory transfer occurs, but the processor is not
interrupted.

2. Stack for overflows/underflows. Multiple PCs require a separate stack to store them
as it was discussed for multiple-window architectures (see Subsection 2.1.1 and
Figure 2.1). On the other hand, when compiler support is provided, the activation
record of the function is used to save/restore the RA when it is necessary. Thus,
the programming environment is more complex for multiple PCs.

3. Dedicated resources. The register file provided for multiple PCs can only be used
to store the return addresses.” The compiler cannot use these resources to reduce

"This is the case with a standard multiple-window implementation. An alternative approach where
the multiple PCs are part of the general-purpose register file would be possible to implement. The

135



other traffic when they are not needed to reduce the RA traffic of certain programs
(like SPICE and SORT).

Since the cost of processing each overflow (or underflow) condition is higher than
a single memory transfer, the number of registers provided should be large enough to
minimize the number of overflows/underflows. In this case, for a larger register file
(8 or 16 registers), the performance of both approaches is similar for programs without
a significant number of recursive functions. Therefore, the compiler can make a better
use of a general-purpose register file depending on the program’s characteristics (with
the exception of recursivity).

In conclusion, the tradeoff between selecting architectural support and compiler sup-
port is that for the former, the RA traffic is almost eliminated if at least an 8-register
file is provided. On the other hand, the compiler makes a better use of the general-
purpose registers available and, for programs without recursion, the compiler reduces
significantly the RA traffic with a few registers. For instance, with four registers 90%
of the RA traffic is eliminated for SPICE, 99% for SORT, and about 60% for the other
programs.

5.4 RSR Inter-Procedural Optimizations

To reduce the RSR traffic even further, four inter-procedural optimizations are proposed.
These optimizations perform the register assignment for the variables selected by an
intra-procedural register allocator. Since at this phase the program call graph is known,
registers can be assigned is such a way that the RSR traffic is reduced. For instance,
for Policy A-live, the optimizer can eliminate, in a specific call, the saving/restoring
instructions for the registers that are not used by any of the functions that might be called
from this point. Although the goal (to reduce the RSR traffic) and the method (disjoint
register assignment) is the same for each optimization, the algorithms themselves are
different for each policy: A-live (renamed A&-live), A-lvOpt (renamed AB-lvOpt), B-Iif
{renamed BB-If), and G-If (renamed G&-If). The reason for selecting both Policies A-live
and A-lvOpt as candidates for inter-procedural optimization is that Policy A-lvOpt can
ouly be partially optimized as we will explain in Subsection 5.4.2. Thus, we have to
compare both optimized policies to verify whether Policy A%-lvOpt generates less RSR
traffic than Policy A8-live, as it is the case for Policy A-IvOpt with respect to A-live.

Three current inter-procedural register allocators [Wall86, Stee87, Chow88] have been
reviewed in Subsection 2.1.3.5. Our approach is different than the one used by Wall; he
allocates as many local and global scalar variables as possible to registers in such a way
that no register saving/restoring is generated. When no more registers are available, the
variables are allocated to memory. Consequently, it might be that the traffic generated

compiler could reserve a few general-purpose registers to be used as multiple PCs. The first and the last
register to be used by the architecture should be indicated in specialized registers initialized when the
program execution starts. In this case, the drawback of having dedicated resources would be eliminated.
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by the non-allocated variables is greater than the traffic that would be generated if
some registers were saved/restored to free registers for these variables (see Section 6.2).
Here we still assume that register allocation is performed per function and we want to
optimize register assignment to reduce the RSR traffic. This is also the approach taken
by Steenkiste and by Chow. Their approach is based on Policy A-live. We discuss the
differences between our approaches in Subsection 5.4.1. No comparison is made with
Wall’s register allocator because for small register sets he evaluates his allocator with
speed-up factors rather than memory traffic reduction.

5.4.1 Global Policy A-live

The Global Policy A-live (AB-live) eliminates the register saving/restoring instructions
performed at a given call when the registers being saved/restored are not used by any of
the functions that might be called from this point. Thus, the optimizer needs to find a
disjoint register assignment for the functions in the same path in the call graph to avoid
as much traffic as possible. The problem of finding an optimal register assignment to
generate the minimum RSR traffic is NP-complete [Chai81]. Here we present a heuristic
solution to this problem. First, we discuss the approach used to solve the problem: our
approach is presented together with an example to show how the registers are assigned
and how the RSR traffic is eliminated. Second, we introduce an algorithm to solve the
problem when the program does not have recursive functions. Third, we explain how
to handle recursive functions in a program. Fourth, we compare our inter-procedural
register assignment approach with Steenkiste’s and Chow’s inter-procedural register al-
locators. Finally, we show the RSR traffic reduction obtained with our approach.

Our Approach and an Example of RSR Traffic Elimination

We start assigning variables to registers for the leaf functions. Since leaf functions are
never going to be active simultaneously, they can share the same set of registers without
having to save/restore them [Wall86, Stee87, Chow88]. Next step is to select a function
at height 1 (i.e., a function such that all its descendents are leaf functions) and to find
a register assignment for the pre-allocated variables of this function that minimizes the
RSR traffic, taking into account both the live variables in each call and the registers
already assigned to the functions being called. The RSR traffic considered is based
on the dynamic information obtained with the average profile also used in Sections 5.2
and 5.3. The register assignment which minimizes the RSR traffic is determined as
explained below. Once all functions at height 1 have their registers assigned, we move
to the functions at height 2 and so on. Let us illustrate the RSR traffic elimination with
the example given in Figure 5.11.

Figure 5.11 shows four functions which are part of a program. Function f; calls the
functions fq, f3, and f; with dynamic frequencies 10, 5, and 30, respectively. We assume
that we have in total 5 TBP registers available ({ry,r,r3,74,75}). Figure 5.12 shows
the registers already assigned for the functions f;, f3, and f4. Let us discuss now how
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Figure 5.11: An Example of Register Assignment for Policy A8-live
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Figure 5.12: Registers Assigned to Functions fo, f3, and f4

to assign registers for the variables of function f;. Since each variable can be assigned
to only one register and the cost of this assignment can be determined (as we will see
below), this is a well-understood linear programming problem [Hill67, Section 6.4].

The cost of assigning a variable to a register is given as the sum of RSR traffic
generated at all calls on which this variable is alive when this register is already assigned
to the function called. For instance, variable v} is alive when the functions f; and f; are
called. If vl is assigned to either r; or ro, the register will have to be saved/restored in
both calls because both registers are used by f; and f3; thus, the cost® will be 15 (= 10
savings for fo + 5 savings for f3). However, if it is assigned to r3, the register will only
have to be saved/restored on the call to f;; thus, the cost will be 10. Let c},- be the cost
of assigning variable v} to register r;. For this example, the cost matrix C? is:

Ty T2 T3 T4 T5

30 0 000 v}
15 15 10 0 0 vl
40 10 10 0 0/ wv;

cl =

3Since the saving traffic is the same as the restoring traffic, only the saving is considered to compute
the cost.
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Figure 5.13: Variable-to-Register Assignment for Function f;
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Figure 5.14: Distribution of the RSR Traffic Caused by Policy A-live

To find a solution to the assignment problem the procedure described in [Hill67,
Section 6.4] is applied. The optimal solution obtained for this example is the one shown
in Figure 5.13. In this particular case, the RSR. traffic generated by this assignment will
be zero. Notice that this optimal solution might not be the optimal for the whole call
graph, although it is for the partial set of functions being considered. Once registers
have been assigned, the four functions can be considered as only one leaf function that
uses 5 registers. Thus, we can assign registers to the functions that call f; using the
same approach.

The above described procedure has one main drawback. Since the cost of sav-
ing/restoring registers which are not used for any of the functions being called is zero,
these registers are the best candidates to be selected for assignment. However, this is
not a good policy because the RSR traffic eliminated corresponds to functions which are
at the bottom of the call graph, which not necessarily are the ones that generate more
RSR. traffic. For instance, Figure 5.14 shows the distribution of RSR traffic caused by
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Figure 5.15: Variable-to-Register Assignment for Function f; when K = 11

Policy A-live when 16 TBP registers are available for the five programs.® As we can see
in the figure, SPICE is the only program which has 96% of the RSR traffic at the bottom
of the call graph. SORT and ASM have their RSR traffic concentrated in a single region
(96% in region III and 79% in region I, respectively), while NROFF and VPCC have
their RSR traffic distributed among the regions. Thus, it is convenient not to exhaust
all free registers for the functions at the bottom of the call graph.

Keeping Free Registers for Functions up in the Call Graph

To reserve some registers for the functions up in the call graph, registers which are not
used by any of the functions being called get a cost K, instead of 0, to preserve some
of them for functions up in the call graph. For instance, Figure 5.15 shows another
variable-to-register assignment for K = 11. Here variable vl gets assigned to register
r3 so that it has to be saved/restored 10 times when f; is called. If more than 10 calls
are required to reach f;, then there is still a register available to obtain a larger register
saving /restoring reduction. In general, functions in the bottom of the call graph with
low execution frequency can share the same registers as their descendents.

The value K is not defined as a unique constant for each function, but as an n-
element vector (with n being the number of TBP registers). For any given function in
the call graph, 2;-___0 K[j] indicates the maximum number of saving operations!'® to be
eliminated if i free registers are left for one of the function’s ancestors. The algorithm
given below shows exactly how the values of X are computed. Also, an explanation of
why the savings for only one of the function’s ancestors are considered is given after the
algorithm.

*The RSR traffic shown in the figure corresponds to the possible traffic which can be eliminated. That
1s, it does not include the RSR traffic caused by functions in a cycle because their RSR traffic cannot be
eliminated as we will discuss afterwards,

*Remember that only the saving traffic is considered to compute the cost since the restoring traffic is
the same.
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A One-Pass Algorithm to Perform Register Assignment

We now present an algorithm that describes our first approach to perform register as-
signment for Policy A8.live. This algorithm assumes that the call graph is acyclic, t.e.,
the program does not have recursive functions. In this first approach, the call graph is
only traversed once. Afterwards, we will discuss how to handle recursive functions and
present another approach in which the call graph is traversed twice.

Algorithm 1 Register Assignment for Policy AS-live.

Inputs: The call graph G, the set of defined functions (F), the sets of selected local scalar
variables for allocation per function (V*), the live variables at each call (L;~;), and
the dynamic profiled frequency of each call (Q,_.;).

Outputs: The set of registers assigned per function (M*), the set of registers to be
saved/restored per call (SR, ;), and a matrix A that indicates the register as-
signment per function:

_ vi if 'vi eViis assigned to register ry
ai; .
@ otherwise

Locals: The algorithm uses a matrix C to compute the assignment costs (as described in
Figure 5.16), a set U/ per function f;j to indicate the registers used by this function
and all its descendents in the call graph, and three n-element vectors ( Knew, Kold,
and X) to estimate the maximum number of savings to be eliminated. Moreover,
the following definitions are required:

ifryel?

otherwise
1 if v] € L
0 otherwise

REG_USED(r;, U?)

I
——
@D =

LIVE_VAR(v!, L;_.)

Method: Apply algorithm given in Figure 5.16. The initial call is performed with f;
being the main function and Kold = {0,0,...,0}. Notice that the algorithm does
not consider the assignment of some local scalar variables to TBD registers for
leaf functions. For intra-procedural allocation, this is not necessary because a leaf
function always receives a clean set of registers (since the caller does not know
whether the callee is a leaf function). However, for inter-procedural allocation, we
can assign local scalar variables to TBD registers for leaf functions to reduce the
number of registers required by the leaf functions. To keep the algorithm simple we
assume that this assignment has already been performed and the variables already
assigned have been removed from the V7 set. a
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procedure gblAlive (f;, Kold)
if f; has already been VISITED then return fi
Ul — MJ — @ m —| V|
for each f; € F such that j —t do SR;—; «~ @ od
if f; is NOT a leaf function then
(* compute savings to be eliminated for free registers left to callers *)
for each # € V7 do X[s] — Love jt {Qj—¢ LIVE.VAR(v!, L;_.,)} od
sort X such that X[s;] > X[s2] > ... > X[sn]
p—qg—1
fori=1,2,...,ndo
if X{s;] > Kold[g] then Knew[i] — X[sp]; p—p+1
else Knewli] — Kold[g}; g — ¢+ 1fi
od
{* visit each function in reverse depth-first search order *)
for each f; € F such that j — ¢t do
gblAlive (fi, Knew)
Ul — i uut
od
fi
(* perform register assignment according to cost *)
if f; is a leaf function or U7 =@ then

aj 1—'!)‘{, as; 1—-1112, ciey G f—UJ,:n
M? — {rl,rg,...,rm}
elsep—1
for each ’U'L e Vi do
fori=n,n-1,...,1do

if r; € U7 then
cii = Tvej i {Q—« REGUSED(rs, U*) LIVE-VAR(v], L;_.)}

else

cki — Kold[phip—p+1

fi
od
od
Perform register assignment based on [Hill67]
Gy g =y Bigj Uy ey B g — U
M — {r;,,r,-,,.. .,r.—m}

for each f; € F such that j — ¢ do
for each v} € V/ do
ifv, € Lj.and r;, € U' then SR;_; — SR;_;u{r,} fi
od
od
fi
Ui «UiuMi
mark f; as VISITED
end gblAlive,

Figure 5.16: Register Assignment for Policy AB-live
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K{1] = M+M+x

K[1] = M+M+M+x

Figure 5.17: Wrong Computation for K[i] when Values Are Added

As we said in the definition of K above, E:;-:O K[j] indicates the saving operations
to be eliminated when ¢ free registers are left for one of the function’s ancestors (see
Algorithm 1). However, the value of Zj:o K[7] does not correspond to the total number
of savings to be eliminated when i registers are left free for all the function’s antecedents,
because the functions at the same height of the one for which Z}:O K[j] savings can be
eliminated (if ¢ registers are free), can also reduce their RSR traffic by using the same i
free registers.

An alternative computation of K to indicate the savings to be eliminated by all the
ancestors at a given height cannot be performed. That is, the values of K for different
functions cannot be added. If they were, the estimate of the savings to be obtained
would be incorrect because callers to functions at different heights would have their
savings accounted multiple times. This is shown in Figure 5.17. Let us assume that the
maximum amount of traffic to be eliminated for fy, when there is a free register, is M
and for f;, is x. If f3 leaves one register free for its callers, the total number of savings
operations to be eliminated are M + x (assuming that M + x is larger than the local
traffic generated by f3). For fo, M+ M + . For f5, M+ M + M + z. That is the M
savings in f; are accounted multiple times and this is not correct because if function f;s
leaves one register free for its callers, only M + z savings will be eliminated, not 3M + z.
For this reason, the K values are computed as indicated in Algorithm 1.

Recursive Functions

Let us discuss now how to handle recursive calls. Let f;, f;,,..., f;, be functions in the
call graph that form part of a cycle (i.e., f;, = f;, = ... = fj, = f;). No RSR traffic
can be eliminated for the registers alive in this path because the registers might be used
by one of the function’s descendents, the function itself. However, the RSR traffic can
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be eliminated for the registers which are dead in the call (or calls} to functions in the
- cycle, but alive to functions outside the cycle. Thus, variables for functions in a cycle
are divided into two groups:

1. Variables which are alive in any call to a function in the cycle. Since the registers
to which these variables are assigned have always to be saved/restored, they are
assigned to the registers already used by the function’s descendents in order to
keep as many free registers as possible.

2. Variables which are dead in every call to functions in the cycle. These variables
are assigned in the same way as the ones for a non-recursive function. That is,
their assignment cost matrix is computed and an optimal register assignment is
performed as described in Algorithm 1.

Therefore, all functions in a cycle have to be marked so that they can be detected
by Algorithm 1, to perform the register assignment described. Moreover, the calls which
cause a cycle in the call graph have also to be marked. These calls have to be skipped
to avoid that the recursive procedure ghlAlive enters in an infinite loop while visiting
each descendent in reverse depth-first search order. Notice that we said marked and not
removed from call graph because they are needed to specify the SR set.

A Comparison with Other Inter-Procedural Register Allocators

Let us compare now our approach with Steenkiste’s [Stee87] and Chow’s [Chow88] inter-
procedural allocators. Steenkiste only considers the maximum number of registers al-
ready assigned to the function descendents. Disjoint registers are assigned to the func-
tions with higher height, while registers are available. This approach works well when
most of the traffic is concentrated at the bottom of the call graph, as it is the case for
LISP, the language for which this inter-procedural allocator was designed. LISP per-
forms, on the average, 80% of the calls at the bottom of the call graph. Steenkiste
reports that his allocator eliminates 70% of the RSR traffic.

As we have seen in Figures 5.8 and 5.14, C programs do not usually have a similar
locality either for the percentage of functions called or the percentage of traffic generated
by Policy A-live. For this reason, Steenkiste’s allocator would not perform as well as
for LISP. A comparison of the RSR trafic generated by his disjoint register allocator is
given below.

Chow’s inter-procedural allocator only considers the functions defined in the module
being parsed. That is, the allocator has only a partial view of the call graph. For the
functions being considered, Chow’s allocator performs live-variable analysis and tries to
assign live variables in a call to registers not used by the descendents and dead variables
to registers used. In this case, more free registers are left for the callers. Moreover, Chow
mentions a priority criterion to decide when to take a register or when to leave it for the
callers. However, not enough information is provided in his paper to present a precise
comparison of his priority criterion with our approach, as we will see below.
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no. Policy AS-live
TBP Policy One Pass Two Passes
regs. { program A-live disjoint | K =0 by def. priority | no tags with tags
ASM 1.0 (10.69) 0.83 0.83 0.76 0.78 0.68 0.68
NROFF || 1.0(276) || 079 { 079  0.79 0.79 0.79 0.79
SORT 1.0 (14.33) 0.19 0.17 0.17 0.17 0.17 0.17
12 VPCC 1.0 (5.85) 0.88 0.82 0.66 0.66 0.68 0.66
4 P. 1.0 (6.09) 0.53 0.51 0.47 0.47 0.46 0.46
SPICE 1.0 (9.78) 0.41 0.26 0.25 0.25 0.25 0.25
ASM 1.0 (13.07) 0.86 0.85 0.66 0.66 0.49 0.49
NROFF 1.0 (2.76) 0.77 0.77 0.77 0.77 0.74 0.74
SORT 1.0 (14.33) 0.19 0.11 0.11 0.11 0.11 0.11
16 VPCC 1.0 (5.85) 0.88 0.73 0.63 0.63 0.64 0.60
4 P. 1.0 (6.19) 0.53 0.46 0.42 0.42 0.40 0.40
SPICE 1.0 {11.81) 0.35 0.21 0.22 0.22 0.23 0.23
ASM 1.0 (13.07) 0.86 0.71 0.36 0.36 0.18 0.08
NROFF 1.0 (2.76) 0.77 0.73 0.72 0.72 0.67 0.66
SORT 1.0 (14.33) 0.15 0.10 0.10 0.10 0.10 0.10
24 VPCC 1.0 (5.85) 0.87 0.59 0.63 0.63 0.64 0.58
4 P. 1.0 (6.19) 0.51 0.41 0.38 0.38 0.35 0.33
SPICE 1.0 {15.79) 0.24 0.11 0.14 0.14 0.13 0.13
ASM 1.0 (13.07) 0.85 0.64 0.10 0.08 0.04 0.02
NROFF 1.0 {2.76) 0.68 0.66 0.66 0.66 0.66 0.66
SORT || 1.0(14.33) || 0.15 | 0.10  0.10 0.10 0.10 0.10
32 VPCC 1.0 (5.83) 0.82 0.55 0.58 0.58 0.63 0.55
4 P. 1.0 (6.19) 0.48 0.38 0.33 0.33 0.34 0.32
SPICE 1.0 (20.89) 0.22 0.11 0.12 0.12 0.13 0.12

Table 5.6: RSR Traffic Reduction for Policy A&-live

Evaluation of the RSR Traffic Reduction

Table 5.6 shows the RSR traffic generated by the approaches discussed before {and
for three additional approaches that will be introduced below) normalized with respect
to Policy A-live. The approach labeled “disjoint” corresponds to Steenkiste’s inter-
procedural allocator. As expected from our previous discussion, only SPICE and SORT
reduce significantly their RSR traffic (59%-78% for SPICE and 81%—85% for SORT).
These programs have most of their RSR traffic produced by the functions at the bottom of
the call graph (see Figure 5.14!!). For the other programs, less RSR traffic is eliminated
since no free registers are available for the functions (up in the call graph) which need

t Although Figure 5.14 shows that SORT has 96% of its RSR traffic in Region III, we have to consider
that SORT has 2 maximum height of 9. Thus, functions in Region III can be considered to be at the
bottom of the call graph.
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them.

The column labeled “K = 0” corresponds to the approach mentioned in our first
example. Live-variable information is taken into the account to assign registers (as in
Chow’s allocator) and free registers are taken as soon as needed because they do not
have any cost associated with them (since K is zero). Again, SPICE and SORT are the
programs which eliminate most of their RSR traffic, but not the others for the reasons
given previously.

The following column, labeled “by def.” (by definition), corresponds to the RSR
traflic generated by Algorithm 1. The name “by definition” comes from the order taken
to visit the descendents: they are visited according to the order they have been defined
by the programmer, i.e., they appear in the source code. As we can see in the table,
programs, like ASM, which have most of their RSR traffic up in the call graph eliminate
more RSR traffic than with the previous approaches. For instance, when 16 TBP registers
are available, the RSR traffic eliminated is 34% with “by def.” versus 15% with “K = 0.”

If Chow’s allocator had a global view of the entire call graph (rather than a partial one
to the module being parsed) and no priority was considered for leaving free registers to
the ancestors, then its performance would be equivalent to our “K = 0” approach. With
Chow’s undisclosed priority criterion, its performance would be between the “K = 0”
colummn and the “by def.” column.

Surprisingly, for some programs, the RSR traffic eliminated has not increased much
even with a larger set (NROFF) or has become even worse (VPCC and SPICE). This is
caused by the fact that registers are assigned according to the savings to be eliminated
(i.e., K) as given by a specific path. Remember that the functions are visited in reverse
depth-first search order. It could be that when a different path is taken, the values for K
will be greater and, therefore, more free registers will be left for the callers. To overcome
this limitation, three new approaches are presented next.

The first one is still performing a one-pass algorithm through the call graph. However,
rather than selecting the next function to visit by order of definition (as indicated in
Algorithm 1), the most (profiled) frequently used path is selected first. We expected
that the values of K would be greater and that more free registers would be left for the
callers. This is not the case as we can see in the column labeled “priority.” The RSR
traffic generated is the same as the one produced by Algorithm 1, except for ASM. Thus,
the selection by definition gives us the same RSR traffic reduction than the selection by
priority.

For the other two approaches, we perform two passes through the call graph. In
the first pass, the values of K are generated for each function so that K indicates the
maximum number of savings to be eliminated from any possible path to this function.
In the second pass, register assignment is performed as before.

The differences between these two new approaches (labeled “no tags” and “with
tags”) are explained with the case example given in Figure 5.18. Let us assume that
f; has a live variable which generates a significant amount of traffic (M). The savings
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Figure 5.18: K Values with Two Passes

associated to these variables are passed to each function fr,, fz,,... fz,. Since we assume
that M is large, each of these functions will request f; to leave a free register. Thus,
the K vector for f; will have p requests of M savings each, i.e., a request to leave p free
registers for the callers. If p registers are left for the callers, f; will be able to use only
one of them. This is the reason why VPCC generates more RSR traffic with “no tags”
than with “by def.”

To prevent this situation to happen, each value of K is tagged with a unique identifier
so that duplicated requests for a given function are eliminated. The RSR traffic generated
with this approach is shown in the last column of Table 5.6 labeled “with tags.” As we
can see in the table, this is the approach which generates the least RSR traffic for all
programs, except for SPICE. As we have already mentioned, SPICE has most of its
RSR traffic at the bottom of its call graph (see Figure 5.14) and, for this reason, the
“ = 0" approach is performing slightly better than “with tags.” Based on the profile
information, the SPICE behavior can be detected by the optimizer and, in this case,
it can perform a “K = 0" optimization for programs like SPICE and a “with tags”
optimization for the other programs.

Notice that for some programs the traffic reduction obtained by the different ap-
proaches is identical (e.g., for SORT) or almost equivalent for any register-set configu-
ration (e.g., for SPICE) or almost equivalent for certain register-set configurations (e.g.,
for NROFF and VPCC). However, for the four programs,

¢ The traffic never becomes worse when two passes with tags are performed than
when only one pass 1s performed.

o For some programs, like ASM, which have the traffic more evenly distributed
throughout the call graph, the traffic reduction becomes quite significant. For
instance, the RSR traffic generated when registers are assigned by “with tags” for
ASM is 89% (for 12 TBP registers), 74% (for 16), 22% (for 24), and 20% (for 32)
with respect when they are assigned “by def.”
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Therefore, the RSR traffic generated by the two approaches, “K = 0” for SPICE
and “with tags” for the other four programs, is the one that will be used henceforth to
compare the RSR traffic produced by Policy AS-live.

Summary

In conclusion, Policy A8-live has between 46% (for 12 TBP registers) and 32% (for 32}
of the RSR traffic generated by Policy A-live for the average of the four programs and
between 26% and 11% for SPICE. The RSR traffic reduction is more significant for
programs which have more of their RSR traffic produced at the bottom of the call graph
like SPICE and SORT.

If we compare Policy A8-live with Steenkiste’s inter-procedural register allocator,
our inter-procedural register assignment algorithm has between 65% and 87% of the
RSR traffic generated by Steenkiste’s allocator for the average of the four programs and
between 54% and 61% for SPICE.

If Chow’s allocator had a complete view of the call graph rather than a partial one
(only to the functions of the module being compiled as we discussed above), then its
performance would be between the columns “K = 0” and “by def.” In this case, Policy
A8 live would also generate less RSR traffic than Chow’s allocator for ASM, NROFF,
SORT, and VPCC, and the same RSR traffic for SPICE.

5.4.2 Global Policy A-lvOpt

The goal of the Global Policy A-lvOpt (AB-lvOpt) is the same one as Policy A&-live:
to eliminate the register saving/restoring instructions performed at a given call when
the registers being saved/restored are not used by any of the functions that might be
called from this point. However, we cannot use the same algorithm as Policy A&-live to
perform this, because we cannot eliminate the saving/restoring instructions for variables
in registers whose saving/restoring traffic has already been optimized by Policy A-lvOpt.
Only registers that have not been assigned by any of the descendent functions are candi-
dates for this optimization. An explanation for this is given below. Since the RSR traffic
can only be partially optimized, we have selected both Policies A8-live and A®-1vOpt for
inter-procedural optimization so that we can verify whether Policy A8-lvOpt generates
less RSR traffic than Policy A8-live as Policy A-lvOpt does for A-live.

In this section we discuss first why we cannot eliminate completely the RSR traffic for
variables in registers whose RSR traffic has already been partially optimized per function.
Afterwards, we present a one-pass algorithm to perform register assignment for Policy
A8.lvOpt. Finally, we discuss the RSR traffic reduction obtained by this algorithm and
by a two-pass algorithm equivalent to the one discussed for Policy A8-live.
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Cases for which Global Policy A-lvOpt Cannot Be Optimized

The saving/restoring of a register which is not used by the function that it is being called
and its descendents cannot always be eliminated (as in Policy A8-live) because:

1. A saving instruction could have already been eliminated by Policy A-lvOpt. This
situation is shown in Figure 5.19.a. Register r3 is saved before the call to f,. Since
register r3 is only read from this call to the call to f,, Policy A-lvOpt has eliminated
the register saving before this second call. Although f. and its descendents do
not make use of the register r3, the saving/restoring of the register cannot be
eliminated since the already optimized (eliminated) saving relies that the register
was previously saved.

2. A restoring instruction could have already been eliminated by Policy A-lvOpt. This
situation is shown in Figure 5.19.b. Since the register r3 is not used from the call
to fr to the call to f,, the restoring instruction after the call to f; and the saving
instruction before the call to f, have been eliminated by Policy A-lvOpt. Although
fr and its descendents do not make use of the register r3, the saving of the register
cannot be eliminated since the already optimized (eliminated) restoring relies that
the register was previously saved.

The above problems could be solved if control-flow information were available to the
inter-procedural optimizer. In this case, the optimizer could follow all possible paths to
check whether the elimination of a RSR instruction would have some negative effects
on already optimized RSR instructions. However, one of our assumptions is that no
control-flow information is available to the inter-procedural optimizer, except for the call
graph (see step number 1 and Figure 5.2 in Section 5.1). The alternative of providing
control-flow information to the inter-procedural optimizer is not attractive because of
the extra computation time required to perform a second control-flow analysis and the
extra storage space required in the data base to keep this information. Therefore, we
prefer to perform Policy A8-lvOpt without control-flow information.

A One-Pass Algorithm to Perform Register Assignment

The only case in which it is always possible to eliminate the RSR traffic occurs when
the variable is allocated to a register which is not used by any of the descendents of the
function (see Figure 5.20). Algorithm 2 presents how register assignment is performed.
Recursive functions are handled for Policy A8-lvOpt as we discussed for Policy Ag-live
(see Subsection 5.4.1). However, the algorithm does not show how register assignment
is performed for recursive functions to keep it simple.

Algorithm 2 Register Assignment for Policy A8-lvOpt.

Inputs: The call graph G, the set of defined functions { F'), the sets of selected local scalar
variables for allocation per function (V*), the dynamic profiled frequency of each
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CENTRY (fi, {rs}) |
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|
save r
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r3 not written
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Figure 5.19: Cases for which Policy A8-lvOpt Cannot Be Optimized
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A-lvOpt

[ENTRY (£, {ra—rs})

|
ave {rq, r3, r4,rsH =
ALL f, I 3 ENTRY (f,, {r1, 72}, leaf)

estore {rg, r4} | —_— e — — —

[save {rs} | - = = —

CALL f, —H— [ ENTRY (fy, {r}, leaf)

restare {ry,rq, 75} | — e e

ave {ry,rs} |_'
ICALL f, T ENTRY (f,, {r1,r2, r3}, leafl)
restare {ry, r5} . — — — _— _ _

L ] AB.-lvOpt: NO saving/restoring necessary for {rs,rs}

Figure 5.20: Policy A8-lvOpt versus Policy A-1vOpt

call (Qi~;), and the registers to be saved (5;-;) and restored (R,_,;) per each call.
Notice that because of the way the compiler has assigned registers (see step 1 at
the beginning of Section 5.4}, there is a direct correspondence between variables
and registers (i.e., v] has been assigned to register ri). For this reason, we can
use variable subindices as register subindices for the intra-procedural assignment
made by the compiler.

QOutputs: The set of registers assigned per function (M*), the set of registers to be saved

and/or restored per call (S;—; and R;.;) and the matrix A that indicates the
register assignment per function (as defined in Algorithm 1).

Locals: This algorithm uses the matrix C, the U7 sets, and the three n-element vec-

tors Kold, Knew, and X as given in Algorithm 1. It also requires the following
definition:

2 frp€ SN R;,
MEM.REFS(T;;, Sj._.t, Rj__,,t) = 1 ifrp € S_,'_.t U Rj_,t ATE e’ Sj_,t M Rj_,t
0 fre St UR; 4

Method: Apply algorithm given in Figure 5.21. As for Algorithm 1, we assume that

local scalar variables assigned to TBD registers for leaf functions have already
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procedure gblAlv.Opt (f;, Kold)
if f; has already been VISITED then return fi
Ul — MY @ m = V7|
if f; is NOT a leaf function then
{* compute savings to be eliminated for free registers left to callers *)
for each v} € V/ do X[s] — Ly, ;.. {Qj—« MEM_REFS(r,, S; .., Rj_.:}} od
sort X such that X[s;] > X[s2] > ... > X[sn]
p—g—1
fori=1,2,...,ndo
if X[s;] > Kold[q] then Knew(i] — X[sp]; p—p+1
else Knewfi] — Kold[g]; g — g+ L i
od
{* visit each function in reverse depth-first search order *)
for each f; € F such that j — ¢ do
gblAlv_Opt (fy, Knew)
Ui —uiuyt
od
fi
(* perform register assignment according to cost *)
if f; is a leaf function or U7 = @ then

al,j <—‘U‘i, as i *—‘U”z, veey Oz i—vJ,;,
M — {r,re,....rm}
elsep—1
for each v'; € Vi do
fori=n,n-1,...,1do

if r;, € U7 then
Cki — ZW,J’—»: {Qj_.g MEM_REFS(T],, Sj_.g, Rj_,g)}
else
cri — Kold[pl;p—p+1
fi
od
od
Perform register assignment based on [Hill67]
iy, U{’ iz U%’ ey Big g U
M) {1",‘“?“':, . ..,I",‘m}
for each f; € F such that j — ¢ do
Y — _.,'_.;;_ A RJ'_.:; Sj_.t — RJ'_.; — ﬂ
for each v} € V7 do
if r;, € U’ then
if r; € Y then Sj_.g -— Sj_.; U {1‘,',‘} fi
ifrp € Zthen Rj_; — Rj_ U{ry } fi
fi
od
od
fi
Ul — Ui uM?
mark f; as VISITED
end gblAlv_Opt.

Figure 5.21: Register Assignment for Policy A8-lvOpt
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no. Policy Policy AB-lvOpt
regs. | program A-lvOpt One Pass Two Passes

ASM 1.0 (5.79) 0.98 0.93

NROFF ([ 1.0 (1.69) 0.80 0.79

SORT 1.0 {8.57) 0.36 0.36

12 VPCC 1.0 {4.51) 0.88 0.90

4 P. 1.0 (3.85) 0.63 0.64

SPICE 1.0 (5.48) 0.58 0.63

ASM 1.0 (6.32) 0.95 0.79

NROFF |[ 1.0 (1.69) 0.78 0.74

SORT [ 1.0 (8.57) 0.28 0.28

16 VPCC L0 (4.51) 0.85 0.83

4 P. 1.0 (3.88) 0.59 0.56

SPICE 1.0 (6.25) 0.63 0.67

ASM 1.0 (6.32) 0.82 0.63

NROFF |[ 1.0 (1.69) 0.77 0.68

SORT 1.0 (8.57) 0.26 0.26

24 VPCC 1.0 (4.51) 0.82 0.76

4 P. 1.0 (3.88) 0.56 0.51

SPICE 1.0 (7.53) 0.52 0.56

ASM 1.0 (6.32) 0.70 0.30

NROFF || 1.0 (1.89) 0.68 0.68

SORT 1.0 (8.57) 0.26 0.26

32 VPCC 1.0 (4.51) 0.73 0.69

4 P, 1.0 (3.88) 0.51 0.47

SPICE 1.0 (8.56) 0.42 0.46

Table 5.7: RSR Traffic Reduction for Policy A8-lvOpt

been removed from V7 and that the initial call to gblAlv_Opt is performed with f;

being the main function and Kold = {0,0,...,0}.

Evaluation of the RSR Traffic Reduction

Table 5.7 shows the RSR traffic generated by the previous one-pass algorithm normalized
with respect to the RSR traffic produced by Policy A-lvOpt. When the call graph is
traversed only once, Policy A8-lvOpt has between 63% (for 12 TBP registers) and 51%
(for 32) of the RSR traffic produced by Policy A-lvOpt for the average of the four

programs and between 58% and 42% for SPICE.

Table 5.7 also shows the RSR traffic generated when two passes are performed
through the call graph. As we mentioned in the previous section, during the first pass,
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Figure 5.22: Distribution of the RSR Traffic Caused by Policy A-lvOpt

the values of K are generated per function taking into account all possible paths to this
function and they are tagged with a unique identifier so that duplicated requests can
be eliminated. The values of K are computed as indicated in Algorithm 2. During the
second pass, registers are also assigned as shown in the algorithm; however, the values of
K correspond to the maximum savings to be eliminated for any possible path, not only
to the first path taken by the programmer’s order of definition of the calls. When the
call graph is traversed twice, Policy A%-lvOpt has between 64% (for 12 TBP registers)
and 47% (for 32) of the RSR traffic produced by Policy A-lvOpt for the average of the
four programs and between 63% and 46% for SPICE.

If we compare the RSR traffic generated by Policy A8-lvOpt with one and two passes,
we obtain similar conclusions to the ones mentioned for Policy A%-live:

¢ For programs which have most of its RSR traffic concentrated at the bottom of the
call graph, one pass generates less or the same RSR traffic than two passes. This
is the case for SORT and SPICE. Figure 5.22 shows the distribution of the RSR
traffic generated by Policy A-lvOpt for these two programs.

¢ On the other hand, for programs which have their traffic more distributed through
the call graph, two passes generates less RSR traffic than a single one. The differ-
ence between RSR traffic produced by the two approaches becomes more significant
for programs which have most of their RSR traffic generated up in the call graph
like ASM (see also Figure 5.22). For instance, when two passes are performed for
ASM, the RSR traffic generated is 96% (for 12 TBP registers), 83% (16), 77% (24),
and 43% (32) of the traffic produced when only one pass is performed.

Since the optimizer can detect when most of the RSR traffic is generated at the bottom of
the call graph, it can select the best approach to perform register assignment. Thus, only
one pass is performed for SPICE and two for the four programs. The traffic generated
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Figure 5.23: RSR Traffic Generated by Policies A8-live and AS5-1vOpt

by these two approaches is the one that will be used henceforth to compare the RSR
traffic produced by Policy A8-lvOpt.

Let us compare now Policies A8-live and A8-lvOpt. While Policy A-lvOpt always
generates less RSR traffic than Policy A-live, this is not the case for their respective
inter-procedural optimizations. Policy A8-live generates less RSR traffic than A%-1vOpt
for SORT and SPICE (for any number of TBP registers), for ASM (for 24 and 32 TBP
registers), and VPCC (for 12, 16, and 24 TBP registers). For the other programs and
register-set sizes, the opposite is true. Consequently, when inter-procedural optimization
is performed, the selection of which intra-procedural policy to use is not as obvious as
it is when only intra-procedural optimizations are performed. Although for the average
of the four programs (see Figure 5.23!?) the RSR traffic is smaller for Policy AS-lvOpt
than for Policy A8-live (between 9% and 12%), the behavior of both policies for each
individual program does not help us to decide the best policy to select. The selection
could be based on one of following criteria:

1. To reduce the compiler complexity. In this case, Policy A-live should be selected
since it is easier to implement than Policy A-lvOpt.

2. To generate more efficient code for the programs compiled only with intra-proce-
dural optimizations; that is, for the programs that the programmer does not want
to obtain a profile execution and to perform inter-procedural optimizations. In this
case, Policy A-lvOpt should be selected.

Thus, if only one policy has to be implemented, the decision is left open for the compiler
writer who knows the characteristics and goals of the compiler because our measurements

2Since Excel (the program used to generate the graphs) does not let us generate superindices, the
names of the Global Policies A%-live and A%-IvOpt have been changed to gbl A-live and gbl A-lvOpt.
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have shown that it is impossible to select a unique static policy which performs well for
any program and register set configuration. However, the best solution is to let the
inter-procedural optimizer decide which policy to select based on the profile information
that it has available.

One additional advantage of inter-procedural optimization versus intra-procedural is
that the RSR traffic decreases for larger register sets for every program, except SPICE
{see Figure 5.23). As we mentioned in the previous chapter, this is not the case for the
intra-procedural static policies. When inter-procedural optimization is performed, the
RSR traffic decreases with larger register sets and, therefore, the overall data memory
traffic is also reduced as we will discuss in Section 5.5.

Summary

In conclusion, Policy A%.lvOpt has between 64% (for 12 TBP registers) and 47% (for
32) of the RSR traffic produced by Policy A-lvOpt for the average of the four programs
and between 58% and 42% for SPICE. When only intra-procedural optimizations are
performed, our measurements show that it is always more efficient to use Policy A-lvOpt
than Policy A-live because less RSR traffic is generated. However, our measurements
do not show which of their respective global policies should be used because for some
programs, Policy AB-live produces less RSR traffic than Policy A8-lvOpt and for others,
the opposite is true.

5.4.3 Global Policy B-If

The Global B Policy with Leaf Functions { BE8-If) eliminates the register saving/restoring
instructions performed at function entry and return when the registers being saved/re-
stored are not used by any of the functions that might call this function. Thus, we
again have to find an optimal disjoint register assignment for the functions in the same
path in the call graph to avoid as much RSR traffic as possible. In this section we
first discuss the problem using a small example; second, we present an algorithm to
perform register assignment; and, finally, we show the RSR traffic reduction obtained
with inter-procedural optimization.

As before, our approach is based on the fact that functions which are never active
simultaneously can share the same set of registers. Since registers are saved at the
callee, to perform a disjoint register assignment, the inter-procedural optimizer needs to
know which registers have already been assigned to the callers. Thus, we start assigning
variables to the root function (i.e., the main function for C programs). Afterwards, we
select a function for which its ancestors have their registers already assigned and assign
registers to it.

Since the register assignment is performed from the root function to the leaf functions
(rather than from the leaf to the root as Policies A8-live and A8-lvOpt), the call graph
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Figure 5.25: Distribution of the RSR Traffic Caused by Policy B-If

is ordered differently. Functions in the call graph are grouped according to their depth.
The depth of a function indicates the number of ancestors (or callers) in the longest path
from this function to the root function. The root function is the only function which
has zero depth. Notice that all leaf functions are not grouped in a single depth level (as
they are for Policies A8-live and A%-lvOpt), but distributed throughout the call graph
according to their depth.

Figures 5.24 and 5.25 shows the distribution by depth of the executed functions and
of the RSR traffic caused by Policy B-1If. Each region corresponds to one fourth of
the maximum depth of the call graph. For NROFF and SORT most of their executed
functions are concentrated in one region, as well as their RSR traffic generated by Policy
B-1f. For ASM, VPCC, and SPICE both the execution frequency and the RSR traffic
are more evenly distributed throughout the call graph. As we can see in Figure 5.25,
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variables
7 per function
V= {vf, v, v}
Ve = {of, 03, v3}
N Ve = {f}
V7 = {v], 2]}

Figure 5.26: An Example of Register Assignment for Policy B&.If

only ASM and VPCC have 30% of their RSR traffic!® in Region I. Most of RSR traffic is
concentrated in Regions II and III of the call graph. Thus, a disjoint register assignment
as the one discussed for Policy A&-live would only eliminate the RSR traffic at the top
of the call graph which is not the most significant one. For this reason, this approach
has not been considered for Policy B3-If and a more efficient algorithm has been used as
we will discuss below.

An Example of RSR Traffic Elimination

Let us illustrate the problems of performing an assignment by the example given in
Figure 5.26. Registers for the ancestors of f; have already been assigned. Now, we want
to assign registers for the variables in f;. We have three possibilities:

1. Assign registers from the subset of registers not used by its callers. Let us refer to
these registers as free registers since the RSR generated is zero. In this case, register
saving/restoring is eliminated since the registers have not been used previously.

2. Assign registers from the subset of registers already used by its callers. In this
case, no register saving and restoring is eliminated because the assigned registers
will have to be saved and restored each time the function is called independently
of who the caller has been. However, no free registers are consumed.

3. An intermediate approach on which we select registers from both subsets, which
combines the advantages of the above approaches: the RSR traffic for some registers
is eliminated without exhausting the number of free registers available for the
callers.

13 As for Figures 5.14 and 5.22, this RSR traffic only corresponds to the traffic which can be eliminated
by the inter-procedural static policies. RSR traffic generated by functions in a cycle is not accounted in
these figures because it cannot be eliminated.
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Figure 5.27: Alternative Register Assignments for Function f4

These alternatives are reflected in Figure 5.27. The U7 sets now indicate the registers
which are defined in function f; and all its callers. The most suitable assignment depends
on several factors:

e The number of free registers.

e The number of times that f is executed.

¢ The number of registers required by fj.

¢ The number of functions executed after fy.

¢ The number of registers required by the descendents of f,.

For instance, if f4 is executed only a few times, then the second alternative will be more
attractive because more free registers will be left for the f; descendents and, therefore,
more RSR traffic will be eliminated. On the other hand, if f4 is a heavy-used function,
then the first alternative will be, because no register saving/restoring traffic is generated.
Thus, we have to compare the RSR traffic that can be eliminated when one of the
registers not used by the function’s ancestors is taken with the RSR traffic that could
be eliminated if the register is left for one of the function’s descendents.

If we just consider the immediate descendents, the register savings that could be
eliminated can be easily computed. For instance, in our example, if only one free register
is left to be shared by the functions fs, fs and f7, 1 x5+ 1 x 15+ 1 x 10 = 30 savings
could be eliminated; if 2 registers are left, 2 x 5 + 1 x 15+ 2 x 10 = 45 savings could
be eliminated; and if 3 registers are left, 3 X 54+ 1 x 15+ 2 x 10 = 50 savings could
be eliminated. Since f; is executed 16 times and requires 3 registers, when the 3 free
registers are taken, 3 X 16 = 48 savings are eliminated; when only 2 are taken and 1 is
left for the functions’ descendents, 30 + 16 x 2 = 62 savings are eliminated; when only 1
is taken and 2 are left, 45+ 1 X 16 = 61 savings are eliminated; finally, when no register
is taken, 50 savings are eliminated. Thus, the optimal solution for this specific case is
the one shown in Figure 5.28.
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Figure 5.28: Optimal Variable-to-Register Assignment for Function f4

Although it can be advantageous for f4 to use 2 out of the 3 free registers, it prevents
that these free registers be used by one of functions descendents. Thus, to preserve some
free registers for the function’s descendents we not only consider the savings to each
immediate descendent, but also the savings for all descendents. This is important for
the functions which are at the top of the call graph because as we can see in Figure 5.25,
most of the RSR traffic generated by Policy B-1f is concentrated in Regions II and III of
the call graph.

A Two-Pass Algorithm to Perform Register Assignment

We now present an algorithm that describes our approach to perform register assignment.
We assume that the call graph does not have any cycles. If it does, then they are
eliminated in the way explained in Subsection 5.4.1.

In the first pass through the call graph, the two-pass inter-procedural optimizer uses
the frequencies obtained by the average profile to compute the savings generated for
all functions at a given depth. Once the RSR traffic generated by all functions at a
given depth is known, the optimal number of free register to be left for the function’s
descendents to generate the least RSR traffic is determined as it is indicated in the
algorithm (in a similar manner to the example given above). This number could be
the optimal for the execution frequencies obtained, but it might not be for the current
program execution. However, this is usually the case as we will show below. In the
second pass, registers are assigned and RSR instructions are eliminated according to the
registers already assigned to the ancestors and the number of registers to be left for the
descendents.

Algorithm 3 Register Assignment for Policy B8-1f.

Inputs: The call graph G, the set of defined functions (F), the sets of selected variables
for allocation per function (V7), the profiled frequency of each executed function
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foreach ff € Fdofori=1,2,...,| Vi |do
XPEPTH(S;)[§] . XDEPTH(S)[] 4 @F VAR.DEF(+7, V7) od od
for{=1,2,..., MAXDEPTH do
Yi0] —0
fori=1,2,...,ndo Y'[i] — ¥'[i = 1] + X'[{] od
od
wl _l V1=main |
for I =2, ..., MAXDEPTH do
g—n-W-1 Z[0] —0
if ¢ # 0 then
for i = 1,2,...,¢ do Z[l] — Yf[l] + maxk=;+1'___,MAXDEpTH(Y"[q — 2])
find s such that Vi, Z[i] < Z[s]
Wl —wi-1 45
else W —n fi
od
for f; = O[1], O[2], ..., O[p] do .
U3 Uyey U g = |0 | m | V9 |
if m=0then M7 — SR’ —
else if f; is in a cycle or ¢ = n then (* see Figure 5.30.(I) *)
au_,' — U‘I,‘..., Amj — v-fn
M? — SR — {ri,ra,...,rm}
else if f; is a leaf function then
if m < n — ¢ then (* see Figure 5.30.(II) *)
Gg41,j — Vls oooy Gggm,j — Uy
SR — @; M — {Tq+1, veey 1"q+m}
else (* see Figure 5.30.(I11) *)
a,w: — Ui, caey an_m+1,j — va
SR — {fn_mits cver Tghs M7 = {ra_my1, ..., Pa} fi
else s — WPDEFTH(S;}
if m < sand ¢ < s then
if m < s — ¢ then (* see Figure 5.30.(IV) *)
Qgt1,5 v, rery Ggdmj %
SR — 0; M7 —{rop1, ..o, Pogm}
else (* see Figure 5.30.(V) *)
a5 j — 'UJp vers Gaomylj — UJn:;
SR — {remyty oo rghs M) —{rs_mypr, ..., s} fi
else {* see Figure 5.30.(VI) *)
al_j — ’U‘I, sevy Bmyj va
M —{ry, ..., rm} ‘
if ¢ < m then SR’ — {ry,..., 7} else SR’ — M7 fi
fi
fi
Ui — 0T uM!
od

Figure 5.29: Register Assignment for Policy B8-1f
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(I)if f is in a cycle or ¢ = n then

n

v

A =V, ...,0 +—

M «5SR «{r,...,r }

(IT) if f is a leaf function and m < n — ¢ then

3
T

I 72

Gy = Uiy ..., Qg — v
SR 1
M 1—{T+1,...,T+ }

(ITI) if f is a leaf function and m > n — g then

1

Vv

—

—_—

a = Py ey Gg -V
SR «{r_y1 ,...,7}
M 4—{1‘_+1 ,...,1"}

(IV)if m < sand ¢ < sand m < s — g then

3
s —

g -

Gy = Uyy vy @y — v
SR ~ 9

M 1—{T‘+1,...,T+ }

(V}if m<sand ¢g< sand m > s — g then

w 3

(VI)}if m > sor ¢ > s then

—

—

v

a Uy Gg — v
SR «{r_s1 ,...,7}
M *—'{1‘_+1 ,...,7‘}
a1 <= V,...,0a — v

M (——{T‘l,...,!" }
if g < m then SR « {rq,..

.7 telse SR « M fi

Figure 5.30: Alternative Register Assignments for Algorithm 3
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(QF = 2ovt, t—j Qt—j), and a p-element array O with an acyclic numbering of the
nodes such that, in increasing order, O always contains the caller before the callee
(except for recursive functions). The recursive functions should have been taken
into account when the O array is built.

Outputs: The set of registers assigned per functions (M7), the set of registers to be
saved and restored per function (SR?), and the matrix A that indicates the register
assignment per function as defined in Algorithm 1. Note that since all registers are
saved at function entry, the precise variable-to-register assignment is not important.
Each variable in V7 can be distributed arbitrarily among the registers given by M7
because each one of them generates the same amount of RSR traffic. We have just
kept the definition of A4 to be consistent with the previous algorithms.

Locals: A set U? per function to indicate the registers defined by the function f;j and all
its ancestors in the call graph; the variable MAXDEPTH which indicates the maxi-
mum depth of the call graph G; MAXDEPTH arrays X'li], i =1, 2, ..., n used to
estimate the saving traffic caused by the variables v}, ¥j such that DEPTH(f;) = I;
MAXDEPTH arrays Y'[i], 1 =0,1,..., n used to estimate the saving traffic
caused by the variables v{, vJ, ..., v}, Vj such that DEPTH(f;) = [; an n-element
array Z[i] used to estimate the optimal number of registers to leave free for the
descendents; and a MAXDEPTH-element array W/ used to indicate the maximum
register number to be used for the functions at depth [. Notice that W! — Wwi-1
gives the number of free registers between the functions at depth [ and the ones at
depth | — 1.

Method: Apply algorithm given in Figure 5.29. As for Algorithm 1, we assume that
local scalar variables assigned to TBD registers for leaf functions have already
been removed from V7. 0

For Policy BE-If it is not necessary to apply the cost-assignment algorithm as we did
in Algorithms 1 and 2 for Policies A8-live and AB-lvOpt. Since all registers are saved
at function entry if they are already used by the ancestors, the cost matrix would have
identical values for all the assignments to registers already used by the ancestors.

Evaluation of the RSR Traffic Reduction

Table 5.8 shows the RSR traffic generated by the previous two-pass algorithm normalized
with respect to the RSR traffic produced by Policy B-lf. The RSR traffic for Policy B&-1f
is given for two different values of the frequencies Q;_, used to compute X*[i]: the first
column (“profile”) corresponds to the frequencies values obtained by the average profile
program execution (as given in Section 5.2). The second one (“optimal”) corresponds to
the real execution frequencies of the program being measured. The comparison between
both columns let us conclude how good are the frequency estimations provided by the
average profile.

From the table we conclude the following;:
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no. Policy Policy B8-If Policy Policy
regs. | program B-If profile optimal || A8-live | A8-lvOpt

ASM 1.0 (5.94) | 1.00 1.00 1.22 0.91

NROFF 1.0 (L.74) 0.97 0.96 1.25 0.77

SORT | 1.0 (4.14) | 0.91 0.72 0.59 0.75

12 VPCC 1.0 (5.28) | 0.94 0.91 0.73 0.77

4P, 1.0 (3.17) | 0.94 0.88 0.88 0.77

SPICE 1.0 (5.77) | 1.00 1.00 0.44 0.55

ASM 1.0 {5.95) | 0.69 0.69 1.08 0.84

NROFF [ 1.0 (1.74) | 0.82 0.83 1.18 0.72

SORT 1.0 {4.14) | 0.90 0.34 0.39 0.57

16 VPCC 1.0 (5.28) | 0.94 0.90 0.66 0.71

4 P. 1.0 {3.17) { 0.87 0.71 0.78 0.68

SPICE 1.0 (5.86) | 0.99 0.98 0.42 0.67

ASM 1.0 (5.95) 0.42 0.42 0.17 0.67

NROFF [ 1.0 (1.74)| 0.63 0.63 1.05 0.66

SORT 1.0 (4.14) | 0.12 0.04 0.36 0.53

24 VPCC 1.0 (5.28) | 0.86 0.83 0.64 0.65

4 P. 1.0 (3.17) | 0.57 0.53 0.65 0.62

SPICE 1.0 (5.92) | 0.97 0.96 0.31 0.66

ASM 1.0 (5.95) } 0.27 0.27 0.04 0.32

NROFF |l 1.0 (1.74) ] 0.62 0.62 1.04 0.66

SORT 1.0 (4.14) | 0.03 0.03 0.36 0.53

32 VPCC 1.0 (5.28) | 0.77 0.71 0.61 0.59

4 P. 1.0 (3.17) 0.49 0.47 0.62 0.57

SPICE 1.0 (5.95) | 0.96 0.96 0.39 0.61

Table 5.8: RSR Traffic Reduction for Policy B&-If

1. The estimations provided by the average profile are usually representative of the
program behavior. The exception to this rule is SORT because it is a small program
and the RSR traffic is concentrated in one out of the two comparison functions,
which is not the one executed by the profile input data.

2. For SPICE, the RSR traffic reduction is insignificant (up to 4% for 32 TBP regis-
ters; see also Figure 5.31), because SPICE has a heavy register usage and, therefore,
functions at the top of the call graph use all the TBP registers available and do
not leave any free registers for the rest of the functions.

3. For the four programs, when a small register set is available (12 or 16 TBP regis-
ters), the RSR traffic reduction is, on the average, less than 13%. The reason for
this is the same as the one given above for SPICE. For larger register sets, the
RSR traffic becomes more significant: for 24 TBP registers, 43% of the RSR traffic
is eliminated and for 32, 51%. Also, notice that the RSR traffic becomes smaller
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Figure 5.31: RSR Traffic for Policy B&-If

for larger register sets (see also Figure 5.31).

Global Policy B-If versus Global Policies A-live and A-lvOpt

We now compare Policy B8-If with Policies A8-live and AB-lvOpt. The behavior of the
global policies does not have the same pattern as their corresponding intra-procedural
policies. The RSR traffic generated by Policies AB-live and AB-lvOpt normalized with
respect to Policy B-If is also shown in Table 5.8. If we compare these policies with Policy

BE-If we conclude that:

e For SPICE and VPCC, Policy B8-1f generates more RSR traffic than both Policies
Af.live and AS%-lvOpt. For SPICE, Policy BE.if has between 225% (for 6 TBP
registers) and 318% (for 24) of the RSR traffic generated by Policy A8-live. For

VPCC, Policy B&-If has between 129% (for 6) and 141% (for 12).

e For NROFF and SORT as well as the average of the four programs, Policy B-1f
generates the least RSR traffic when 24 or 32 TBP registers are available, but not
for 12 or 16. For instance, on the average, Policy B8-If has 107%, 113%, 87%,
and 78% of the traffic generated by Policy AB-live when 12, 16, 24, and 32 TBP

registers are available,

e For ASM, the opposite is true: Policy B8-1f generates the least RSR traffic when 12
or 16 TBP registers are available, but not for 24 or 32. For instance, Policy BE&-If
has 82%, 64%, 241%, and 704% of the traffic generated by Policy A8-live when 12,

16, 24, and 32 TBP registers are available.

Therefore, the performance of the static intra and inter-procedural optimizations de-
pends notably on the program’s characteristics. Our measurements have shown that it
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is impossible to select a unique static policy that performs well for any program and
register-set configuration. The optimizer should have the option of selecting the most
appropriate policy based on the average profile information gathered by a few program
executions. With this profile information, the optimizer performs the three static opti-
mizations and selects the one which generates the least RSR traffic for the average of
the profiled programs as the one to be used.

Summary

Our measurements have shown that Policy B8-1f has 94%, 87%, 57%, and 49% of the RSR
traffic generated by Policy B-lf for the average of the four programs when 12, 16, 24, and
32 TBP registers are available and up to 94% for SPICE. Compared with Policies A8-live
and AB-lvOpt, our measurements have shown that it is impossible to select a unique static
policy which performs well for any program in a given register-set configuration. Thus,
the optimizer should have the option of selecting the most appropriate policy based on
the average profile information.

5.4.4 Global Policy G-If

The Global Policy G with Leaf Functions (GE-1f) differs from the previous inter-pro-
cedural optimizations in that no RSR instruction has to be eliminated, because the
unnecessary RSR traffic is already eliminated by the dynamic behavior of the policy (see
Section 3.3). The goal of this optimization is to implement a real round robin register
assignment for the functions in the same path in the call graph, like the one shown in
Figure 5.32. The reason for this is that we would like that, whenever it is possible, the
set of registers defined for a function be different from the set of registers defined for
the functions that this one might call. In this case, the probability of having to save a
register is reduced.

Program execution usually spans a small set of functions [Patt85a]. This is a direct
consequence of program locality. Thus, if the set of functions being executed at a given
time uses disjoint registers, then no register saving/restoring will be performed. This
is equivalent to a multiple-window scheme because the register set is shared by several
functions without any register saving/restoring until the register set overflows (i.e., a
new function is called such that it uses a register already being used).

Our previous measurements [Hugu85a, Section 3.8] show that, on the average, 54%
of the functions execute with a nesting depth of 2. That is, if all the caller-callee pairs
have disjoint registers assigned, then at least 54% of the executed functions will not
have to perform any register saving/restoring. This number increases up to 85% if the
register set is large enough to always keep all variables allocated for 3-consecutively-
called functions. We will show that when only the immediate ancestors are considered,
the RSR traffic generated is less than when the function’s immediate ancestors and their
immediate ancestors are considered.
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Figure 5.32: Disjoint Register Assignment for Policy G&-If

In this section we first introduce how we perform register assignment using a small
example; second, we present a one-pass algorithm to perform register assignment; third,
we show the RSR traffic reduction obtained with inter-procedural optimization; and,
finally, we comment on the advantages of using Policy GB-If versus the other static
global policies.

An Example of Register Assignment

Figure 5.33 shows the call graph of a program with 6 functions (F = {fy, f2,..., f&})
The variables selected for allocation by the intra-procedural allocator are also shown in
the figure. The functions in the call graph are visited from the root (the main function
for C programs) to the leaves in such a way that when we visit a function, we have already
visited all its callers. This is the same order used by Policy B8-1f (see Algorithm 3). In
this example, the visits are performed in the order given by the function subindexes.

Let us assume that there are 5 TBP registers ({ry, 72, ..., 75}). Registers are as-
signed as follows:
¢ The 3 variables of f, are assigned to registers ry, ro, and r3.

» For f5, a disjoint assignment is possible because only two more registers are required
(see Figure 5.34).
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variables per function

V= {v,v3, 03} | V' = {v],03}
V2= {o], 3}

Vi= {v%a vg%vg} Ve = {”?}

Ve = {v},v}}

s v3 v3
T4 vi vf’
r3| ol v3
r2 | v} vl vi %
| v v | vl
h f2 s o fs fo F

Figure 5.34: Variable-to-Register Assignment

For f3, this is not possible because 3 registers are required. Thus, two variables
are assigned to the two free registers 4 and r5 and the third variable to one of the

registers already used by the caller of f3 (f)-

For f4, two free registers are also available since we only consider the immediate

ancestors.

For fs, no free registers are available because all five registers are taken by its
callers as we can see in Figure 5.34. In this case, we select the registers used in the
lowest execution path. For our example, this corresponds to the call from f; and,
therefore, variables v; and v§ are assigned to registers r and r3.

For fg, there is no problem either because two registers are free.

168




A One-Pass Algorithm to Perform Register Assignment

Four different approaches have been evaluated to perform register assignment. These
approaches are based on the following two factors:

1. The number of ancestors to consider, 1 or 2. In the former case, only the immediate
ancestors are considered for obtaining a disjoint register assignment. In the latter,
the immediate ancestors and their immediate ancestors are considered.

2. The functions in a cycle (if any). In one case, we ignore the functions which are
in a cycle. The disjoint register assignment is performed only for the registers
already assigned to the ancestors. In the other, if a function is inside a cycle,
all the functions inside the cycle are considered for obtaining a disjoint register
assignment in addition to the ancestors.

We now present ounly one algorithm for one of the approaches. This corresponds
to the case of taking into account the functions in the same cycle and the immediate
ancestors for obtaining a disjoint register assignment. This approach has been selected
because it is the one that generates the least RSR traffic, as we will discuss below. The
other algorithms could be easily deduced from this one.

Algorithm 4 Register Assignment for Policy G5-1f.

Inputs: The call graph G, the set of defined functions (F'), the sets of selected variables
for allocation per function (V7), the average profile frequency of each call (Q,-,;)
and of each function (Q7 = vt t—j @t—j), and a p-element array O with an acyclic
numbering of the nodes such that in increasing order, O always contains the caller
before the callee (except for recursive functions). The recursive functions should
have been taken into account when the O array is built.

Outputs: The set of registers defined per function ( M?) which might be saved if the reg-
isters have already been used in the exterior levels and the matrix A that indicates
the register assignment per function. As for Policy B&-If, the matrix A is not really
necessary because any variable in V7 can be assigned to any register in M7,

Locals: A set U7 per function to indicate the registers defined by the immediate ancestors
of function f; and if f; is in a cycle, the registers defined by the other functions in
the cycle; the definition REG_.USED(r;, M7} as given in Algorithm 1, and an array
X = {X[1],..., X[n]} used to estimate the usage of each register by the immediate
ancestors of the function being processed at a given time and by the functions in
the same cycle (if any).

Method: Apply algorithm given in Figure 5.29. As for Algorithm 1, we assume that
local scalar variables assigned to TBD registers for leaf functions have already
been removed from V7. m]
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for f; = 0[1],0[2],...,0[p] do
Ul e LJV!,t—oj M
if f; is inside a cycle then
for each f; € F in the same cycle do U/ — UJ UM* od

f
qg—| U7 |
me—| V|

if m <n-q then
(* at least m registers not used by functions at previous depth *}
let v}, v},...,v) be assigned to ri,,ri,,..., i such that
i1 = [1 + max(s, ¥r, € U’)] mod n
fork=2,...,mdo
if r(1+,-k_1)modn E U’ then
iy = (14 tp.1) modn

else
iy = (s + ik~ ) mod n such that )
T(1+ik_1)modns =+ +» T(s—1+ix_)modn € U7 and
T(s4ik_1)modn g U’
fi
od
a.'l!_,- — ‘UJl, ey Bi 5 ’va
M7 — {rl'uri'g," 'srt'm}
else (* (n — ¢) registers not used by functions at previous depth *)
fori=1,...,ndo
X[i]=n0

for each f; € F such that ¢t — j do
if Q:—; # 0 then
X[7] — X[i{] + REG.USED(r;, M*) Q:_.;
else
X[i] — X[i] + REG_USED(r;, M*)

od
if f; ts inside a cycle then
for each f; € F in the same cycle do
if Q:,; #0 then
X[i] ~ X[i] + REG_.USED(r;, M") @*
else
X[i] — X[{] + REG_USED(»;, M*)

od
fi
od
sort X such that X[i;] < X[i] < -+ < X[im] < --+ < X[in]
(* notice that X[ij] = ... = X[in_¢] =07%)
a.-,!j — v{, ey B4 <—1JJ,.,,

M - {rilart'gj"wrl'm}

od

Figure 5.35: Register Assignment for Policy G&-1f
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If we compare this algorithm with the algorithms for Policies A%-live, A8-lvOpt, and
BE-lf, we can observe its simplicity.

The return-address optimization discussed in Section 5.3 can be merged with the
Policy G8-If optimization. A few TBP registers can be used as link registers so that
the optimizer performs a disjoint assignment for the functions which are in the same
execution path. When program execution spans a small set of functions, it is possible
that no register saving/restoring has to be performed for these link registers. Moreover,
the saving instructions for the link registers at the bottom of the call graph can be
eliminated, as it has been indicated in Section 5.3. However, this feature has not been
considered in the measurements presented next because we would like to compare only
the RSR traffic generated by Policy G8-If with the one produced by the global static
policies.

Evaluation of the RSR Traffic Reduction

Table 5.9 shows the RSR traffic generated by the four approaches mentioned above
normalized with respect to Policy G-lf. From the table we conclude that it is better:

1. To obtain a disjoint register assignment with the immediate ancestors rather than
with these and their ancestors. When two ancestors are considered, more RSR
traffic is usnally generated. The exceptions to the rule are ASM and VPCC when
24 or 32 TBP registers are available.

2. To consider the functions in a cycle to perform a disjoint register assignment. The
programs which benefit the most are the ones which have a large percentage of
recursive functions like NROFF and VPCC (see Table 5.3).

Thus, the RSR traffic generated by the approach which considers the immediate ancestors
and the functions in cycles is taken as the RSR traffic produced by the “standard” Policy
GB8-1f. Notice that this approach is the one given in Algorithm 4.

Policy G&-If has between 42% (for 16 and 32 TBP registers) and 72% (for 12) of the
RSR traffic generated by Policy G-1f for the average of the four programs and between
72% (for 24) and 93% (for 16) for SPICE (see Figure 5.36). The only program whose RSR
traffic is not reduced by the inter-procedural optimizer is NROFF. When 24 or 32 TBP
registers are available, Policy GB-If has 140% or 143% of the RSR traffic generated by
Policy G-lf. Since the absolute traffic generated was almost insignificant (0.04 registers
per function for Policy G-If versus 0.06 for Policy G&-1If), we decided not to look into this
anomaly.

Global Dynamic Policy versus Global Static Policies

Table 5.10 shows the RSR traffic generated by the global policies normalized with respect
to Policy G8-1f. The dynamic Policy G3-If generates the least RSR traffic. For the
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Figure 5.37: Inter-Procedural Optimized RSR Traffic for the Four Programs
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Policy GB8-If

no. Policy without ftns. in cycle | with ftns. in cycle
regs. | program G-If 1 anc. | 2 anc. 1 anc. 2 anc.
ASM 1.0 (2.31) 0.84 0.73 0.84 0.73
NROFF |[ 1.0 (0.13) 1.04 1.23 0.85 1.29
SORT 1.0 {0.95) 0.73 0.95 0.73 0.95
12 VPCC 1.0 {1.87) 0.68 0.99 0.67 0.92
4P 1.0 (0.76) 0.74 0.97 0.72 0.94
SPICE 1.0 (2.49) 0.78 0.83 0.81 0.92
ASM 1.0 (2.09) 0.55 0.72 0.55 0.72
NROFF || 1.0 (0.08) 1.56 1.58 0.96 1.59
SORT 1.0 (1.16) 0.17 0.17 0.17 0.17
16 VPCC 1.0 (1.89) 0.47 0.61 0.48 0.59
4 P. 1.0 (0.78) 0.45 0.54 0.42 0.53
SPICE 1.0 (2.55) 0.79 0.85 0.93 1.00
ASM 1.0 (1.98) 0.39 0.26 0.39 0.26
NROFF || 1.0 (0.04) 1.66 2.14 1.40 2.39
SORT 1.0 (0.17) 0.50 0.50 0.50 0.50
24 VPCC Lo {1.13) 0.60 0.59 0.58 0.58
4 P, 1.0 {0.39) 0.61 0.60 0.58 0.61
SPICE 1.0 (2.27) 0.77 0.82 0.72 0.85
ASM 1.0 (1.97) 0.17 0.15 0.17 0.15
NROFF { 1.0 (0.04) 1.77 1.72 1.43 2.05
SORT 1.0 (0.08) 0.99 0.99 0.99 0.99
32 VPCC 1.0 (1.48) 0.40 0.39 0.39 0.40
4P, 1.0 (0.44) 0.45 0.43 0.42 0.45
SPICE 1.0 (1.84) 0.89 1.10 0.82 1.17

Table 5.9: RSR Traflic Reduction for Policy G3-1f

average of the four programs (see Figure 5.37), the best static policy has between 445%
(Policy A8-1vOpt for 12 TBP registers) and 816% (Policy B&-.1f for 32) of the RSR traffic
generated by Policy G2-If. For SPICE (see Figure 5.38), the best static policy is Policy
AB-live for any register set configuration. Policy A8-live has between 103% (for 16) and
155% (for 32) of the RSR traffic generated by Policy G8-If. The difference on RSR traffic
between the dynamic Policy GE-If and the static global policies is smaller than with the
other four programs and their average because the static Policy A8-live eliminates most
of the RSR traffic for SPICE since most of this traffic is at the bottom of the call graph
(96% as we mentioned in Subsection 5.4.1).

One additional advantage of Policy G&.-lf with respect to the global static policies is
that the RSR traffic reduction obtained is not dependent of the program structure. Let
us discuss why this happens for Policies A8-live and A8-IvOpt. Analogous reasons could
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no. Policy Policy Policy Policy
regs. | program GE-If Af_live | AS-IvOpt | BE-If
B ASM [[1.0 (1.95) [ 3.73 2.77 3.07 |
NROFF [ 1.0 (0.11) || 19.73 12.18 | 15.27
SORT 1.0 (0.69) 3.54 4.52 5.45
12 | vPcc [ 1.0 (1.26) || 3.04 3.21 3.93
4 P. 1.0 (0.55) 5.09 4.45 5.44
SPICE 1.0 {2.02) 1.27 1.57 2.86
ASM 1.0 (L14) ]| 566 | 4.39 3.60
NROFF |l 1.0 (0.07) || 29.29 17.86 | 20.43
SORT 1.0 (0.20) 8.00 11.80 18.60
16 | veoe [ Lo (0.90) || 3.89 4.17 5.50
4 P. 1.0 (0.32) 7.69 6.78 8.66
SPICE || 1.0 (2.38) || 1.03 1.66 2.46
ASM [ 10 (0.78) | 1.32 5.13 3.18
NROFF || 1.0 (0.06) | 30.33 19.17 | 18.17
SORT || 1.0 (0.08) | 18.38 27.38 6.50
24 | VPCC || 1.0 (0.65) | 5.20 5.29 7.02
4P |[1.0 (0.22) || 9.36 9.00 8.14
SPICE || 1.0 (1.64) || 1.10 2.39 3.61
ASM [ 1o (0.34) [ o0.68 5.59 4.76
NROFF || 1.0 (0.06) || 30.17 19.17 | 17.83
SORT 1.0 (0.08) 18.38 27.38 1.63
32 | vpcc Il 1.0 (0.58) || 5.55 5.34 7.02
4 P. 1.0 (0.19) 10.42 9.53 8.16
SPICE [[ 1.0 (1.50) [ 1.55 2.41 3.90

Table 5.10: RSR Traffic Reduction for the Global Policies

be given for Policy B2-If.

The number of register saving/restoring instructions eliminated for a specific function
fj depends on the number of registers which are not used for the functions which might
be called. If these functions have already all the registers assigned {because, for instance,
one of them needs all of them!?), then the optimizer will not be able to remove any RSR
instruction for either f; or any of its ancestors. Thus, if the RSR traffic is generated
mainly by f; and its ancestors, a small RSR. traffic reduction will be obtained.

Moreover, if the program has a set of functions which are called recursively and they
are frequently used (i.e., they generate a significant part of the RSR traffic), a small
traffic reduction will again be obtained because the optimizer cannot eliminate all the

" Notice that with our scheme the number of variables to allocate is decided per function. An alter-
native approach would be to limit the maximum number of variables to be allocated per function and to
start the compilation process again rather than to continue it with the assembler (see Figure 5.2).
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RSR instructions for these functions.!®> This is the case for NROFF and VPCC. For
instance, when 16 TBP registers are available, 68% of the RSR traffic generated by
Policy A-lvOpt for NROFF is produced by functions in cycles and, therefore, it cannot
be eliminated; for VPCC, this percentage is 67%. Therefore, the RSR traffic reduction
for the global static policies depends on the program structure.

Policy G8-lf does not have any of these two limitations. While Policy B&-If elimi-
nates the RSR traffic which occurs at the top of the call graph and Policies A%-live and
A&.lvOpt, at the bottom, Policy GB8-If eliminates the RSR traffic from any function in
the call graph depending only on the dynamic register usage, but not on its location in
the call graph. Moreover, Policy G8-1f can even eliminate the RSR traffic generated by
functions in a cycle. The only program’s characteristic that influences the performance
of Policy G&-If (as well as of Policies A8-live, A8.lvOpt, and B&-If) is the register usage
required by the program. The more registers are required by the program, the less RSR
traffic reduction is obtained. But this is a perfectly understandable factor.

In conclusion, Policy GE-If not only generates the least RSR traffic, but it also sim-
plifies the compiler implementation and reduces the RSR traffic independently of where
the functions that generate most of the RSR traffic are located in the call graph, and of
the percentage of recursive functions in the program.

5.4.5 Summary

This section has presented and discussed four new algorithms to perform register as-
signment in such a way that the RSR traffic is reduced. These algorithms have to be
applied to the whole program once the call graph is known. The complexity added to

*We said all because the optimizer can in fact eliminate the RSR traffic generated by the registers
which are dead for all the calls to functions in the cycle.
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the compilation process is justified by the RSR traffic reduction obtained.

Three of these algorithms are for the static policies. Policies A8-live and AS-lvOpt
eliminate the register saving/restoring instructions performed at a specific call when
the registers being saved/restored are not used by any of the functions that might be
called from this point. Policy B2-lf eliminates the register saving/restoring instructions
performed at function entry and return when the registers being saved /restored are not
used by any of the functions that might call this function. Thus, these policies find a
disjoint register assignment such that the maximum number of register saving/restoring
instructions can be eliminated.

These inter-procedural optimizations reduce the RSR traffic of their respective intra-
procedural counterparts:

¢ Policy AS-live has between 46% (for 12 TBP registers) and 32% (for 32) of the
RSR traffic generated by Policy A-live for the average of the four programs and
between 26% and 11% for SPICE (see Table 5.6 and Figure 5.23).

¢ Policy A-IvOpt has between 64% (for 12 TBP registers) and 47% (for 32) of the
RSR traffic produced by Policy A-lvOpt for the average of the four programs and
between 58% and 42% for SPICE (see Table 5.7 and Figure 5.23).

o Policy BE.If has 94%, 87%, 57%, and 49% of the RSR traffic generated by Policy
B-If for the average of the four programs when 12, 16, 24, and 32 TBP registers
are available and up to 94% for SPICE (see Table 5.8 and Figure 5.31).

The static inter-procedural optimizations not only generate less RSR traffic than their
respective intra-procedural optimizations, but also the RSR traffic produced decreases
for larger register sets. In Chapter 4 we mentioned that when intra-procedural register
allocation and assignment is performed, there is no need for having more than 12 TBP
registers for non-numeric applications since the decrease in the local scalar traffic is bal-
anced with the increase in the RSR traffic. This is not case when inter-procedural register
assignment is performed as we can see comparing Figures 4.17 and 5.37. Therefore, a
larger register set can be efficiently utilized when the compiler uses Policies AS-live,
AB-lvOpt, or BE&.1{.

Our measurements have not shown which is the best static policy to be used for any
program and for a given register-set configuration, because the RSR traffic reduction
provided by these policies closely depends on the characteristics of the program—its
maximum depth, where most of its RSR traffic is generated, the maximum number
of registers allocated by the intra-procedural optimizer to the functions at the bottom
of the call graph for Policies A8-live and AB-lvOpt or to the top for Policy BS-If, etc.
Consequently, it is impossible to select a unique static policy which performs well for
any program for a given register-set configuration. The optimizer should have all three
static policies available so that the RSR traffic generated by each policy is computed,
based on the profile information, and the most appropriate one is selected.
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The fourth algorithm is for the dynamic Policy G. Policy G5-If assigns registers
in a round-robin fashion for the functions in the same path, whenever this is possible.
The optimizer, in this case, does not have to eliminate any register saving/restoring
instruction because this is already being done by the dynamic behavior of the policy
itself. Policy GS8-If has between 42% (for 16 and 32 TBP registers) and 72% (for 12)
of the RSR traffic generated by Policy G-If for the average of the four programs and
between 72% (for 24) and 93% (for 16) for SPICE (see Table 5.9 and Figure 5.36).

Policy GB-If generates less RSR traffic than any of the static inter-procedural opti-
mizations (see Table 5.10 and Figures 5.37 and 5.38). The best static policy has between
445% and 816% of the RSR traffic generated by Policy G&-If for the average of the four
programs, and between 103% and 155% for SPICE.

Moreover, Policy G8-If has three more advantages with respect to the static policies:

1. While Policy BE.1f eliminates the RSR traffic which occurs at the top of the call
graph and Policies A8-live and A%-lvOpt, at the bottom, Policy G8-1f eliminates
the RSR traffic from any function in the call graph depending only on the dynamic
register usage, but not on its location in the call graph.

2. While the static policies cannot eliminate completely the RSR traffic generated by
the recursive functions in a program, the dynamic Policy G&-If can eliminate it
depending on the register usage in the cycle.

3. While all three static policies have to be implemented so that the optimizer can
select the most convenient one to be used for a specific program, this is not nec-
essary for the dynamic Policy G2-If because it always generates the least traffic.
Moreover, Algorithm 4 for Policy G8-If is the easiest to implement.

In conclusion, Policy G3-If is our best approach to simplify compiler complexity and
to eliminate the RSR traffic as much as possible, independently of the characteristics of
the program.

5.5 General-Purpose Register Set Partition

In the previous sections three types of inter-procedural optimizations have been presented
to reduce the data memory traffic: for global scalar traffic, for the return-address traffic,
and for the RSR traffic. As we have seen in Section 4.5, their contribution towards the
overall data memory traffic is not equally weighted (see Figure 4.28 or 5.1). For this
reason, since the total number of general-purpose registers is fixed (and we would like
to keep this number small), it is necessary to consider the best usage of these registers
towards the overall data memory traffic reduction.

Seven different register-set configurations are evaluated. One configuration is for a
16-register file and one for a 64. For a 32-register file, five different partitions have
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been evaluated, which corresponds to several register distributions among the different
optimizations (e.g., more registers for global scalar variables and fewer for locals).

1. 12 to-be-preserved registers, 0 registers for global scalar variables, and 1 link reg-
ister (denoted by 12 TBP + 0 GS + 1 LR).

2. 12 to-be-preserved registers, 12 registers for global scalar variables, and 2 link
registers (denoted by 12 TBP + 12 GS + 2 LR).

3. 12 to-be-preserved registers, 8 registers for global scalar variables, and 6 link reg-
isters (denoted by 12 TBP + 8 GS + 6 LR).

4. 16 to-be-preserved registers, 8 registers for global scalar variables, and 2 link reg-
isters (denoted by 16 TBP + 8 GS + 2 LR).

5. 16 to-be-preserved registers, 6 registers for global scalar variables, and 4 link reg-
isters (denoted by 16 TBP + 6 GS + { LR).

6. 24 to-be-preserved registers, 2 registers for global scalar variables, and 1 link reg-
ister (denoted by 24 TBP + 2 GS + 1 LR).

7. 32 to-be-preserved registers, 16 registers for global scalar variables, and 8 link
registers (denoted by 32 TBP + 16 GS + 8 LR).

For the first configuration, the RSR traffic generated by the intra-procedural Policies
B-If and G-If is used. Policy B-If has been selected because it generates the least RSR
traffic among the static policies (see Figures 4.14 and 4.21). This configuration is used as
the comparison base for the inter-procedural optimizations. For the other configurations,
the best static global policy is selected for each number of TBP registers. Thus,

o For the four programs, the RSR traffic generated by Policy A8-lvOpt is selected
for 12 and 16 TBP registers and by Policy B&.1f for 24 and 32 (see Figure 5.37).

o For SPICE, the RSR traffic generated by Policy A8.live is selected for any number
of TBP registers (see Figure 5.38).

In this section we first compare the overall data memory traffic generated by the best
static global policy and by the dynamic Policy G5-If for the seven register-set configu-
rations given above. Afterwards, we evaluate the speed-up factor that we might obtain
for a RISC-like machine using the model described in Section 4.6.

5.5.1 Overall Data Memory Traffic Reduction for the Four Programs

The data memory traffic generated by the best static global policy for the four programs
is shown in Figure 5.39 and by Policy G8-If, in Figure 5.40. For a 32-register file, the
configuration 16 TBP + 8 GS + 2 LR produces the least traffic. When there is no
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Figure 5.40: Data Memory Traffic for the Four Programs with Policy G&-1f

architectural support, the inter-procedural optimizer generates 78% of the data memory
traffic produced by the intra-procedural optimizer with Policy B-1f. With both archi-
tectural and compiler support, the data memory traffic generated is 67% with respect
to the intra-procedural optimizer with Policy B-1f, 79% with respect to Policy G-If, and
86% with respect to the inter-procedural optimizer with the best static policy.

Since the global scalar traffic is twice the traffic caused by the return address (see
Figures 5.3 and 5.9), it is better to use registers for globals rather than for link registers.
As we can see in Figures 5.39 and 5.40, the configurations 16 TBP + 6 GS + 4 LR and
12 TBP + 8 GS + 6 LR generate more traffic than the 16 TBP + 8 GS + 2 LR and
12 TBP + 12 GS + 2 LR, respectively.

The RSR traffic reduction obtained by increasing the number of TBP registers from
12 to 16 is equivalent to the global scalar traffic reduction obtained by increasing the
number of registers for globals from 8 to 12 (see Figures 5.37 and 5.3). However, when
the number of TBP registers is increased from 16 to 24 and, consequently, the number of
registers for globals is reduced from 8 to 2, more data memory traffic is generated, 9% for
the static policies and 13% for the dynamic Policy GB8-lf, because for the four programs
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almost no new local scalars are assigned to registers even though the number of TBP
registers is increased beyond 12 (see Figure A.1). The RSR traffic reduction when the
number of TBP registers is increased from 16 to 24 (see Figure 5.37) is much smaller that
the global scalar traffic reduction obtained with 8 registers rather than 2 (see Figure 5.3).
Thus, for the four programs, it is better to limit the number of TBP registers to 16 (out
of 32). This is not the case for SPICE, as we will discuss in Subsection 5.5.2.

If the inter-procedural optimizer only reduces the RSR traffic (i.e., no registers for
global scalars and only 1 link register), the overall data memory traffic generated by
Policy G8-If is 96% of the one produced by Policy G-if and by the best static policy,
91% of Policy B-lf. Therefore, the interprocedural optimizer has also to consider global
scalars and the traffic cansed by the return address to obtain a more significant data
memory traffic reduction (79% and 78% as we mentioned above).

For a 64-register file, when there is no architectural support, the inter-procedural
optimizer generates 68% of the data memory traffic produced by the intra-procedural
optimizer with Policy B-lf. With both architectural and compiler support, the data
memory traffic generated is 60% with respect to the intra-procedural optimizer with
Policy B-If, 70% with respect to Policy G-1f, and 88% with respect to the inter-procedural
optimizer with the best static policy.

When the register file size is doubled (from 32 to 64), the overall data memory
traffic generated with the configuration 32 TBP + 16 GS + 8 LR is 87% of the traffic
produced with a configuration 16 TBP + § GS + 2 LR when only compiler support is
provided and 89% when both architectural and compiler support are provided. Thus,
when inter-procedural optimizations are performed, there is still a significant data traffic
reduction for larger register sets. This is not the case for an intra-procedural optimizer
{see Figure 4.26). Although the selection of a 64-register file could be justified because
of the data memory traffic reduction, there are some other considerations to be taken
into account:

1. The number of bits required in the instruction format to address a register.

2. The number of bits required for the mask. For 32 TBP registers a 32-bit mask is
required. If instructions are 32-bit wide, two instructions will be required for every
saving/restoring instruction to load the 32-bit mask.

3. The access time to the register file. Since larger register files have a negative effect
on the processor cycle time [Sher84, Ditz87b], it might not be convenient to have
such a large register file (see Subsection 2.1.1).

4. The additional area required in the chip for a VLSI implementation. For the
dynamic Policy G&-1f, not only the area for the general-purpose registers has to be
considered, but also the area required for the register pointers (see Section 3.3).

5. The performance of a cache memory. It might be that with a 32-register file most
of the conflicts to the cache memory have been eliminated. Thus, the register file
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Figure 5.41: Remaining Data Memory Traffic for the Four Programs

increase from 32 to 64 might not have a significant influence on the performance of
the overall system. However, this is an open topic for discussion (see Section 6.2).

Therefore, the data memory traffic is not the only factor that the designer has to consider
to make his/her final choice.

In conclusion, the inter-procedural optimizer with the dynamic Policy G&-If is our
best approach to reduce significantly the overall data memory traffic. For a 32-register
file, the inter-procedural optimizer with Policy G&-If has 67% of the data memory traffic
generated by an intra-procedural optimizer with Policy B-If, 79% of the traffic generated
by an intra-procedural optimizer with Policy G-If, and 86% of the traffic produced by an
inter-procedural optimizer with the best static policy. Figure 5.41 shows the remaining
data memory traffic after performing inter-procedural optimizations {compare this figure
with Figure 5.1).

5.5.2 Overall Data Memory Traffic Reduction for SPICE

In this section the overall data memory traffic reduction obtained for the seven register-
set configurations mentioned above is evaluated for SPICE. The reason for separating
completely the results for the four programs with the ones for SPICE is that when only
compiler support is provided, the data memory traffic generated is the same as the one
produced when both architectural and compiler support are. This is a direct consequence
of the heavy register usage required by SPICE and caused by its floating-point variables
(see Section 4.3) and the good performance of the static Policy A%-live because the RSR
traffic is concentrated at the bottom of the call graph (see Figure 5.14).

The best approach for SPICE is to have as many TBP registers as possible for a
given register-set configuration. The data memory traffic generated by the best static
global policy for SPICE is shown in Figure 5.42 and by Policy G&-If, in Figure 5.43. For
a 32-register file, the best register-set partition is to have 24 TBP registers, 2 registers
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for global scalars, and 1 link register.!® The data memory traffic generated by this con-
figuration with the best static policy is 82% of the one generated by an intra-procedural
optimizer with Policy B-If and 12 TBP registers. When both architectural and compiler
support are available, the inter-procedural optimizer generates 82% of the data traffic
produced by the intra-procedural optimizer with Policy B-1f, and 89% by the optimizer
with Policy G-1f. However, the data memory traffic generated is the same as the one
produced when only compiler support is provided.

When the number of TBP registers is increased from 24 to 32 and, consequently, the
general-purpose register file is doubled from 32 to 64 registers, the data memory traffic
is smaller with architectural support than without, but only by 3%.

Although the data memory traffic generated with and without architectural support
is the same for SPICE, we still believe that Policy G8-If is the best approach to reduce
the overall data memory traffic. Although the inter-procedural optimizer with Policy

'®We assume that 24 registers is the maximum number of TBP registers available in the processor,
because the instructions to save and restore the TBP registers need to specify an opcode in addition to
the 24-bit mask.
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AB.live can eliminate most of the RSR traffic for a program like SPICE (because most of
it is concentrated at the bottom of the call graph as we mentioned in Subsection 5.4.1;
see Figure 5.14), this might not the case for most numeriec programs. If the program has
its traffic more evenly distributed throughout the call graph or concentrated in functions
which are part of a cycle, Policy GB-If will again generate less RSR traffic than any static
policy and, possibly, less overall data memory traffic. However, we do not have any data
to support this statement because SPICE is the only numeric application that we have
measured.

Figure 5.44 shows the remaining data memory traffic after performing inter-procedur-
al optimizations (compare this figure with Figure 5.1). As expected, the data memory
traffic distribution is identical for both approaches, with and without architectural sup-
port.

Finally, let us mention how the compilation process is organized. By default, the
intra-procedural register allocator only assigns variables to 16 TBP registers since this
1s a convenient number for non-numeric applications. If the inter-procedural optimizer
concludes that more TBP registers should be used (like for SPICE), the optimizer asks
the programmer to recompile the programs with an option to get more local scalar vari-
ables assigned to registers. This option can be given to the compiler by the programmer
or can be available directly to the compiler from the data base (see Figure 5.2). Thus, if
we assume that non-numeric applications account for most of workload of the system,!”
most of the programs will not need to be recompiled because the assembler can modify
the register assignment and the register saving/restoring instructions.

5.5.3 Speed-Up

In this section we evaluate the speed-up factor that we might obtain for a RISC-like
machine. The model used to compute this speed-up factor is the one described in Sec-

7If this is not the case, the above assumption can be changed so that, by default, the register allocator
always assigns variables to 24 TBP registers.

183



speed-up

factor

1.25

B MAX
1.20

B siatic/32
gbl G-1f/32
BB siatic/64
gbl G-1f/64

Memory cycles

SPICE

Figure 5.45: Speed-Up for Inter-Procedural Optimizations w.r.t. Policy B-If

tion 4.6. The execution speed has been computed for the average of the four programs
and for SPICE for the following four schemes:

static/82: The inter-procedural optimizer uses the best static policy for each program
as described at the beginning of Section 5.5 with the 16 TBP + 8 GS + 2 LR
register-set partition for the four programs and with the 24 TBP + 2 GS + 1 LR,
for SPICE. These are the partitions which generate the least traffic for a 32-register
file (see Subsections 5.5.1 and 5.5.2).

gbl G-if/32: The inter-procedural optimizer uses the dynamic Policy G8-If with the same
register-set partitions as static/32.

static/64: The inter-procedural optimizer uses the best static policy for each program,
as described at the beginning of Section 5.5, with the 32 TBP + 16 GS + 8 LR
register-set partition.

gbl G-If/64: The inter-procedural optimizer uses the dynamic Policy G&-If with the
32 TBP + 16 GS + 8 LR register-set partition.

The execution speed of these configurations is compared with a maximum spped-up.
This has been computed for the case when there are 32 TBP registers for locals and 16
registers for globals, and when the RSR traffic is eliminated as well as the traffic caused
by the return address.

The speed-up factor obtained by these schemes with respect to an intra-procedural
optimizer with Policy B-If and one with Policy G-If is shown in Figures 5.45 and 5.46,
respectively. For a 32-register file and the average of the four programs:

1. When only compiler support is provided, the inter-procedural optimizer with the
best static policy has a speed-up factor of 1.07, when 2 processor cycles are required
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to access memory, and 1.11 when 3 are required with respect to the intra-procedural
optimizer with Policy B-If.

2. When both architectural and compiler support are provided, the speed-up factor
is similar (1.06 and 1.10) for the inter-procedural optimizer with Policy G&-if with
respect to the intra-procedural optimizer with Policy G-If.

For SPICE, the speed-up factors are of 1.09, 1.13, 1.05, and 1.08, respectively.

If we compare the inter-procedural optimizer with the dynamic Policy G8-If with
respect to the inter-procedural optimizer with the best static policy, for the four programs
the speed-up factor is 1.04, when 2 processor cycles are required to access memory, and
1.06 when 3 are required. However, for SPICE the program execution speed is the same
with and without architectural support because the data memory traffic generated by
both approaches is also the same.

Finally, notice that for the four programs, the execution speed of a program with the
static/64 configuration is almost equivalent to the execution speed with the gbl G-If/32
configuration.

5.6 Summary

In this chapter we have presented how the data memory traffic can be further reduced
with inter-procedural optimizations. Our optimizer concentrates its efforts in three ar-
eas: global scalars, return addresses, and register savings and restorings. While static
information is sufficient for the intra-procedural optimizer to perform an efficient register
allocation (see Table A.1), we have shown that this is not the case for the inter-procedural
optimizer (see Table 5.2). Thus, the average of three ezecution profiles for each program
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is used by our optimizer (see Section 5.2).

To reduce the global scalar traffic, the optimizer selects the most frequently used
variables indicated by the average execution profile and assigns them to registers (if they
do not have any alias). We have shown that most of the traffic is produced by a few
variables (see Table 5.2 and Figures 5.3 and 5.4). For instance, 8 registers cut the global
scalar traffic by 49% for the average of the four programs and by 44% for SPICE. On the
other hand, if only static information is used to select the variables to allocate, the traffic
reduction is only 21% and 6%, respectively. For this reason, only dynamic information
is used by the inter-procedural optimizer.

To reduce the return-address traffic, two different approaches have been evaluated.
On one hand, architectural support in the form of multiple PCs, which are handled as a
multiple-window register file with a window size of one. In this case, no memory traffic
is generated while there are no overflows or underflows. Qur measurements have shown
that the RA traffic is almost eliminated if at least an 8-register file is provided (see
Table 5.5).

On the other hand, with compiler support, the optimizer selects a few general-purpose
registers to be used as link registers. All the functions at a given height, except recursive
functions and functions called through a pointer, share the same link register (see Sec-
tion 5.3). The average execution profile is used by the optimizer to select the functions
at a given height which generate the most of the RA traffic. When the program does
not have a large percentage of recursive functions, the RA traffic can be significantly
eliminated with a few registers (see Table 5.4 and Figures 5.9 and 5.10). For instance,
with 4 registers, 90% of the RA traffic is eliminated for SPICE, 99% for SORT, and
about 60% for the other programs.

The tradeoff between selecting architectural support and compiler support is that for
the former, the PC traffic is almost eliminated, but a special programming environment
has to be defined to handle overflows and underflows and the processor flow has to be
interrupted when these conditions arise. For the latter, the optimizer makes a better use
of the general-purpose registers available, but the amount of traffic eliminated is limited
by the program’s characteristics (e.g., recursive functions).

To reduce the register saving/restoring traffic, four inter-procedural policies have
been introduced based on the intra-procedural Policies A-live, A-lvOpt, B-If, and G-}f.
The inter-procedural policies perform register assignment in such a way that the RSR
traffic is reduced. Policies A8-live and A®.-lvOpt eliminate the register saving/restoring
instructions performed at a specific call when the registers being saved/restored are not
used by any of the functions that might be called from this point. Policy B&-If eliminates
the register saving/restoring instructions performed at function entry and return when
the registers being saved/restored are not used by any of the functions that might call
this function. Thus, these static policies find a disjoint register assignment such that the
maximum number of register saving/restoring instructions can be eliminated.

The static inter-procedural optimizations not only generate less RSR traffic than
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their respective intra-procedural optimizations (see Tables 5.6, 5.7 and 5.8), but also the
RSR traffic produced decreases for larger register sets (see Figures 5.23 and 5.31). In
Chapter 4 we mentioned that when intra-procedural register allocation and assignment
are performed, there is no need for having more than 12 TBP registers for non-numeric
applications because the decrease in the local scalar traffic is balanced with the increase in
the RSR traffic. This is not case when inter-procedural register assignment is performed.
Therefore, a larger register set can be efficiently utilized when the compiler uses Policies
A8.live, A%-lvOpt, or BE-If.

However, our measurements have not shown which is the best static policy to use for
any program and for a given register-set configuration, because the RSR traffic reduction
provided by these policies closely depends on the characteristics of the program (its
maximum depth, where most of its RSR traffic is generated, the number of registers
allocated by the intra-procedural optimizer, etc.). Thus, the optimizer should have all
three of them available so that it can select the most appropriate one for a program
based on the profile information (as discussed in Subsection 5.4.3).

The fourth inter-procedural policy to reduce the RSR traffic is for the dynamic Pol-
icy G. Policy G&-If assigns registers in a round-robin fashion for the functions in the
same path, whenever this is possible. The optimizer, in this case, does not have to elim-
inate any register saving/restoring instruction because this is already being done by the
dynamic behavior of the policy itself.

Policy GB-1f generates less RSR traffic than any of the static inter-procedural op-
timizations (see Table 5.10 and Figures 5.37 and 5.38). For the average of the four
programs, the best static policy has between 445% (for 12 TBP registers) and 816%
(for 32) of the RSR traffic generated by Policy G&-lf. For SPICE, Policy A&-live, which
is the best static policy for any register-set configuration, has between 103% and 155%.

Policy G8-1f not only generates the least RSR traffic, but also it simplifies the compiler
implementation and reduces the RSR traffic independently of where the functions that
generate most of the RSR traffic are located in the call graph and of the number of
recursive functions in the program (see Subsection 5.4.4),

The traffic generated by each optimization and the number of registers required for
each one have been evaluated to find the best partition of the register set to obtain the
maximum overall traffic reduction (see Figures 5.39 and 5.40). For the four programs
and a 32-register file (with 16 TBP registers, 8 registers for globals, and 2 link registers),
the inter-procedural optimizer with Policy G8-If has 86% of the traffic produced by the
inter-procedural optimizer with the best static policy (selected by the optimizer itself).
In this case, the speed-up factor that we might obtain for a RISC-like processor is of 1.04,
when 2 cycles are required to access memory, and 1.06 when 3 are required. However, for
SPICE, the data memory traffic and the execution speed are the same with and without
architectural support (see Figures 5.42, 5.43, 5.45, and 5.46).

Since Policy G8-If usually generates less data memory traffic than any static policy
(with the exception of SPICE), we still believe that both architectural and compiler
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support (i.e., Policy G8-1f) is the best approach to simplify the compilation process and
to reduce the overall data memory traffic, independently of the characteristics of the
programs.
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Chapter 6

Conclusions and Future Work

In this dissertation, architectural and compiler support that may be provided to make
function calls more efficient has been discussed and evaluated. In Section 6.1 we comment
on the most important results obtained and in Section 6.2 we outline future work.

6.1 Conclusions

Chapter 3 presented six new architectural policies to reduce the register saving and
restoring overhead during function calls for single-window architectures. These policies
make use of dynamic information to know which registers have been used during program
execution. The six dynamic policies have been evaluated and compared with the two
conventional static policies: to save/restore registers at the caller (Policy A} and to
save/restore at the callee (Policy B). We concluded that one of the dynamic policies,
Policy G, is our best candidate for implementation since it is the one that generates
the least RSR traffic. Policy G has between 12% and 31% of the traffic generated by
Policy B and between 5% and 20% of Policy A when there are between 6 and 32 TBP
registers available to the optimizer. These measurements have been performed using
the code generated by the Portable C Compiler (PCC) for four programs: the NROFF
word processor, the SORT program, the VAX-11 assembler (ASM), and the Portable C
Compiler for VAX-11 (VPCC).

To perform the above-mentioned evaluations a new tool has been designed: a Block-
and-Actions Generator (BKGEN). BKGEN reduces drastically the overhead intro-
duced by a conventional simulator—the tool traditionally used to obtain these types
of measurements. BKGEN obtains a version of the program being measured which is
directly executable on the existing machine (EM) and associates with each block of pro-
posed machine (PM) instructions a set of actions that reflect the measurements to be
taken for the PM. When the program is executed on the EM, the measurements associ-
ated with the PM are collected. To be able to do so, a mapping is defined to associate
each EM block with a PM block of actions. The main advantage of BKGEN is that since
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the execution time is substantially reduced, large typical programs (like compilers, word
processors, etc.) can be measured.

The implementation of Policy G has also been sketched. We have shown that most of
the activities required by Policy G are performed in parallel with the main CPU activities
and that the number of cycles required to perform the register saving/restoring opera-
tions is the same as the number required by the conventional static policies. Although
the feasibility of the implementation of Policy G depends on many design requirements
and constraints, we have not found any major drawbacks for which its implementation
should be discarded. Therefore, we encourage the designer to consider its inclusion in
his/her design.

We have also introduced six new compiler optimizations to reduce the RSR overhead.
Two of these optimizations are intra-procedural and based on live-variable analysis, Poli-
cies A-lvOpt and G-live, and the other four are inter-procedural, Policies AB-live,
AE.lvOpt, BE-If, and GB-If.

Chapter 4 presented the two new intra-procedural policies to reduce the RSR traffic
and compared them with the already existing policies, Policies A-live, B-If, and G-If.
Policy A-lvOpt always generates less RSR traffic than the standard Policy A-live for
any program and any number of TBP registers (6, 8, 12, 16, 24, and 32). Policy G-live
also generates less RSR traffic than Policy G-If; however, since the implementation of
this optimization requires the execution of additional instructions, it has been discarded
because the increase in instruction memory traffic is larger than the overall decrease in
data memory traffic.

When no architectural support is provided, our measurements have not shown which
static policy is best to use, Policy A-lvOpt or Policy B-If. Depending on the program'’s
characteristics, one policy performs better than the other. Thus, we propose that the
compiler should let the programmer decide which of the two policies he/she wants to
use. When architectural support is provided, Policy G-If generates the least RSR traffic.

Our measurements do not justify the use of more than 12 TBP registers for non-
numeric applications, because for larger register sets the reduction in local scalar traffic
is compensated for by the increase in RSR traffic. This is not the case for SPICE. For
SPICE, the optimizer can efficiently use a larger register set because of its heavy use of
registers. When 12 registers are available to the allocator of the GNU C Compiler, the
overall data memory traffic reduction when both architectural and compiler support are
provided is 15% for the average of the four programs and 8% for SPICE with respect to
when only compiler support is provided.

Chapter 5 presented our inter-procedural optimizer. The optimizer not only reduces
the RSR traffic, but also the global scalar traffic and the traffic caused by the return
address. Our measurements have shown that each inter-procedural RSR policy reduces
significantly the RSR traffic generated by its equivalent intra-procedural policy. When
architectural support is provided, Policy G8-If generates the least RSR traffic. However,
when only compiler support is provided, our measurements have not shown which of the
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three static policies is the best to use because their performance is closely related to
the program’s characteristics. Thus, all three policies should be available to the inter-
procedural optimizer so that it can select the most appropriate one for each program
based on a dynamic ezecution profile.

The inter-procedural optimizer can efficiently use a larger register set not only to
reduce the RSR traffic, but also the global scalar traffic and the return-address traffic.
For the average of the four programs and a 32-general purpose file, with 16 TBP registers,
8 registers for globals, and 2 link registers, the inter-procedural optimizer with Policy
G8-If has 67% of the data memory traffic generated by an intra-procedural optimizer
with Policy B-If, 79% of the traffic generated by the intra-procedural optimizer with
Policy G-If, and 86% of the traffic produced by the inter-procedural optimizer with the
best static policy (selected by the optimizer itself).

For SPICE, the overall data memory traffic generated when both architectural and
compiler support are provided is the same as the one generated when only compiler
support is provided.

Since Policy G&-If usually generates less data memory traffic than any static policy
(with the exception of SPICE), the best approach is to provide both architectural and
compiler support (i.e., Policy GE-lf). Policy G&-If simplifies the compilation process and
reduces the overall data memory traffic, independently of where the functions, which
generate most of the RSR traffic, are located in the call graph and of the percentage of
recursive functions in the program.

6.2 Suggestions for Future Work

Although throughout the dissertation several questions have been answered with quan-
titative measurements, there have been others which have only been broached. In this
section, we outline future research in the following three areas:

1. VLSI implementation of Policy G.

2. Cache memory and registers.

3. Register allocation.

VLSI Implementation of Policy G

In Section 3.5 we discussed several factors (communication delays due to longer data
buses, fan-out increase, etc.) which might affect the processor cycle time. We also men-
tioned that the effect of these factors on the processor cycle time depends on on many
design requirements and constraints for a given implementation and that although an
implementation was performed, the effect of Policy G in this implementation could not
be generatized to other alternative implementations—even for the the same architecture.
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However, it is important to have an idea of at least one implementation to obtain a
better understanding of the factors which might affect the processor cycle time.

Cache Memory and Registers

In this dissertation we have considered the data memory traffic as the evaluation param-
eter to compare the performance of the different optimizations proposed. However, this
parameter does not reflect the overall performance of the system when a cache memory
is present. Since a cache memory is required to reduce the data memory traffic produced
by the local and global arrays and structures (the most significant part of the data mem-
ory traffic once intra-procedural optimizations have been performed; see Figure 4.28),
we would like to perform measurements to obtain an answer for the following questions:

1. Is the “real” (i.e., non-cached) data memory traffic reduced when global scalar
variables are assigned to registers? Since the few global scalars which are assigned
to registers are frequently referred, it might be that they usually are available in
the cache.

2. When inter-procedural optimizations are performed less data memory traffic is
generated so that less conflicts are produced in the cache memory. Thus, can the
cache memory size be reduced for an equivalent performance when inter-procedural
optimizations are performed?

No measurements are proposed for local scalar variables since we prefer to assign local
scalar variables to registers rather than to the cache, as we mentioned in Subsection 2.2.1.

Register Allocation

In Subsection 2.1.3.2 we mentioned that the register allocator can assign variables to
registers in three different scopes: per basic block, per procedure or function, and for the
whole program.

Intra-procedural register allocators can assign local scalar variables to registers with
any of the first two alternatives, per basic block or per function. When all local scalar
variables can be assigned to TBP registers, the local scalar traffic generated by both
approaches should be the same (zero). Otherwise, the first alternative might generate
less local scalar traffic than the second one if the spill traffic for the first alternative is
smaller than the non-assigned local scalar traffic plus the RSR traffic for the second one.
Since our Policy G cannot be used when variables are assigned per basic block (because
the saving traffic is not performed at function entry), measurements should be taken to
determine which alternative generates the least traffic.

Inter-procedural allocators can assign local scalar variables to registers with any of
the three alternatives. In fact, Chow’s allocator [Chow84] does it for the first (per basic
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block); our inter-procedural optimizer, for the second (per function); and Wall’s allocator
[Wall86], for the third (for the whole scope of the program). When the whole call graph
can be mapped to the TBP registers available, the local scalar traffic should be the same
for any alternative since all RSR instructions and spill instructions should be eliminated.
If only compiler support is provided, the remaining local scalar traffic corresponds to the
variables with aliases and the variables defined in recursive functions. If architectural
support is provided, part of the local scalar traffic generated by the variables defined in
recursive functions can also be eliminated.

When the whole call graph cannot be mapped to the TBP registers available, then
we should compare the traffic generated by the non-assigned variables with the RSR
traffic produced by our inter-procedural optimizer.! We expect that, for large programs,
the RSR traffic is smaller than the traffic produced by the variables which cannot be
assigned for the whole scope of the function. However, measurements are needed to
confirm this conjecture.

'We only mention allocation per function and not per basic block because we are interested in com-
paring Wall’s allocator with our inter-procedural optimizer.
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Appendix A

On Intra-Procedural Register
Allocation

In this appendix we evaluate the intra-procedural register allocation policies performed
by the compilers used in this dissertation (the GNU C Compiler [Stal88], the Portable
C Compiler [John79], and the Amsterdam Compiler Kit [Tane83]). These register allo-
cation policies have already been described.! In Sections 4.2 and 4.5 the performance
of these compilers has already been evaluated with respect to the data memory traffic
generated by them.

In Section 4.2 the RSR traffic generated by the three compilers has been compared
and it has been concluded that when local scalar variables with disjoint lifetimes share
the same register (as it is done by the GNU C Compiler), the RSR traffic generated by
Policy B-If (used by the three compilers) is reduced with respect to when each register is
dedicated to a single local variable during the whole execution of the function (as it is done
by ACK and PCC). For instance, GNU generates between 54% (for 32 TBP registers)
and 61% (for 6) of the RSR traffic produced by PCC (see Table 4.7 and Figure 4.14).

In Section 4.5 the overall traffic generated by PCC and by GNU has also been com-
pared for the average of the four programs (ASM, NROFF, SORT, and VPCC) and for
SPICE.? It has beenr shown that GNU generates less local scalar traffic (see Figure 4.24)
and that when the number of TBP registers is small (less than 16), GNU performs a
better selection of the local scalar variables which are to be allocated to registers.

Although it is not the goal of this dissertation to develop any new register allocation
scheme, it was considered necessary to evaluate the register allocators provided by these
compilers to determine how close they are from an optimal allocation (as defined below),

!See the introduction of Chapter 3 for a description of the PCC register allocation policy and Sec-
tion 4.2 for a description of the other two.

?See Section 4.5 for a discussion of why the ACK overall traffic was not compared with the PCC and
the GNU overall traffic and Section 4.3 for a discussion of why this program (SPICE) was separated
from the other four.
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because the RSR traffic generated by the different policies depends on the number of
registers allocated. Thus, our goals in this appendix are the following:

¢ To compare two selection mechanisms for local scalar variables: by sequential order
of definition as used by PCC and by static linear priority as used by ACK and
GNU. Both mechanisms are compared with an optima! register allocation (Sec-
tion A.1). It is concluded that the selection by static linear priority performs quite
close to the optimum (93%-95%) when the local scalar traffic is significant (i.e.,
for SPICE) and, therefore, no new selection mechanisms need to be developed like,
for example, dynamic profiling for inter-procedural optimizations (see Chapter 5).

e To evaluate the local scalar traffic reduction obtained when a register is shared
among different local scalars with disjoint lifetimes, as it is done by GNU, with re-
spect to when a register is dedicated to each local scalar during the whole execution
of the function, as it is done by PCC and ACK (Section A.2). As mentioned above,
GNU generates less RSR traffic and less overall traffic than PCC. However, the
previous comparisons are performed with two different selection mechanisms, by
sequential order of definition and by static linear priority, and include the overall
traffic. In Section A.2 it is shown that when variables are selected by static linear
priority and registers are shared, the local scalar traffic generated is between 72%
(for 32 TBP registers) and 92% (for 8) of the traffic generated when registers are
dedicated, for SPICE, and between 7% (for 12) and 72% (for 6) for the average of
the four programs.

A.1 Selection Mechanism for Local Scalars

In this section two selection mechanisms for local scalar variables, sequential order of
definition and static linear priority, are compared with an optimal register allocation.
The comparison is based on the data memory traffic generated by the non-assigned local
scalar variables. The traffic generated by the optimal register allocation corresponds
to the minimum traffic generated when the most frequently used local scalars (for this
specific run) are assigned to registers. This criterion is similar to Belady’s optimal page
replacement algorithm [Bela66] since the “future” program behavior needs to be known
in advance. Notice that under different input data another set of local scalar variables
might generate less data memory traffic.

Table A.1 shows the traffic generated by local scalar variables (Isv) normalized with
respect to the traffic generated per function when no TBP registers are available. This
traffic does not include the RSR traffic. From the table the following can be concluded:

1. The number of registers required per function is usually small. For instance, if the
most frequently used local scalar of every function was assigned to a register (i.e.,
optimal allocation), SPICE would cut its traffic by one fourth, ASM by one third,
SORT and VPCC in half, and NROFF by two thirds.
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no. register '
| regs. | allocation h ASM NROFF SORT VPCC 4 P. || SPICE
[ 0 [ (lsvitrafiic) || 1 (43.85) 1(13.77) 1(43.18) 1 (22.01) [1e21) [ 1 (47.6) ]

seq. by def. 0.89 0.61 0.81 0.71 0.73 0.89

1 priority 0.68 0.35 0.74 0.59 0.58 0.82
optimal 0.65 0.32 0.58 0.48 0.48 0.78

seq. by def. 8.76 0.22 0.79 0.57 0.56 0.75

2 priority 0.46 0.09 0.67 0.37 0.40 0.67
optimal 0.42 0.07 0.26 0.26 0.25 0.63

seq. by def. 0.57 0.08 0.71 0.31 0.41 0.67

3 priority 0.36 0.05 0.44 0.23 0.26 0.57
optimal 0.27 0.03 0.28 0.13 0.17 0.56

seq. by def. || 0.44 0.04 0.64 0.19 0.33 0.63

4 priotity 0.20 0.02 0.23 0.14 0.14 0.52
optimal 0.17 0.01 0.22 0.07 0.12 0.50

seq. by def, 0.12 0.01 0.55 0.06 0.24 0.55

6 priority 0.27 0.00 0.19 0.05 0.10 0.46
optimal 0.07 0.00 0.14 0.02 0.06 0.44

seq. by def. 0.10 0.00 0.14 0.01 0.06 0.50

8 priority 0.10 0.00 0.14 0.01 0.07 0.42
optimal 0.02 0.00 0.08 0.00 0.03 0.40

seq. by def. 0.07 0.00 0.12 0.01 0.05 0.46

10 priority 0.06 0.00 0.07 0.00 0.03 0.39
optimal 0.01 0.00 0.04 0.00 0.02 0.37

seq. by def. 0.04 0.00 0.10 0.01 0.04 0.44

12 priority 0.03 0.00 0.06 0.00 0.02 0.37
optimal 0.00 0.00 0.02 0.00 0.01 0.35

seq. by def. 0.03 0.00 0.03 0.00 0.01 0.43

16 priority 0.01 0.00 0.01 0.00 0.01 0.34
optimal 0.00 0.00 0.00 0.00 0.00 0.32

seq. by def. 0.02 0.00 0.00 0.00 0.00 0.42

20 priority 0.00 0.00 0.00 0.00 0.00 0.33
optimal 0.00 0.00 0.00 0.00 0.00 0.30

seq. by def. 0.00 0.00 0.00 0.00 0.00 0.41

24 priority 0.00 0.00 0.00 0.00 0.00 0.30
optimal 0.00 0.00 0.00 0.00 0.00 0.28

seq. by def. 0.00 0.00 0.00 0.00 0.00 0.37

32 priority 0.00 0.00 0.00 0.00 0.00 0.27
optimal 0.00 0.00 0.00 0.00 0.00 0.26

Table A.1: Local Scalar Traffic Reduction
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Figure A.1: Local Scalar Traffic for the Four Programs

2. When the variables are selected either by sequential order of definition (labeled

“seq. by def.”) or by static linear priority (labeled “static”), 6-8 TBP registers
are enough for the four programs (see also Figure A.1), but not for SPICE (see
also Figure A.2). Since SPICE uses more local scalars per function than the four
programs and most of these are double floating-point variables, SPICE requires
more registers. However, the small traffic reduction obtained for more than 12
TBP registers is mitigated by the increase in RSR traffic (when no architectural
support is available) as it has been shown in Section 4.5 (see Figure 4.27). Thus,
as we concluded in Chapter 4, 12 TBP registers are enough for intra-procedural
allocators when no architectural support is available.

. The selection by static linear priority performs quite close to the optimum when the
local scalar traffic is significant (i.e., mainly for SPICE; see Figures A.1 and A.2).
This is true for every program except when there are fewer than 4 TBP registers.
For this reason, no other selection mechanism has been evaluated like, for example,
allocation by static weighted priority or by dynamic profiling (as it has been done
for the inter-procedural optimizer; see Chapter 5).

. As expected, the allocation by sequential order of definition performs a worse
selection of local scalars than the allocation by static linear priority. However,
since the number of TBP registers required per function for the four programs
is small, the allocation performed by any of the two mechanisms is equivalent.
For this reason, as it has been shown in Section 4.2, the conclusions obtained in
Chapter 3 and in Section 4.1 with PCC are similar to the ones obtained with ACK
and GNU,

On the other hand, for SPICE the allocation by sequential order of definition
performs a worse selection than allocation by static linear priority because of the
(already mentioned) larger number of registers required for this program. For this
reason, only GNU has been used to evaluate the data memory traffic generated by
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Therefore, the selection mechanisms used by PCC, ACK, and GNU for the four
programs and by GNU for SPICE perform quite close to an optimal allocation and, for
this reason, our conclusions should be valid for any intra-procedural register allocator
which assigns local scalar variables for the whole scope of the function (see Section 6.2
for a discussion of intra-procedural allocators which assign local scalar variables for the
basic block scope).

A.2 Dedicated versus Shared Registers for Local Scalars

In Section 4.2 an advantage of sharing registers among local scalar variables with disjoint
lifetimes is shown for Policy B-1f: the RSR traffic is cut between one third and one half
(depending on the number of TBP registers available; see Figure 4.14). Although this
comparison is performed between the RSR traffic generated by GNU and by PCC (both
with Policy B-1f), the comparison is valid, because (as it was shown in the previous
section) the RSR traffic generated should be similar with any register allocation scheme.
Moreover, in Section 4.5 it has been shown that GNU generates less overall data memory
traffic than PCC. For instance, when 12 TBP registers are available, the overall traffic
generated by GNU is 85% of the one produced by PCC for the four programs (see
Figures 4.25 and 4.26). In this section we evaluate exclusively the reduction of local
scalar traffic caused by sharing the registers among locals versus having a dedicated
register to each local.

Table A.2 shows the traffic generated by local scalar variables when they are assigned
to only one register and when the ones with disjoint lifetimes share the same register.
The traffic is normalized with respect to the local scalar traffic generated per function
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no. register
regs. | allocation ASM NROFF SORT VPCC 4 P. SPICE
| 0 | (svtraffic) ] 1 (43.85) 1(13.77) 1(43.18) 1(22.01) [ 1(22.77) | 1 (47.6)
dedicated 0.68 0.35 0.74 0.59 0.58 0.82
1 shared 0.64 0.31 0.74 0.66 0.5% 0.81
optimal 0.64 0.26 0.70 0.55 0.53 0.80
dedicated 0.46 0.09 0.67 0.37 0.40 0.67
2 shared 0.49 0.14 0.52 0.38 0.37 0.67
optimal 0.41 0.08 0.50 0.32 0.32 0.66
dedicated 0.36 0.05 0.44 0.23 0.26 0.57
3 shared 0.32 0.05 0.42 0.27 0.26 0.59
optimal 0.28 0.04 0.38 0.19 0.22 0.58
dedicated 0.20 0.02 0.23 0.14 0.14 0.52
4 shared 0.23 0.03 0.32 0.19 0.19 0.53
optimal 0.17 0.02 0.26 0.11 0.14 0.52
dedicated 0.27 0.00 0.19 0.05 0.10 0.46
6 shared 0.08 0.00 0.14 0.05 0.07 0.45
optimal 0.06 0.00 0.13 0.03 0.06 0.44
dedicated 0.10 0.00 0.14 0.01 0.07 0.42
8 shared 0.06 0.00 0.06 0.01 0.03 .39
optimal 0.02 0.00 0.06 0.01 0.02 0.38
dedicated 0.06 0.00 0.07 0.00 0.03 0.39
10 shared 0.03 0.00 0.02 0.00 0.01 0.36
optimal 0.01 0.00 0.02 0.60 0.01 0.35
dedicated 0.03 0.00 0.06 0.00 0.02 0.37
12 shared 0.01 0.00 0.00 0.00 0.00 0.34
optimal 0.00 0.00 0.00 0.00 0.00 0.33
dedicated 0.01 0.00 0.01 0.00 0.01 0.34
16 shared 0.00 0.00 0.00 0.00 0.00 0.30
optimal 0.00 0.00 0.00 0.00 0.00 0.29
dedicated 0.00 0.00 0.00 0.00 0.06 0.33
20 shared 0.00 0.00 0.00 0.00 0.00 0.28
optimal 0.00 0.00 0.00 0.00 0.0¢ 0.27
dedicated 0.00 0.00 0.00 0.00 0.00 0.30
24 shared 0.00 0.00 0.00 0.00 ¢.00 0.25
optimal 0.00 0.00 0.00 0.00 0.00 0.24
dedicated 0.00 0.00 0.00 0.00 0.00 0.27
32 shared 0.00 0.00 0.00 0.00 0.00 0.21
optimal 0.00 0.00 0.00 0.00 0.00 0.21

Table A.2: Local Scalar Traffic with Dedicated and Shared Registers
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Figure A.3: Dedicated versus Shared Registers for the Four Programs

when there are no TBP registers. The variables to be allocated have been selected by
static linear priority. The table also shows the traffic generated by an optimal register
allocation which is similar to the optimal allocation described in the previous section,
but with register sharing in this case. From the table we can conclude the following:

1. Static linear priority still offers an efficient selection mechanism, because the traffic
generated when registers are shared is quite close to the optimum for all programs
when there are at least 6 TBP registers available (see also Figures A.3 and A.4).

2. For some programs, when a small number of TBP registers (up to 4) are available,
dedicated registers generate less traffic than shared registers. This implies that the
addition of the static linear priorities associated with two (or more) local scalars
is greater than the static linear priority associated with a single variable. For
this reason, the combination of locals is assigned to the register rather than the
single local scalar, but this assignment turns out to be a bad choice. However, this
anomaly 1s ignored because only occurs for small register sets.

3. In general, shared registers reduce the local scalar traffic generated with respect to
dedicated registers.

e For SPICE, the local scalar traffic generated when 8-16 TBP registers are
shared among locals with disjoint lifetimes is about 90% of the traffic produced
when the same number of registers is dedicated to a single local scalar variable
and about 80% when 24-32 TBP registers are available.

e For the four programs, the traffic reduction becomes even more significant:
72% for 6 TBP registers, 43% for 8, and 7% for 12. For larger register sets,
the traffic becomes zero first for shared registers and, afterwards, for both
dedicated and shared.
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Figure A.4: Dedicated versus Shared Registers for SPICE

In conclusion, live-variable analysis should be performed not only when the intra-
procedural register allocator uses either Policy A-live or Policy A-lvOpt as the RSR
policies, but also when Policy B-If is used. In the latter case, live-variable analysis
reduces the RSR traffic (see Figure 4.14) and the local scalar traffic by sharing registers
among local variables with disjoint lifetimes (see Figures A.3 and A.4) and by assigning
dead local variables to TBD registers rather than to TBP registers (see Figure 4.24).
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