Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

FLOATING-POINT IMPLEMENTATION OF
REDUNDANT CORDIC FOR QR DECOMPOSITION

Jeong-A Lee July 1989
Tomas Lang CSD-890044






Floating-point implementation of Redundant CORDIC for
QR Decomposition

Jeong-A Lee, Tomds Lang !
Computer Science Department
School of Engineering and applied Sciences
University of California, Los Angeles
3680 Boelter Hall
Los Angeles, Calif. 90024

LThis research has been supported by NSF, Contract MIP-88-13340



Abstract

The floating-point implementation of the redundant CORDIC scheme for matrix triangularization is
presented. Due to the characteristic of CORDIC recurrence equations, the floating-point operations
can be converted into fixed-point operations with pre and post-processing. The advantages of
converting into fixed-point operations with pre and post-processing are the eliminations of exponent
calculation and alignment operation in every CORDIC iteration. To utilize the scheme, the range
of mantissa need to be calculated so that overflows in fixed-point operations with pre and post-
processing can be avoided. Using parallel carry save scheme, implementation issues are discussed
in detail including the range requirement.



1 Introduction

Matrix triangularization is a useful tool to solve a linear system, Az = b [GL83). Redundant
CORDIC implementation for matrix triangularization using Given’s rotations has been proposed
in [EL87). The purpose of this report is to present the floating-point implementation of the redun-
dant CORDIC scheme and discuss implementation issues in detail.

For fixed-point CORDIC implementation, several have been presented [HT80,CL87,SPH87)
and have shown that registers, adders, and variable shifters are needed. For floating-point (non-
redundant) CORDIC implementation, previous work [Wal71,Ahm82,JK86,CL88] transforms the
shifting requirement of fixed-point implementation into exponent subtraction and mantissa align-
ment. Thus in every iteration, conventional floating-point operation is needed, i.e., result exponent
calculation, alignment, and add/subtract operation.

However, as discussed in [EL87] and partially shown in [dLvdHDJ88], due to the characteristic
of CORDIC recurrence equations, floating-point operations in every recurrence step are not needed.
Instead, floating-point operations in every iteration can be converted into fixed-point operations
with pre and post-processing. The advantages of converting into fixed-point operations with pre
and post-processing are the eliminations of exponent calculation and alignment operation in every
CORDIC iteration. To utilize this scheme, the range of mantissa needs to be calculated so that
overflow can be avoided. Fortunately, with circular mode of CORDIC which is used for matrix
triangularization, the range of mantissa is bounded and can be determined.

Concerning the block-level implementation. the recurrence equations can be implemented either
using on-line CORDIC or parallel redundant arithmetic {EL87]. Here, we choose to have parallel
carry save(CS) scheme for both angle and rotation units. In the following sections, the range
requirements and other issues related to floating-point implementation for redundant CORDIC are
discussed in detail.

2 Floating-point implementation for redundant CORDIC angle
unit

We want to find the angle fg and rotated vector a/;; satisfying the following relation:
ati; | _ | cosbp —sinfg a;
0 | |sinfg cosbp Qit1,i

fg = tan™? —(&)

@

Thus,

This can be calculated by using the CORDIC approach [Vol59,Wal71,Ahm82]. As shown in [EL87],
the conventional CORDIC recurrence equations has been modified to eliminate one area-consuming
variable shifter and, at the same time, to look at a few significant bits of W{j] to determine o;. Let
W[j] be 27Y[j], then the recurrence equations for redundant CORDIC become

X[j+1] = X[j]+ 0,27 W[j]
Wi+ 1] = 2AW[j] - 0;X[])



Here, the angle recurrence equation, which is Z[j + 1] = Z[j] + o; tan~!(2~%), is not needed since
instead of the angle 8g = Z[n] = tan“l(%\%), o; are used directly in the rotation unit.

The direction of the angle 8g, i.e., ¢; is computed from the following equation:

1 #W[j]>0
oij=+{ 0 if W[j]=-1/2
-1 i W[j]< -1

where W] is computed using one fractional bit of W[j].

To use W[j] to determine o;, we need to find appropriate range of X[j — 1] to have enough
overlap in P-D graph shown in figure 1. Moreover, to have a low precision constant threshold of
W41, we also need overlap of selection intervals. Low precision constant threshold of W[j] allows to
have a simple selection function module for ¢;. Considering all these factors, the range of mantissa
of X[1], Mxp) has been determined [EL87] to be: 3 < Mxyp) < 1, i.e., mantissa of X[1] needs to
be normalized.

To normalize Mxp;) we need to get one vector from the two vector forms of M X[1)» i-e., carry
vector and sum vector with parallel CS arithmetic implementation. In other words, to normalize
My we need to perform the time-consuming carry-propagate addition. However, this can be
avoided by changing the range Mxy; to be % < My < 1.063. The upper bound 1.063 instead of
the conventional upper bound 1 is derived from the following facts: First, the implementation of
simple selection function only requires that Myxm 2 % for overlapped regions in P-D graph shown
before. Secondly, the bound for mantissa W[j] for all integer j, |Mwiy| < 3.5 is needed for simple
selection function implementation as explained in the section 2.3. As shown in the section 2.2, if
My < 1.063, then | My < 3.5.

The procedure to make My[;; within the range, -;- < My < 1,063, is simple: We need to
compare the exponent of X[0] and W[0] and need to look at a few most significant bits of M X[0]
and Mypo). The detailed procedure is described in the section 2.1. Moreover, with the new range
of Mx 1) the implementation complexity of the selection function for o; remains the same as before.

Now, let’s see how we can convert floating-point operations of the angle recurrence equations
into fixed-point operations with pre and post-processing.

2.1 Fixed-point operations with pre and post-processing

We want to have the same exponent for My[;; and My so that the rest of the iterations can be
done with fixed-point operations. Furthermore, we want to satisfy the condition, | M| < 2Mxyy
so that My;) and My for all ¢ are bounded within a range in order to avoid overflows with fixed
number of integer bit implementation.

Regardless of op value, the exponent of My, and My can be made the same. However,
if 9 = 0, the condition, |MW[1]| < 2Mxy) can not be always satisfied. To satisfy the condition,
ag has to be £1. Fortunately, with floating-point (non-redundant) inputs X[0] and W[0], we can
guarantee that og # 0 because of the following fact: Since we already have the exact value of input
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W1{0], oo can be determined from the original selection function [Wal71], i.e.,

_{ 1 i Wol(=Y[0]) >0
0= -1 W< 0

In other words, by looking at the most significant bit of WI0], #g can be determined.

The function of pre-processing is to find the exponent of M x(1) and Mwp), Ezpresue where
Mxy) satisfies the range: % < My < 1.063.

From the conventional floating-point inputs,

X[0] = Mypg2Berx |

ISR

< Mxp <1

W(0] = M2 , = < {Mwg)l < 1

1
2
Here we require normalized inputs My[o and My to have maximum significant digits(bits)
possible. Furthermore, we force initial X[0] > 0 by changing the sign of W[0] appropriately so that
X[i+ 1] > X{d] for all i. When X[i + 1] > X[/] for all ¢, X[n] becomes the upper bound as shown

later in section 2.2. Notice that forcing X[0] > 0 has no effect on the value of 6y as g depends on

v;g . However, the sign of X[n] need to be negated to get rotated vector (a/;;) if given X[0] < 0.

From the recurrence equation, we know that
X[1] = X[0] + eo W0}

W[1] = 2(W[0] — coX[0])

Since goW[0] > 0, i.e., the two operands to get X[1] are always positive, and one of them (either
Mx ) or 0 Myyjg)) is always greater than 0.5 and less than 1, M x) in CS form and Ezpresurs can
be obtained as follows: If the difference of the two expornents is greater than 3, no more processing
is needed since the sum of the two operands is always less than the upper bound, 1.063. Therefore,
the two operands can be output as sum and carry vector. Otherwise, the sum of the two operands
can be bigger than the upper bound in some cases. For example, if M x[0](o My (o) Tespectively)
is 0.1111 and oMy o) Mx[q) respectively) is 0.0001, the sum of the two is bigger than the upper
bound. The cases are shown below.

[0.1111] o.111] [0.11| 0.1
|0.0001| [0.001] }0.01] {0.1] (1)

Moreover, in these cases, the sum of the two operands is always greater than 1. Thus, by shifting
both operands one position to the right, which is equivalent to dividing by 2, the sum of the two
operands is greater than 0.5 and less than 1.063.

Notice that since X[0] and W[0] are in conventional number representation, i.e., with one vector
each, the two vectors of CS form of both X[1] and W[1] can be obtained by doing ounly alignment
operations. In other words, the add/subtract operations in the recurrence equations need not to
be implemented to get X{1] and W[1]. For the hardware implementation of pre-processing, the
alignment operations can be implemented using shifters.



The functional description of the pre-processing to find Ezpresuie for CS form of X[1] and W1{1]
is shown below. To reduce the number of alignment unit from two to one, we purposely assign
aligned operands to one of the output vectors (carry or sum vector). Here we choose sum vector.
The block-level implementation of pre-processing is shown m figure 2.

Pre-processing

/*
¢ Inputs:;
Conventional (not CS form) floating-peint inputs X[0] and W[0]
e Qutputs:
SignChanged to indicate whether given X[0] < 0,
CS form My satisfying %— < Mxpy < 1.063,
CS form My,
and Expresutt for both Mypyy and My
*/
If X[0]<0

then X[0]= —X[0]; WI[0}= -W[0] ;
SignChanged = true ;

If (|Expxio) — Ezpwio)| < 3) and
the two operands belong to the cases shown in equation 1

then Empresult = max(Eme[O]a E.pr[()]) +1
/* Align one of the operand according to the Expesute- */

If (Ezpx(o) > Expwia))
then Carry(Mxp)) = $Mxq ;
Sum(MX[I]) = Aligned (UOIMWIU])
/* apply shift right (Ezpyiq) — Expw)) + 1 to oo My */

else Carry(Myp) = %UO-MW[U] }
Sum(Mxpy)) = Aligned (Mx(q))

else Exprepue = max(Ezpy o, E2pw(o))
/* Align one of the operand according to the Ezpresute */

If (Ezpxp) > Ezpwio)

then Carry(MX[ll) = Mxq) ;
Sum(Mxy)) = Aligned (oo Miyiq))

else Carry(Mx]) = oM ;
Sum(Mx[y)) = Aligned (Mxq))



/*

Similarly, MW[1] is computed according to Ezp,.eue as follows:
W[l] = 2(W[0] - U().Y[O}) = ('AIL'V[II)ZE::’,’."““
*/

If (|[Ezpx(o) — Expwio) < 3) and
the two operands belong to the cases shown in equation 1

then /* Corresponding Ezp ey is as follows: Ezp,esur = max( Expxop, Ezpwio)) + 1. */

If (E.'cpxgo] > Ea?PW[o])

then Carry(MW[l]) = —ooMyjq] ;
Sum(MW[-l]) = Aﬁgned (J"IW[Q])

else Carry(Mwrp)) = My ;
Sum(Myry)) = — Aligned (doMx (o))

else /* corresponding Ezp,esu is as follows: Expyepu = max{Exp x[o]» Expwio))
The two times operation need not to be implemented using shifter. Instead, wiring is used. */

If (Expx(o) > Expwiq))
then Carry(Mw[l]) = ~2a00Mx0j ;
Sum(Myyy;) = 2 Aligned (Myq))

else Carry(Mxp)) = 2Myyq) ;
Sum(Mx ) = —2 Aligned (o0My )

Once we obtain the exponent, Ezp,csuts, we do not need to align the operand X and W in the
following recurrence equations since the exponent is not changed. By having the same exponent for
X[1] and W(1], the floating-point operations for angle unit can be implemented as fixed-point op-
erations. In other words, floating point addition/subtraction operations of most iterations become
fixed-point operations, that is, the alignment step in floating point operation can be eliminated in
all the n iterations except the first one.

Angel unit produces two outputs, os for angle 8y and X{n] for rotated vector as; ;. Notice that

‘;{ 1l On the other

post-processing is not needed to produce fg since g — %4% only depends on Syy¢.

hand, post-processing are needed to get the rotated vector af;; from X([n).

Due to the inexact rotation of CORDIC, X [n] need to be corrected with scale correction factor
K. As explained in section 4 we choose to use SRT division for correction step. In SRT, the
dividend,X [n}, needs to be smaller than the divisor, K. Since the range of variable scaling factor
K is between 1 and 1.63, the function of post-processing in rotation unit is to make the mantissa
of X[n] smaller than 1 using Expresuts- Implementation of post-processing is simple because with
proper wiring to the SRT unit, the mantissa of X[n] can be mnade smaller than 1. Notice that the
exponent of X[n] is not needed until the SRT operation is done. Thus, adjusting the exponent of
X[n] due to the post-processing can be done in parallel with the SRT operation. In addition, since



we force X[0] > 0 in angle unit, we need to negate the sign of X[n} if SignChanged is true. The
functional description of the post-processing is shown below.

Post-processing

/*

e Inputs:
X[n] where mantissa of X[n] < 1.75 as shown in section 2.2
SignChanged indicating whether given X[0] < 0

¢ Qutput:
X [n] where mantissa of X[n] < 1

*/

If SignChanged is true

then X([n]= —X|n];
Wire to SRT unit so that mantissa of |X[n][ < 1

To have fixed-point operations and avoid overflows, the ranges of X mantissa and W mantissa
must be bounded. The discussion to determine the ranges of mantissa X and mantissa W is covered
in the following section 2.2.

2.2 Range requirement of mantissa in angle unit

In the following descriptions, a value of operand A is assumed to be the value of its mantissa A,

My. From X recurrence, we know that if we force the initial value of X[0] > 0 and X[1} > 1

then for all integer 7, X[i + 1] > X[4] since ;2 %W[s} > 0. As mentioned before, the condition of
X[0] > 0 can be easily accommodated by changing the sign of W[0] appropriately and the angle

output § is still the correct one because § depends on %ﬁl.

Since X[1] is adjusted to satisfy 3 < My < 1.063, the upper bound of X[i] can be found as
follows: For all 7, X[i+1] > X[i]. We also proved that X [n] < 1.75. Therefore, for all i, X[i] < 1.75.

Proof X[n] < 1.75

We know that X[n] = K+/X[0]2 + Y[0]? = K//X[1]2 + Y[1]? where K = []"=4 /1 + o?2-2

and K7 = [[%5! +/1+0?2-2. Thus, K = /2K since 03 = 1. Furthermore, X[1] <
1.063. From the recurrence equation, we know that {Y{1]| < X[1]. Thus, |Y[1]| < 1.063.
As a result, X[n] = K+/X[1]? + Y[1]? < 1.75 because 1.65 < K < 1.66.

Furthermore, for all 4, the relation of |W[i]| < 2X[¢] holds. This is satisfied because of the way the
selection function is developed in [EL87]. As |W/i]| < 2X[i], we get |W[i]| < 3.5. For these ranges,
we need to provide enough number of integer bits to avoid overflows and to assure the correct angle
result.



As the range of X[j] is bounded by 1.75 and for all integer j, X[j] is positive number, one
integer bit is enough for X[j]. On the other hand, four integer bits are needed for W[;] and
the explanation is as follows: As W[j] is bounded by 3.5, three integer bits for W are necessary
to have two’s complement number representation. Furthermore, one more integer bit extension
for W is needed to protect the MSB which denotes the sign of its operand in CS{carry save)
representation. This extra bit extension is necessary because as shown in recurrence equation,
the following operation after computing W[i] is 2-%W[i] in X[i + 1] calculation. This 2% term
multiplication is implemented as ASR{Arithmetic Shift Right) where sign extension is needed. In
order to keep M5B pair of carry and sum vector to represent the right sign, the extra bit extension
in MSB of W is needed.

More specifically, we do not want to have the two most significant bits of the carry and sum
vector respectively with the following patterns.

WS |oo| |o1] |10 |11]

wce [o1] |00] |11| |[10]

With these patterns, the sign-extension of the present MSB can be wrong if there is any carry
propagation. For example, if the two vectors have the bit patterns of table 1, the value of the two
vectors, i.e., the sum of the two vectors, represents a negative number due to the carry propagation.
If we just apply the normal ASR operation, the result of one-bit ASR, i.e., one-bit sign-extended
vectors, represents a positive number now, On the other hand, if there is no carry propagation,
the sign-extension of the present MSB extension gives the correct result. In summary, the carry
propagation needs to be checked to provide the correct sign-extension. In order to avoid checking
of the carry propagation, one more integer bit is extended so that the above bit patterns can not
appear. With one more integer bit extension, the bit patterns of (01)(00) and (10)(11) become
overflow data since |W/| < 3.5 and 4 integer bits are used in the mantissa representation.

With 4 integer bits used for W, the following are the valid cases of the two most significant bits
of carry and sum vector.
WS |00} |01] [10] {11] |0z| |iz|

wcC [00| |01} |10 |11] |1z| |oz]

Among the valid cases, the two cases shown below cause error, i.e., changing the sign of the original
data after the following ASR operation.

ws |01 |10|

wce |o1] |i0]

For example, the second case (10)(10) can be obtained in CS form of W[j + 1] = 3 with W[j] =3
and X [j] = 1.5. With W([j] = 3, we know that ¢; = 1. Thus, W{j + 1] = 2(W[j] - 0;X[j]) = 3.

WC[j] bit representation 0011.0

WS[j] bit representation 0000.0
W(j] decimnal value 3
—X5S[j] bit representation 0001.0
~XC[j] bit representation 1101.1



—X[j] decimal value — 1.5

Then, WC[7] + WS[§] — X 5{4] produces the following intermediate sum and carry vector, IS and
IC from 3-to-2 reduction.

IS 0010.0
IC 0010.0

Next, IS 4+ IC — X C[j] produces the final sum and carry vector, FC and FS which is in decimal
value 3 + (—1.5) = 1.5 as follows;

FS§ 1101.1
FC 0100.0
output of WC[j]+ WS[j] - XS[j] - XC[j] decimal value 1.5

When the two times operation is applied to the output of FC and FS to get W{j + 1] = 2(W[j] -
;X [4]) which corresponds decimal value 3, the resulting vector becomes:

2« FS 1011.0

2+« FC 1000.0
Wi + 1] output decimal value 3

By itself, the value is still a positive number since two’s complement arithmetic is used. Thus, it
does not produce any different outcome. However, when 27 20+DW[j 4 1), i.e., ASR operation is
needed in the following iteration step for X[j + 2] = X[j + 1] + 0412720+ DW[; 4 1], due to sign
extension of ASR operation, 1 and 1 in MSB will change the resulted shift right carry save form
into a negative number.

Thus we need to apply a remedy scheme. The key of the remedy scheme is changing the MSB
pair of carry and sum vector into new pair so that the following ASR operation (sign extension) does
not change the sign. For example, the pair (01)(01) for WC and WS represents a negative number.
When ASR operation is applied to (01)(01), tle resulted vector represents a positive number. To
correct the problem, the remedy scheme changes (01)(01) for WC and WS into (11)(11). When
ASR operation is applied to (11){11}), the resulted vector represents a negative number, Notice
that the value of W after the application of remedy scheme is the same as the original one.

Before the remedy scheme

WS |o1] |10]

wcC |01] |10
After the remedy scheme

WS |11] |00

we |11] 00|

The logic implementation of the remedy scheme is as follows:

Remedy scheme

If (WS[MSB] == WC[MSB])



then { WS[MSB]= WS[MSB+1] ; WC[MSB] = WC[MSB+1]; }
/* Assume index 0 for MSB and n for LSB in n-bit data */

The implementation using some logic and multiplexors is shown in figure 3. As recurrence equations
related to X do not have ASR operation, the remedy scheme only applies to W.

2.3 Selection function implementation

The direction of angle, o; is obtained from estimated W, i.e., W[i] in carry save (CS) form. Let
t be the number of the fractional bits for W and m be the number of the fractional bits for W.
Thus, ¢ < m. Then, the truncated sum and carry vector in CS form of W[i] could generate an error
of 2(27* — 2=™), Thus, to be able to cover a range of —4 < W < A, the range of W needs to be
—A-2"t< W< 42t

For example, in the angle unit where |W| < 3.5 and ¢ = 1, the range of W needs to be
—3.5-2"' <« W < 3.5 271, Thus, 3 integer bits and 1 fractional bit for W{i] are enough to
implement the selection function for o; although 4 integer bits are used for W due to the sign-
extension operation as shown before. The reduction of 1 integer bit for W implies the reduction of
1 FA(full adder) time for selection function. As the selection function is included in the critical path
of the angle unit, the reduction time of selection function implementation implies the reduction step
time of angle unit. Finally the block-level implementation for floating-point angle unit is shown in
figure 4.

3 CORDIC rotation unit

With given vector (X,Y) and angle 8, the rotated vector (Rz, Ry) is defined as:
Rz | _ | cosy —sinb, X
Ry | | sind, cosé, Y
If the angle 8, is as follows:
n—1
by = Z ojtan™'(277)
=0
Then, rotated vector can be obtained using the following CORDIC recurrence equations.
X[ +1) = X[j]+ 052777 [j]

Y[j+1] = Y[j]~ 0,27 X[j]

with initial condition X[0] = X and Y[0] =Y.
The rotated vector (Rz, Ry) has the following relation with X [n] and Y[n] for the n-bit precision

result.
Rz | 1| Xfn]
FARIE



where K, correction factor, is defined as:

n-1

K= H \/l +(0'j2‘-")2

=0

In this section, we deal with floating-point implementation of CORDIC rotation recurrence equa-
tions using parallel CS arithmetic. The correction factor, X, is covered in the following section.

Similar to the floating-point implementation of angle unit, the floating-point operations in rota-
tion unit can be converted into fixed-point operations with pre and post-processing. As discussed
previously, the implementation of pre and post processing is simple: some logic and wiring is
sufficient to implement them.

3.1 Fixed-point operations with pre and post-processing

The rotation unit obtains s from angle unit for the computation of recurrence equations. The
initial inputs are in conventional forms, not in CS form.

1

X[O] = Mx[olexpx " S IMX[0]| < 1

je- |

Y[0] = My(g25err

] =

< |.ﬂ«fy[0]| <1

Here we require normalized inputs X[0] and Y'[0] to have maximum significant digits(bits) possible.
From the recurrence equation,

X[1] = X[0] + oo [0]
Y[1] = Y[0] - 00 X{0}

As og # 0, the floating point addition/subtraction of the above equations produce an exponent
Ezpresue = max(Ezpyx, Expy) and X[1] and Y[1] can be represented as follows:

X[l] = (AIA‘*' )2E$Presuu

Y[1] = (M4 )ZErpmuu

where M4+ denotes the mantissa output of X{0] + 0oY[0] and M,4_ denotes the mantissa output
of Y[0] - 60X [0].

In conventional floating-point operation, the outputs M4+ and M, - are normalized at the
end of the floating-point operation. As a result, exponents of X[1] and Y[1] can be different.
Different exponents implies alignment operations is needed in the following iteration for X [2] and
Y[2). However, the proposed implementation shown here eliminates alignment operations in the
following iterations by not normalizing the outputs M4+ and M,-, ie., the exponent of X[1]
is the same one as that of ¥[1]. Eliminating the post-normalization of M 44+ and M,4_ has an
advantage that implementation becomes simpler since only alignment operations are needed to find
the mantissa of X[1] and Y[1] in CS form. Moreover, in conventional floating-point operation,
significant digits(bits) can be lost by doing the post-normalization at the end of the floating-point
operation. However, the implementation proposed here eliminates post-normalization. Thus, the
implementation shown here has another advantage of keeping more significant digits than the
conventional floating-point implementation.

10



The fact that we do not normalize the mantissa outputs, M4+ and M4- requires to find the
range of X and Y to avoid overflows. The detailed procedure to find the range of X and Y is
discussed in the following section 3.2. In brief, with the initial condition of conventional floating-
point inputs X [0] and Y[0] , the range of X[n] and Y[n] is found to be £2.33. Notice that in
rotation mode, X [n] can be negative value and My} is not normalized while in angle calculation
mode, X[n] is always positive and Mx;) need to be in special range. As a result, the range of X [n]
and the number of integer bits to cover the range are not the same for both modes although X
recurrence equation is the same for both angle calculation mode and rotation mode.

The function of pre-processing is summarized below:
Pre-processing

/*

¢ Inputs:
Conventional (not CS form) floating-point inputs X[0] and Y[0]

e Qutputs:
CS form Mxm,
CS form My,
and Ezpresut = max{Ezpxq), Ezpyjo)}

*/

Expresuls = max(Epr[O]’ E"‘EPY[D])
/* Align one of the operand according to the Expresun. */

If (Ezpxp > Expy(o)

then Carry(Mx)) = Mx ;
Sum(Myp;) = Aligned (coMy[q) ;
Carry(Myyy)) = —ooMxg ;
Sum(Myy)) = Aligned (My[q)

else Carry(Mxp)) = aoMyq) ;
Sum(Mxp;)) = Aligned (My) ;
Carry(Myp)) = Myo ;
Sum(Myy)) = Aligned (—ooMx(g))

After finding the exponent, Expye,un from the pre-processing, only fixed-point operations are
applied to the rest of the iterations. Sufficient number of integer bits needs to be provided to avoid
overflow of operands X [n] and Y[n] in the rest of iteration steps. The upper bound of operands
X[n] and Y'[n] are evaluated and the number of integer bits are decided in the following section 3.2.

Similar to angle unit, the output of rotation unit, X[»] and Y [n] need post-processing for the
following SRT division(correction unit). Unlike angle unit, we do not force X[0] > 0 in rotation
unit. Thus, changing of the sign of X[n](Y[n]) is not needed. The following is the functional
description of post-processing of rotation unit.

Post-processing

/*

11



e Inputs:
X[n] where mantissa of | X[n]| < 2.33 as shown in section 3.2
Y[n] where mantissa of |Y[n]| < 2.33 as shown in section 3.2

e Outputs:
X[n] where mantissa of | X[n]| < 1
Y'[n] where mantissa of |Y[n]} < 1

*/
Wire to SRT unit so that mantissa of | X[n]] < 1 and [Y[n]} < 1

In summary, the floating-point implementation of rotation unit consists of one time operation
of pre-processing, fixed-point operations for the most of the iterations, and the post-processing.
The implementation shown here has advantages of eliminating alignment and post normalization
step in the conventional floating-point operation.

3.2 Range requirement of mantissa in rotation unit

Now, we need to find the proper bound for operands X and Y to have fixed-point operation for itera-
tions except the first one. In circular mode of CORDIC, the value of (X [n}, Y[n]) is bounded within
the circle where the radius is defined as K/X[0)? + Y[0]? with given initial vector (X[0],Y][0]).
Using the sequence of Walther where o; € {£1}, the maximum value of K is about 1.65. Therefore,
in redundant parallel CS implementation where o; € {0, +1}, the variable scale factor K < 1.65.
With floating-point inputs X[0] and Y[0], each mantissa has a value less than one. Therefore, the
mantissa of rotated output X[n] (or Y{n}) is bounded by 2.33 because K/X[0]? + Y ]0]Z ~ 2.33.

Thus, three integer bits are necessary to have two’s complement number representation. Fur-
thermore, as discussed in angle unit, one more integer bit extension and use of remedy scheme are
needed because recurrence equations for Y'[j+ 1] and X [j + 1] have 2= X[j] and 2~7Y ;] operations
respectively. The block-level implementation for floating-point CORDIC rotation is shown in figure
5.

4 Scale factor calculation and correction

In redundant CORDIC, scale factor K = ;‘;& 1+ (0;279)2 is not a constant as o; € {-1, 0, 1}.

Therefore K must be computed for each decomposed angle, a;s.

The scheme to compute K is developed in [EL87] as follows: It has two steps. First compute
K? with recurrence equation of P[j + 1] = P{j] + |o;|27% P[j] with initial condition P[0] = 1.
Due to the term 2-27 P[5], the final output P can be obtained from % steps instead of n steps, i.e.,
P = P[%] = P[n]. Secondly we compute & = P 3 using on-line square root algorithm [Erc78,0E82].

The computation of P is implemented using the parallel CSA(Carry Save Adder). From the
recurrence equation P and initial condition P{0] = 1, we can observe that the output of P yields
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a positive number. Moreover, the upper bound of P is square of upper bound of K, i.e., 1.65%
Therefore, two integer bits are used to cover the range of P, The block-level implementation is
shown in figure 6. Concerning the timing of K computation, since K% can be obtained from 2 steps
instead of n steps, the computation of K? can be entirely overlapped with operation of angle unit.
Moreover, K2 is obtained using CSA, the following square root operation need not to be on-line.
Thus, K is obtained from square root operation one digit at a time. The output of square root
operation is is in signed-digit representation.

As mentioned before, due to the inexact rotation of CORDIC, output of the rotation unit,
X[n] and Y [n], need to be corrected with scale correction factor & to determine the rotated vector
(Rz, Ry). To correct the rotated output, actual division need to be done since K is a variable factor
in redundant CORDIC. Since the rotation unit is implemented using parallel CS arithmetic, redun-
dant division scheme using SRT divider is used for the correction. Thus the scale correction factor
unit starts operation when the rotated output comes in parallel at the end of the rotation iteration.
For SRT division, the divisor, & need to be in conventional representation. Using recurrence equa-
tion of P(= K?) and square root operation, K is obtained in signed-digit representation. Thus,
on-the-fly conversion is used to convert signed-digit output & into conventional representation for
the following SRT division.

As the equation, K = ;-‘;[} 1+ (0;2-9)2, where o; € {-1, 0, 1}, indicates, K is larger than 1
and smaller than 1.65. Thus, the divisor K in SRT operation is larger than the normalized number,
which simplifies the SRT operation as the selection of quotient digit becomes independent of the
divisor. In SRT, the dividend also needs to be smaller than the divisor. Here, the dividend is
X[n](Y[n]). This condition is satisfied by the post-processing of rotation unit. Output of SRT is
obtained one digit at a time. The output of SRT operation is in signed-digit representation.

The corrected output is used in the next QR step as an input to the angle unit. As parallel CS
arithmetic is used in the angle unit, the conversion from signed-digit representation to conventional
number representation is needed. For the conversion, on-the-fly conversion in [EL86] is used.

5 Overall-timing

Overall timing is shown in figure 7. Both CORDIC unit and scale factor evaluation unit have critical
path of variable shifter, multiplexor, and two 3-to-2 reduction (4-to-2 reduction) carry save adder.
Other units such as correction unit(SRT'), on-the-fly unit, and square root unit have shorter critical
path, for example in SRT, quotient selection, remainder computation using adder, and multiplexor.
Thus, we assume that the step time of CORDIC uunits takes two basic cycles while the step time
of SRT operation takes one basic cycle.

As shown in the overall-timing diagram in figure 7, K computation is completely overlapped
with angle unit computation. Moreover, on-the-fly conversion operation does not cost the time
since it can be done in parallel while SRT operation computes the remainder. Signed-digit quotient
is used to compute the remainder and at the same time is used for on-the-fiy-conversion unit. Thus,
without costing any time, quotient digit in conventional number representation can be stored into
a register. Thus, the total timing depends on the angle unit to generate os and SRT division
operation. The total timing for the overall system takes 3n basic cycles.
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6 Evaluation of redundant parallel CS scheme

In conventional(non-redundant) CORDIC implementation for QR, the overall timing requires 2.257¢
where the cordic step time, T = n{Tcpa + Tvariabie—shifter ) With n iteration. In terms of the same
clock cycle used in redundant CORDIC, the conventional cordic step time becomes 57 or 6n basic
cycles. Thus, overall timing is 12.25n or 13.50n basic cycles [EL87]. Parallel CS approach presented
here takes 3n basic cycles. As a result, it produces a speed up of around factor 4 with respect to
non-redundant CORDIC implementation.
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Bit patterns with carry propagation

000.1/10

011.1]11

Corresponding decimal value is -3.375(> —3.5)

After ASR 1 (i.e., one-bit sign-extension)

000.0110

goi.1111

Now corresponding decimal value becomes 2.0625 instead of —32372

Bit patterns without carry propagation

000.0{00

011.0{10

Corresponding decimal value is 3.25(< 3.5)

After ASR 1 (i.e., one-bit sign-extension)

000.0000

001.1010

Now corresponding decimal value becomes 1.625 (= 32&)

Table 1: Examples with and without carry propagation
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Figure 1. PD-graph
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