Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

EVALUATING BOUNDS ON STEADY STATE AVAILABILITY
FROM MARKOV MODELS OF REPAIRABLE SYSTEMS

Richard R. Muntz June 1989
John C.S. Lui CSD-890043






Fvaluating Bounds on Steady State Availability
from Markov Models of Repairable Systems

Richard R. Muntz
John C.S. Lui
UCLA Computer Science Department

June, 1989



Abstract

System availability is an important reliability measure for computer system designers. Most
often Markov models are used in representing systems for reliability analysis. Due to the
size and complex nature of the systems, the model often has an unmanageable state space
end it quickly becomes impractical to even generate ell the states in the system model. In
this paper, we will present o method for bounding steady state availability and at the same
time, drastically reduce the state space of the models that must be solved. Here we extend
the work in [7] which requires an @ priori decision to be made concerning the amount of
detail to represent (and therfore the tightness of the bounds). This paper extends those
results to allow piecewise gemeration of the transition mairiz such that at each step the
bounds can be incrementally tmproved. We believe the approach may be applicable more
generally but at the present we require certain assumptions that are valid (and reasonable)
for reliability models. It will require extensions to relaz these assumptions and therefore
we present the results in this contexzt.



1 Introduction.

System availability and reliability are crucial measures for system designers, particularly
life critical situations or when large financial loss is possible. In order to evaluate reliabil-
ity measures for these complex systems, Markov models are often used [4]. Unfortunately,
Markov models of real systems generally have a very large state space and it becomes
impractical even to generate the entire transition rate matrix. Various methods have been
proposed to calculate various performance and reliability measures from large Markov
models. Among these are aggregation-disaggregation method for chains with nearly com-
pletely decomposable structure [1], the iterative aggregation-disaggregation method [11]
[12], matrix-geometric based methods [8] and the successive overrelaxation method in [10}.

A Markov chain is nearly completely decomposable if the interactions between groups of
states are not comparable with the interactions within the groups. This is usually not the
case for reliability models of computer systems and the aggregation-disaggregation method
is unlikely to yield a sufficiently accurate approximation. The iteration aggregation-
disaggregation method uses a method similar to the Gauss-Seidel iteration technique. One
problem is that the convergence rate may be slow. Also, existence and uniqueness are
difficult to show. The matrix-geometric techniques require certain regularity of structure
that is often missing from reliability models. The SOR method does not provide bounds
on the approximation. We propose a method that allows for efficient calculation of bounds
on steady state availability by explicitly taking advantage of the properties of reliability
models.

Exact reliability measures are generally not required but rather sufficiently accurate
approximate results. If the approximate results can be given in terms of upper and lower
bounds then this is ideal. Recently, the results reported in [7] provided a way to compute
bounds on steady state availability for models of repairable computer systems. Rather
than generating all the states in the system model, the approach calls for generating those
states that account for most of the probability mass while all other states are grouped into
a small number of aggregate states. It is shown that bounds can be obtained by suitably
replacing some transition rates out of aggregate states by lower bounds on those rates and
replacing others by upper bounds. This approach is “one step” in that a decision is made
a priori as to how much of the transition rate matrix to expand in detail. In this paper, we
extend the method to a multi-step procedure in which we successively generate more of the
transition rate matrix. At each step we obtain tighter bounds on steady state availability.
The following section will provide a more detailed description of the problem and the work
reported in [7]. We present some background in Section 2 and Section 3, the procedure
itself in Section 4 and a discussion of the results in Section 5.



2 Background.

We are interested in the availability analysis for computer/communication systems. The
behavior of such a system is assumed to be specified by a continuous time, discrete state,
homogeneous Markov process. Unfortunately, the characteristics of availability models
(complex interactions between components, scheduling and maintenance policies, complex
criteria for a system to be operational, etc.) preclude the possibility of closed form solutions
in general. Thus numerical solution methods are most widely used. Yet one of the major
limitations of numerical solution is the large state space cardinality of realistic models.
A real life availability model can have tens of millions of states and thereby outstripping
memory and processor capacities. In this paper, we present an algorithm which can provide
enormous state space reduction for numerical solution and perhaps more importantly, also
provide error bounds.

Many performance and reliability measures can be expressed in terms of a reward
function. If r(¢) is the reward rate for state ¢, the expected reward rate, M can be

expressed as :
M =" r(i)P(i)
i€S
with S being the state space of the Markov model and P(z) being the steady state proba-
bility of state z. Availability is a special case in which the “operational” states have reward
of 1 and the “non-operational” states have reward of 0.

Systems are generally designed to have a high level of availability. It is reasonable
therefore to expect that during the life time of the system, most of the components are
operational. With this in mind, we partition the state space of the modelinto F7;,0 < ¢ < n,
where n is the number of system components and where F; contains all the states that
have exactly ¢ failed components. The idea is to represent the detailed behavior of the
model for F;, i < K for some small value of K and approximate the remainder of the
model via aggregation.

The transition rate matrix can then be viewed as shown in Figure 1 in which submatrix
Q;; corresponds to F;. In this figure the submatrices denoted by 0 contain all zero elements.
This is a consequence of an assumption that there is zero probability of two or more
components becoming operational at exactly the same time. Note that this does not
preclude multiple repair facilities or any other common feature of reliability models. (In
particular note that the case in which a dormant component that becomes active due to
the repair of a second component does not violate the assumption. We simply do not
consider such a dormant component as failed in the state partitions.)

We now summarize one of the results from [7]. Consider three sets of states:



[ Qoo Qor Qo2 Qon ]
Qo Qu Q2 Q1n
0 Qu Qxn
0 0 Qs Qs
0 Qu Qu
| 0 v 0 Qn—l,n an i

Figure 1: Transition matrix.
Go = Fo
G1 = {U{; Fi}
Ga = {Utg1 Fi}

Figure 2 illustrates the transition matrix G in which G;; is the principal submatrix
corresponding to states in ;. (The submatrix shown as 0 is a consequence of the “nearest
neighbor” property discussed previously.) Now construct a new transition matrix as shown
in Figure 3. It is clear that G’ is a stochastic matrix if G is stochastic. The relationship
between the process defined by G and that defined by G’ is illustrated in Figure 4. Basically,
in the new process there are two sets of states corresponding to the states G; of the
original model. Let us call them G, and G;,; as shown in Figure 4. The idea behind
this transformation can be explained as follows. Assume the system starts in the “all
components up” state, i.e. Fy. As components fail and are repaired the system will
stay in states in §] and G], until the first time that there are K + 1 or more failed
components. At this point the system is in a state of G;. However when the number of
failed components falls to K, the system now enters a state in G{,;. (Now the notation is
explainable; “u” stands for “going Up” and “d” stands for “going Down”. As the number
of failed components goes up, the system visits states in G], and after K + 1 failures have
been reached, it visits the states in G;; as the number of failed components goes down.)

From the construction it is easy to show that the two transition matrices are such that
the steady state probabilities of the original process(G), can be calculated from the steady
state probabilities of the second process (G'). Specifically, if

[7'9, ®'1,, ®'1,, 7'} is the solution of #'G’ = =’

then



[7'a, ®'1, + ®'1,, 73] is the solution of #G = .

There is a natural mapping of the states in G’ to states in G. In terms of rewards, the
reward function for states in G’ is simply to assign the same reward as the associated state
in G. It is clear then that the mean availabilities of the two systems are identical.

GOO GOI G02
GID Gll G12
0 G21 G22

Figure 2: Matrix G.

Goo Goi| 0 Gog
Gio Gu| 0 Gy
Gio 0 |Gy Gy

Figure 3: Duplication of states. Matrix G'.

Now consider aggregation of the states 7, £ > K 4+ 1 and ¥/, 1 <i{ < K as illustrated
m Figure 5. The corresponding transition rate matrix is shown in Figure 6. The results
from [7] show that if the rates indicated by a ‘+’ are replaced by upper bounds (on the
actual values) and the rates indicated by ‘—’ are replaced by lower bounds then bounds
on the steady state availability, .4, can be expressed as:

2;) r()P'(i) < A < le) r()P'() + (1 - %P’(i))
where D = Go|JG, and

P’(i) is the steady state probability for state 7 in the model with the indicated replace-
ment of transition rates by bounds.

Since the above result is valid regardless of the set of operational states it follows
trivially that:

P'(i) < P(i) V statest
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Figure 4: Relationship of G and G,

To show this for a particular state i, simply define the reward function as:

1 j=i
0 j#£i

r(4)



Figure 5: Aggregation of states.

Goo Gun G0K+1' Gon
G Gn |Gikyr Gin
r 0...0 ) + .+ +

0 - . + +
0 - + o+

0 — e +

| 0 0...0 0 — o

Figure 6: Form of transition matrix after aggregation.



3 Preliminaries.

In the “single step” procedure described in the previous section the decision as to the
dimension of the matrix Gy; is made a priori. This implies that once the bounds have been
calculated there is no means provided for utilizing the work that has been already done in
solving the first portion of the matrix to further tighten the bounds. The extension that
we present in this section alleviates these difficulties. It allows an incremental generation
of the transition matrix. At each step a new portion of the matrix is generated. Further,
at each step the results from the previous steps are used to form a transition rate matrix
whose solution allows us to bound the stationary state probabilities for an additional set
of states. This allows us to incrementally improve the bounds on availability.

At each step (after the first) there are three sets of states of the original model that we
will need to distinguish.

T’ = set of states for which a lower bounds on the stationary state probabilities

were obtained in previous steps.
D = set of states which are the center of attention for this step and for which

a lower bound on the stationary state probabilities will be calculated in this step.
A = the complement of T’ |JD.

Figure 7 illustrates this partitioning of the state space in terms of the transition rate
matrix G. In the following we describe a short sequence of transformations to G. Each
transformation 1s such that the stationary state probabilities for the states in D are always
(individually) bounded from below by the corresponding state probabilities from the next
model in the sequence. We start by constructing the matrix G, from G as illustrated in
Figure 8. G; corresponds to a model in which the states in D have been replicated. The
replicates (referred to as “clones”) will be denoted by C. Note that in G; the submatrix
Qcc 1s equal to Qpp. We use the notation Q¢ because it enhances readability.

Notation: We use the notation 7p,¢, to denote the vector of stationary state probabil-
ities for states in a subset D when the transition rate matrix is G;.

In the previous section while reviewing the results from [7] a similar construction was
described. From that discussion it is clear that if

[WD’/Gl ' DG TCGr» WA/GI] is the solution of m™ G1 =T
then
[*Di/6,» TDjE, + Toje > Taje,) is the solution of 7G = .
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It follows immediately that mp;5, < 7p/e since 7gye, > 0.

In the next several transformations we make use of the fact that it is possible to perform
exact aggregation of a transition rate matrix. We assume that the reader is familiar with
the basic aggregation/disaggregation approximation procedure as described in [1]. Later
we show that exact aggregation is not actually required in the computation of the bounds.
We merely use exact aggregation in the intermediate steps of the development.

Qop Qpp Qpa
Gppr @pp Qpa
0 Qup Quaa

Figure T: Initial matrix, G.

Qop Qpp 0 Qpa
Qoo ®@op 0 @Qpa
Qoo 0  Qcc @pa

0 0 Qup Qaa

Figure 8: Introduction of “clone” states. Matrix G;.

e Rip 0 Rya
@poy @pp 0 (Qpa
Qe 0 Qecc @pa

0 0 Qap Quaa

Figure 9: After exact aggregation of the states in 7’. Matrix G,.

G; (see Figure 9) is formed from G, by exact aggregation of the states in 7. We will
refer to the single state which replaces D as d’. Since exact aggregation is assumed we
have that 7p/z, = 7psa, .

G3 (see Figure 10) is exactly the same as G, except that the transitions from d' to
states in D and C are modified. In G3 the submatrices R, and R}, are required to have
non-negative elements and to be such that:

R:i"D + R:.ilc = RdlD



e Ryp Rye RBRaa
@pe Qop 0 Qpa
Qo 0 Qcc @pa

0 0 Qap Qua

Figure 10: Modified rates from state d’. Matrix G3.

A probabilistic interpretation is that the original transitions from d’ to states in D are
‘split’ so that part remains to the state in D and part goes to the corresponding “clone”
state in C'.

From the construction of Gj it is easy to show that if

(Tat /G2 s D62 TCfGay T ajG,) 18 the solution of TG = 7 and

[Tar 163 s TD Gy s TC /Gy Faf6,) i8 the solution of #G3 = 7 then:

TGy = Td' /G

TDsas + TeiGs = TDfG, + T¢jG,; and

Ta)Gy = TAJG, -

The result that we really want is expressed in the following theorem.

Theorem 1 7p/g, < 7pja,

Proof: The proof is given in the Appendix. O .

Now we consider aggregation of the subsets of states in € and A.

By definition

D= U_::I=iL; ‘F?
€= U?;L.' 7;
and



A= U_JiV=H.'+1 ‘F:?

where L; and H; are integers associated with the i, step and denote the minimum and
maximuin number of failed components for D.

We form one aggregate state for each subset F; in C and .A. The resulting matrix Gy,
is shown in Figure 11. In this figure we have also interchanged the ordering of the state d’
and the set of states D. Since we have assumed exact aggregation in forming G, it is clear
that

TD/Gy, = TD/Gs-

QD,D QD,d’ 0 0O 0 QD,AL QD,A2 QD,A,;
Rap & |rao Tag - e Tane, | Td AL TdAs e Tdl, An
0...0 r¢,.p ® e,y e re,C; | TCiAy TCL A2 "0 a TCy An
0...0 0 jree @ e e rCyCj | FCpA TCp Az - e TCy,An

0 ree @ o TCyCy | TOsAL 00 " o TCy,An
0...0 0 - TC;.Crn ° TCy, Ay TCy.An
0...0 0 0 o Taog | Tana ottt Taja,

0 0 0 cae 0 T A5, A L s v Ay An

0 0 0 0 P Ay, Ay ° TAg, An

[ 0...0 0 0 0 0 0 0 0 - ra.a., o

Figure 11: Aggregation of states in C and A. Matrix G4

At this point we note that mp/g, provides a lower bound on 7p;;. However, there
are some practical problems in applying the procedure exactly as described; values for the
transition rates out of aggregate states are required. To actually calculate these would
require solving the original model in detail and this is what we are trying to avoid.

Comparing the matrix in Figure 6 with the matrix G4 in Figure 11 we note that they
have the same form. Therefore the result quoted in the last section applies. Specificaly, if
the elements shown in Figure 12 as ‘4’ are replaced by upper bounds on those rates and
the elements shown as ‘—~’ are replaced by lower bounds then the solution for the stationary
state probabilities will yield a lower bound for the state probabilities for states in D.

10




[ Qpp Qpa |0 O 0{Qp4 @pa, * *++ Qpa,
Rd’.D L] 4+ + + + + vee e +
0...0 — e 4 + + + +
0...0 0 — + + + +

' Pjo — e +| + +
0...0 0 0 — ef + +
0...0 0 — . + +

0 0 0 o| - . +
0 {0 0 0 o| o — . +
| 0...0 0 |0 0 0 0| © 0 — e

Figure 12: Replacement of transition rates with bounds. Matrix Gs.

In summary, Tp;e, < Tp;¢- A remaining issue is the calculation of the upper and lower
bounds on the transition rates required for Gs. This issue is addressed and a detailed
specification of the multi-step algorithm is given in the following section.

4 Description of the Algorithm

The bounds on the transition rates in G5 are of three types. The rates denoted by ‘+’ in
Figure 12 are to be replaced by upper bounds. A simple upper bound is easily seen to be
the sum of the failure rates of all components. Similarly, the rates denoted by ‘—' are to
be replaced by lower bounds. A simple lower bound that suffices is the minimum repair
rate of all components.

The submatrix Q4p in Gy must also contain lower bounds on the rates from d' to states
in D. If npr/q is the vector of stationary state probabilities for states in D then 7p/cQpp
is the vector of transition probabilities that describe the exact transitions from d' to states
in D. It follows immediately that if

’.TIJDI S DG then

' pQpp < TpyaeQpp
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This provides the need lower bound provided that the lower bound on 7p/ /¢ is available.

In the multi-step procedure we describe next, at each step the set of states D’ corre-
sponds exactly to the set of states for which a lower bound has been found on previous
steps. Therefore these lower bound stationary state probabilities provide the needed quan-
tities for the following step.

4.1

Multi-step Procedure

The multi-step bounding procedure is as follows:

1.

5

(Step 1) Generate lower bounds on the stationary state probabilities for states F,
through Fg, using the results from [7]. This provides lower bounds on the state prob-
abilities of these states as well as an initial set of bounds on steady state availability.
If the bounds are tight enough then terminate.

(Step ¢ > 2) Generate the portion of G corresponding to i, through Fp,. Construct
the matrix corresponding to G5 described in the previous section. The submatrices
Qpp and Qpy are generated from the model definition. Let 7}, be the lower bounds
on the state probabilities computed from previous steps. Now set the submatrix
Qap equal to 75,Qprp and solve for 7p;e, which provides lower bounds on the state
probabilities for states in D. Compute upper and lower bounds on steady state
availability using Equation 1 from Section 2. If the bounds are tight enough then
terminate, else repeat step 2.

Example.

In this section, we present a simple example to illustrate the multi-step bounding proce-
dure. We use a model of a fault-tolerant heterogeneous database system as depicted in
Figure 13. The components of this system are: a front-end, two databases and three pro-
cessing subsystems consisting of a switch, a memory and two processors. Components may
fail and be repaired according to the rates given in Table 1. If the processor fails, it has a
0.05 probability of contaminating a database. Components are repaired by a single repair
facility which gives preemptive priority to components in the order: front-end, databases,
switches, processors and lastly the memories. (Ties are broken by random selection.) The
database system is considered operational if the front-end is operational, at least one data-
base is operational, and at least one processing subsystem is operational. A processing

12



subsystem is operational if all of the components of that subsystem are operational. Also,
this system is in active breakdown mode, meaning that components fail even when the

system is non-operational.
@ front-end

processor 1-A processor 1-B processor 1-C

memory A memory B Memory C

switch A

switch B

switch C

processor 2-A processor 2-B processor 2-C

database A database B

Figure 13: A fault-tolerant distributed database system.

In Table 2, we present the bounds of the steady state availability. We note that for
each step, the bounds of the availability are significantly tightened. In step one we set
Dy = {Ui Fi} In step two Dy = {UL; i} and in step 3 Ds = {ULs Fi} .

6 Conclusion

We have presented a method of determining bounds on the steady state availability from
the Markov model of a repairable computer system. This work is an extension of [7] which
extends the one-step procedure into a multi-step procedure for evaluating the bounds of
availability. At each step a tighter bound on availability can be obtained by generating
more of the transition matrix of the original model.

The method not only provides the flexibility to tradeoff computational resources and
error but it allows the tradeoff to be made dynamically; i.e. if at some step the bounds
are not tight enough then more of the matrix can be generated and the bounds tightened
without loss of the previous calculation.
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Mean Mean

Component Failure Repair
Rates Rates
Front-end 1/8000 2.0

Processor 1-A | 1/300 1.3
Processor 2-A | 1/100 1.3
Switch A 1/550 2.0
Memory A 1/500 1.0
Processor 1-B | 1/400 1.1
Processor 2-B | 1/300 1.4
Switch B 1/600 2.1
Memory B 1/550 1.5
Processor 1-C | 1/350 1.2
Processor 2-C | 1/275 1.4
Switch C 1/650 2.5
Memory C 1/600 2.0
Database A 1/4000 2.0
Database B 1/5000 2.1

Table 1: Failure and repair rates(per hour).

| Step Number | Lower Bound | Upper Bound | No of States in D ]
1 0.999878304 | 0.999939472 120
2 0.999930212 | 0.999938779 4823
3 0.999937012 | 0.999937590 11440

Table 2: Upper and lower bounds on steady state availability of the database system.

The procedure described relies on several properties of reliability models. First, to
obtain reasonably tight bounds and yet generate only a small portion of the transition
rate matrix requires that the stationary state probability distribution be highly skewed.
Second, we utilized the assumption that the aggregated Markov process has the “skip-free
to the left” property, i.e. is upper Hessenberg. In the availability modeling domain this
corresponds to an assumption that there is zero probability of more than two components
being repaired at the same instant. In addition, we used the nature of the application
domain in choosing the definition of the aggregate states and in placing upper and lower
bounds on the transitions between aggregates.

There is ongoing work investigating certain properties of the algorithm presented and
compare with alternatives. For example, rather than exploring more of the state space
it may sometimes be advantageous to refine the estimates of state probabilities already
calculated, e.g. using the scheme in [2]. Also, with the procedure presented in this pa-
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per, there is some “unrecoverable” error at each step; i.e. that cannot be eliminated by
further steps. (This is the difference between the lower bounds and the actual stationary
state probabilities.) This error can be eliminated by the iterative approach. The tradeoff
between the “forward only” and iterative approach remains to be investigated. It is also
interesting to consider whether it is possible to provide efficient guidelines (either a priori
or dynamic) to choose between the two.

It appears that there are a number of applications for which the assumption of a highly
skewed stationary state probability distribution is reasonable. See for example [3,6] for
example applications in probabilistic communication protocol verification. It remains to
be investigated whether the other properties (e.g. “skip-free to the left”) will be applicable
in other domains or whether the method can be generalized to relax these conditions.
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Appendix

A Proof for Theorem 1

Theorem 1. 7p,g, < Tp;a,

Proof : Let G be the transition rate matrix for a finite, irreducible continuous time
Markov chain G. Then G is uniformizable which means it can be transformed to a discrete
time Markov chain with transition probability matrix P which has the same stationary
probability vector 7 [9]. This transformation is achieved by:

P=1I+2)'@G

where X is > the largest absolute diagonal element of G. With this in mind, we can
transform G, and Gj into P; and P3 with A = maxz(}2, As) where A, (A3) is the largest of
the absolute values of the diagonal elements of G, (G3).

Let us define the following notation:

Pi;
Pi;
di;
(i)
Tir@@)

T [r(3)]
R*(1)
RE(9)

1{c}

the transition probability from state i to state j in P,.
the transition probability from state i to state j in P;.
= Pij~ Pij

reward (either 0 or 1) for state 7.

one-step expected reward of P, given the present state is ¢, i.e.

Tlr@) = Zipi r(J)
one-step expected reward of P; given the present state is ¢.

k-step (k — 1 transitions plus initial position) accumulative reward for P,

given the initial state is i,i.e.
Rk(i) = T4 T r(d)] for k=1,2,3,...

k-step (k — 1 transitions plus initial position) accumulative reward for Ps
given the initial state is i.

an indicator function equal to 1 if the condition c is true, else 0.

16



with T,,[r(¢)] and RF (i) defined accordingly.

A special case of the results in [13] is that the expected reward for G, is greater than
or equal to the expected reward for G; iff :

(T -T)R*@) > 0 Vi and k

Let ¢ be a 1—1 mapping from D to C which maps each state sp € D to the corresponding
state sc € C.

Let f be any nonnegative function applied to state ¢ of the Markov chain. Since the
only difference between G; and G5 is in the rates out of d', then for any nonnegative
function f:

(T-Ta)f() = Y= a"}{ Y. Paepf(sD) + paa f(d) + 3 Paraif(ai)

spED a;€A

LS B Fo) - pea @) = D B fs0) = 3 p;.,a.m-)}

speD scEC a;€A

Since

Pad = Dga

Pdai = Py Vai€A
!

pd'ﬁD 2 pdf'aD V Sp € D

it follows that :

(T - T,,.)f(z') = {i= d'}{ Z dd‘.apf(SD) + Z dd',acf(-?c)}

sp€ED 20€C

Since by construction of G3 from G,
divep = — da4(sp) Vsp€ D

we have :

(T —Tn)f(i) = H{i=d} { 2 duay[f(sp) - f(¢(SD))]}

SDED

17



A sufficient condition for the above expression to be > 01s :

[f(sp)—f(sc)] = 0O where s¢ = ¢(sp)

Letting the function f be R*(z), then the condition:
(T —T.)R*(#) >0 Vi, k

is satisfied if :
R*(sp) — R*(sc) = 0 Vsp € D and Vk

where s¢ = ¢(sp).
The above sufficient conditions can be easily proved by induction.
For k = 0, since R%(*) = 0, the inequalities hold, then for each sp € D and 3¢ € ¢(sp).

Assume R*(sp) — R*(s¢) > 0for k <n. In k = n + 1 we have:

R**Y(sp) — R™*(s¢) = { Y PepapR*(8D) + Popa RN () + D popai R (ai)
speD a;€A

aceC a;€A

- E p,c,,cR“(.Bc) - psc'd'R"(d') - Z p,c,a..R"(a,-)}

Since :
Dep, @@ = Pac,d
Pspai = DPsca Vsc = (;S(SD) and Ya; € A
Psp.sp = Pacsc Vg = ¢(SD)

we have the following :

R™(sp) — R™(s0) = {,ZDPSD.;D[R"(@)—R“(q&(in))l}
ip€E
0 a

Y
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