Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE EFFECT OF TRAINING SIGNAL ERRORS
ON NODE LEARNING

Joseph C. Pemberton June 1989
Jacques J. Vidal CSD-890041






THE EFFECT OF TRAINING SIGNAL ERRORS
ON NODE LEARNING

Joseph C. Pemberton®
Jacques J. Vidal
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024
pemberto@ces.ucla.edu vidal@cs.ucla.edu

Abstract

The response of three node learning rules to errors in the training sig-
nal was examined. The discrete (perceptron) learning rule is shown
to be very susceptible to target signal errors, and on the average
each target signal error causes an output error. In contrast, the lin-
ear (Widrow-Hoff) and non-linear {generalized deita rule) learning
rules are able to tolerate a large amount of noise in the target signal
without effecting the node output function. The ability to tolerate
training signal noise is shown to depend on the learning rate and
the shape of the non-linear threshold fuaction. For example, a non-
linear threshold function, with scale factor equal to 1 and learning
rate constant equal to 0.01, produces less than 5% output errors for
a rate of 40% errors in the training signal. The training signal error
tolerance of linear and nonp-linear learning rules is explained in terms
of the effect of the errors on the weight vector. An example of how
the results presented here can be used to characterize the dynamic
behavior of a network learning scheme is presented last.

Introduction

This work is motivated by a desire to better understand the effect
of node learning rule choice on the behavior of a whole network.
Network models are often described as robust. This work is aimed
at providing insight into the behavior of node learning rules so that
the robustness of a network can be properly attributed to the node
learning rule or the network learning procedure. In particular, we
show that a single node, that uses a linear of non-linear learning
rule, is far more robust than might be expected.

A typical network node consists of input weights (w;;), a thresh-
old (#;), an output function (f}, and a node learning rule. An ex-
tension to the typical node which includes a discrete output function
as well as the normal threshold function is shown in figure 1. This
addition makes it possible to compare the effect of node learning
tules in terms of their effect on the boolean function implemented
by the node and thus count the number of times that a node output
function is different from the desired output rather than measure the
difference between analog outputs. For simplicity, the node inputs
and outputs are symmetric, binary signals (i.e. 2, ¢{—~1,+1}).

The output function for a two input node can be expressed as:

i = +1 if wy T+ weTa.; > 8
™ 7| -1 otherwise

*Supported in part by Aerojet Electro-Systems under the Aerojet-UCLA Co-
operative Research Master Agreement No, D841211, by Nasa NAG 2.302 and by
an equipment grant {rom Hewlett Packard.

@

———
X
X
a
X H
8
2l
aw (fa . 8;)t ) Waight .
Adjustment ! §
 n—

Figure 1: Threshold Logic Unit with Added Discrete Output Func-
tion

Node Learning Rules

The three learning rules examined in this paper are the discrete
{perceptron) learning rule, the linear {Widrow-Hoff) learning rule,
and the non-linear {generalized delta or backward error propagation)
learning rule. All three learning rules use the same general format
to specify the change to w,;(t):

Awii(t) = n{#5(1) = flag(1), 0;(t)))zizs(t) (1)

where 1 is the learning rate constant, tj(t) is the target or desired
output signal (also referred to as the training signal), zi—,(t) is the
input to the node j from node ¢ and f{a;(t),8,(t})) is the node’s
output feedback signal which is a function of the node activation
{a;) and the threshold (#;). For the discrete learning rule, f{) is the
same as the node’s output, whereas for the linear learning rule, the
output feedback signal is equal to the node's activation minus the
threshald bias ({a,(t) — #;(t))). The output feedback signal for the
non-linear rule is more complicated:

Ffla;(t),8;(t)) = m;.(_fj“T_(,)) -1 (2)

where s is a scaling factor that affects the shape of the (non-linear)
threshold function function. The effect of changing the scaling factor
is shown in figure 2.

The discrete learning rule only updates the weights when the out.
put differs from the target signal. This means the weight adjustment
stops once the weights and threshold implement the desired function.
In addition, when the weights are adjusted, each weight is changed
by a discrete step equal to £2n,



=
,
= - .01
: 0 - si=10
- - 3100
&
.

Figure 2: Non-linear Output Feedback Function for Different Values
of the Scaling Factor

The linear learning rule updates the weights when the node’s
threshold adjusted activation differs from the target signal. This
means that the weight adjustment continues even after the weights
and threshold implement the desired output function!. It has been
shown [4] that when the statistics of the training set are known, the
linear weight adjustment equations can be solved to determine the
steady state weight vectors, [t has also been shown that the average
movement of the weight vector is along a straight line in the weight
space toward the steady state location.

The non-linear rule also updates the weights as long as the target
signal and the output feedback signal differ. Because the output feed-
back signal only approaches +1 as the node's activation approaches
Fo0, the non-linear learning rule continues to adjust the weights even
after the output function matches the target function. For a fixed
training set, the weights continue to move toward the center of the
ranges of values that will implement the target function [2].

Results

The effect of random errors in the target signal on the output signal
was measured for all three learning rules using the following pro-
cedure. First the node was trained using an error free training set
for 1000 iterations. Next the node was trained with a target sig-
nat that was randomly inverted for a fixed percentage of the time
as specified by the error rate. After each input pattern and target
signal presentation, the weights were adjusted according to learning
rule being examined. Output errors were counted each time that the
output signal differed from uncorrupted target signal. Trials were
conducted on a two input node for each of the 14 linearly separable
functions and on a number of linearly separable functions of three
inputs for different target signal error rates. The learning rate was
kept constant throughout a given trial.

The output error rate as a function of the target error rate for all
three learning rules is shown in figure 3. The data is averaged over
the 14 linearly separable functions of two inputs. The results clearly
show that the linear and non-linear learning rules are able to maintain
a consistent output signal when the training set is corrupted. The
discrete learning rule, on the other hand, produces cutput errors
roughly as often as it receives target signal errors and is therefore
similar to a target signal follower, which just keeps track of the last
target signal value, thus automatically producing one cutput error
for each target signal error.

't should be noted that for nodes with more than three inputs the linear
learning rule is not able to learn all linearly separable boolean functions.

Average Output Eror Rate for
50 -J Three Learning Rules
1 Discrete
iser
]
-]
5 %
a
3‘ Linear
3 20 1
-]
10
Non-Linear
L] » > " T T
a 10 20 30 40 50
Target Error Aste

Figure 3: Average Qutput Error Rate vs, Target Signal Error Rate
for Discrete, Linear and Non-Linear Learning Rules

The ability of both the linear and non-linear learning rules to filter
out the target signal errors depends on the learning rate constant ().
For the linear learning rule, the effect is shown in figure 4. Notice
that as the learning rate increases, the linear node’s output error
rate approaches that of the discrete node. The learning rate constant
value has the same effect on the non-linear node.

80 Eftect of Leaming Rate
] on Average Cutput Error Rate

50 =4
2 ] Leaming Rate =
f—, - o

% 4 - 0
3 %
-

Target Error Rate

Figure 4: Average Output Error Hate vs. Tazget Signal Error Rate
of Linear Learning Rule for Different Learning Rate Constants

The error filtering behavior of the non-linear node also depends
on the shape of the non-linear squashing function used to generate
the output feedback signal (see figure 2 and 5). Notice that when
the scale factor is small (< 1), the non-linear function resembles the
linear output function, and when the scale factor is large (> 10),
the function resembles the discrete output function. The training
signal error filtering behavior depends on the shape of the output
function and therefore the non-linear learning rule can be made to
mimic either the linear or discrete learning rules by adjusting the
output function scale factor.



Effect of Non-Linear Scale Factor

70 9

50 4

50 4
2
2 Scala Factor
= 40 4
] - sf=.10
5 ~+ sfi=10
3 3C 4 = sta 100
2
8

20 4

10 4

o4

10 20 30 49 50

Target Errcr Rate

Figure 5: Average Output Error Rate vs. Target Signal Error Rate
Non-linear Learning Rule with Different Shaped Qutput Functions

D .

Empirical evidence has been presented that shows that the linear
and non-linear learning rules exhibit an inherent immunity to noise
in the target signal. In contrast, the discrete learning rule is very
susceptible to random errors in the training signal. This difference
in learning behavior is due to the fact that the linear and non-linear
learning rules continue to update their weights even though the out-
put function and the target function match. In contrast, the discrete
learning rule stops the weight adjustment at the first set of weights
that implements the target function. Clearly for a two input node,
the linear and non-linear rules produce a set of weights that better
represent the target function.

When a node receives a target signal that has been corrupted by
random errors, the learning rule updates the weights in the wrong
direction. Since the discrete learning rule stops at the first set of
good weights, a step in the wrong direction is very likely to change
the output function of the node. The discrete learning rule cannot
recover from this change until it is discovered as an output error.
In addition, the average effect of target signal noise is to reduce the
magnitude of the weights. Once the weights are near zero, a single
weight adjustment is sufficient to change the output function and
cause an output error.

Since the linear and non-linear node learned weights are centered
within the ranges of weight values that implement the target func-
tion, movement of the weights in the wrong direction not as likely to
change the output function because the nearby locations alse corre-
spond to the target function. Also, because the weights are adjusted
even though the output function and target function match, the next
correct target signal will counteract effect of the target error. The net
effect of random target signal errors is a reduction in the magnitude
of the weights (see figure 6).

Extension to Network Learning

It has been shown that the Linear and non-linear learning rules pro-
vide a better set of weights for implementing a boolean function when
there are target signal errors. These results can easily be extended to
input or activation signal errors. The weights produced by the linear
and non-linear learning rules are a more reliable way to implement
an adaptive logic function, specifically when there is potential for
errors in the weight adjustment process signals.

Ettect of Target Signal Errors
2.0 on the Average Weight Magnitude

ge Weighi Magni

00

Petcont Target Signal Error

Figure 6: Effect of Random Target Signal Etrors on the Weights
of a Two Input Non-Linear Node Averaged Over the 14 Linearly
Separable Functions of Two Inputs.

These results can be used to analyze the behavior of different net-
work learning schemes such as competitive learning {7] and backward
error propagation [6]. For example, the network learning schemes can
be viewed as changing the contents of the training vector in response
to network feedback signals. When the network function is first being
learned, the node training vectors will resemble a very noisy or ran-
dom training environment. The result is small weight vectors that
are closer to the other possible output functions and are therefore
able to adjust more quickly to changes in the long term statistics of
the target signal. As the training vectors settle down, the weights
will grow to stabilize the node functions. In the end, node function
stability translates into network stability.

References

(1] Minsky, M. L. and S. A. Papert, Perceptrons. Cambridge: MIT
Press, 1969.

(2] Pemberton, J. C., “A Comparison of Continuous and Discrete
Learning Through a Geometric Representation,” Master's The-
sis, Computer Science Department, University of California, Los
Angeles, CA, 1988,

[3

Pemberton, J.C. and J. J. Vidal, “Noise Immunity of General-
ized Delta Rule Learning,” Abstract Proceedings, First Interna-
tional Neural Network Society Conference, Boston, 1988,

[4

—_

Pemberton, J.C. and J. J. Vidal, “When is the Generalized Deita
Rule a Learning Rule? A Physical Analogy,” Proceedinga of the
IEEE International Conference on Neural Networks, San Diego,
1988.

[5

Rosenblatt, F., Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms, Washington, D.C.: Spartan
Books, 1961.

[6] Rumelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning
Internal Representations by Error Propagation,” Parallel Dis-
tributed Processing Volume !, ed. D. E. Rumelhart and J. L.
McClelland, MIT Press, Cambridge, MA, 1986.



[7] Rumelhart, D. E. and D. Zipser, “Feature Discovery by Compet-
itive Learning,” in Parallel Distributed Processing Volume 1, ed.
D. E. Rumelhart and J. L, McClelland, MIT Press, Cambridge,
MA, 1986.

[8] Widrow, G. and M. Hoff, “Adaptive Switching Circuits,” [nsti-
tute of Radic Engineers, Western Electronic Show and Conven-
tion, Convention Record, Part 4, pp. 96-104, 1960.



