Computer Science Department Technical Report
Cognitive Systems Laboratory
University of California
Los Angeles, CA 90024-1596

d-SEPARATION: FROM THEOREMS TO ALGORITHMS

Dan Geiger June 1989
Thomas Verma CSD-890040
Judea Pearl

Submitted to 5th Workshop on Uncertainty in AI, Windsor,
Ontario, Canada, August 1989, TECHNICAL REPORT
R-130
March 1989
d -SEPARATION: FROM THEOREMS TO ALGORITHMS

Dan Geiger, Thomas Verma & Judea Pearl
Cognitive Systems Laboratory, Computer Science Department
University of California Los Angeles, CA 90024

ABSTRACT

An algorithm that identifies all independencies implied by the topology of a Bayesian network is
developed. Its correctness and maximality stems from the soundness and completeness of d-separation
with respect to probability theory.

1. INTRODUCTION

Bayesian networks encode properties of a probability distribution using directed acyclic graphs (dags).
Their usage is spread among many disciplines such as: Artificial Intelligence [Pearl 1988], Decision
Analysis [Howard and Matheson 1981; Shachter 1988], Economics [Wold 1964], Genetics [Wright
1934], Philosophy [Glymour et al. 1987] and Statistics {Lauritzen and Spiegelhalter 1988; Smith 1987).
A Bayesian network is a pair (D, P) where D is a dag and P is a probability distribution called the
underlying distribution. Each node i in D corresponds to a variable X; in P, a set of nodes / correspond
to to a set of variables X; and x;, x { denotes values drawn from the domain of X; and from the (cross
product) domain of X, respectively. D Each node in the network is regarded as a storage cell for the dis-
tribution P (x; | x n;;y) where X ;) is a set of variables that correspond to the parent nodes w(i) of i. The
underlying distribution represented by a Bayesian network is composed via

n
P(xlv”'sxn)=np(xi Ixn(i))v 4y
=1
(when i has no parents, then X 4, =J). The role of a Bayesian network is to record a state of knowledge
P, to provide means for updating the knowledge as new information is accumulated and to facilitate
query answering mechanisms for knowledge retrieval [Lauritzen and Spiegelhalter 1988; Pearl 1988]. A
standard query for a Bayesian network is to find the current belief distribution of a hypothesis variable X,
given a composed evidence set X; =x; i.e., to compute P(x; | x;) for each value of X, and for a given
combination of values of X ;. The answer to such queries can, in principal, be computed directly from
equation (1) because this equation defines a full probability distribution. However, it would be very
inefficient both in time and space requirements, because it does not exploit independence relationships
encoded in the network and because it treats the underlying distribution as a large table instead of a com-
position of several small ones. To better understand the improvements and limitations that more efficient
algorithms can achieve, the following two problems must be examined: Given a variable X, , a Bayesian
network D and the task of computing P (x; | x ;) determine, without resorting to numeric calculations: 1)

*This work was partially supported by the National Science Foundation Grant #IRI-8610155. "Graphoids: A
Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer Information
Science)".

(1) Note that bolds letters denote sets of variables.

whether the answer to the query is sensitive to the value of X, and 2) whether the answer to the query is
sensitive 10 the parameters p, =P (x; | X ny) stored at node k. The answer to both questions will be
given in terms of conditional independence. The value of X, does not affect this query if
P(x;!x;)=P(x;1x,x;) for all values of x;, x; and x,, or equivalently, if X; and X, are conditionally
independent given X ;, denoted by I (X;, X, X;)p. Similarly, whether the parameters p, stored at node &
would not affect the query P (x; | x ;) will also be reduced to a simple test of conditional independence.

The main achievement of this paper is the development of an efficient algorithm that detects
these independencies directly from the topology of the network, by merely examining the paths along
which ¢, £ and J are connected. The proposed algorithm is based on a graphical criteria, called d-
separation, that associates the topology of the network to independencies encoded in the underlying distri-
bution. The main property of d-separation is that it detects only genuine independencies of the underlying
distribution and that it can not be sharpened to reveal more independencies [Verma and Pearl 1588;
Geiger and Pearl 1988]. An additional achievement of the paper is the solution of two distinct problems,
sensitivity to parameter values and sensitivity to variable instantiations, in a uniform approach,

2. SOUNDNESS AND COMPLETENESS OF d-SEPARATION

In this section we review the definition of d-separation; a graphical criteria that identifies conditional in-
dependencies in Bayesian networks. This criteria is both sound and complete (maximal) i.e., it identifies
only independencies that hold in the underlying distribution and it cannot be sharpened to reveal more in-
dependencies. A preliminary definition is needed.

Definition: A trail in a dag is é sequence of links that form a path in the underlying undirected graph. A
node {3 is called a head-to-head node with respect to a trail ¢ if there are two consecutive links o — B and
B «+yont. (note that nodes that start and end a trail ¢ are not head-to-head nodes wrt to).

Definition [Pear] 1988]): If /, K, and L are three disjoint subsets of nodes in a dag D, then L is said to
d-separate J from K, denoted /(J, L, K)p, iff there is no trail + between a node in J and a node in K
along which every head-to-head node (wrt ¢) either is or has a descendent in L and every other node on ¢
is outside L. A trail satisfying the conditions above is said to be active, otherwise it is said to be blocked

(by L).

Figure 1

In Figure 1, for example, /= {n4} and K’ ={n;} are d-separated by L = {n,}; the path ny ¢=n, — n is
blocked by ny € L while the path n4 —» ns < n3 is blocked because ns and all its descendents are out-
side L. Thus I(n4, nz, n3)p holds in D. However, J and K are not d-separated by L’ = {n,, ng} be-
cause the path n4 — n5 ¢ n3 is rendered active: leamning the value of the consequence ng, renders its
causes n3 and n4 dependent, like opening a pathway along the converging arrows at ns. Consequently,
I(ng {nynelns)p doesnotholdin D.

Note that by our definitions, to check whether L d-separates J and K requires an examination of
all trails connecting a node in J and a node in X, including trails that form a cycle in the underlying un-
directed graph. For example, in Figure 1, J = {n,} and X = {(n)} are not d-separated by L = {ng) be-
cause the trail along the nodes ny, n4, is, 13, ny, By, 15 and n4 is active; the only head-to-head node on
this trail is n4 and it belongs to L, while all other nodes are outside £. The next lemma shows that a trail
that forms a (undirected) loop need not be examined because whenever there is an active trail with a loop
there is an active simple trail as well, i.e. a trail that forms no cycles in the underling undirected graph. In
the previous example, the trail ny, n4, ns and n4 is the simple active trail (by {nel), guaranteed by Lem-
ma 1, The proof of lemma 1, which requires only the definition of d-separation, can be found in [Geiger at
al. 1988].

Lemma 1: Let L be a set of nodes in a dag D, and let o, B ¢ L be two additional nodes of . Then o
and B are connected via an active trail (by L) iff o and P are connected via a simple active trail (by L).

Definition: If X;, X ¢, and X, are three disjoint subsets of variables of a distribution P, then X s and
Xk are said to be conditionally independent given X L» denoted I(X;, X, Xg)p iff
Px;xglx)=P(x; | x,) P(xg | x.) for all possible values of X, Xg and X, for which
Pxp)>0. I(X;,X;,Xg)p is called a (conditional independence) statement.

The importance of d-separation stems from the following theorem [Verma and Pearl 1988;
Geiger and Pearl 1988].

Theorem 2: Let Pp = {P | (D, P) is a Bayesian network }. Then,
IJ,L.K)p & I(X;,X; , Xg)p forall P € Pp

The "only if" part (soundness) states that whenever /(J, L, K)p holds in D, it represents an independen-
cy of the underlying distribution and the "if" part (completeness) asserts that any independency that is not
detected by d -separation can not be revealed without resorting to numerical parameters,

3. THE MAIN RESULTS

In this section we develop a linear time algorithm for identifying the set of nodes X that are d-separated
from J by L. The soundness and completeness of d -separation guarantees that the set of variables Xy
corresponding to the set of nodes X is the maximal set of variables that can be identified as being in-
dependent of X; give X;, without resorting to numerical calculations. The proposed algorithm is a vari-
ant of the well known Breath First Search algorithm; it finds all nodes reachable from J through an active
trail (by L) hence, identifying the maximal set of nodes X satisfying /(J,L,K)p. This task can be
viewed as an instance of a more general task of finding a path in a directed graph for which some
specified pairs of links are restricted not to appear consecutively. In this context, d -separation is viewed

as a specification for such restrictions, for example, two links 4 — v, v — w cannot appear consecutive-
ly in an active trail unless v € L. The following notations are employed: D = (V, E) is a directed graph
(not necessarily acyclic) where V is a set of nodes, E ¢ VXV is the set of (directed) links and F ¢ ExE
is a list of pairs of adjacent links that cannot appear consecutively (¥ -connotes fail). We say that an or-
dered pair of links (e,) is legal iff (¢, e;) € F, and that a path is legal iff every pair of adjacent links
on it is legal. We emphasize that by "path" we mean a directed path, not a trail.

We propose a simple algorithm for the following problem: Given a finite directed graph
D =(V,E),asubset F ¢ £ X E and a set of nodes J, find all nodes reachable from J via a legal path in
D . The algorithm and its proof are a slight modification of those found in Even [1979).

Algorithm 1

Input: A directed graph D = (V, E), a set of legal pairs of links F and a
set of nodes J .

Output: A labeling of the nodes such that a node is labeled with R iff it is
reachable from .J via a legal path.

§)] Add anew node 5 to V and foreach j € J, add the links — j to
E and labelit 1. Label s and all j € J with R (connoting Reach-
able). Label all other nodes and links with "undefined."

i i:=1

(ii) Find all unlabeled links v — w adjacent to at least one link
— v labeled {, such that (4 > v,v — w) is a legal pair. If
no such link exists, stop.

(iv) Label each link v —» w found in Step (iii} with i+1 and the
corresponding node w with R .

(v} i :=i+1, Coto Step (ii).

The main difference between this algorithm and BFS, a change which has been proposed by Gaf-
ni [1988], is the traversal of the graph according to a labeling of the links and not according to a labeling
of nodes (as in the traditional BFS algorithm). This change is essential as the next example shows (Fig-
ure 2); Let F = {(a,c)}, then the path from 1 to 3 through links a.b and ¢ is legal while the path not
traversing b is not legal because (a,c) € F. However, BFS which labels nodes, would not traverse the
link b since when link & is considered, its end point has already been labeled. Thus, BFS with node label-
ing, would not reveal the legal path connecting nodes 1 and 3.

@—o@—o@

a c

Figure 2

Lemma 3: Algorithm 1 labels with R all nodes that are reachable from s (and thus from J) via a legal
path and only these nodes are labeled with R .

Proof: First, we show that if a node w; is labeled with R, then there exists a legal path from s to w;. Let
wy_y — w; be a link through which w; has been labeled. We induct on the label / of the link w,_; — w;.
If /=1 then w; € J and is thercfore reachable from s. If I > 1, then by step (3), there exists a link
wy_p — w;_; labeled with [-1 such that (w;_ — w;_;, w;_; = w;) is a legal pair. Repeatedly applying
this argument for i = [...2 yields a legal path wy — w — ... w;, where wy — w; is labeled with 1. How-
ever, the only links labeled 1 emanate from s, hence the above path is the required legal path from s to
wr.

It remains to show that each node that is reachable from s via a legal path is labeled with R by
the algorithm, Instead, we show that every link o. —» v, that is reachable from s via a legal path (i.e., it
participates in a legal path emanating from s5) is eventually labeled by the algorithm), The latter claim
is stronger than the former because for every reachable node v,, there exists a reachable link ¢ — v,, and
by Step (iv), whenever o — v, is labeled with some integer, v,, is labeled with R. We continue by con-
tradiction. Let [, =v,,_; = v, be the closest link to s via a legal path that remains unlabeled. Let
P =5 V| ..Vu_| >V, bethe path emanating from s and terminating with the link /,,. The portion
of this path that reaches the link /,,_; =v,,_ — v,,_; is shorter than p. Thus, by the induction hypothesis,
Im-1 is labeled by the algorithm. Hence, the link [, is labeled as well (by the next application of step
(iv)), contradicting our assumption that it remains unlabeled. [J

The complexity of the algorithm is O (1 E|-1 V1) because each link e is labeled at most once, and
for each such link the algorithm requires at most O (1V1) operations to find another link that is legal after
e . This analysis assumes that for each link we keep the full list of all links that are legal after it, however,
when the test for a legal pair requires a constant time (as it does for d -separation), the complexity of the
algorithm reducesto O (1E1),

Next we employ the above algorithm to solve the problem of identifying the set of nodes that are
d -separated from J by L. For this aim, we construct a directed graph D’ and define the set of legal pairs
in D’ such that a node is reachable from J via an active trail (by L) in D iff v is reachable from J via a
legal path in D’. The following observations are the basis of our algorithm. First, any link on a trail can
be traversed both ways. Therefore, to ensure that every active trail in D corresponds to a legal (directed)

(2) By labeled we mean that the algorithm attaches an integer label to that link and not an "undefined” label.

path in D’, D’ must consist of all links of D in their forward and reverse direction. Second, an array that
indicates for each node, whether it is in Z or has a descendent in Z, facilitates a test for legal pairs in D’
that can be done in constant time, regardless of 1 V1.

Algorithm 2

Input: A Bayestan network D =(V, E') and two disjoint sets of
nodes J and L.

Data Structure: A list of incoming links (in-list) for each node v € V.
Output: A setof nodes K where K = {al I(J,L,o)p }.
) Construct the following table:

true if v is or has a descendent in L

descendent [v] ={false otherwise

(i) Construct a directed graph D’ = (V, E’) where
E=E u{(u->v)Ilvou)ekE)

(iii) Using algorithm 1, find the set of all nodes X’ which have a legal
path from J in D’, where a pair of links (u — v, v — w) is legal
iff 4 #w and either 1) v is a head-to-head node on the trail —
v—w in D and descendent[v] = true or 2) v is not a head-to-head
nede on the trail u—v—w inD andv ¢ Z.

(iv) K=V-(& uJulL)

Return (K).

Lemma 4; For every node ace J U L, a is reachable from J via a legat trail in D’ iff there is an active
pathby L fromJ toctin D.

Proof: For e J UL and xge J, if (xo—x; ... &) is an active trail (by L) in D, then the directed path
(xo— x; — .. 0) is a legal path in D', and vise versa. (We have eliminated the case c.e J U L for
technical convenience; the trail (xo —x, ... ©) is not active nor non-active because, by our definition, J, L,
and {c} must be disjoint. (I

Theorem 5: The set X' retumed by the algorithm is exactly (ol /(J, L, c0)p).

Proof: The set K” constructed in Step (iii) contains all nodes reachable from J via a legal path in D’.
Thus, by lemma 4, K” contains all nodes not in J W L that are reachable from J via an active trail (by L)
in D. However, I{(J,L, ®)p, holds iff « ¢ J W L and o is not reachable from J (by an active path by
L), therefore, K =V — (K" W J U L) is exactly the set {at /(J, L, w)p}. O

Next, we show that the complexity of the algorithm is O (| E1) we analyze the algorithm step by
step. The first step is implemented as follows: Initially mark all nodes of Z with true. Follow the incom-
ing links of the nodes in Z to their parents and then to their parents and so on. This way, each link is ex-
amined at most once, hence the entire step requires O (| E1) operations. The second step requires the con-
struction of a list for each node that specifies all the links that emanate from v in D (out-list). The in-list
and the out-list completely and explicitly specify the topology of D, This step also requires O (1E1)
steps. Using the two lists the task of finding a legal pair in step (iii) of algorithm 2 requires only constant
time; if ¢, =u# — v is labeled i then depending upon the direction of ¥ — v in D and whether v is or has
a descendent in Z, either all links of the out-list of v, or all links of the in-list of v, or both are selected.
Thus, one operation per each encounted link is performed. Hence, Step (iii) requires no more than
O (1EI) operation which is therefore the upper bound (assuming |1E! 2 I V1) for the entire algorithm.

The above algorithm can also be employed to verify whether a specific statement /(J,L ,K)p
holds in a dag D . Simply find the set K ,,, of all nodes that are d-separated from J given L and observe
that I (J,.L ,K)p holds in D iff K ¢ K,,. In fact, for this task, algorithm 2 can slightly be improved by
forcing termination once the condition K g K, has been detected. Lauritzen at al [1988] have recently
proposed another algorithm for the same task sub max. Their algorithm consists of the following steps.
First, form a dag D’ by removing from D all nodes which are not ancestors of any node inJ UK UL
(and removing their incident links). Second, form an undirected graph G, called the moral graph, by
shielding the directionality of the links of ¥ and connecting any two nodes that have a common child (in
D’) which is or has a descendent in L, Third, they show that /(/, L, K)p holds iff all (undirected) paths
betweenJ and K in G are blocked by L.

The complexity of the moral graph algorithm is O (1V %) because the moral graph G may contain
up to V12 links. Hence, checking separation in G could require O (| V12) steps. Thus, our algorithm is a
moderate improvement as it only requires O(IEl) steps. The gain is significant mainly in sparse graphs,
where |El =0 (IV1). We note that if the maximal number of parents of each node is bounded by a con-
stant, then the two algorithms display the same asymptotic behavior i.e, linear in | E|. On the other hand,
when the task is to find all nodes d -separated from J by L, and not merely validating a given indepen-
dence, then a straight forward application of the moral graph algorithm requires O (| V13) steps, because
for each node not in J w L the algorithm must construct a new moral graph, the construction of which re-
quires O (1V1%) steps. Hence, for this task, our algorithm offers a considerable improvement.

The inference engine of Bayesian networks has also been used for decision analysis; an analyst
consults an expert to elicit information about a decision problem, formulates the appropriate network and
then by an automated sequence of graphical and probabilistic manipulations an optimal decision is ob-
tained [Howard and Matheson 1981; Olmsted 1984; Shachter 1988]. When such a network is constructed
it is important to determine the information needed to answer a given query P(x; |x;) (where {j} UL
is an arbitrary set of nodes in the network), because some nodes might contain no relevant information to
the decision problem and eliciting their numerical parameters is a waste of effort [Shachter 1988]. As-
suming that each node X; stores the conditional distribution P (x; | r(x;)), the task is to identify the set M
of nodes that must be consulted in the process of computing P (xj 1x) or, alternatively, the set of nodes
that can be assigned arbitrary conditional distributions without affecting the quantity P (x; 1x). The re-
quired set can be identified by the d-separation criterion. We represent the parameters of the distribution
P (x; I m(x;)) as a dummy parent x; of node i. From Theorem 1, all dummy nodes that are d -separated
from J by L represent variables that are conditionally independent of J given L and so, the information
stored in these nodes can be ignored. Thus, the information required to compute P (x; Lx x) resides in the
set of dummy nodes which are not d-separated from J given L. Moreover, the completeness of d-

separation further implies that M is minimal; no node in M can be excluded on purely topological
grounds (i.e., without considering the numerical values of the probabilities involved). The algorithm
below summarizes the discussion.

Algorithm 3
Input: A Bayesian network, two sets of nodes J and L.

Output: A set of nodes M that contains sufficient information to compute
P (x j | x L)

(i Construct a dag D" by augmenting D with a dummy node V' for
every node v in D and addingalinkV’ — v.

(ii) Use algorithm 2 to compute the set K’ of nodes not d -separated
fromJ by L.

(iii) Let M be the set of all dummy nodes v’ that are included in K7 .

We conclude with an example. Consider the network D of Figure 3 and a query P (x3).

eoo 1117

Figure 3

The computation of P (x3) requires only to multiply the matrices P (x5 !x;) and P (x,) and to sum over the
values of X;. These two matrices are stored at the dummy nodes 1" and 3’, which are the only dummy
nodes not d-separated from node 3 (given). Thus, algorithm 3 reveals the fact that the parameters
represented by node 2’ and 4” (P (xp), P (x4 x4, x5y are not needed for the computation of P (x3). Note,
however, that knowing the value of X4 might influence the computation of P (x,), because X5 and X,
could be dependent. The value of X ,, on the other hand, never affects this computation because X 5 is in-
dependent of X 5. This example shows that the question of whether a variable influences the computation
of a query and the question of whether the parameters stored at that node influence the same query are
two different questions. Algorithm 3 exploits the fact that parameters can be represented as (dummy)
variables; it solves the latter problem by transforming it to an instance of the former.

Shachter was the first to address the problem of identifying irrelevant parameters [Shachter
19881, Our formulation provides several advantages. First, we distinguish between sensitivity to vari-
able instantiations and sensitivity to parameter values, and the algorithm we provide can be tailored to
solve either one of these problems. Shachter’s algorithm handles the second problem and, therefore, it
does not reveal all the independencies that are implied by the topology of the dag. For example, in Figure
3, Shachter’s algorithm would correctly conclude that nodes 2 and 4 both contain no relevant information

(3) He also considers deterministic variables which we treat in [Geiger at al, 1989].

for the computation of P (x4). Yet, X, is independent of X 5, while X 4 and X 3 might be dependent, a dis-
tinction not addressed in Shachter’s algorithm. Second, our method is comprised of two components, 1)
declarative characterization of the independencies encoded in the network (i.e., the d -separation criterion)
and 2) procedural implementation of criterion defined in 1). This approach facilitates a clear proof of the
validity and maximality of the graphical criterion, independent of the details of the algorithm, followed
by proofs of the algorithm’s correctness and optimality (it requires only O (! E1) steps). In Shachter’s
treatment the characterization of the needed parameters is inseparable from the algorithm, hence, it is
harder to establish proofs of correctness and maximality.

ACKNOWLEDGEMENT

We thank Eli Gafni for his help in developing algorithm 1, and to Azaria Paz and Ross Shachter
for many stimulating discussions.

REFERENCES
S. Even. 1979, Graph Algorithms, Computer Science Press.
E. Gafni. Personal commumication, 1988,

D. Geiger & J. Pearl. August 1988. "On The Logic of Causal Models," Proc. of the 4th Workshop on Uncertainty in Al, St. Paul,
Minnesota, pp. 136-147.

D. Geiger, T. S. Verma and J. Pearl. 1989. "Idemifying independence in Bayesian networks”, Technical report R-116-1, UCLA
Cognitive Systems Laboratory, In preparation.

C. Glymour, R. Scheines, P. Spirtes and K. Kelly. 1987. Discovering Causal Structure, New York: Academic Press.

R. A. Howard & J. E. Matheson. 1981. "Influence Diagrams,” In, Principles and Applications of Decision Analysis, Menlo Park,
CA: Strategic Decisions Group.

$.L. Lauritzen, D. Spiegelhalter. 1989. "Local computations with probabilities on graphical structures and their applications to
expert systems.” J. Royal Statist. Soc., ser. B.

S.L. Lauritzen, A.P. Dawid, B.N. Larsen and H.G. Leimer. October 1988, "Independence Properties of Directed Markov
Fields,"” Technical Report R 88-32, Aalborg Universitetscenter, Aalborg Denmark.

S. M. Olmsted. 1983. "On Representing and Solving Decision Problems,” Ph.D. Thesis, EES Dept., Stanford University.
J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Mateo, CA: Morgan Kauf-

mann.
R.D. Shachter. 1988. "Probabilistic Inference and Influence Diagrams,"” Operations Research, Vol. 36, pp. 589-604.

J.Q. Smith. June 1987. "Influence Diagrams for Statistical Modeling," Technical report #117, department of Statistics, Universi-
ty of Warwick, Coventry, England.

T. Verma & J. Pearl, August 1988, "Causal Networks: Semantics and Expressiveness,” Proceedings of the 4th Workshop on Un.
certainty in Al, St. Paul, Minnesota, pp. 352-359.

H. Wold. 1964. Econometric Model Building, Amsterdam: North-Holland Publishing Co.
8. Wright. 1934, "The Method of Path Coefficients,"” Ann. Math, Statist., Vol. 5, pp. 161-215.

