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Abstract

We propose a formalization of the notion of consistency for a set X of defeasible
and strict information, based on a probabilistic interpretation for the sentences in X.
This formalization establishes a clear distinction between knowledge bases depicting
exceptions and those containing outright contradictions.

A simple and yet powerful theorem is proven giving necessary and sufficient condi-
tions for consistency. This same theorem provides a decision procedure for testing the
consistency of X and identifying the inconsistent subset of sentences (in the case that
X is inconsistent). Finally, it is shown that if the sentences in X are Horn clauses,
consistency can be tested in polynomial time.

1 Introduction

There is a sharp difference between exceptions and outright contradictions. Two state-
ments like “typically, penguins do not fly” and “red penguins can fly”, can be accepted as
a description of a world in which redness defines an abnormal type of penguin. However,
the statements “typically, birds fly” and “typically, birds do not fly” stand in outright
contradiction to each other (unless birds are non existent). Whatever interpretation we
give to “typically”, it is hard to imagine a world containing birds in which both statements
can hold simultaneously. Yet, in spite of this clear distinction, there is no formal treatment
of inconsistencies in existing non-monotonic reasoning proposals.

Consider a database A containing the following sentences: “all birds fly”. “typi-
cally, penguins are birds” and “typically, penguins don’t fly”. A circumscriptive theory
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( [McCarthy, 86]) consisting of the sentences in A plus the fact that Tweety is a penguin,
will render the conclusion that either Tweety is a flying penguin (and therefore is an ex-
ception to the rule “typically, penguins don’t fly”), or Tweety is an exception to the rule
“typically, penguins are birds” and Tweety does not fly. A formalization of the database in
terms of a default theory (see [Reiter, 80]) will render similar conclusions for our penguin
Tweety. Nevertheless, the above set of rules strike our intuition as being inherently wrong:
if all birds fly, there cannot be a nonempty class of ob jects (penguins) that are “typically
birds” and yet “typically, don’t fly”. We cannot accept this database as merely depicting
exceptions between classes of individuals; rather, it would seems that there is no possible
state of affairs in which this set of sentences can hold simultaneously!. However, if we now
change the first sentence of A to read “typically, birds fly” instead of “all birds fly”, we are
willing to cope with the apparent contradiction by considering the set of penguins as an
exceptional type of birds. This interpretation will remain satisfactory, even if we change
the second rule to read “all penguins are birds”. Yet, if we further add to A the sentence
“typically, birds are penguins” we are faced again with an intuitive tnconsistency.

This paper deals with the problem of formalizing, detecting and isolating such inconsis-
tencies in knowledge bases containing defeasible and strict information?. We will interpret
a defeasible sentence such as “typically, if ¢ then ¥” written ¢ — v, as the conditional
probability P(1|¢) > 1 — ¢ , where ¢ is an infinitesimal quantity®. A strict sentence such
as “if it must be the case that ¢” written ¢ = o, will be interpreted as the condi-
tional probability P(o|p) = 1. Our criterion for testing inconsistency translates to that
of determining if there is a probability distribution P that satisfies all these conditional
probabilities for all ¢ > 0. To match our intuition that default (strict) sentences do not
refer to empty classes, nor are they confirmed by merely falsifying their antecedents, we
further require that P be proper, i.e., that it does not render any antecedent as totally
impossible.

The results, techniques and notation used in this work are based on those presented
in [Adams, 75]. In particular, we use the concept of the quasi-conjunction and that of a
nested sequence of probability assignments.

2 Notation and Preliminary Definitions

We will use ordinary letters from the alphabet (except d, s and r) as propositional variables.
Let 7 be a factual language built up in the usual way from a finite set of propositional
variables and the connectives “=" and “v” (the other connectives will be used as syntactic
abbreviations), and let the greek letters ¢, ¢, o, & (possibly subscripted) stand for formulas
of F.

Let ¢ and ¢ be two formulas in F and let “—” be a new binary connective, then a

! Provided that the set of penguins is nonempty.
*The consistency of a system with only defeasible sentences is discussed in [Adams, 75] and [Pearl, 87)
3For more on probabilistic semantics for default reasoning the reader is referred to [Pearl, 88].
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defeasible sentence is the formula ¢ — ¥ which may be interpreted as “if ¢ then typically
»”. The set of defeasible sentences will be denoted by D. Similarly, given ¢, ¢ in F and
the new binary connective “=” a strict sentence is the formula ¢ = o which is to be
interpreted as “if ¢ then it must be the case that o™*. The set of strict sentences will be
denoted by S 5. We will use X to stand for the union of D and S and z,d, s as variables
for sentences in X, D and S respectively. Finally, the material counterpart of a sentence
¢ — ¢ (or ¢ = ¥) in X is defined as the formula ¢ D ¥ (where “2” denotes material
implication).

Given a factual language F, a truth assignment for F is a function ¢, mapping the
sentences in F to the set {1,0}, (1 for True and 0 for False), such that ¢ respects the usual
boolean connectives. Note that if there are n propositional variables in F, there will be 2"
different truth assignments for F,

A sentence z € X with antecedent ¢ and consequent 1 will be verified by t, if t{¢) =
t¥) = 1. If () = 1 but t(1) = 0, the sentence z will be falsified by t. Finally, when
t(¢) = 0, z will be considered as neither verified nor falsified.

Definition 1 (Probability assignment). Let P be a probability function on truths assign-
ments, such that ¥, P(¢;) = 1. We define a probability assignment P on a sentence ¢ — Y
from D as:

Plt)t( A D) + -+ P(t)ti(¢ A ) (1)
P{t)t () + - + P(t:)ti(4)

where ¢,,...,t; are all the possible truth assignments to the propositional variables in F
and P(%;) is the probability assigned to t;. We assign probabilities to the sentences in S in
exactly the same fashion. P will be considered to be proper, if the denominator of Eq (1)
is non-zero for every sentence in D U S.

Pl —y) =

The definition of probability assignment above, attaches a conditional probability in-
terpretation

P(¢)
to the sentences in X. Eq. (1) states that the probability of a defeasible (strict) sentence

T = ¢ — 1 is equal to the probability of z being verified (i.e. #,(¢ A 4) = 1), divided by
the probability of its being either verified or falsified (le. t;(¢) =1).

P(dl¢) =

Up to this point the only difference between defeasible sentences and strict sentences
was syntactic. They were assigned probabilities in the same fashion and they were verified
and falsified under the same truth assignments. Their differences will become clear in the
next section, and it rests upon the way they enter the definition of consistency.

“In the domain of non-monotonic muitiple inheritance networks, the interpretation for the defeasible
sentence ¢ — 3 would be “typically ¢’s are ¥’s”, while the interpretation for the strict sentence =0
would be “all % are ¢’s”.

Note that both “—” and “=7 can occur only as the main connective.



3 Probabilistic Consistency

Definition 2 (Probabilistic consistency) Let D and S be sets of defeasible and strict sen-
tences respectively, constructed from formulas in F. We say that X = DU S is probabilis-
tically consistent (p-consistent) if, for every € > 0, there is a proper probability assignment
P such that P(d) > 1 — ¢ for all defeasible sentences d in D, and P(s) = 1 for all strict
sentences s in §. :

Before stating the main result of this paper (theorem 1 below), we need to establish
the concepts of tolerance and confirmation of a sentence z in X.

Definition 3 (Tolerance) Let z be a sentence in X' with antecedent ¢ and consequent .
We will say that z is tolergted by the rest of the sentences in X, if there exists a truth
assignment t such that the formula ¢ A o A X, is satisfied by ¢ where X denotes the
conjunction of the material counterparts of the sentences in X — 2.

Definition 4 (Conﬁrmatz'on) We will say that a non-empty set of sentences X = pu §
1s confirmable when:

1. If D is non-empty, at least one sentence d € D is tolerated by the rest of the sentences

in X,

2. ' D is empty, each sentence s in S is tolerated by the rest of the sentences in §.

Theorem 1 Let X = py g be a non-empty set of defeasible and strict sentences con-
structed from the formulas in F. X is p-consistent if and only if every non-empty subset
of X is confirmable.

Proof of the only if part: We want to show that if there exists a non-empty subset
of X which is not confirmable, then X is not p-consistent. The proof is facilitated by
introducing the notion of quasi-conjunction ( [Adams, 75]): Given a set of defaults D —
{61 = ¥1,..., 0, = Pn} the quasi-conjunction of D is the defeasible sentence,

C(D)=[¢:V--.V¢n]->[(¢1le)/\---/\(énmﬂn)] (3)

The quasi-conjunction C(D) bears interesting relations to the set D. In particular, if D
is confirmed by some assignment ¢, C(D) will be verified by ¢. This is so because the
verification of at least one sentence of D by t guarantees that the antecedent of C(D) (ice.
the formula [¢,v... v $n] in Eq. (3)) is mapped into 1, and the fact that no sentence in D
is falsified guarantees that the consequent of C( D)} (i.e. the formula [(d1 D ¥)A.. A(dn D

n)] in Eq. (3)) is also mapped into 1. Similarly, if at least one sentence of D is falsified,
1ts quasi-conjunction is also falsified. In this case, the consequent of C(D) is mapped into
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0 since at least one of the material implication in the conjunction is falsified. Additionally,
let Up(C(D)) =1— P(C(D)) (the uncertainty of C(D)) where P(C{D)) is the probability
assigned to the quasi-conjunction of D according to Eq. (1), then, it is shown in [Adams, 66}
that the uncertainty of the quasi-conjunction of D is less or equal to the sum of the
uncertainties of each of the sentences in D, ie. U,(C(D)) < ¥,(1 — P(d;)) where the sum
is taken over all d; in D.

We are now ready to proceed with the proof. Let X’ = D' U S’ be a subset of X where
D' is a subset of D and S’ is a subset of S. If X' is not confirmable then one of the
following cases must occur:

Case 1.- S’ is empty and D’ is not confirmable®. In this case, the quasi-conjunction for D’
is not verifiable; from Eq. (1), we have that P(C(D")) = 0 and U,(C(D’")) = 1. It follows,
by the properties of the quasi-conjunction outlined above that ¥;(1 — P(d’)) over all d; i
D' is at least 1. If the number of sentences in D’ is n > 1, then,

=Y P > 1 (1)
SP() < n-1 (5)

which implies that at least one sentence in D’ has probability smaller than 1 — 1 7. Hence,

it 1s impossible to have P(d’) > 1 —e¢, for every € > 0, for every defeasible sentence d' € D'.
Thus, X is p-inconsistent.

Case 2.- D' is empty. Proof by contradiction: assume that S’ is not confirmable and X" is
p-consistent. If X’ is p-consistent, there must exist a probability assignment P satisfying
definition 2, and a set T of truth assignments such that P(¢;) > 0 for all ¢; in T. If 5" is not
confirmable, then either one of the following conditions must be true: there is at least one
truth assignment ¢’ in T such that ¢ falsifies a sentence s’ in S’, or there is a sentence s”
in 5* such that no truth assignment t” in T verifies s”. The requirements of p-consistency
state that for every sentence ¢ = o in S, P(y =% ¢) = 1. Thus, from Eq. (1),

Pt Ao)+ -+ Pt )t (v A o) -1 (6)
P(t)t(e) + - + P(ta)ta() |

which immediately implies that, no sentence s' € S’ can be falsified by any t € T. Hence,
the first condition for the unconfirmability of 5’ cannot occur. On the other hand, if there
1s no ¢t in T that verifies (nor falsifies) a sentence s” in S’, the denominator of P{s"} is
0 (see Eq.( 1)), and P is not proper as required. Since by the definition of confirmability
these two are the only conditions under which a set of purely strict sentences can be
unconfirmable, we conclude that S’ cannot be confirmable while X is p-consistent.

Plop=0) =

Case 3.- Neither D' nor S’ are empty and X' is not confirmable. That is, either D’ is not
confirmable or every ¢ in T that verifies a sentence in D’ falsifies at least one sentence

®This case is covered by Theorem 1.1 in [Adams, 75].
If D’ consists of only one sentence @', then P(d") = 0.
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in §’. The first situation will lead us back to case 1 while the second to a contradiction
similar to case 2 above. In either case, X is not p-consistent.

Proof of the if part: Assume that every non-empty subset of X = DU S is confirmable.
Then the following two constructions are feasible:

e We can construct a finite “nested decreasing sequence” of non-empty subsets of X,
namely X,,..., X, (X = X,), and an associated sequence of truth assignments
t1,...,tm confirming Xi,..., X,, respectively, with the following characteristics:

1. X1 is the proper subset of X; consisting of all the sentences of D; not verified
by t;,fori=1,... m—1.

2. All sentences in D,, are verified by ¢,,.

o We can construct a sequence tpmyq,...,t, that will confirm X,,;, = S. That is,
the sequence tn41,...,¢, will verify every sentence in S without falsifying any®. We
will associate with £p,41,...,t, the “nested decreasing sequence” Xpy1,..., X, where
Xi41 is the proper subset of X consisting of all the sentences of S; not verified by ¢,
fori=m+1,...,n.

We can now assign probabilities to the truth-a,ssignments t1,...,ts in the following
way:

Fori=1,...,n-1

and

p(ta) = ! (8)

We must show that, in fact, every sentence d in D obtains P(d) > 1 —¢ and that every
sentence s in S obtains P(s) = 1. Since every sentence d is verified in at least one of the
member of the sequence Xj,...,X,, using Eq. (1) we have that for i < n:

g1 —¢)
g l—e)+e(l—€)+ - 4en-!

P(d;) > =1-—¢ (9)
and P(d,) = 1if it is only verified by the last truth assignment when $ is originally empty.
Finally, since no sentence s in S is ever falsified by the sequence of truth assignments
t1,...,t, and each and every s in S is verified at least once, it follows from Eq (1) and
the process by which we assigned probabilities to ¢,,...,, that indeed P(s) = 1 for every
seS.

Note that if § is originally empty, i.e. X = D and m = n, then the proof is identical to that of theorem
1.2 in [Adams, 75].



4 Examples

Example 1 On birds and penguins.

We begin by testing the consistency® of the set of sentences presented in the introduc-
tion:

1. b= f (“all birds fly”).
2. p— b (“typically, penguins are birds")

3. p— —f (“typically, penguins don’t fly”)

In order for this set of sentences to be consistent, we must find a truth assignment t for the
propositional variables b, p and f such that ¢ verifies at least one of the defeasible sentences
above (i.e. (2) or (3)) and ¢ does not falsify any of the others, To verify (2}, both t(p) and
¢(b) must be 1. Then, if ¢(f) = 1 sentence (3) is falsified, while if t(f) = 0 sentence (1)
is falsified. A similar situation arises if we try to verify sentence (3) instead (either (1)
of (2) will be falsified). Note that if we change sentence (1) to be defeasible, the truth
assignment #(b) = 1, #(f) = 1 and ¢(p) = 0 will do the job: b — f will be verified while
neither sentences (2) and (3) will be verified or falsified, hence the set is consistent!?. If
we now add b — p (“typically, birds are penguins”) the set will again be inconsistent. Any
truth assignment verifying one sentence will falsify another.

Example 2 On quakers and republicans.
Consider the following set of sentences:
1. w — r (“typically, bird_watchers are republicans”)
2. w — q (“typically, bird.watchers are quakers”)
3. ¢ = p (“all quakers are pacifists”)
4. r = —p (“all republicans are non-pacifists”)

5. p — c (“typically, pacifists are persecuted)

This set of sentences is confirmable by the assignment ¢(p) = t(¢) = 1 and t(w) = #(q) =
t(r) = 0, in which sentence (5) is verified. However, such data base is inconsistent since

®The terms consistency and p-consistency will be used interchangeably.
'®The reader can verify that any subset can be confirmed.



one of its subsets is not confirmable, namely the set of sentences (1)-(4). Note that
theorem 1 not only provides a criteria to decide whether a data base of defeasible and
strict information is inconsistent, but also identifies the offending set of sentences. We can
modify the above set of sentences to be:

1. w = r (“all bird_watchers are republicans”)

2. w = ¢ (“all bird_watchers are quakers”)

3. g — p (“typically, quakers are pacifists”)

4. r — —-p (“typically, republicans are non-pacifists”)

5. p — ¢ (“typically, pacifists are persecuted)

This data base is consistent. There is an important difference between the former case
and this one. If all quakers are pacifists and all republicans are non-pacifists, our intuition
immediately reacts against the idea of an individual that is both a quaker and a republican.
On the other hand, this last set of sentences allows a bird_watcher that is both a quaker
and a republican to be either pacifist or non pacifist. Finally, if we make (2) and (4) be
the only strict rules, we get a database similar in structure to the example depicted by
network [s in [Horty et. al., 88]:

1. w — r (“typically bird_watchers are republicans”)

o

w => q (“all bird_watchers are quakers”)

3. ¢ — p (“typically quakers are pacifists”)

2

4. r = -p (“all republicans are non-pacifists”)

5. p — ¢ (“typically pacifists are persecuted)
Not surprisingly, the criterion of theorem 1 renders this database consistent in conformity

with the intuition expressed in {Horty et. al., 88].

5 Conclusions

This paper provides a criterion for deciding consistency in data bases containing defeasi-
ble and strict information based on a probabilistic interpretation of the sentences in the
database. The criterion also identifies the smallest group of sentences that produces the
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inconsistency. Future work includes a graphical decision criterion for consistency in mixed
inheritance networks (extending that of [Pearl, 87)]), a formal study of the relation be-
tween entailment and p-consistency (see {Adams, 75]), and a comparison to the notion of
preferential entailment (see [Lehmann et. al., 88]).
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A Appendix: The Complexity of Testing Consistency

Theorem 2 Let F be a set of propositional formulas, and let X = DU S be the a set of defeasible
and strict sentences constructed from the formulas in F. The worst case complexity of testing the
consistency of X is bounded by [PS x (J%E +1S])] where |D| and |S| are the number of defeasible
and strict sentences respectively, and PS is the complexity of propositional satisfiability for the
material counterpart of the sentences in X .1!

' Although the general satisfiability problem is NP-complete, if the sentences in X are restricted to be Horn
clauses then PS = O(N), where N is the total number of occurrences of literals in X [Dowling et. al., 84].
Thus, for the case of Horn clauses testing consistency will be polynomial.



Proof The following procedure for testing consistency finds a “nested decreasing sequence”, (see
proof of theorem 1), if one exists; otherwise, it returns failure.

PROCEDURE TEST_CONSISTENCY

INPUT: a set X = DU S of defeasible and strict sentencas
i, LET D':=D

2. WHILE D' is not empty DO

3. Find a sentence d € D' such that d is
tolerated by SU D' —d

4, IF d is found then LET D':= D' -d
ELSE HALT: the set is INCONSISTENT

ENDWHILE

5. LET §':=8§
6. WHILE S’ is not empty DO

7. Pick any sentence s € 5’ and test whether s is
tolerated by § - s

8. IF s is tolerated then LET §':=5'—5

9 ELSE HALT: the set is INCONSISTENT

ENDWHILE
10, The set is CONSISTENT
END PROCEDURE

If the procedure stops at either line (4) or line (9) a non confirmable subset is found, and by
theorem 1 the set of sentences is inconsistent. On the other hand, if the procedure reaches line (10),
from the proof of the if part of theorem 1 we are able to build a proper probability distribution
in which all sentences d € D have P(d) > 1 — ¢ and all sentences s € S have P(s) = 1; thus the
original set X is consistent. It follows that the procedure is correct.

To assess the time complexity, note that the WHILE-loop of line (6) will be executed |5} times
in the worst case, and each time we must do at most PS work to test the satisfiability of § - s;
thus, its complexity is || x PS. In order to find a tolerated sentence d = ¢ — ¥ in D', we must
test at most |D’| times, (once for each sentence d € D'}, for the satisfiability of the conjunction of
® A1 and the material counterparts of the sentences in the set (SuU D’ —d). However, the size of D'
is decremented by at least one sentence in each iteration of the WHILE-loop in line (2), therefore
the number of times that we test for satisfiability is |D|+|D|-1+|D|—2+...+1 which is bounded
by J%E. The total amount of work in this loop is O(]D|* x PS), and the total time complexity is

o[Ps x (B +s)).
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