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ABSTRACT

This paper offers an axiomatic characterization of the probabilistic relation "X is independent of
Y (written (X, ¥)),"” where X and ¥ are two disjoint sets of variables. Three axioms for
I(X,Y) are presented and shown to be complete. Based on these axioms, a polynomial member-
ship algorithm is developed to decide whether any given statement I(X,Y) logically follows
from a set T of such statements i.e., whether 7 (X, Y ) holds in every probability distribution that
obeys ¥. The complexity of the algorithm is O (1 X! - k%+ IZ| - n) where |Z! is the number of

given statements, # is the number of variables in £ U {/(X,Y)} and k is the number of vari-

ables in (X, Y).
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Fa
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Fa

SYMBOLS

Meaning

P sub sigma

P sub sigma prime
not derive

entails

not entails

derives

citimes

sigma

bold capital sigma
gamma

bold capital gamma
alpha

empty set
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supset (or equal)
subset (or equal)

then



1. INTRODUCTION

Consider a collection of information sources, each reflecting a different aspect of some underly-
ing probabilistic phenomenon. These sources can be regarded as a set of random variables,
governed by an unknown probability distribution, some of which are dependent and some in-
dependent. In this paper, we are concerned with the following problem: Assume we know that
some groups of variables are mutually independent, either by statistical analysis or by conceptu-
al understanding of the underlying phenomenon; we need to infer new independencies without

resorting to additional measurements or expensive numerical analysis.

We formalize this question as follows: Let a (independence) statement 6=1(X,Y)p
stand for the probabilistic relation "the variables in X are independent of those in ¥," ie.,
PXY)=PX) -P(Y)where X and Y are disjoint sets of variables and P is a distribution over
these variables. We say that a statement ¢ is logically implied by a set of statements X iff every
distribution that obeys Z obeys ¢ as well. We ask: Is the statement 6=7(X, ¥)p logically im-
plied by a given set X of such statements, each characterized by a different pair of subsets X’ and

Y7

The answer is given in two steps. First, (in Section 2), we provide the following infer-

ence rules, considered as axioms:

Trivial Independence (X, D) (1.a)
Symmetry X, Y)=I({,X) (1.b)
Decomposition X, Y UuZ)y—=IX,Y) (l.c)



Mixing IX,V&X VY, Z)sIX, Y LZ) (1.d)

These axioms clearly hold for all distributions and therefore are sound. For example, to prove
(1.d), we observe that P(X Y)=P(X)-P(¥) and P(X Y Z)=P(X Y) P(Z) imply that
P(X Y Z)=P(Y)P(X)P(Z). Moreover, summing over X yields P (¥ ZY=P(Y)P(Z), hence
P(X Y Z)=P(X)P(Y Z) which establishes the right hand side of (1.d). We show that these ax-
ioms are also complete, i.e., capable of deriving by repeated applications all independencies that

are logically implied by the input set of independencies.

The second step of our solution is a membership algorithm that efficiently answers
whether a statement ¢ is a member of the closure ¢l (X) of X under axioms (1). In light of the
completeness results, ¢ € ¢I(Z) iff ¢ holds in every distribution that obeys Z. This step is
covered in Section 3. Section 4 extends the results to the problem of deciding consistency: Given
a set of independence statements mixed with dependence statements, to decide if the set is con-
sistent, i.e., if there exists a probability distribution that satisfies all the statements simultaneous-
ly. We show that the axioms provided in section 2 are strongly complete and, hence, the con-

sistency problem can be translated into a sequence of membership problems.

Similar problems of membership and axiomatic characterization are treated in the litera-
ture on database dependencies, for example (Beeri et al, 1977; Fagin, 1977; Beeri, 1980; Fagin,
1982; Sagiv and Walecka, 1982). Our notations and definitions were particularly influenced by
(Beeri et al, 1977; Fagin, 1977). A survey on database dependency theory can be found in (Ris-
sanen, 1978; Fagin and Vardi, 1986; Vardi, 1988). An extension of this work to conditional in-

dependence has been obtained in (Geiger and Pearl, 1987; Pearl et al, 1988; Geiger et al, 1989;



Pearl, 1988).

2. AXIOMATIC CHARACTERIZATION

The following symbols are used: o for a statement, X for a set of statements, P for a class of dis-
tributions, such as the class of all probability distributions (PD ), the class of normal distributions
(PN), and the class of distributions over bi-valued variables (PB ). The set union symbol is often

dropped and XY is written instead of X W Y. A statement / (X, Y') is written as a pair (X, Y).

Definition: G is logically implied by X% denoted £k p o, iff every distribution in P that obeys
also obeys 6. L} 4 0 iff 6 € ¢l (), i.e., there exists a derivation chain O ..., G, =0 such that

foreach o It gither ¢ i€ X, or 0, is derived by an axiom in A from the previous statements.

Definition: A set of axioms A is sound in P iff for every statement ¢ and every set of state-

ments X

L A0 only if ZEpo

The set Ais complete for P iff

Ll Ao if Zkpo.

Proposition 1: Axioms (1) are sound for PD (i.e., holds for all distributions ).

The proof is achieved by induction on the length of a derivation.

Proposition 2 (After (Fagin, 1977)): A set of axioms A is complete iff for every set of state-

ments X and every statement 6 € cl 4 () there exists a distribution Ps in P that satisfies



¥ and does not satisfy ©.

Proof: This is the counter-positive form of the completeness definition, if g ¢l 4 (X} (ie,

T} ,0) then Zkpo. O

Theorem 3 (Completeness): Let X be a set of statements, and let cl(Z) be the closure of

under the following axioms:

Trivial Independence X, D) (1.a)
Symmetry X,Y)->(Y,X) (1.b)
Decomposition X, YW)y—-X.Y) (1.¢)
Mixing X, N& XY, W)X, YW) (1.4)

Then for every statement 6 = (X, Y) € cl(Z) there exists a probability distribution F; that obeys

all statements in ¢l (£) but does not obey ©.

Proof: Let 6 =(X,Y) be an arbitrary statement not in ¢l (£). Without loss of generality we as-
sume that for all non-empty sets X and Y’ obeying X" ¢X ,Y cY and XY’ #XY we have
(X', Y )e Z. A statement obeying this property, is called a minimal dependency. If 6=(X,Y)
is not a minimal dependency then we can always find a minimal dependency ¢’ = (X", Y") not in
cl(X), where X’ <X and YY" c Y, by deleting elements of X and Y until we obtain the desired
property or until both X’ and ¥’ become singletons, in which case, due to axiom (l.a), it is a
minimal dependency. For each such o, we can construct P, that satisfies ¢l (Z) and violates ¢”.
Due the decomposition axiom (1.¢), which holds for all distributions, we know that any distribu-

tion that violates ¢’, violates ¢ as well. In particular, P+ violates o ( while obeying ¢l (X)), and



therefore satisfying the conditions of the theorem.

Let o= (X,Y) be a minimal dependency where X is over the variables {x{,x; - - x;},
Y is over the variables {y{,¥2 ' ¥m }, and all other variables appearing in statements of I are
denoted by Z = {z,2z5 '+ 2 ). Construct P as follows: Let all variables except x4, be in-

dependent identically distributed binary variables (i.e., fair coins) and let

{ m
x1=Yx + Yy; (mod2).
=2 =1

Clearly, F; has the product form:

P.(XYZ)=P,XY) I] Ps(z).
ez (3)

We first show that 6 = (X, ¥') does not hold in P . Instantiate x to one and all other variables in

XY to zero. For this assignment of values we have

Po(xy o XYy Ym) BB G0 e X)) POy V) o

because the LHS of equation (4) is equal to 0 whereas the RHS consists of a product of two

non-zero quantities.
It is left to show that every statement in ¢l (¥) holds in F , or equivalently, that for an ar-
bitrary statement (U, V) we have:
(U, Vyecd(Z = B,U,V)=F,U) F; V)

This is done by examining the statement (U, V) for every possible assignment of variables to the

sets U and V and showing that either Pc U, vy= P(j - Pc (V) orthat (U, V) e X.



Case 1: Either U or V contain only elements of Z.

By equation (4), we get PG {u,vV)= PG, {ay- Pcs (V).
Case 2: Both U and V include an element of X U Y.

Case 2.1: U UV does not include all the variables of X U Y.
To verify whether (U, V) holds in P_, amounts to checking this statement in the

projection of £ onthe set U V. Since U UV do not include all the variables

of X UY this projection results a simple product of the form J] P, (w;).
wie ULV

Hence, again, £ (U V) =P (U) - B (V).

Case 2.2: U vV include all elements of X UY.

This is the only case for which (U, V) is definitely not in Z.
Let U =XY'Y', V=X"Y"Z" where X =X'X",Y =YY" and Z7UZ" cZ. We
continue by contradiction. Assume (U, V)= (X'Y'’Z",X"Y"Z") belongs to ¢l (Z).
cl(X) is closed under decomposition. Therefore, (XY, X"Y")e Z. To reach a
contradiction we show that this statement implies that ¢ must have been in ¢l (2),
contradicting our selection of 6. The proof uses the mixing and symmetry ax-
ioms to infer (X 'X”, YY) (i.e o) from (XY, X”Y”) by "pushing" all the X ’s to
one side and 21l ¥’s to the other side. We further assume that X", X", Y, Y are
non-empty sets. If some of these sets is empty, not all the derivations that follow

need to be performed to reach the contradicting conclusion that ¢ € ¢l (X). The

following is a derivation of ©.
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First, (X, Y’) belongs to X because (X,Y) is a minimal dependency. Due
to the mixing axiom
(X! , Y’) & (lef , X”Y” ) - (Xf , YIXIJY!! ).

We conclude that (X*,X"”Y) e cl(¥). Due to symmetry (XY”,X e cl(Z) as
well. (X”,Y) e ¢l(X) because G is a minimal dependency and therefore (by sym-

metry) also (¥, X”) is a member of ¢l (X). Using the mixing axiom again, we get,
Y, X") & (YX”7,X') = ¥, XX")

which leads to the conclusion that (Y, X) € ¢l(Z), and by symmetry that (X, Y)

is in X, contradiction. O

Theorem 3 implies that the problem of verifying whether a given statement G logically
follows from an arbitrary set of statements I is decidable; by applying axioms (1.a) through
(1.d) successively, one could in a finite number of steps, generate all statements that logically
follow from . We note that the construction of Pc uses binary variables, therefore, axioms (1.a)
through (1.d) are complete also in PB, namely a statement is derivable iff every distribution in

PB that satisfies T also sarisfies ©.

Theorem 4 (Completeness in PN ): (Geiger and Pearl, 1987) Let X be a set of statements, and

let ¢l () be the closure of  under the following axioms:

Trivial Independence (X,9) (2.a)

Symmetry ,(X L YYy= (Y, X) (2.b)

i1



Decomposition X, YW)-»X,Y) (2.c)

Composition X,Y)& X, W)= X, YW) (2.d)
Then there exists a normal distribution that satisfies all statements in ¢l (X) and none other.

Axioms (2) are stronger than axioms (1). Indeed, the additional knowledge about the dis-
tributions (being normal) usually results in additional independencies implied from a set of state-
ments. For normal distributions the membership algorithm is trivial; (U, V) is logically implied
from X iff for each 4; € U and u; € V there exists a statement (X, ¥) in T such that u; appears
in either X (or ¥) and u; appears in Y (or X); its complexity is 0(n?- 1Z1). The next section

provides a membership algorithm for axioms (1.a) through (1.d), having similar complexity.

12



3. THE MEMBERSHIP ALGORITHM

The following notation is employed. ¢ and 7y denote single statements, X and I" sets of state-
ments, and s a set of elements (variables). Y= (X, Y) is trivial if either X or Y is empty. span(y)
stands for the set of elements represented in a statement 7, and similarly, span(I’) denotes the set
of elements represented in all the statements of I e.g., span({(1,2) (1, 3)}) is {1, 2,3}. The pro-
jection of yon s, denoted (s ), is the statement derived from y by removing all elements not in s
from v e.g., if ¥= (123, 45) then y(123) = (123, &) and Yy (1346) = (13, 4). Similarly, the projec-
tion of " on s, stands for { ¥(s) | Y& I' }. The number of elements appearing in ¥y is denoted by
Iyl and is called the size of y. The membership algorithm, presented below, uses the procedure

Find to answer whether a statement ¢ is derivable from X by axioms (1.a) through (1.d).

13



Algorithm Membership

Procedure Find (Z, 0):

1. X:= Z(span(c)) { ¥’ is the projection of Z on the variables of the target statement & }

2. If & is trivial, or ¢ (or its symmetric image) belongs to X’ then set Find(Z, o) = True and
return,

3. Else if for all nontrivial 6" € ¥’, span(g”) # span(c) then set Find(Z, ¢) := False.

4. Else there exists a statement ¢’e X’ such that span(c”) = span(c), and up to symmetry,

o’ = (AP, BQ) and 6 =(AQ, BP) where one of the sets A, B, P, 0 may be empty (If

several such ¢’ exist, then choose one arbitrarily).

Seto,:=(A,P),0,=(B,Q),
Find (%, 0) := Find (', 6;) A Find (¥, 65).
return.
Begin {Membership}
Input{ Z, o)
Print Find( X, &)

End.
We will show first that the algorithm is correct and then prove its complexity.

Lemma 3: If s < span(Z) then E(s) < cl (X).
Proof: Each statement in Z(s) is derived by the decomposition and symmetry axioms, and

therefore belongs to ¢l (Z).

14



Lemma 4: If ¥, ... ¥, is a derivation chain in T (i.e. for 1 £ <k,y; is either in X or follows
from previous ¥;s by one of the axioms) and s < span (Z) then Y,{s), ... Yz (5) is a derivation

chain in X(s) (due to Lemma 3 this derivation can be extended to a derivation in ).
Proof: Follows from the fact that the axioms are preserved under the projection operation. [J

Lemmas 3 and 4 show that to derive a statement ¢ from X one may start, without loss of
generality, by projecting all statements in  on the span of o. This justifies Step 1 of the pro-
cedure used by the algorithm. Step 2 is due to lemma 1 and Step 3 stems from the fact that any
application of axioms (1.b) through (1.d) does not increase the maximal span, therefore, if all
statements in (s ) have smaller span than &, o can not be derived, hence, Find(Z,0) is correctly

set to False. Step 4 is justified by Lemma 5 and Theorem 6.

Lemma 35: Let c=(AQ,BP), o’=(AP,BQ),6,=(A,P),0,=(B,Q) be statements. If
o’ ecl(T) then o e ¢l (T) iff o, € cl(Z;) and 6; € ¢l (X,;) where Z; = ¢l (X(span (6;))) (notice

that o, o, o, and o, are defined as in Step 4 of procedure Find).
Proof: If¢ e cl (X), 0; € cl(X;)i = 1,2, then o can be derived as follows:

(i) AP,BO)=0",(A,P)=0;(B,0)=0;

(ii) (A, PBQ): Apply axiom (2.d) on 6, and &

(ii1) (APB,Q): Apply axioms (1.b) and (1.d) on &, and G
(ivy (PB,Q): Apply axioms (1.b) and (1.c) on (ii1)

(v) (AQ,BP)=0: Apply axioms (1.b) and (1.d) on (ii) and (iv)

15



If cecl(X) then let yi,yz...,yk=6=(AQ,BP) be a derivation chain for ¢ in X. Let
s ﬁspan ((oy)). Then ¥;(s), Ya(s)s wYe()=0y=(A,P) is a derivation chain for op in X;.

Thus, o; € ¢l (Z,). Similarly, a derivation chain for &, can be constructed. U

Lemma 5 shows that the selection of o in Step 4 can be made arbitrarily because any

selection provides a necessary and sufficient means to check whether ¢ belongs to ¢ (Z).

Theorem 6: The procedure in the algorithm halts and when it halts

Find (T, ) = true iff o e cl(Z).

Proof: Every time the algorithm passes through Step 4 the size of the statements involved strict-
ly decrease. If it did not halt before, it will halt when the size of the two statements have
reached the value 2 (at Step 2 or 3). We show correctness by induction on the size of . If
|61 = 1 then G is trivial, 6 € el (%) and Find (£, ) = true. If o1 =2 then o & ol (X) iff

Find (Z, 6) = true as follows from Steps 2 and 3 of the algorithm,

Assume that the Lemma holds for all Y| < & and let & be a statement such that |Gl =& and
6 =(AQ, BP). Then Find (%, 6) = true iff (by the definition of Step 4) Find (Z', Gy) = true
and Find (¥, 6,) = true iff (by the definition of Step 1) Find (Z,, 6y) = true

and Find (Z,, 6,) = true, where X; = X(span (0;)) respectively, iff ( by induction) o; € ¢l (Z)

i =1,2iff (by Lemma 3) 6 ecl (2). O

Next we analyze the time complexity. We measure the complexity in terms of basic

operations of two types: comparison of two statements and a projection of a statement. Both

16



operations are bounded by n, the number of distinct variables in 2w {o ). Let Cost(k) be the
number of basic operations needed to solve a size k problem where & = 16| and assume (initial-

ly) that span(c) = span(Z). By Step 4, Cost (k) must satisfy the following equation:

Cost (k) < Cost (k) + Cost (k) + 1 Z|
Wherekl'l'kz:k N klz |0'1| and kz = |0'2|

The solution to this equation is O (1Z1 - k) measured in basic operations. Adding the cost of pro-

jecting T over the variables of o, O (1Z! - n), yields the theorem below.

Theorem 8: The complexity of the Membership algorithm is O (1Z1 - k*+ 1Z1 - n) (Which is

O(Z!-n?since k < n).
Remarks:

1. It is reasonable to assume that the bound is pessimistic at least in its | X1 part, since as

the algorithm proceeds the number of statements in ¥ decreases.

2. The algorithm can be slightly modified so as to produce a derivation chain for o if

¢ € ¢l (Z), whose length is O(k).

3. The algorithm can be expanded into a polynomial algorithm (provided that | X! is poly-

nomial) for the following problems:
a. GivenXand T, iscl () =cl (T), oris el (¥) < cl (I7)?

b. Minimize the size of £ while preserving cl (X):

17



To solve problem b start with 2 "independent” maximal size statements in
¥ and probe all other statements in some non-increasing (as to size) order. Any
statement which is found "dependent” on the set of previously probed staterments

is deleted.

4. EXTENSIONS

In this section we show that axioms (1.a) through (1.d) characterize the independence relation in
the sense that any binary relation obeying these axioms is induced by some distribution P. The

theorem below formalizes this assertion.

Theorem 9 (Strong Completeness): For every set of statements ¥ closed under axioms (1.a)

through (1.d) there exists a distribution £ such that

o holds for P iff ceZ

Proof: Assume an operation ® that maps finite sets of distributions { P; | i = l.n } into a sin-

gle distribution P such that

o holds for P iff oholdsforeach P;,i=1.n
(4)

Using ®, the proof follows. By Theorem 2, for each o @ I there exists a distribution P that
obeys X and does not obey ©. Let P =® (P, loe ¥ ). Due to equation (4), P satisfies all

statements in = and none other, hence P satisfies the requirements of the theorem.

18



We shall construct the operation ® using a binary operation ®” such that if P =P ,®" P,

then for every independency statement G we get

o holds for ®P; iff o holdsforP,and forP,.
)

The operation ® is recursively defined in terms of ®” as follows:

@(P; li=l.n }=((P\®P,)®P3)® - P,).

Clearly, if ®” satisfies equation (5), then ® satisfies equation (4). Therefore, it suffices to show

that ® satisfies (5).

Let P, and P, be two distributions sharing the variables x;, -, x,. Let Ay, -, A,
be the domains of x,, -+, x, in P, and let an instantiation of these variables be o, - -+, @,.
Similarly, let By, - -, B, be the domains of xy, -+, x, in Pyand By, -, B, an instantiation

of these variables. Let the domain of P = P{®" P, be the product domain A1B;, -+, A, B,
and denote an instantiation of the variables of P by o;8;, -, «,B,. Define P & P, by the

following equation:

PouBy oy, 0 By) = P00y, 0,) PoBy, By oo B

The proof that P satisfies equation (5) uses only the definition of independence and can be found

in (Geiger and Pearl, 1987). O

Theorem 9 was called strong completeness in (Beeri et al, 1977). Equivalent definitions for
strong completeness are given in (Fagin, 1977; Beeri et al, 1977) and the construction of ® for
database dependencies (called Armstrong relation) is given in (Fagin, 1982). The immediate

consequence of these theorems is that axioms (1.a) through (1.d) are powerful to derive all dis-
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junctions of independency statements that are logically implied from a given set of disjunctions
and not merely single statements as advertized in section 3. (Geiger and Pearl, 1987) extend
these results to other probabilistic independence relations, most notably, conditional indepen-

dence.

An immediate application of strong completeness is the reduction of the consistency

problem 1o a set of membership problems.

Definition: A set of dependencies £~ and a set of independencies Z¥ are consistent iff there ex-
ists a distribution that satisfies £* W ™. The task of deciding whether a set is consistent is called

the consistency problem.

The following algorithm answers whether ¥ U Z7 is consistent: For each member of X~
determine, using the membership algorithm, whether its negation logically follows from I
the answer is negative for all members of 7, then the two sets are consistent, otherwise they are

inconsistent,.

The correctness of the algorithm stems from the fact that if the negation of each member
o of £~ does not follow from X' i.e, each member of £~ is individually consistent with X*, then
there is a distribution P that realizes X" and — . The distribution P = ®Py; I moe )
then realizes both £ and 7, therefore the algorithm correctly identifies that the sets are con-
sistent. In the other direction, namely when the algorithm detects an inconsistent member of Z7,

the decision is obviously correct.
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