Computer Science Department Technical Report
Cognitive Systems Laboratory
University of California
Los Angeles, CA 90024-1596

IDENTIFYING INDEPENDENCE IN BAYESIAN NETWORKS

Dan Geiger June 1989
Thomas Verma CSD-890028
Judea Pearl

TECHNICAL REPORT
R-116
October 1988

IDENTIFYING INDEPENDENCE IN BAYESIAN NETWORKS *

Dan Geiger, Thomas Verma & Judea Pearl
Cognitive Systems Laboratory, Computer Science Department
University of California Los Angeles, CA 90024
Net address: geiger@cs.ucla.edu
Net address: verma@cs.ucla.edu
Net address: judea@cs.ucla.edu

ABSTRACT

In this paper we explore the role of conditional independence in the theory of Bayesian
Networks, We show that conditional independence is the key for identifying what information is
irrelevant and which parameters are immaterial for performing a given computation. We pro-
pose an algorithm based on a graphical criterion, d-separation, that satisfies all independencies
encoded in a Bayesian Network. The correctness and optimality of our algorithm is implied by
the soundness and completeness of d-separation with respect to probability theory. Finally, we
define an enhanced version of d-separation, called D -separation, which extends our algorithms

to networks that encode functional dependencies.

Key words: Bayesian Networks, Conditional independence, Influence Diagrams, Graphoids,

Perfect maps, Probabilistic reasoning.

*This work was partially supported by the National Science Foundation Grant #IRI-8610155. "Graphoids: A
Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer Information
Science)",

1. Introduction

Networks employing Directed Acyclic Graphs (DAGs) are common representation schemes for
probabilistic knowledge. Their usage is spread among various disciples such as: Artificial intelli-
gence, decision analysis, economics and statistics, each of which adopt their own
name bayesian
belief networks, causal networks, recursive models, probabilistic influence diagrams (PID) and
more{,,,,,,,]. Inthis paper We adopt the name Bayesian Network and DAGs interchanging-
ly. A Bayesian Network is a graphical encoding of a distribution via a DAG. Each node i in a
Bayesian Network corresponds to a variable x; and each node is regarded as a storage cell for the
distribution P (x; | Xp;y) where Xp;y is a set of variables that correspond to the parent nodes of
i, denoted P (i). The distribution represented by a Bayesian Network is composed via

n

Plxq, - ,xn)=l_[1P(xi | Xp iy

i=
(when { has no parents Xp;,=0). The role of a Bayesian Network is to answer queries such as
the believe in a proposition x; = trie given the values of an observed set of variables X, or,
such as the most probable explanation for an observation. In this paper we concentrate on quali-
tative non-numeric properties underlying query-answering mechanisms in Bayesian Networks.

We answer the following two questions:

1. Given a task to compute P (x; | X;) and a variable x;, and without resorting to numeric

parameters, is the answer to the query sensitive to the value of x, ?

2. Is the answer sensitive to the parameters P (x; 1Xp) stored in node £ ?

The answer to Question 1 is obvious; the value of x; would not affect the query
P, 1 X)) if P(x; 1X;)="P(x; 1 X;, xp) for all values of x;, x, and X;. This equality denoted by
I(x;, X, x;,) is a (conditional independence) statement stating that x; is independent of x;, given
X;. Our paper emphasizes the importance of these statements in formalizing and manipulating
Bayesian Networks. We provide two graphical criterions d-separation and D -separation that
identify in linear time each and every independency statement that is implied by the topology of
the network and reveals which portions are relevant to the task at hand. The D -separation cri-
teria is an enhancement of d-separation for the case where deterministic variables are present,
namely, when the value of a variable x; is a deterministic function of Xp ;. Such a node is dep-
icted in a DAG by a double circle node and its presense imposes additional independence as-

sumptions for the underlying distribution.

The answer to the second question is also given (in Section 3) in terms of separation. Its
relation to the first problem is discussed. Finally, we compare our solution to this problem to the

- one suggested by Shachter [1988].

The rest of the paper is organized as follows: Section 2 provides the definition of d-
separation, its soundness and completeness. Section 3 provides a linear algorithm to identify in-
dependencies in Bayesian Networks. Its correctness and optimality are proven. Section 4 extends
the results of previous sections to Bayesian Networks that contain deterministic nodes. Section

5 contains the soundness and completeness proofs.

2. Soundness and Completeness of d -separation

The definition of d-separation is best motivated by regarding DAGs as a representation of causal

relationships. Designating a node for every variable and assigning a link between every cause to

each of its direct consequences defines a graphical representation of a causal hierarchy. For ex-
ample, the propositions "It is raining"” (o), :'the pavement is wet" (B) and "John slipped on the
pavement” (y) are well represented by a three node chain, from o through B to 7y ; it indicates that
either rain or wet pavement could cause slipping, yet wet pavement is designated as the direct
cause, rain could cause someone to slip if it wets the pavement, but not if the pavement is
covered. Moreover, knowing the condition of the pavement renders "slipping" and "raining" in-
dependent, and this is represented graphically by a d -separation condition, / (o, 7, B)p , showing
node o and 3 separated from each other by node y. Assume that "broken pipe” (8) is considered
another direct cause for wet pavement, as in figure 1. An induced dependency exists between
the two events that may cause the pavement to get wet: "rain” and "broken pipe". Although they
appear connected in Figure 1, these propositions are marginally independent and become depen-
dent once we learn that the pavement is wet or that someone broke his leg. An increase in our
belief in either cause would decrease our belief in the other as it would "explain away” the ob-
servation. The following definition of ¢ -separation permits us to graphically identify such in-

duced dependencies from the DAG (d connoted "directional™).

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to d-
separate X from Y, denoted I(X,Z,Y)p, iff there is no path* from a node in X to anode in Y
along which every node that delivers an arrow is outside Z and every node with converging ar-
rows either is or has a descendant in Z. A path satisfying the conditions above is said to be ac-
tive, otherwise it is said to be blocked (by Z). Whenever a statement [(X,Z,Y)y holds in a
DAG D, the predicate I(X,Z,Y) is said to be graphically-ver'zﬁed (or an independency), other-

wise it is graphically-unverified by D (or a dependency).

* By path we mean a sequence of edges in the underlying undirected graph, i.e ignoring the directionality of the
links.

In figure 2, for example, X={2} and ¥ ={3) are d-separated by Z ={1}; thepath2 ¢« 1 23 1is
blocked by 1 € Z while the path 2 — 4 « 3 is blocked because 4 and all its descendents are out-
side Z. Thus I(2, 1, 3) is graphically-verified by D. However, X and ¥ are not d- separated by
Z’={1, 5} because the path 2 — 4 « 3 is rendered active: learning the value of the consequence
5, renders its causes 2 and 3 dependent, like opening a pathway along the converging arrows at

4. Consequently, 1 (2, {1,5],3) does not hold and is therefore graphically-unverified by D .

Figure 1

Figure 2

Definition: If X, ¥, and Z are three disjoint sub.scts of variables of a distribution P, then X and
Y are said to be conditionally independent given Z, denoted [(X,Z, Y)p iff
PX 1Z,Y)=PX | Z) for all possible values of X, ¥ and Z. I (X, Z, Y)p is called a (condi-
tional independence) statement. A conditional independence statement & logically follows from
a set X of such statements if & holds in every distribution that obeys X, in which case we also say

that ¢ is a valid consequence of L.

Ideally, to employ a DAG D as a graphical representation for dependencies of some dis-
tribution P we would like to require that for every three disjoint sets of variables in P (and

nodes in D) the following equivalence would hold

IX,Z,Y)p if I(X,Z,Y)p
(2)

This would provide a clear graphical representation of all variables that are conditionally in-
dependent. When equation (2) holds, D is said to be a perfect map of P. Unfortunately, this re-
quirement is often to strong because there are many distributions that have no perfect map in
DAGs. The spectrum of probabilistic dependencies is in fact so rich that it cannot be cast into
any representation scheme that uses polynomial amount of storage ([Verma, 1987]). Geiger
[1987] provides a graphical représentation based on a collection of graphs (Multi-DAGs) that is
powerful enough to perfectly represent an arbitrary distribution, however, as shown by Verma, it
requires, on the average, an exponential number of DAGs. Being unable to provide perfect maps
at a reasonable cost, we compromise the requirement that the graphs represent each and every

dependency of P, and allow some independencies to escape representation.

Definition: A DAG D is said to be an I-map of P if for every three disjoint subsets X, Y and Z

of variables the following holds:

IX,2,Y)y, = IX,Z,Y)p

The natural requirement for these I-maps is that the number of undisplayed independencies be

minimized.

The task of finding a DAG which is a minimal I-map of a given distribution P was
solved in [Pearl & Verma, 1987]. Their algorithm consists of the following steps: assign a total
ordering d to the variables of P. For each variable x; of P, identify a minimal set of predeces-
sors X that renders x; independent of all its other predecessors (in the ordering of the first step).
Assign a direct link from every node in S; to {. The resulting DAG is an I-map of P, and is

minimal in the sense that no edge can be deleted without destroying its I-mapness. The input list

L for this construction consists of n conditional independence statements, one for each variable,

all of the form 7 (x;, Xg,, Xy —Xs.) where Xy . is the set of predecessors of x; and X, is a subset
of Xy, that renders x; conditionally independent of all its other predecessors. This set of condi-

tional independence statements is called a causal input list and is said to define the DAG D. The
term "causal” input list is derived from the following analogy: Suppose we order the variables
chronologically, such that a cause always precedes its effect. Then, from all potential causes of
an effect i, a causal input list selects a minimal subset that is sufficient to explain i, thus render-
ing all other preceding events superfluous. This selected subset of variables are considered the

direct causes of i and therefore each is connected to it by a direct link.

Clearly, the constructed DAG represents more independencies than those listed in the in-
put, namely, all those that are graphically verified by the d-separation criterion. [Pearl & Verma,
1987] analysis guarantees that all graphically-verified statements are indeed valid in P i.e., the
DAG is an [-map of P. However, this paper shows that the constructed DAG has an additional
property; it graphically-verifies every conditional independence statement that logically follows
from L (i.e. holds in every distribution that obeys L). Hence, we cannot hope to improve the d-
separation criterion to display more independencies, because all valid consequences of L (which

defines D) are already captured by 4 -separation.
The three theorems below formalize the above discussion.

Theorem 1 (scundness) [Pearl & Verma, 1987]: Let D be a DAG defined by a causal input list

L. Then, every graphically-verified statement is a valid consequence of L.

Theorem 2 (closure) [Pearl & Verma, 1987]: Let D be a DAG defined by a causal input list
L. Then, the set of graphically-verified statements is exactly the closure of L under axioms (1.a)

through (1.d).

Theorem 3 (completeness) [Geiger & Pearl, 1988]: Let D be a DAG defined by a causal input
list L. Then, every valid consequence of L is graphically-verified by D (equivalently, every

graphically-unverified statement in D is not a valid consequence of L).

Theorem 1 guarantees that a DAG displays only valid statements. Theorem 2 guarantees
that a DAG displays all statements that are derivable from L via axioms (1). The third theorem
assures a DAG displays all statements that logically follow from L i.e., the axioms in (1) are
complete, capable of deriving zﬂl valid consequences of a causal input list. Moreover, since a
statement in a DAG can be verified in linear time, theorem 3 provides a complete polynomial
inference mechanism for deriving all independency statements that are implied by a causal input

set. A generalized version of these theorems is proven in Section 5.

The first two theorems are more general than the third in the sense that they hold for
every dependence relationship that obeys axioms (1.a) through (1.d), not necessarily those based
on probabilistic conditional independence (see proof in Section 5). Among these dependence
relationships are partial correlations ({Pear] & Paz, 1986]) and qualitative dependencies ([Fagin,
1982], [Shafer at al, 1987]) which can readily be shown to obey axioms (1). Thus, for example,
the transformation of arc-reversal and node removal ([Howard & Matheson, 1981; Olmsted,
1983]) can be shown valid by purely graphical consideration, simply showing that every state-

ment verified in the transformed graph is also graphically-verified in the original graph.

We conclude this section by showing how these theorems can be employed as an infer-
ence mechanism. Assume an expert has identified the following conditional independencies

between variables denoted 1 through 5:
L={1Q21,@),1(3,1,2),1(4,23,1), I(5,4,123)}

(the first statement in L is trivial). We raise two questions. First, what is the set of all valid

consequences of L 7 Second, in particular, is 7 (3, 124, 5) a valid consequence of L ? For gen-
eral input lists the answer for such questions may be undecidable but, since L is a causal list, it
defines a DAG that graphically verifies each and every valid consequences of L. The DAG D is
the one shown in figure 2. Therefore, the DAG constitutes a dense representation of all valid
consequences of L. To answer the second question, we simply observe that 7(3, 124, 5) is
graphically-verified in D. A graph-based algorithm for another subclass of statements, called
Jixed context statements, is given in [Geiger & Pearl, 1988]. In that paper, results analogous to
theorem 1 through 3 are proven for Markov-fields; a representation scheme based on undirected

graphs ([Isham, 1981], [Lauritzen, 1982]).

3. A Linear Algorithm for Identifying Independencies.

The algorithm below finds the set of all nodes Y that are not d-separated from X given Z. Ac-
cordingly, a statement [(X,Z, Y), holds in D iff ¥ NY =@, therefore the algorithm can be
used to evaluate an arbitrary d-separation statement, in linear time. The algorithm is a variant of
depth first search; it employs a stack to keep the current node and it marks visited links. The fol-
lowing notations are used: £ for the set of edges of D, u—v for an edge between u and v (re-
gardless the direction) and Descéndent_in_Z[] for a boolean array indicating for each node if it

has a descendent in Z.

Forallxe X do E:=E L {x—x,]

Forall ze Z do Descendent in_Z[z]:=true
Y=

push (STACK x)

While STACK # &

v = top (STACK')

i :=one_below top (STACK')

Ifv has an unmarked link (outgoing links selected first) to w such that
either [v is a head-to-head node on u—v—w and Descendent_in_Z(v)]
or [v is not a head-to-head node on u—v-w andveZ |

then

mark(v—w) = true

push(STACK, w)

Y=Y u{w]
else

pop(v)

If Descendent_in Z[v] & (u—v) e E then Descendent_in Z[ul:= true

10

end

Proposition 1: Letp =(sg=a, 51, - ,5, =) be a path between o and P that is active by a
set of nodes J. Then p remains active under J U J’ where J* is any set of nodes satisfying

S sy, 8, =D,

Proof: 1. Any node on p with converging arrows is or has a descendent in J and therefore also
inJ W/’ 2. Any other node s;.on p is not in J W J” because J' N {54, * - .5,) =@ and be-

cause p 1is active by J.

Definition: Let J, be { j | jeJ and j is placed on the stack before v) (if v is not placed

on the stack, J, contains all j€/ that are placed on the stack during the entire execution).

Lemma: For every node w notin {jq U J], w is placed on the stack iff there is an active path

by J,, between vgand w.

Only if: Proof by induction on the size of the stack when w is first added to it. For
ISTACK | =1, the stack contains only v which is a member of {j,J}, thus the base case
trivially holds. let v be the top element on the stack when w is first placed on the stack. By the
induction hypothesis, there is a path, (sg=jo. ", Sg_; =u, 5, =v) between jg and v that is ac-

tive by J,.

If v e J then w could have been added to the stack only if v has converging arrows on
the path p,, = (s¢, - -+ , 1, v, w). This path is active by J, U { v } because 1. every h-h node on
D, between vgand v is or has a descendent in J, € J,, and v itself is a member of J and placed

on the stack before w, hence, by definition, v € J,,. 2. Every other node on p,, isnotin J, < J,, .

11

By proposition 1, the path p,, is also active by J,, because J,, —J, does not intersect p,, .

4, Networks with Deterministic Nodes.

The completeness of d -separation (theorem 3) assumes that the input list L is causal, containing
only statements of the form 7(i, S;, U(‘-)—S,-). Occasionly, however, we are in possession of
stronger forms of independence relationships, in which case additional statements should be read
of the DAG. A common example is the case of a variable that is functionally dependent on its
corresponding parents in the DAG (deterministic variable, [Shachter, 1988]). The existence of
each such variable / could be encoded in L by a statement of global independence
I(i, 8;,U—S;—1) asserting that conditioned on §;, i is independent of all other variables, not
merely of its predecessors. The independencies that are implied by the modified input list can be

read from the DAG using an enhanced version of d-separation, named, D -separation.

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to D-
separate X from Y, iff there is no path from a node in X to a node in ¥ along which 1. every
node which delivers an arrow is outside Z, 2. every node with converging arrows either is or has

a descendant in Z and 3. no node is functionally determined by Z.

Definition: A node o is functionally dependent on Z iff it is a deterministic node and all its
parents are functionally dependent on Z. If o is a deterministic node with no parents then it is

functionally dependenton z.

The new criterion certifies all independencies that are revealed by d-separation plus ad-
ditional ones due to the enhancement of the input list. Parallel to the discussion of Section 2, the

following soundness and completeness results hold. Proofs are postponed to Section 5.

12

Theorem 1 (soundness): Let D be a DAG defined by an enhanced causal list L. Then, every

graphically-verified statement is a valid consequence of L.

Theorem 2 (closure): Let D be a DAG defined by an enhanced causal list L. Then, the set of

graphically-verified statements is exactly the closure of L under axioms (1.a) through (1.d).

Theorem 3 (completeness): Let D be a DAG defined by an enhanced causal list L. Then, every
valid consequence of L is graphically-verified by D (equivalently, every graphically-unverified

statement in D is not a valid consequence of L).

These graphical criteria provide easy means of recognizing conditional independence in
influence diagrams as well as identifying the set of parameters needed for any given computa-
tion. Shachter [1988] has devised an algorithm for finding a set of nodes M guaranteed to con-
tain sutficient information for computing P (x| y), for two arbitrary sets of variables x and y.
The outcome of Shachter’s algorithm can now be stated declaratively; M contains every ances-
tor of x Uy that is not D-separated from x given y and none other. The completeness of D -
separation implies that M is minimal; no node in M can be excluded on purely topological

grounds (i.e., without considering the numerical values of the probabilities involved).

5. Proofs,

13

