Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

REMOVING SKEW EFFECT IN JOIN OPERATION
ON PARALLEL PROCESSORS

Ron-Chung Hu June 1989
Richard R. Muntz CSD-890027

Removing Skew Effect in Join Operation
on Parallel Processors

Ron-Chung Hu ¥ Richard Muntz }

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

A parallel processor architecture, with each relation horizontally fragmented, is expected to pro-
vide expandability along with linear performance improvement in database applications, How-
ever, the performance improvement of the relational join operation on parallel architectures may
be severely limited by a phenomenon, referred to as data skew, in the join attributes, i.e. many
tuples with a particular attribute value. This data skew phenomenon is very common in many
real world databases, and its éffect can be unbalanced load on processors and a less than linear
speedup. It has been shown that a straightforward generalization of the conventional join algo-
rithm is not adequate to handle the data skew problem in a parallel architecture with a large

number of processors.

In this paper, we present two multiprocessor join algorithms which avoid unbalanced load among
the processors caused by the data skew phenomenon. We show how our algorithms evenly distri-
bute the load in join processing and effectively solve the skew problem. We further identify the
domains in which each algorithm yields best join performance.

t Ron-Chung Hu was partially supported by Teradata Corporation.
1 Richard Muntz was partially supported by DARPA contract F29601-87-C-0072.

1. INTRODUCTION

With the advent of low cost computer communication and microprocessor technologies, database
systems using multiple microprocessors in parallel have become technically and economically
feasible. In recent years, there have been several successful prototypes and commercial systems
making use of parallel processing in database operations. Typical examples are MCC’s Bubba
system {Bora88], University of Wisconsin’s Gamma machine [Dewi88], and Teradata’s
DBC/1012 [Tera88]. All these systems horizontally fragment a data relation across the proces-
sors based on the range of primary key value [Dewi88], hashing mechanisms [Dewi88] [Tera83],
or access frequencies [Cope88]. Based on this mechanism, database operations, like select, pro-
ject, and join, can be performed in parallel and their response times can be significantly reduced.
The performance improvement on the parallel processor architecture is (ideally) proportional to
the number of parallel processors involved in the operation when the data are evenly distributed

across the processors.

In real world databases, some values for an attribute occur more frequently than the other values.
Often the distribution is so skewed that even applying a very good hash function can not leadtoa
uniform distribution. When this kind of skewed distribution occurs in a join attribute on a paral-
lel processor architecture, distributing tuples in the join operation can result in some processors
being assigned a disproportionate number of tuples and a concomitantly disproportionate load. It
has been shown that, using the current multiprocessor hash join algorithm, the skewed distribu-
tion present in the join attribute can lead to load skew and severely impair the join performance
[Laks88] [Laks89]. In this paper, we first study the skew phenomenon and its effect on the join
operation. We then introduce two multiprocessor hash join algorithms, which take full advantage
of parallel processing by avoiding the load skew effect. Our algorithms can effectively remove

the skew effect in the join operation on parallel processors.

We discuss the skew phenomenon in more detail in section 2. In section 3, we briefly describe
the parallel multiprocessor architecture and outline the multiprocessor hash join algorithm for the
architecture under consideration. In section 4, we give the parameters affecting the join perfor-
mance and derive the join response time formula. From the response time formula, we examine
the skew effect on the performance of the parallel processor join operation. In section 5, we
present two multiprocessor hash join algorithms and show how they can effectively eliminate the

skew problem. We discuss some implementation issues and identify the domains in which our

-3-

algorithms can provide good performance in section 6. Finally, the conclusions are drawn in sec-

tion 7.

2. DATA SKEW

It is well known that the uniformity assumption is not realistic for describing the distribution of
attribute values in a relation [Chri83). Data bases often contain information describing popula-
tions of the real world, and many tuples can have the same attribute value. For instance, a rela-
tion storing all the UCLA students can lead to many tuples with the same value 'California’ in
the state attribute since more than 70% of UCLA’s students are from California. This
phenomenon is so common that it is evident in many databases. Lakshmi and Yu referred to this
phenomenon as data skew [Laks88]. It should be noted that, once data skew exists in an attribute,
applying a good hash function to the attribute cannot lead to an even distribution no matter how
perfect the hash function is. This is because many tuples have the exactly same attribute value
and they will have the same hash value. There are two data skew cases on join attributes: single
skew means only one relation has a skewed distribution in the join attribute, while double skew

means both relations have skewed distributions in their join attributes [Laks89].

To illustrate the data skew effect in a join operation, we consider the following class enrollment
database in which there are three relations: Course, Student, and Teacher. The Course relation,
which has attributes Courseld, course Name, and course Description, contains all the courses
which are offered in a university. The Student relation contains the information as to which stu-
dents are enrolled in which courses. Some courses, such as course 102, are a fundamental course
and a requirement for all students. Some courses are more specialized and fewer students may
have taken these courses. Clearly, there exists a data skew in the Courseld attribute of the Stu-
dent relation. The Teacher relation contains the information as to which teacher can instruct
which courses. Dependent on a teacher’s background, some courses, like course 102, can be
given by several teachers while some courses, like course 104, can be taught by only one teacher.
Therefore there is also a data skew in the Courseld attribute of the Teacher relation. Suppose a
course can be offered only if there is a student enrolling for it. If we want to list the names of all
the courses to be offered, we have to perform a query by joining Course relation and Student rela-
tion on the Courseld atribute. This query will have single skew since one relation, Student rela-

tion, has a skewed distribution in the join attribute. If we want to retrieve all the teachers who

-4-

can instruct the offered courses, the query would join the Student relation and the Teacher rela-

tion on the Courseld attribute. We have an example of double skew in this case.

Course relation

Courseld Name Description
101 biocybemnetics - -
102 calculus --
103 data structure --
104 neural nets - -
105 nuclear fusion - -

Student relation

StudentName Courseld Credit
Bud Genius 102 --
Don Duck 102 --
Don Duck 104 --
Bud Genius 103 --
Holly Wood 102 --
Sue Watt 102 -
Teacher relation
TeacherName Courseld Time
Rex Carrs 102 --
Buz Erk 102 --
Mart Matix 102 --
Fran Tastik 101 --
Buz Erk 103 --
Buz Erk 104 --
Fran Tastik 102 --

Figure 1. Class Enrollment database

In this paper, we first deal with the single skew case because of its simplicity. We then extend

the solution to the double skew case.

3. MULTIPROCESSOR HASH JOIN

We first describe the architecture of the parallel processor system under consideration. The paral-

lel processor architecture in this paper is essentially a shared-nothing multiprocessor system

-5.

[Ston86], in which there are two kinds of processors: Interface Processor (IP) and Access Proces-
sor (AP) [Nech84]. The IP’s handle the interaction with users. They receive queries from users
and decide the query access plans, which are broadcast to all the involved AP's. The AP is
designed to have a shared-nothing structure: each AP has its own €pu, main memory, and disk.
The tuples of each relation are distributed across all the AP’s based on the hash value of a tple’s
primary key [Tera88]. Each AP is in charge of the access to the tuples on its disk. The IP's and
AP’s communicate and coordinate with each other by passing messages through the interconnec-
tion network. Since the network physically connects a large number of processors, it must be

very fast in order to handle a high volume of messages. The high-level architecture is illustrated

in Figure 2.

Interface

Processors s 000
Interconnection Network

Access

Processors e0o s e
> -

Disks ¢80
N— N—_

Figure 2. Parallel Processor Architecture

The join operation in this paper is meant to be the equijoin exclusively. To achieve high perfor-
mance on a parallel processor architecture, the join operation must be performed in parallel with
each Access Processor working on a portion of the join. Since the tuples of each relation have
originally been distributed based on the primary key, the wples of the join relations have to be
distributed again if the join attribute is not the primary key. To make this distribution on join
attribute distinct from the original distribution on primary key, we refer to this operation as ruple
redistribution. Usually a hashing scheme is applied to the join attribute for attaining a more uni-
form distribution of processor workload. Because the same hashing function is used with both

-6-

join relations, the tuples after redistribution only have to be joined with those tuples on the same
processor; hence making each processor perform a join on its disjoint subset in parallel. The

results from each processor then are merged in the final processing step.

It has been shown that, with decreasing main memory costs, the hybrid hash join algorithm is the
preferred strategy for joining large relations [Dewi85]. The multiprocessor version of hybrid
hash join algorithm, a straightforward generalization from the single processor version, has been
reported in [Dewi85] and (Laks89]. We outline this algorithm in the rest of this section.

Let R and S be the join relations, R; and S; be the subset of relation R and S respectively initially
residing on access processor i. There are N access processors in the multiprocessor configuration.
The multiprocessor hybrid hash join algorithm consists of two phases. In the first phase, also
known as the redistribution phase, the tuples are redistributed among the access processors based
on the hash value of the join attribute. In case the join attribute of relation R () happens to be
the primary key, then there is no need to redistribute the tuples of that relation. In the second
phase, also referred to as the join phase, each access processor executes in parallel the join opera-
tion on its disjoint subset. To distinguish this algorithm from a modified version in a later sec-
tion, we term the algorithm shown in Figure 3 the conventional multiprocessor hash join algo-
rithm. We want to point out that, in an efficient implementation, the two phases described in Fig-
ure 3 can be pipelined, i.e. redistribution phase does not have to finish before join phase starts.
For clarity, we refer to the processing as though the phases are sequentially executed. This does

not affect the analysis or conclusions.

4. PERFORMANCE MODEL

Various parameters affect the performance of the join operation. In our analysis, we use the fol-

lowing notation and parameters as defined in [Laks89]:

Notation
DB Related
R,S The join relations.
R; ., §; Portion of R and S in processor i at the beginning of phase 1.

R/,S/ Portion of R and S in processor i at the beginning of phase 2, i.e. after tuple
redistribution.

Phase 1 (Redistribution Phase) -- A predefined hash function A 1 and the same number of hash
buckets, N, are used in each access processor. Each access processor i, where 1 < <N, performs
the following two steps:

1. Processor i allocates one output buffer for each of the N hash buckets. Then it reads its sub-
set R; of relation R from disk and hashes the join attribute of each tuple, which is moved to
one of the output buffers based on the hash value. When an output buffer is full, it is
transmitted through the interconnection network to the appropriate processor.

2. After relation R has been redistributed, processor i uses the same procedure 1o distribute its
subset S; of relation §.

At the end of phase 1, tuples belonging to the same hash bucket have been sent to the same pro-
cessor. Let R and S;” be the subset of relation R and S respectively on processor { after tuple
redistribution,

Phase 2 {(Join Phase) -- The processors do not communicate with each other in this phase. On
each processor i, we further partition its subrelation R;” using a hash function H2.- There are
(B + 1) hash buckets for the corresponding partitions R;o’, R;{’,....,Rz". An output buffer is allo-
cated for each of B partitions, R;y’,.....R;3". The number of (B + 1) partitions is chosen such that
the hash table for each partition can individually fit in the available memory and the hash table of
partition R;o” can fit in memory in the presence of B output buffers for other partitions. Each pro-
cessor i performs the following steps:

3. Subrelation R;’ is read and hash function H 2 is applied to the join attribute of each tuple. If
the tuple belongs to bucket R;y’", then it is placed into the the hash table in memory; other-
wise it is moved to the corresponding output buffer. Each output buffer is individually
flushed to disk when it is full. At the end, the hash table for R’ is in memory and the other
partitions reside on disk.

4. Subrelation S, is read and similar procedure is applied to it. Tuples of S, that hash into
bucket S;o” are immediately used to probe the hash table for matches. At the end, tuples be-
longing to R;o” and S;¢" have been joined,; and partitions R;,’,.....R;p" and S;,’,.....S;3’ reside
on disk.

5. Now each of the remaining B partitions is joined one by one. An R;” partition is read from
disk and its hash table is built in the memory. The corresponding S;;” partition is read from
disk and its tuples are hashed to probe against the hash table for join.

Figure 3. Conventional Multiprocessor Hybrid Hash Join Algorithm

IRI, IS Number of blocks in R and S.
{R}. {S] Number of tuples in R and 5.
<R>,<§> NumberofbytesinR and §.

o Measure of aggregate skew on the join attribute. Q equals the fraction of R(S)'s
tuples which hash to one particular bucket,

Configuration Related
N Number of Access Processors.

-8-

MIPS ratings of the Access Processor.
Available memory space in a single processor.
Effective bandwidth of interconnection network.

fi Fraction of R;” whose hash table can fit in memory M in the presence of output
buffers for other partitions, that is, f; = R;3"/R,".

- aRT

Processing Related

ty Disk IO access time,

Iy Cpu pathlength for processing a tuple in any step of the two phases.

Iy Cpu pathlength for initiating a disk IO.

IR Required pathlength for sending or receiving a message.
Assumptions

We assume we have perfect hash functions which can partition a set of distinct values equally
into all the hash buckets. Suppose there is no data skew in the primary keys of either of the join
relations. This is to say the tuples of both join relations are evenly distributed at the beginning of
phase 1 since the perfect hash function can partition the relations uniformly across all the access
processors. To simplify our analysis, we first consider the single skew case with skewed distribu-
tion in relation R’s join attribute only. Further we assume there is only one value of the join attri-
bute for which there are a significant number of tuples with this value, We call this value of the
join attribute the skew vailue. Due to this skew value, the access processor corresponding to this
value will receive the largest number of tuples during redistribution and will have to process the
largest number of tuples in phase 2. We use parameter Q as the measure of aggregate skew on
the access processor which receives the skew value. This means that one processor will process
Q{R} tuples and each of the other processors will process (1 — Q){R}/(N — 1) wples. For rela-
tion §, each access processor will receive approximately {S}/N tuples since there is no data skew

in relation S$’s join attribute.

Response Time

We first investigate the response time in a single user environment. As mentioned earlier, both
phases can be done in parallel among all the access processors. The overall response time of the
join operation is determined by the processor which finishes last. We assume that all processors
have the same processing power in terms of MIPS, main memory space, etc. Then, owing to the
uneven tuple distribution in phase two, the processor receiving the tuples with the skew value has
to handle the largest number of tuples and it will finish last; therefore determining the overall
response time. There are three components in the response time 70: (1) cpu time T0_,, which

can be further divided into three subcomponents: cpu time due to tuple processing T Oqpu—rupte»

.9.-

cpu time for initiating disk IO0s T Ocpy—inia» cpu time due to communication protocol T 0.py —comms

(2) physical 10 access time T0,,; and (3) network delay due to tuple redistribution 70,,,.
Depending on how much overlap a system achieves, the join response time T0 can be either the
sum of the three components for the worst case, or the maximum value of the three components
for the best case, or somewhere in between. The detailed derivation appears in Appendix A; for

brevity, only the final expression is given below:
TO & [max(TOppy, TO;p, TOpet), TOpu+T 0y +T0,,]
where "€" means 70 can be any value within the specified range, and

Tocpu = TOcpu—mple + Tocpu —inido t TOcpu—com

I
TOpu-spte = [{R} o (2-f.-)Q] + %(3—1‘;)]7”

S|]ld

TOcpuinito = [IRI |-+ (420 |+ ~5-(5-2f)

2181

N-1) 1
Tocpu—COrnm: [{RI(%‘PQ)-*-T (__)_i

N

1S
TO, = [IRI H + @20+ %(5—21’1‘)]%

N-1)
N

<R>+<S5>

B

IO, = [

Using our response time formula, we can study the relationships among response time,
configuration size, and degree of skew. In the following example, the multiprocessor system has
2 MIPS processors each with 4 megabytes of main memory, and the interconnection network has
effective bandwidth at 12 megabytes per second. The processing related parameters are given the
values: ¢z = 20 milliseconds, /, = 1000 instructions, /; = 2000 instructions, /. = 1000 instructions,
The join relations R and S have 2 million tuples each. Moreover, each tuple is 200 bytes long;
and there are 4K bytes per block. As illustrated in Figure 4, the join response time is plotted as a
function of the number of access processors in the configuration. We observe that the response
time initially decreases significantly as the system configuration increases. With 10% skew (Q =
0.10) in relation R’s join attribute, the response time begins decreasing slowly when the number
of processors N is around 60. Actually response time asymptotically approaches 1000 seconds no

matter how many processors we employ in the system configuration. Without data skew, the

-10-
response time decreases as N increases and gradually approaches 100 seconds. This shows that,

with data skew, the response time is highly restricted by the degree of skew. Further reduction in

response time is impossible to achieve by increasing the number of processors.

2500
2000 H

Response Time 1500

(in seconds) : 10% skew (Q=0.10)
L T
500
. Na skew
0 R PP P IS AT LD rmrs
0 100 2200 300 40 sbo

N: Number of Access Processors

Figure 4. Join response time versus number of processors

The single user join response time versus the degree of skew on a system configuration of 100
access processors is shown in Figure 5. The join response time degrades (increases) in proportion
to the degree of skew Q. When the degree of skew is very high, the actual response time may be
worse since the hash table may not fit in the available memory and we have to handle overflow
problems. Apparently, using the conventional multiprocessor hash join algorithm, the join per-
formance of the parallel processor architecture is very sensitive and severely limited by the data

skew phenomenon.

5. MODIFIED ALGORITHMS

Through tuple redistribution, data skew in the join attribute may lead to load skew and loss of
parallelism when using the conventional multiprocessor hash join algorithm. In this section, we

will discuss two algorithms which can minimize the impact of the skew effect.

-11-

2000
1500 - Data skew
Response Time
(in seconds)
1000 A
500 4
0

T T
0.05 0.1 0.15 02
Q: Measure of Aggregate Skew

Figure 5. Join response time versus degree of skew (N = 100)

5.1. Tuple Duplication

In real database applications, é join operation frequently involves a small relation and a much
larger relation. In this case, an altemnative strategy is to make a full copy of the smaller relation
on every access processor and not to redistribute the larger relation. When a tuple is redistributed
to every processor, we refer to this action as tuple duplication. This strategy is similar to the
fragment duplication strategy used in the distributed Ingres {Epst78] except that Ingres may
duplicate a fragment of relation to a subset of the sites as opposed to duplication to every site.
Although the tuple duplication strategy causes higher cpu and IO costs in processing the smaller
relation, it avoids the expensive cpu and 10 time incurred in redistributing the tuples of the larger
relation. In addition, the tuple duplication strategy does not cause extra traffic in a broadcast-type
interconnection network. The conditions under which this strategy is superior to the conventional
algorithm are discussed in section 6. Assuming relation R is the smaller one of the two join rela-
tions, Figure 6 describes the modified multiprocessor hash join algorithm M1 using the tuple
duplication strategy:

-12-

Phase 1 -- Each processor reads its subset, R;, of relation R from disk. Without any computation,
a block of tuples at a time is transmitted through the interconnection network and duplicated on
every other processor.

At the end of phase 1, each processor { has a full copy of relation R and a portion §; of relation S.
Phase 2 (Join Phase) -- The same steps as specified in the Conventional Multiprocessor Hybrid

Hash Join algorithm can be applied here. The only difference is R and S, instead of R,” and S,
are joined.

Figure 6. Modified Multiprocessor Hash Join Algorithm M1

It should be pointed out that algorithm M1 using tuple duplication completely removes the skew
effect no matter which relation (either R, or S, or both) has data skew. This is because each pro-
cessor handles the same number of tuples, {R} + ({S}/N), in phase 2. Suppose there is no sto-
chastic phenomenon among the processors, each processor yields the same processing time. The

join response time T 1 using algorithm M1 can be obtained as:
T1 & [max(Tlepu Tlioy Tlaetds Tlop +T 1+ T 1oy
where

T lcpu =T lcpu——mple +T lcpu—iniIIO +T lcpu—-convn

S I
T cpusupte = {{R](Z—fi) + %(2-]‘:) Jf

Tlopaciniio = | 1RICE + 425+ 5L 305y |22
cpu—initfQ = N i N i M
IR]
Tlcpu—comm =(T + IR1) Ec

T1,= [IRI(% +4-2f) + —%'—(3—211)]:4

<R >
B

Tlhe =

Due to the fact that a qualification predicate frequently occurs in a complex query, a good query
strategy is to apply the predicate first to create a temporary relation, resulting in a much smaller
relation before the join operation takes place. Also a relation may have a secondary index on the
join attribute. A secondary index usually forms a relation just like the regular data relation
[Tera87]. And the relatively small-sized secondary index relation, in many cases, can replace the

data relation to take part in the join operation. For these reasons, the relations actually

-13-

participating in join operation are often of extreme sizes, hence we expect algorithm M1 fo be

more useful than one might expect at first glance.

5.2. Partial Duplication and Redistribution

As shown earlier, the Conventional Multiprocessor Hash Join algorithm is unable to deal with the
data skew problem effectively. The key to solving this problem is to avoid load skew by dividing
the work evenly across all the access processors. Instead of having only one processor receive the
skew value, we can spread the tuples with the skew value to a group of designated processors.
All the access processors are classified into two groups: the processors designated to handle the
skew value are termed reserved processors and the rest of the processors are simply called non-
reserved processors, For R tuples hashing to the same bucket as the skew value, we randomly
select one of the reserved processors. For § tuples hashing to the skew value’s bucket, they will
maich the corresponding R tuples which have been spread across the reserved processors. There-
fore we have to duplicate this subset of S tuples to every reserved processor in order not to miss
any valid join result. Because a subset of § tuples is duplicated on a subset of access processors,
we refer to this action as partial duplication. Appendix C shows how to determine P, the number
of reserved processors. We outline the modified multiprocessor hash join algorithm M2 using the

partial duplication strategy in Figure 7:

Designate P access processors as reserved processors, and the other (N—P) as non-reserved pro-
cessors. And then broadcast this grouping to every access processor.

Phase 1 -- Tuple redistribution is applied to relation R with data skew and partial duplication is
applied to relation S,

1. Each processor reads its subset R; of relation R from disk. Using the predefined hash func-
tion H 1, if a tuple hashes to the same bucket as the skew value, then a second hash based on
the wple ID or a simple round robin method is applied to decide which reserved processor it
should be redistributed to; else it is redistributed to one of the non-reserved processors
based on the hash value of a new hash function A 3 on the join attribute.

2. Each processor works on its subset S; of relation §. If a tuple hashes, using H 1, to the same
bucket as the skew value, then it is duplicated to every reserved processors; else it is redis-
tributed to one of the non-reserved processors using hash function A 3.

Phase 2 (Join Phase) -- same steps as specified in the Conventional Multiprocessor Hybrid Hash
Join algorithm,

Figure 7. Modified Multiprocessor Hash Join Algorithm M2

-14 -

In order to illustrate the difference between the conventional and M2 algorithms, we use an exam-
ple as shown in Figure 8. Initially, both relations are evenly distributed across 4 access proces-
sors at the beginning of phase 1. The join attributes are the second attribute in both relations. A
data skew with skew value "a" is present in relation R’s join attribute. Using the conventional
algorithm, half of relation R’s tuples (6 out of 12) are redistributed to processor 1, causing a bad
load skew and impairing the join performance. In this example, the degree of aggregate skew O
equals 0.50. If we use the balancing join output method in Appendix C, the M2 algorithm would
designate P=2 (P = Q*N = 0.5%4) processors as the reserved processors to handle the skew prob-
lem. For R tuples hashing to the first bucket, we use a round robin method to spread these tuples
among the reserved processors, which are processor 1 and processor 2. The other R tuples are
redistributed, using hash function A 3, among the non-reserved processors 3 and 4. For § tuples
hashing to the first bucket, the partial duplication strategy is applied, i.e. tuples (s1,a) and (s3,b)
are duplicated 1o both processors 1 and 2. The other § tuples are redistributed among processors
3 and 4. Note that the load on the bottleneck processor (processor 1) in the conventional algo-
rithm is greatly decreased in the M2 algorithm.

Initially both relations are evenly distributed.

processor 1 processor 2 processor 3 processor 4
(rl, a) (r4, a) (r7,a) (r10, a)
(r2,¢c) (r5,b) (r8, a) (r11,)
(13, d) (16, €) 19, g (r12, h)
(s1, a) (s3,b) (s5,¢) (s7,d)
{s2,¢) (s4,) (s6, 8) (s8, h)

Tuple redistribution using the conventional algorithm.

processor | processor 2 processor 3 processor 4
(rl,a) (r2,¢) (16, €) (19, g)
(r4, a) (r3, d) (ri1,) (r12, h)
(15, b)

(r7,a)
(r8, a)
(ri0, a)
(sl, a) (s5,c) (s2,¢e) (s6, g)
(s3, b} (s7,d) (s4, D (s8,h)

-15 -

Tuple redistribution using the M2 algorithm,
partial duplication is applied to relation .

Group 1 (reserved proc.) Group 2 (non-reserved proc.)
processor 1 processor 2 processor 3 processor 4
(rl, a) (r4, a) (r2,¢) (r3, d)
(r5,b) (r7, a) (r6, e) (r11, f)
(18, a) (r10, a) (9, &) (r12,h)
(s1, a) (s1, a) (s5,.¢) (s7,d)
(s3,b) (s3,b) (s2,e) (s4,)

(s6, g) (s8, h)

Figure 8. Tuples redistributed using Conventional and M2

In terms of workload in phase 2, each of the P reserved processors has to join Q{R)/P tuples of

relation R and {S}/N tuples of relation S, while each of the (N—P) non-reserved processors has to
work on (1-Q){R}/(N-P) tuples of relation R and (1—%){8 }/(N-P) tuples of relation §.

Exploiting the same procedure in deriving the response time formula 70, we obtain the join

response time T2 for algorithm M2:
T2 & [max(T 20 T2i00 T2pet)s T20pu+T2i+ T2,]
where

Tchu = Tchu—.rupie + Tchu—inirlo + Tchu—qomm

I Bhis gy |
+ N(3—ﬁ)]u

Lol
N T @ fp

Tchu—rup!e = [{R}

' 1 K Iy
T 2epu-inito = | IR] [; +@2fy2 |+ 21]E
(1 2181 | L
Tchu—r:amm = | IR l('ﬁ + %) + T I

- R NPT YN B N P
T2, = [rm {N+(4 2f,)P}+ (5 21’.)]@

<R>+<S>

T 2’12! = ﬁ

There is no question that algorithm M2 is more complex than the conventional algorithm. To
execute the M2 algorithm, the multiprocessor system must be able to dynamically allocate the

reserved processors to handle data skew. It also introduces some overhead in broadcasting the

-16 -
selected grouping of the processors and for synchronization. On the other hand, algorithm M2
can significantly reduce the load on the bottleneck processor and decrease the overall join

response time. We use the same example illustrated in Figure 4 and draw the response time
curves of both the conventional and M2 algorithms in Figure 9.

2500 — 10% skew (Q =0.10)

2000

Response Time 1500 —

‘in seconds) Conventional
1000 -
500
M2 algorithm
0 o oo . X R SRS
T | |] | I
0 100 200 300 400 500

N: Number of Access Processors

Figure 9. Comparison of response times of Conventional and M2

6. IMPLEMENTATION ISSUES

We introduced two modified multiprocessor hash join algorithms M1 and M2 in the previous sec-
tion. Together with the conventional algorithm, there are three algorithms in performing the mul-
tiprocessor join operation. When a system decides which algorithm to use, a straightforward way
s 10 use the response time formula to compute the timings for T0, T 1, and T2, and then pick up
the algorithm with the fastest join response time. To illustrate the domain each algorithm yields
best performance, we now consider a simplified case in which the disk IO access time dominates

the join response time.! Suppose, in the single skew case, the smaller relation R has data skew

! In the past decade, there is a clear trend that both cpu processing power and communication bandwidth
have improved much faster than disk IO speed. Acwally, with the parameter values specified in section 4,
the IO access time is the dominant component in the response time.

-17-

problem, Figure 10 shows the domains in which the conventional, M1, and M2 algorithms can
produce the best performance. As illustrated in the figure, the boundary lines, derived in Appen-
dix B, are dependent on the number of access processors N in the system configuration. The
larger configuration a system has, the smaller the domain in which the conventional algorithm
can be useful. Obviously, in a parallel architecture with a large number of processors, the
modified algorithm, either M1 or M2, can be employed in a very large domain of real world data-
base applications in which data skew frequently occurs.

- 7

M2 (partial duphcauon)

RI/1SI _
Conventional

112N

2/N Degree of Skew Q

Figure 10. The domain in which the algorithms are the best

Many of today’s relational data base management systems allow a user to control the computa-
tion of statistics for query optimization. An example is the COLLECT STATISTICS statement
in Teradata’s DBC/1012 [Tera87]. The frequency distributions of the attribute values are typi-
cally collected in this kind of statement. In our analysis, we use the aggregate distribution of the
attribute after tuple redistribution to measure the degree of skew Q. This aggregate distribution
on each processor can be obtained by expanding the function of the statistics collection statement,
A new option can be added to instruct the statistics statement to use the tuple redistribution’s
hash function and find out the distribution in the hash buckets. Although collecting the aggregate
distribution could be a time-consuming process, it is performed periodically as deemed necessary.

Therefore, it should cause no impact on the join response time and query compilation time,

Also, in real database applications, usually there are more than one skew values, resulting in more

-18 -

than one processor being heavily loaded after tuple redistribution. In the event algorithm M1 is
the best performer and is used in the join operation, exactly the same M1 algorithm will remove
the effect of other skew values since tuple duplication can make each processor handle equal
number of tuples in the join phase, namely a full copy of the smaller relation and an un-
redistributed equal portion of the larger relation as discussed in section 5.1. In the event algo-
rithm M2 is used, we have to find all the aggregate skews 0, Q3., Q... which are greater than
the the boundary value (2/N as shown in Appendix B). Then all the access processors are
classified into (m+1) groups, in which there are m groups of reserved processors and one group of
non-reserved processors. Each group i, where 1 <i < m, of the reserved processors is designated
P; access processors depending on its corresponding degree of aggregate skew Q;. As illustrated

in Appendix C, similar computations can be performed to obtain the P; values.

As for the join operation involving the double skew case, the conventional algorithm has espe-
cially poor performance when the two join relations are skewed in the same direction since it has
quadratic complexity [Laks89)]. For this reason, the modified algorithms M1 and M2 are even
more appealing in the double skew case. Again exactly the same M1 algorithm can be employed
for the same reason previously described if M1 is the best performer for the query. In case the
M2 algorithm is used, some detailed statistics information, such as the total size of the join result
and the number of join tuples from the skew values, is needed in order to have effective £roup-
ings of the access processors. Although the double skew case is more compiex than the single
skew case, the same concept as outlined in the algorithm M2 can still be employed to effectively

remove the skew effect and speed up the join operation.

7. CONCLUSIONS

In this paper, we analyzed the data skew phenomenon and its impact on join performance in a
parallel processor architecture. The shared-nothing parallel architecture, with each relation hor-
izontally fragmented, is expected to provide expandability along with linear performance
improvement in data base application. However, using the conventional multiprocessor hash join
algorithm, the data skew commonly present in the join attribute can lead to load skew and
severely limits the lincar speedup in join operation. The key to solving this problem is to avoid
load skew by assigning the same amount of work to each processor. We introduced two modified

multiprocessor hash join algorithms: namely the M1 algorithm using tuple duplication scheme

-19-

and the M2 algorithm using partial duplication scheme. These two algorithms can allocate an
cqual number of tuples for each processor to handle and effectively solve the skew problem.
Further we identified the domains in which the conventional, M1, and M2 algorithms can give the

best join performance.

Our research can lead to two interesting observations. First, although we assume that each rela-
tion is initially horizontally fragmented, our analysis does not demand this assumption and can be
applied to an environment in which the relation is initially residing on a single processor. A good
example is a set of Sun workstations interconnected through Ethernet with each single relation
residing on a single workstation. It has been recently shown that the load sharing hash join algo-
rithm, taking advantage of the cpu resources on the other idle workstations, can speed up the join
operation [Wang88]. Clearly, the data skew phenomenon can lead to the same problem slowing
down the join operation in this environment, Our modified algorithms can be similarly applied to

eliminate the skew effect in the workstation environment.

The second observation is that the data skew problem may appear in other operations, e.g. the
GROUP BY operation, on a multiprocessor system. For instance, suppose there is an'Employee
table with 3 attributes: Name, DepartmentNo, and Salary. And the tuples of the Employee table
are initially distributed based on the primary key, the Name attribute. Then the SQL query

SELECT DepartmentNo, AVERAGE(Salary)
FROM Employee
GROUP BY DepartmentNo;

might be executed with one of two different strategies: (1) local group_by, followed by tuple
redistribution, followed by global group_by; (2) tuple redistribution, followed by global
group_by directly. Unaware of data skew phenomenon in the DepartmentNo attribute, the mul-
tiprocessor system may choose the second strategy, resulting in a bad load skew. We are
currently working on the execution strategies for the GROUP BY operation on a multiprocessor

system which takes data skew into account.

-20-

8. ACKNOWLEDGMENT

The authors would like to thank Jason Chen and Pekka Kostamaa of Teradata Corporation, and

Cliff Leung, Tom Page, and Chung-Dak Shum of UCLA for interesting discussions and useful

cominents,

9. REFERENCE

[Bora88]

[Chrig3]

[Cope&8]

[Dewig5]

[Dewi88)

(Epst78}

[Laks88]

fLaks89]

[Nech84]

[Ston86)

ITera87]

[Tera88]

Boral, H, "Parallelism in Bubba", Proc. Intemational Symposium on Databases in
Parallel and Distributed Systems, Austin, TX., 1988.

Christodoulakis, S., "Estimating Record Selectivities”, Information systems, Volume
8, No. 2, 1983.

Copeland, G., Alexander, W., Boughter, E., and Keller, T., "Data Placement in
Bubba", Proc. ACM SIGMOD conference, 1988.

DeWitt, D.J., Gerber, R.H., "Multiprocessor Hashed-based Join Algorithms", Proc.
11th International Conference on Very Large Data Bases, 1985. '

DeWint, D.J.,, Ghanderarizadeh, S., Schneider, D., "A Performance Analysis of the
Gamma Database Machine", Proc. ACM SIGMOD Conference, 1988.

Epstein, R., Stonebraker, M., and Wong, E., "Distributed Query Processing in a
Relational Database System”, Proc. ACM SIGMOD conference, 1978,

Lakshmi, M.S. and Yu, P.S., "Effect of Skew on Join Performance in Parallel Archi-
tectures”, Proc. International Symposium on Databases in Parallel and Distributed
Systems, Austin, TX., 1988. (Also appears as IBM Research Report RC13370, T.J.
Watson Research Center, Yorktown Heights, NY 10598)

Lakshmi, M.S. and Yu, P.S., "Limiting Factors of Join Performance on Parallel Pro-
cessors”, Proc. 5th International Conference on Data Engineering, 1989.

Neches, P., "Hardware Support for Advanced Data Management systems”, IEEE
Computer, Vol. 17, No. 11, 1984.

Stonebraker, M., "The Case for Shared Nothing", IEEE Database Engineering, Vol.
9, No. 1, 19846.

Teradata Corporation, "DBC/1012 Data Base Computer System Manual", Teradata
document C10-0001-06, Los Angeles, CA., 1987.

Teradata Corporation, "DBC/1012 Data Base Computer Concepts and Facilities",
Teradata document C02-0001-05, Los Angeles, CA., 1988.

-21-

[Wang88] Wang, X. and Luk, W.S., "Parallel Join Algorithms on a Network of Workstations",
Proc. Intemational Symposium on Databases in Parallel and Distributed Systems,
Austin, TX., 1988.

Appendix A. Deriving Join Response Time T0

The join response time formula T'0, using the conventional multiprocessor hybrid hash join algo-
rithm, is derived here for the single user environment. This formula has been derived in
[L.aks88). We assume processor i receives the largest number of tuples after tuple redistribution,
hence determining the overall response time. As discussed in section 4, processor i has to work
on (R}/N + {S}/N tuples in phase 1 owing to even distribution at the beginning of phase 1. In
phase 2, processor i has to join Q{R} tuples of relation R and {S}/N tuples of relation § since data
skew occurs only in relation R’s join attribute.

First we compute the number of disk reads/writes for each step as follows:

step 1 =R, + 1R;1 = % +QIRI

Note that IR;! is the number of disk reads and IR;’l is the number of disk writes required for redis-
tributing relation R. And the other steps can be similarly computed.

2181
2=151+15 1= ——
step d+15; N

. .
step3=IR/1+ 3 IRy 1 = IR’| +(1-f)IR/ | = 2—f)QIR)

j=1
5 1S
step4 =151 + X 1851 = 1S/ + (1) 1S/ = (Z—ﬁ)T
j=l
3 1S
step S= 3 1R + 18571 =(1-f) (QIRI + T)

j=1

Summing up all the disk 10s, we have total number of disk 10s, A, as

_ 1 ‘ A8 o 5e
A=IRI [N +(4-2f,)Q]+ N (5-2/

Then the physical 10 access time is T;, = A*t4, and the cpu time for initiating disk 10s is
Tcpuvinirlo =A*[g/ 1.

Second, we derive the cpu time due to tuple processing, T Qcpy—iupte, s below:

R} | 1S}
N TN

IP
T

IP
phasel=({Ri} +{S:}) M

-22.

and phase 2 consists of the following three steps,
I !
step3= (R} =Q(R})-=
b H K

S

tepd [S’}[P
Ste ={o f—
P L N pu

I, B I
step S = E" SR I+{S;’H= Fp({R"} = (R} + {8} = {Si0'})
J=1
Ip , , NS
=——1-—1~ R,‘ S,' --—-1—|' R T
T URY) + (51 = (1=f) (Q(R} + N

Hence,
T Ocpu —tupie = T Ocpu —tuple (Phﬂse 1) +T Ocpu —tuple (phase 2)

L 15} 3y |2
(R} [ﬁ+(2—ﬁ)Q]+ @ f.)] ;

Third, we give the cpu time, T0,,_comm. due to communication protocol. We assume that the
interconnection network is a broadcasting network and it has hardware logic to filter out the
unsolicited messages for the processor. Further, a message buffer is assumed to have the same
size as a disk block. Then, processor i has to send IR;I(N-1)/N messages and receive
IR;"I(N—1)/N messages, and similar for relation S.

- L

Tocpu—conun:(IR I+IR/1+1S;1+15/1)M <
- 1 2181 [(N=-D fe
...[IRI(N+Q)+—N }_N .

Last, we derive the network delay due to tuple redistribution. As discussed above, each processor
has to transmit (¥ —1)/N fraction of tuples to other processors., Thus,

<R>+ <S> [(N=1)
B N

TOpy = [

Appendix B. Deriving The Boundary Conditions

In this appendix, we derive the boundary conditions among the conventional, M1, and M2 algo-
rithms for the case in which the IO time dominates the join response time:

Boundary Condition Between Conventional and M1 --

We can set up the boundary condition as

-23.

Tl,, < TO, which can be simplified to:

1 IS! 1 IS
IRI(— +4=2F) + —3-2£) | € | IRl |— + 427, 2 (5-2f
(N+4 2f) + N 3 2ﬁ)] [R [N+(4 2f,)Q]+ m ¢ Zﬁ)J
2181
N
Taking the most restricting case f;=0, then the boundary condition is:
IR < 1
R 2N(1-Q)

IRI(1-0)X4-2f) <

Boundary Condition Between M1 and M2 --
T, £T2, which can be simplified to: ‘
1 IS 1 0 IS|
IRI(—+4-2f)+ —@-2f)| = | IRl |— 2= | + —(5-2f;
(o 420+ =0 Zﬁ)] [R [N+(4 Zﬁ)P]+ ~(5 Zﬂ)]
2181

_L \ < 2181
IRI(1 -)a-2f) < =2

Taking the most restricting case £;=0 and the P value (P =0N) from the balancing join out-
put method in Appendix C, then the boundary condition is:

IRt < 1

151 2(N=-1)

Boundary Condition Between Conventional and M2 --

If we look at the response time formulas alone, the M2 algorithm can outperform the conven-
tional algorithm as long as there is a data skew. Since the M2 algorithm is the same as the con-
ventional algorithm when the number of reserved processors is equal to 1. Hence, we can set the
boundary condition as P = 2. Using the value P=0N from the balancing join output method in
Appendix C, then the boundary condition is:

2
- =
Q_N

Appendix C. Determining The Number of Reserved Processors

In this appendix, we show how to determine P, the number of reserved processors, while using
the M2 algorithm. There are two methods in assigning the same amount of work to each proces-
sor. If the join operation produces few tuples, we may want to have the same number of tuples on
each processor in phase 2 immediately before join processing. We call this method as balancing
Jjoin input. 1f the join operation produces many tuples or the join operation is just an intermediate
step, i.e. the output of join operation will be used as input of other operations in the query

224 -

processing, then we want each processor to generate the same number of tuples as a result of the
join operation. The second method is called balancing join output. We now determine the value
P for these two methods separately:

Balancing Join Inpur --

As discussed in section 5.2, each reserved processor has to join Q{R}/P tuples of relation R and
{S}/N tuples of relation § in phase 2, while each non-reserved processor has to work on

(1-Q)(R}/(N—P) tuples of relation R and (1—%){5}/{1\/ —P) tuples of relation S. To balance join

input between the reserved and the non-reserved processors, we have

1

Sl —-—

oy , 51 _ a-oyrp , DTN
P N (N=-P) (N-P)

Solving this equation, we obtain

]
P=|1 —N% +N(NIR}I{S) - 17 +4QN2[R}/{S}J /2

Balancing Join Output --

Suppose there are D distinct values in the join attribute. To balance join output between the
reserved and the non-reserved processors, we have

1
1__
oy i) a-oyry SN
P N - (N-P) (N-P)
D 1
N b=
N—P)

Solving this equation, we obtain P =QN

