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ABSTRACT

In an earlier paper, we introduced Narrowing Grammar (NG). NG is a new
kind of grammar, which combines concepts from logic programming, rewriting,
lazy evaluation and logic grammar formalisms such as Definite Clause Gram-
mar. In this paper, we investigate the versatility of NG for language analysis by
applying it in several examples.

We compare NG with several established logic grammars: Definite Clause
Grammar, Metamorphosis Grammar, Extraposition Grammar and Gapping
Grammar. We show how some of these logic grammars can be translated to
NG. We also contrast NG with these kinds of grammar, and illustrate how NG
permits higher-order specification, modular composition and lazy evaluation.
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1. Introduction

A logic grammar has rules that can be represented as Hormn clauses, and thus implemented by
logic programming languages such as Prolog. These logic grammar rules are translated into Pro-
log clauses which can then be executed for either acceptance or generation of the langnage
specified.

Since the development of metamorphosis grammar [5], the first logic grammar formalism,
several variants of logic grammars have been proposed [1,7, 10,11, 15, 16, 18]. Among these we
must mention Definite Clause Grammar (DCG), the most popular approach to parsing in Prolog.
DCG is a special case of Colmerauer’s metamorphosis grammar. It extends context-free gram-
mar in basically three ways:

(1) DCG provides context dependency.

(2) DCG allows arbitrary tree structures to be built in the process of parsing.

(3) DCG allows extra conditions to be added to the rules, permitting auxiliary computations.

Consider the following example taken from [15].
noun{N} --> [W], (rootform(W,N), is noun(N)}.

noun (N) is a nonterminal and [w] is a terminal. It can be read as "a phrase identified as the
noun N may consist of the single word w, where w is the root form of wand Nis a noun”.

DCG syntax is little more than "syntactically sugared" Prolog syntax. There is a simple pro-
cedure for compiling each DCG rule to a Prolog clause. The basic idea is to add a difference-list
argument to each nonterminal symbol which gives the input and output streams [17, 19]. Below
is an example of some DCG rules and their compilation to Prolog:

a --> b, c. a(s0,8) :- b(s0,81), e¢(S1,S).
a --> [W]. a(sS0,8) :- connects(S0,W,8).
a --> b, {d}. 3(80,8) :- b(s0,5), call{(d).

The definition of connects/2 1s

connects ([H|T], H,T).

Metamorphosis Grammar (MG) generalizes DCG by permitting rules of the form
LHS, T --> RHS
where LS is a nonterminal and 7 is one or more terminals. For instance, the MG rule
be (present), [not] --> [isnt].
is translated to Prolog as follows:

be (present,80,8) :- connects(S$0,isnt,S1l), connects(S,not,s1).

In spite of the power of DCG or MG, neither is convenient for the definition of certain construc-
tions in natural language such as "filler-gap" constructions in which a constituent seems to have
been moved from another position in the sentence. Extraposition Grammar (XG) [16], a
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generalization of MG, allows everything found in DCG and allows, in addition, rules like the
following:

LHS ... T --> RHS.

where 1Hs is a nonterminal and 7 is any finite sequence of terminals or nonterminals. The
above MG rule can be read as " r#s can be expanded to ras if T appears later in the input
stream”. This allows a very natural treatment of certain "filler-gap" constructions.

Gapping Grammar (GG) [7] can be viewed as a generalization of XG. It permits one to indicate
where intermediate, unspecified substrings can be skipped, left unanalyzed during one part of the
parse, and possibly reordered by the rule’s application for later analysis by other rules. Consider
the example which is taken from [7]:

a, gap({X), b, gap(Y¥), ¢ --> gap(¥), ¢, b, gap(X).

For example, this rule can be applied successfully to either of the strings a,e, £,b,d,c and
a,b,d, e, f,c, and application of the rule yields d,e,b,e, £ and 4,e, £, ¢, b respectively.

The logic grammar formalisms mentioned above are typically first-order, in the sense that a non-
terminal symbol in these formalisms cannot be passed as an argument to some other nonterminal
symbol. For example, usually Definite Clause Grammar (DCG) does not permit direct
specification of grammar rules of the form

goal(X) --> X.

This problem was pointed out as early as [12]. We will discuss later in the paper (section 3.2
and 3.4) why this is more than just a minor problem, as it affects the convenience of use, extensi-
bility, and modularity of grammars. We proposed a higher-order solution to this problem in [4].

The logic grammars mentioned above are also not lazy. Lazy evaluation can be very important
in parsing. It allows coroutining recognition of multiple patterns against a stream. We are not
aware of previous work connecting lazy evaluation and logic grammars, although the connection
is a natural one. We will discuss this in more detail in section 3.3.

Narrowing grammar (NG) is a formalism for writing rules. It combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and logic grammar formalisms such as DCG. The seman-
tics of NG are defined by a special outermost narrowing strategy [4], which is strikingly different
from existing logic grammar formalisms. In this paper, we point out a number of advantages of
NG for language analysis.

As a brief introductory example, let us show how easily regular expressions can be defined with
NG. The regular expression pattern a* b that matches sequences of zero or more copies of a fol-
lowed by a b can be specified with the grammar rule

pattern => ([a]*, [b]).

where we also define the following grammar rules:



{(x*) => [].
(X*) => X, (X*).
([1,L) => L.

([X|L1],L2) => [X]|(L1l,L2)].

Here ‘*’ is the postfix pattern operator defining the Kleene star pattern, and the rules for +, ¢
define pattern concatenation, very much like the usual Prolog rules for append.

NG rules are used much like the rewrite rules in [13], but with a special outermost narrowing
strategy described in the next section. With this strategy, the narrowing of ([al*, [b]) to
{a,b] along with the rules used in each step of the narrowing is as follows:

Rewritten term Rule used in rewriting
{[a]l*, [b])

= ({[a]l,[a]l*),[b]) (X*) => X, (X*).

— ([al({[]1,[=2]1*)],([b]) ([X|Ll1],L2) => [X|(L1l,L2)].
= [al{([],[a]l*),[b])] ([X|L1l],L2) => [X|(L1l,L2)].
— [al{[al*, [b])] ([1,L) => L.

= [al{[],[b])] {(X*) => [].

~» [a,b] {([]1,L) => L.

In a stmilar way, all other lists matching the pattern a* b could be produced.

There has always been a lot of interest in extending SLD-resolution theorem proving to theories
with equality. As pointed out in [3], the problem with equality is the complexity of the refuta-
tion procedure. It seems that some constraints on equality are needed to achieve the computa-
tional properties of logic programs. An important approach to implement equality in logic pro-
gramming has been proposed [20]. However, this approach is restricted to terminating theories.
Log(F), an recent approach for combining logic programming, rewriting, and lazy evaluation has
been suggested [13]. Log(F) can be used to do lazy functional programming in logic. However,
unification is not fully exploited in this system because reduction (a special case of narrowing)
has been used in this system.

A new procedural semantic of logic grammar rests on lazy narrowing has been proposed in [4].
This paper continues the work presented in [4]. Section 2 summarizes the formal definition of
NG and section 3 describes some of its interesting features. Section 4 then goes on to compare
NG with some existing logic grammars, showing how some of these logic grammars can be
translated to NG. We also demonstrate the versatility of NG for language analysis by illustrating
its use in several examples. Due to space limitations, we do not discuss implementation. For
more information, see {4].



2, Narrowing Grammar
We quickly summarize the formal definition of narrowing grammar here.

Definition 2.1

A term is either a variable, or an expression of the form f(z1,..,t,) where f is a n-ary function
symbol, n 2 0, and each #; is a term. A ground term is a term with no variables.

Definition 2.2
A narrowing grammar is a finite set of rules of the form:

LHS => RHS

where:

(1) zasis any term except a variable, and r#s is a term.

(2) If ras=flty,....t,), then each f; is a term in normal form (see definition 2.4 below).

Definition 2.3

Constructor symbols are functors (function symbols) that do not appear as any rule’s outermost
z4s functor.

A simplified term is a term whose outermost function symbol is a constructor symbol. By con-
vention also, every variable is taken to be a simplified term. Note that no s of any rule can be
a simplified term. In this paper we will assume the function symbols for lists (namely, the empty
list [] and cons [_|_1, following Prolog syntax) are constructor symbols. Much in the way
that constructors provide a notion of ‘values’ in a rewrite system, constructors here provide a
notion of ‘terminal symbols’ of a grammar.

Definition 2.4

A term is said to be in normal form if all of its subterms are simplified. Since every variable is
taken to be a simplified term, a term in normal form can be non-ground.

Definition 2.5; NU-step

P — q, or p narrows (o ¢ in a NU-step 1, is defined concisely by the following clauses:

1The significance of the prefix ‘NU-’ in ‘NU-step® comes from the fact that we use a special stra-
tegy to select a subterm for narrowing, and this strategy selects terms in a leftmost outermost, or
Normal order, fashion. Unification is implicitly used left-to-right by this strategy.



nu_step(P,Q} ¢ nonvar(P), (P => Q).
nu_step(P,Q) ¢ nonvar(P), —(P => Q), functor(P,F, N},
functor(Q,F,N), subterm nu step({P,Q,1,N).

subterm nu atep(P,Q,I,N) & arg(I,P,A), arg(I,Q,3),

plus(I,1,Il), subterm nu step(P,Q,I1,N).
subterm nu step(P,Q,I,N) & arg(I,P,a), arg(I,Q,B),

nu_step(A,B), unify remaining(P,Q,I,N}.

unify remaining(_,_ ,N,N).
unify remaining(P,Q,I,N) < plus(I,1,Il), arg(Il,P,A),
arg(Il,Q,A), unify remaining(P,Q,II1,N).

Definition 2.6: NU-narrowing
A NU-narrowing (%) is a reflexive transitive closure of NU-step (—).

Definition 2.7

A stream is a list of ground terms. A stream pattern is a term that has a NU-narrowing to a
stream.

For the rest of the paper, unless explicitly stated otherwise, by a narrowing is meant a NU-
narrowing.

3. A Guided Tour of Narrowing Grammar

In this section, we illustrate the use of NG as pattern generators as well as acceptors, and sum-
marize several important features of NG. We also point out some limitations of first-order logic
grammars.

3.1. Narrowing Grammar as Pattern Generators
We first define several NG rules and illustrate how stream patterns can be generated:

precedas (X, ¥) => eventually(X), eventually(Y).

aeventually(X) => X.
eventually (X} => [_], eventually(X).

([xIxs] // [X|¥s]) => [X|Xs//Ys].
(1 /77 11y => 11.

Consider the derivation showing how the stream [a, b, e] can be generated from interleaving of
the narrowing of the two patterns precedes([a], [¢]) and precedes([b], [c]):



pracedes([al, [c]) // precedes([b], [c])

= (eventually([a]), eventually({c])} // precedes([b], [c])
([a], eventually([e])) // precedas([b], [c])
[ajeventually{[c])] // precedes([b], [c])
{ajeventually([c])]} // (eventually([b}), eventually{[c])}
{a|eventually({cl}] // ({[_]., eventually([b])), eventually([e]))
[a|aventually([a)}] // ([_jeventually([bl})], eventually([c]})
[a|aventually{[c)}] // [_|(eveantually([b]), eventually([c]))]
[a] (eventually({[c]) // (eventually([bl), eventually{(c]))}]
[al ({[_], eventually([e])}) // (eventually([b]), eventually({c])))]
[al ([_leventually([c])] // (eventually([b]), eventually({[c])))]
[al ({_leventually([cl)] // ([b], aventually{[c])))]
[a] {[_leventually({lc])] // [bleventually([c]}]}]
[a,b]| (eventually([c]) // eventually([c]))]
[a,b]{[c] // [e])]
[a,b, el {[} // [1)]
[a,b, e]

N A A 2

{

Similarly the stream [b, a, e] can also be generated.

The operator // takes two patterns as arguments, narrows them to [X|Xs] and [X|Y¥s] respec-
tively and then yields [x|xs//¥s]. Thus // is a coroutined pattern matching primitive that
requires both argument patterns to match inputs of the same length. As a result, multiple over-
lapping patterns in a stream can be simultaneously recognized easily with //.

3.2. Narrowing Grammar as Pattern Acceptors

Our approach for pattern acceptance is to introduce a new pair of narrowing grammar rules
specifying pattern matching. The entire definition is the following pair of rules for mateh:

match([],8) => 8,
match ([X|L], [X]8]) => match(L,S).

match can take a pattern as its first argument, and an input stream as its second argument. If the
pattern narrows to the empty list [], match simply succeeds. On the other hand, if the pattern
narrows t0 [X|L], then the second argument to match must also narrow to [X|s]. Intuitively,
match can be thought of as applying a pattern (the first argument) to an input stream (the second
argument), in an attempt to find a prefix of the stream that the grammar defining the pattern can
generate.

Pattern acceptance is requested explicitly with mateh. As a simple example, consider the
derivation illustrating how mateh works:



match(([a]*, [b]), [a,Bb])

= match{{([al, [a]*), [P]), [a,B])
match({[a|{[], [a]*}], [b]}, [a,B})
match([a] ({[], [a]*), [P])], [a,B])
match (({[], [a]*),[k]), [b])}
match((lal*, [B]), [B])
mateh(([], [R]), [B])
match([b], [b]}
match([], [}
[

A

There is a certain elegance to this; the rules of the grammar by themselves act as pattern genera-
tors, but when applied with match they act like an acceptor.

3.3. Higher-order Specification, Extensibility, and Modularity

Narrowing grammar is higher-order. Specifically, narrowing grammar is higher-order in the
sense that patterns can be passed as input arguments to patterns, and patterns can yield patterns
as outputs.

For example, the enumeration pattern (_ // _) defined in section 3.1 is higher-order, as its
arguments are patterns. The patterns precedes(lal, [c]) and precedes([b], [c]) can be
used as arguments to //, as in

precedes ({a], {c]) // precedes{[b], [c]).

It is well known that a higher-order capability increases expressiveness of a language, since it
makes it possible to develop generic functions that can be combined in a multitude of ways [8].

As a consequence, narrowing grammar rules are highly reusable and can be usefully collected in
a library.

Narrowing grammar supports modular composition of patterns. For example, the enumeration
pattern (_ // _) is composed of patterns precedes(_, ). Narrowing grammar is also exten-
sible, since it permits definition of new grammatical constructs, as the // example showed ear-
lier.

3.4, Lazy Evaluation, Stream Processing, and Coroutining

Lazy evaluation is intimately related with a programming paradigm referred to as stream pro-
cessing [14]. Note that in this paper, a stream pattern is a term that will yield a list of ground
terms under lazy evaluation. We are not aware of previous work connecting stream processing
and grammars, although the connection is a natural one. Lazy evaluation and stream processing
also have intimate connections with coroutining [9). Coroutining is the interleaving of evalua-
tion (here, narrowing) of two expressions. It is applied frequently in stream processing. For
example, narrowing of the stream pattern
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match{ ([al*,[b]), [a,b] )

interleaves the narrowing of ([a}¥*, [b]} with the narrowing of match(_, [a,b]). The sample
narrowing of this pattern in section 3.2 shows the actual interleaving — first ([a)*, [b]) is nar-
rowed for three NU-steps, then match(_, [a,a,b]) for one NU-step, then ([a]*, [b]) for
three NU-steps, then match(_, [b]) for one NU-step, and finally match(_, [1) for one NU-
step. The effect of leftmost outermost narrowing of the combined stream pattern is precisely to
interleave these two narrowings. Similarly narrowing of the pattern

([al*, [b])
interleaves the narrowing of [a]* with the narrowing of (_, [b]).

A specific advantage of lazy evaluation in parsing, then, is that coroutined recognition of multi-
ple patterns in a stream becomes accessible to the grammar writer. The coroutining rules

{[X|Xs] // [XI¥s]) => [XI|Xs//¥s].
(1 /7 I => [1.

make explicitly coroutined pattern matching possible. Essentially // narrows each of its argu-
ments, obtaining respectively [xixs] and ([x|¥s]. Having obtained simplified terms, it
suspends natrowing of Xs and vs until further evaluation is necessary. An immediate advan-
tage of lazy evaluation here is reduced computation. Without lazy evaluation, both arguments
would have to be completely simplified before pattern matching took place; failure to unify the
heads of these completely evaluated arguments would then mean that many unnecessary narrow-
ing steps on the tails of the arguments had been performed.

3.5. Limitations of First-order Logic Grammars

The usual method for compiling DCG to Prolog does not permit direct specification of grammar
rules of the form:

goal (X) --> X,

where X is a variable. Therefore, it is hard to pass nonterminals (patterns) to0 DCG rules that
behave like // and number given earlier. This is a basic limitation of first-order logic gram-
mars.

This problem was pointed out in [12], where Moss proposed a special translation technique by
using a single predicate name for non-terminals. For instance, Moss translates the above DCG
rule to the Prolog clause

nonterminal (goal(X),S$0,S8) :— nonterminal(X,S0,8).

Some Prolog systems, including Quintus Prolog and Sicstus Prolog, have been extended to per-
mit such rules. In these systems the rule shown above is translated to

goal (X,S0,8) :— phrase(X,S0,8).

where phrase/3 is a metapredicate that performs DCG compilation of its first argument (at run
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time) and then executes the result. Similar suggestion has also been made by Abramson [2].

There is one final limitation. Even with the techniques suggested above, the lazy evaluation or
coroutining aspect of NG is not easily attained with first-order logic grammars. To attain them, a
new evaluation strategy such as the one in section 2 is needed.

4. Comparison with Previous Work

In this section we compare NG with other logic grammar formalisms in the literature. Most
existing logic grammars are logic-based in the sense that they can be represented as Horn
clauses. For example, each DCG rule is straightforwardly translated to a Prolog clause by adding
a different-list to each nonterminal symbol giving the input and output streams. Each nontermi-
nal is a Prolog predicate with Prolog terms as its arguments. Therefore, it is hard to write DCG
rules that permit arbitrary patterns to be passed as argumentst. This restricts the expressive
power and modularity of the grammar. In the following subsections, we show how some logic
grammars can be easily translated to NG. We also demonstrate the versatility of NG for
language analysis by illustrating its use in several examples.

4.1. Narrowing Grammar and Definite Clause Grammar

We show how a pure DCG rule can be translated into a NG rule in which both describing the
same language.

(1) Essentially, DCG rules can be translated to NG rules by changing all occurrences of --» to
=> and by including NG definition for *, .

(f1,L) => L.
(Ix|L1l],L2) => [X](L1,L2)].

(2) ;' of DCG have the same semantics as of NG but the latter is defined at the grammatical
level.

(X;Y) => X.
(X;Y) => ¥.

4.2. Narrowing Grammar and Metamorphosis Grammar
MG [5] permits rules of the form
LHS, T --> RHS

where s is a nonterminal and r is one or more terminals. We can capture the semantics of
this rule in narrowing grammar by defining a constructor replace (X,¥) and one more rule for
match as follows:

1 Some proposals [2, 12] define meta rules that improve the expressiveness of DCG 10 pemnit such arguments, however.
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match ([replace(X,Y) |L],S) => match(L, {¥,match(X,S))).
and transform the metamorphosis grammar rule to
LHS => [replace{RHS,T)].

Note, however, that with NG T can be any pattern, not just a stream of terminals.

Example 4.1

Consider the following MG and NG rules which accept all strings of [a]’s and [b]’s which
have an equal number of [a]’sand (b]l’s.

ns --> []. ns => [].

ns --> na, ns, nb. ns => na, ns, nb.

na --> [a]. na =» [a].

na, [term(nb)] --> nb, na. na => [replace{(nb,na),nb)].
nb --> [b]. nb => [b].

nb --> [term(nb)].

The [term(nb)] ‘terminal’ permits the MG to treat the nonterminal nb temporarily as a termi-
nal. However, the grammar will recognize/generate a superset of the original language. Note
that this artifice is not needed with NG.

A derivation showing how match works with the constructor symbol [replace( , )1 is
shown:

match(ns, [b,a])

match((na,ns,nb), [b,a])

match {([replace{{(nb,na), nb)],ns, nb), [b,a]}
match({(ns, nb), (nb,match({nb,na}, [b,a])))
match{([],nb), (nb,match{(nb,na), [b,a])))
match(nb, (nb,match{(nb,na), [b,a))))
match([b], (nb,match({nb,na}, [b,al)})
match([b], ([b],match{(nb na), [b,a])))
match([b], [b|match{(nb,na}, [b,al)]}
match([], match{{nb,na), [b,al))
match((nb,na), [b,al)

match (([k].na), [b,al)

match([bf([],na)], [b,a])

match({[],na), [a])

match (na, [a])

match{{a], [a])

match({], [1)

[1

N T T S A R A A A A A A )
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4.3. Narrowing Grammar, Extraposition Grammar and Left Extraposition
We can extend the method in section 4.2 for XG rules of the form

LHAS ... T =-> RHS.

Here r#sisanonterminal symbol and 7 is any finite sequence of terminals or terminals.

We can capture the semantics of this XG rule by defining a constructor symbol replace (X, ¥)
and one more rule for match as follows:

match { [replace (RHS,T) |L],S) => match(L,insert (T,match(RHS,S))).
insert (X, Y) => (X, Y).
insert (X, [Y|Z]) => [Y|insert(X,2)].

and transform the XG rule to
LHS => [replace(RHS,T)].

Note the use of insert (_,_ ) here as compared to the use of concatenation in MG. Due to ... in
the zxs of an XG rule, 7 is nondeterministically inserted into the remaining input stream (not
necessary into the head) after ras has been recognized.

Example 4.2 : Left Extraposition
Pereira pointed out that relative clauses can be handled with rules like the following:

8 --> np, vp.

np --> det, n, optional relativa.
np --> [trace].

vp —=-=> V.

vp —--> Vv, np.

opticnal relative --> [].

optional relative —-> relative.
raelativa --> ral marker, s.

rel marker ... [trace] --> rel pro.
rel pro --»> [that].

The left-extraposition XG rule
rel marker ... [trace] --> rel pro.
is transformed to
rel marker => [replace(rel pro, [trace])].

A derivation showing how match works with the constructor symbol [replace(_, )1 is given
below:
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mateh (relative, [that, john, wrotal)

— match((rel marker,s), (that, john,wrota])
match({{[reaplace(ral pro, [trace])],s), [that, john,wrota])
match([replaca(rel pro, [trace]) |s], [that, john, wrota]}
matoh (s, insert{{trace],match (ral_pro, [that, john, wrote]}))
match({(np, vp), insert ((trace],match(rel pre, [that, john, wrectal)))
match({[john], vp), insert([trace],match (rel pro, [that, john, wrote])))
match{[john|vp], insert{[trace], ma:ch (rel pro, [that, john, wrote])))
matgh{[john|vp], insert([trace],match([that], [that,john, wrote]))})
match{[john|vp], insert([trace],match((}, [john,wrote]l)))
match{[john|vp], insert {[traca], {john, wrote]))
match{{john|vp], [john|insert ([trace], [wrote])])
match({vp, 1lnsert ([trace], [wrote]))
match{(v,np), insert([trace], {wrote]})
match({{[wrote] ,np), insert ([trace], [wrote]))}
match { [wroteinp], insert([trace], [wrote]))
match({[wroteinp], [wrote|insert([trace], []1)])
match{np, inaert({trace], []})
match{[tracae], insert ([trace], []})
match{[trace], ([trace]), []1)})
match{[trace], [trace|{([],[1)])
match({[], ({1, [1))
(1. N
[1

R 2 A e A 2 2 T T T S e 1

The point to be made here is that commonly used XG rules can be transformed to NG rules
easily. In exarople 4.6, we illustrate how NG formalism by itself describes the same language in
a more natural manner.

4.4. Narrowing Grammar, Gapping Grammar and Right Extraposition

In last section, we describe how NG simulates left-extraposition of XG, here we show how NG
simulates right-extraposition of GG. Consider a special class of GG rules [7] of the form

LHS’ gap(X), T ==> g'ap(X); RHS.

where L#S is a nonterminal symbol and 7 is a single (pseudo-) terminalf.

We can capture the semantics of this GG rule by defining a constructor symbol replace (X, Y)
and one more rule for match as follows:

match ([replace (RHS,T) |L],8) => match(gap(L,T,RHS),S).
gap([X|Xs], [X],RHS) => RHS, Xs.
gap ([X|Xs],T,RHS) => [X|gap(Xs,T, RHS)].

t Current implementation restricts T to be a single terminal. In general, T can be any finite se-
quence of terminals and non-terminals.
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and transform the GG rule to

LHS => ([replace(RHS,T)}].

Example 4.3 : Right Extraposition
Dahl [7] gave the following GG for the language {a"b"c" | n20}:

s --> as, ba, cs.

as --> [].

as --> xa, [a], as.

bas --> [].

xa, gap(X), bs --> gap(X), [b], bs, xb.
cs ~=> [].

xb, gap(X), e¢s --> gap(X), [c], cs.

This GG uses right-extraposition in linguistic theory. Here we transform the GG to NG as
described abovet:

s => as, bs, cs.

as => [].

as => xa, [a], as,.

bs => [].

bas => [term(bs)].

xa => [replace(([b],bs,xb), [term{(bs)])].
cs => [].

cs => [term(cs)].

xb => [replace(([c],cs), [term{cs)])].

A derivation showing how match works with the constructor symbol [replace(_, )] is given
below:

T Note the use of [term(bs)] and [term(cs)] as pseudo-terminals in NG
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match(s, [a,b,c])
— match((as,bs,cs), {a,b,c])
match((xa, [2],as,bs,cs), [a,b,c])
match ([replace (([b],bs,xb), [term(be)]} | {({a],as,ba,ca)), [a,b,c])
match (gap{({a],as, ba,cs), [term{bs}], ([b],bs,xb)), [a,b,c])
match([a|gap((as,bs,cs), [tarm(bs)], ([b),bs,xb))], [a,b,c))
match (gap((as,bs,os), [tarm(ks) ], ([b],bs,xb)}, [b,c])
match (gap ( (b8, cs}, [texm(ba)], ([b]),bs,xb)), [b,e])
match (gap ( [term(bs) |cs), [term(bs) ], ([b],bs,xb)), {b,el)
match(([b],bs, xb,cs), [b,c])
match ((bs,xb,cs), [c])
match( (xb,cs), [c])
match({[replaca{{[c],cs), [term(cs)]) |c8], [c])
match (gap (cs, [tamm(cs)], {[c),c8)), [c])
match (gap({term(cs)], [term(ca)}], ([c],c8)), [e])
match({[c],c8), [c])
match([c|os], [<])
match(ca, [])
match ([], [1)
[1

R R R N A A E

4.5, NG is modular

In previous sections, we describe how NG simulates other logic grammars. In this section, we
argue that many examples given before can be expressed with NG in a more natural way.

Example 4.4 : Non-Context Free Languages
Consider the following NG:

s_abc => ab ¢ // a_bec.

ab _c => pair([a], [bl), [cl*.
a_bc => [a]*, pair([b], [c]).
pair(X,¥) => [].

pair(X,Y) => X, pair(X,Y), Y.

This NG defines the non-context-free language {a"b"¢" |n20) using only context-free-like con-
structions.  // imposes simultaneous constraints ( a"b"c* and a*b"c™) on streams generated
by the grammar,

Example 4.5 : Non-Context Free Languages

In [6, 7] respectively, Dahl gave the following two GGs for the language {a”b™c"d™ | m,n=>0)
and pointed out that XG cannot be used because of the XG constraint on the nesting of gaps.
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s --> as, bs, c¢s, ds.

as, gap{G), cs --> [a], as, gap(G), [c], cs=s.
as, gap(G), cs --> gap(G).

bs, gap(G), ds --> {b], bs, gap(G), [d], ds.
bs, gap(G), ds --> gap(G).

s --> as, bs, cs, ds.

as --> [].

as, gap(X), xc --> [a], as, gap(X).
bs --> [].

bs, gap(X), xd --> [b], bs, gap(X).
cs ——> [].

cs --> x¢, [e¢)], cs.

ds --> [].

ds --> xd, [d], ds.
Here we present a NG describing the same language.

abed => a_c // b_d.

a_c => triple([a]l, [b], [c]), [d]*.

b d => [al*, triple([b], [c],[d]).
triple(X, Y, 2) => Y,

triple(X,Y,2) => X, triple(X,Y.Z), Z.

It is obvious that NG rules are modular. Similar to example 4.4, the first rule imposes simultane-
ous constraints a"b*c"d* and a*b™c*d™. On the other hand, the interaction between different
gapping rules in GG formalism makes it difficult for the grammar writers.

Example 4.6 : Filler-Gap Problem

In example 4.2, we show how XG is translated to NG and interpret "relative clauses” in natural
language. However, it may not necessarily be efficient. In this example, we propose a higher-
order solution. We define NG as follows:

s => np, vp.

np => [term(np)].

np => dat, n, optional relative.

vp => v,

vp => v, np.

opticnal relative => [].

optional relative => rel pro, = without [term(np)].
rel pro => {that].

A without [] => A,
[A]As] without [A|Bs] => As without Bs.
[A|B] without C => [A|B without C].

Note the definition of without/2 handles the Filler-Gap problem. Now we illustrate how the
sentence
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the cat that likes fish runs

can be generated from the NG by giving a sequence of terms that can be produced by narrowing
of the NG start symbol s:

[ ]

np, vp

det, n, optional relative, vp

[the], n, cptlonal relative, vp

[the]l, [cat], optional relative, vp

[the}, [cat], rel_pro, s without [term(np)], vp

[the], [cat], [that], s without [term{np}], vp

[the), [cat], [that], (np, vp) without [term(np)], vp
[the], [cat], [that], ([term{np)], vp) without [term(np)], vp
[the}, [cat], [that], [term(np)|vp]l without [term(np)], vp
[the], [cat], [that], vp without [], vp

[the], [cat], [that], vp, wvp

[the], [cat], [that], v, np, vp

[the], [cat], [that], [likes], np, vp

[the], [cat], [that], [likes], [fish], vp

[the], [cat], [that], [likes], [fish], v

{the], [cat], [that], [likes], [fish], [runs]

N A A T i i A A A A A

Example 4.7 : Lazy Narrowing and Coroutined Pattern Matching

In this final example, we consider a basic problem for testing a certain set of events that satisfies
certain precedence (partial ordering) constraints. A directed acyclic graph (DAG) is well suited
for representing these constraints. In a DAG whose nodes represent events, an edge X — Y
represents the ordering constraint that event X occurs before event Y, which can also be
specified by precedes (X, ¥) defined in section 3.1. Now, we can directly represent an ordering
of any two events by a pattern as follows:

... // precedes(X,¥) //

Each precedes (X, Y) corresponds to an edge X — Y in the DAG. For instance, suppose we are
given a partial ordering of events which is represented by the following DAG:
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precedes (el,e2) // precedes(el,e3) // precedes(e3,e5) //
precedes (e3,ed4) // precedes(e2,e6) // precedes(e5,e6) // precedes(ed,eé6).

The pattern that describes the partial ordering is

Here el, ...,e6 are some event patterns.

5. Conclusion

In this paper, we have shown how NG, together with a simple definition of match, comprises a
new formalism for language analysis. Unlike many existing logic grammars which is logic-
based, NG is a functional logic grammar which combines concepts from logic programming,
rewriting, lazy evaluation, and logic grammar formalisms such as DCG. The semantics of NG
are defined by a special outermost lazy narrowing strategy.

NG compares favorably in expressive power and generality with other logic grammar formal-
isms. We have demonstrated how to translate different logic grammars into NG. We also point
out some limitations of existing logic grammars. NG is modular, extensible and highly reusable,
and can be usually collected in a library. We have extended the expressive power of first-order
logic grammars to be higher-order, by permitting patterns to be passed as arguments to the gram-
mar rules. At the same time, the laziness aspect of NG permits coroutine matching of multiple
patterns against a stream easily.

Like many logic grammars, NG can be straightforwardly translated to Prolog and executed by
existing Prolog interpreters as generators or acceptors. Although narrowing is in general difficult
to implement efficiently, we proposed in [4] one relatively efficient way to implement NG.
However, the performance is still unsatisfactory as compared to DCG-like Prolog code. A chal-
lenging open problem is to devise further improvements for the implementation given there.
Efficient implementations are possible in many cases. For example, when we know we will use
match, the definition
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pattern => ([a]*, [bl).

can be replaced by

match (pattern,8) => tl1(s).
tl{[als]) => t1l(s).

t1{S) => £2(8).

t2([bls]) => s.

and possibly compiled even further to DCG-like Prolog code in which nonterminals are aug-
mented with output variables, such as

match (pattern,S,T) :- t1({S8,T).
t1({a|S8],T) :- t1(S,T).
t1l(s,T) :- t2(s,T).
t2({bj8],s).
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