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ABSTRACT

We present a new kind of grammar. It combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and logic grammar formalisms such as
Definite Clause Grammar (DCG). We call it Narrowing Grammar.

A narrowing grammar is a finite set of rewrite rules. It is directly executable,
like most logic grammars. In fact, narrowing grammar rules can be compiled to
Prolog and executed by existing Prolog interpreters as generators or acceptors.
Unlike many logic grammars, narrowing grammar also permits higher-order
specification and modular composition, and provides lazy evaluation. Lazy
evaluation is important in certain language acceptance situations, such as in
coroutined matching of multiple patterns against a stream.

This paper defines narrowing grammar and compares it with the successful and
widely-used DCG formalism in logic programming. We show that pure DCG
can be easily translated into narrowing grammar. Narrowing grammar enjoys
the advantages of DCG, as well as its first-order logic foundation. At the same
time, narrowing grammar can rank higher in aspects such as expressiveness and
moedularity.
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1. Introduction

Since the development of metamorphosis grammar [5], the first logic grammar formalism,
several variants of logic grammars have been proposed [1, 6, 10, 11, 16, 17, 19]. Among these we
must mention Definite Clause Grammar (DCG), a successful and widely-used formalism for
language analysis in logic programming. We assume that the reader is familiar with DCG and
Prolog. Good introductions to DCG and Prolog can be found, for example, in [18, 20].

Most logic grammar formalisms mentioned above are first-order. Specifically, a nonterminal
symbol in these formalisms cannot be passed as an argument to some other nonterminal symbol.
For example, usually DCG does not permit direct specification of grammar rules of the form

goal(X) --> X.%

This problem was pointed out as early as [12]. We will discuss later in the paper why this is
more than just a minor problem, as it affects the convenience of use, extensibility, and modular-
ity of grammars. Very recently Abramson [2] has commented on the problem, and has
addressed it by using a new construct, mera(X), to define metarules that go beyond the limit of
first-order logic grammar formalisms. We propose a higher-order solution.

Narrowing grammar is a formalism for writing rules. It combines concepts from logic program-
ming, rewriting, lazy evaluation, and logic grammar formalisms such as DCG. The semantics of
narrowing grammar are defined by a term-rewriting system that is an extension of Narain’s
Log(F) system [14]. This approach gives both a compact formal definition of narrowing gram-
mar, and an efficient logic programming implementation. In this paper, we point out a number
of advantages of narrowing grammar for language analysis.

As a brief introductory example, let us show how easily regular expressions can be defined with
narrowing grammar. The regular expression pattern a* b that matches sequences of one or more
copies of a followed by a b can be specified with the Jgrammar rule

pattern => ([a]+‘, [bl).

where we also define the following grammar rules:

{X+) => X.
(X+) => X, (xX+).
([1,L}) => L.

([X|L1],52) => [X]|(11,L2)].

Here '+’ is the postfix operator defining the Kleene plus regular expression pattern, and the
rules for , define pattern concatenation, very much like the usual Prolog rules for append.

T Some Prolog systems, including Quintus Prolog and Sicstus Prolog, have been extended to per-
mit such rules. In these systems the rule shown above is translated to

goal (X,50,8) :— phrase(X,50,5).

where phrase/3 is a metapredicate that performs DCG compilation of its first argument (at run
time) and then executes the result. See section 5.2 for further discussion.
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Lists are used to represent sequences, as in most logic grammars.

Narrowing grammar rules are used much like rewrite rules in [14], but with a special leftmost
outermost term rewriting strategy described in the next section. With this strategy, the narrow-
ing of ([al+, [b]) tO [a,a,b] along with the rules used in each step of the narrowing is as fol-
lows:

Rewritten term Rule used in rewriting

([al+, [b])

—  (([a], [al+), [b]) (X+) => X, (X+).

-  (la]([],[al+)],[b]) ([XIL1],L2) => [X]|(L1,L2)].

— [al({[],[al+),[b])] ([X|L1l],L2) => [X|(L1l,L2)].

- [al([a]+, [b])] ({1,L) => L.

— [al([al, [b]}] (X+) => X.

= [a,al (][], [b])] ([X|Ll1],12) => [X|(L1l,L2)].

- [a,a,b] ([1,L) => L.

In a similar way, all other lists matching the pattern a* & could be produced.

Narrowing grammar has a theoretical foundation in first-order logic. All pure narrowing gram-
mar rules can be translated straightforwardly to pure Prolog clauses. This is advantageous since
the full power of unification is exploited, and eventually it may be feasible for properties of a
narrowing grammar to be verified using first-order logic theorem proving technology. At the
same time, the higher-order specification and modularity of narrowing grammar enable some
complex languages to be specified easily.

Section 2 defines narrowing grammar and section 3 shows how to implement it in Prolog. Sec-
tion 4 then describes some of its interesting features, and section 5 goes on to compare narrow-
ing grammar with the widely-used DCG formalism in logic programming, showing how it offers
several important advantages.

2. Narrowing Grammar

Narrowing grammar is a clear and powerful formalism for describing languages. In this section
we define narrowing grammar, and give examples showing how patterns can be specified with it.

2.1. Formalism of Narrowing Grammar
Definition 2.1

A term is either a variable, or an expression of the form f{¢,,...z,) where f is a n-ary function
symbol, n 2 0, and each ¢; is aterm. A ground term is a term with no variables.

Definition 2.2
A narrowing grammar is a finite set of rules of the form:



LHS => RHS

where:
(1) rAasis any term except a variable, and Rrxs is a term.
(2) If rH5=f(t1,....1n), then each ¢; is a term in normal form (see definition 2.4 below).

Definition 2.3

Constructor symbols are functors (function symbols) that do not appear as any rule’s outermost
g5 functor.

A simplified term is a term whose outermost function symbol is a constructor symbol. By con-
vention also, every variable is taken to be a simplified term. Note that no r#s of any rule can be
a simplified term. In this paper we will assume the function symbols for lists (namely, the empty
list [] and cons [_|_], following Prolog syntax) are constructor symbols. Much in the way
that constructors provide a notion of ‘values’ in a rewrite system, constructors here provide a
notion of ‘terminal symbols’ of a grammar.

Definition 2.4

A term is said to be in normal form if all of its subterms are simplified. Since every variable is
taken to be a simplified term, a term in normal form can be non-ground.

Definition 2.5

Let p, g be terms where p is not a variable, and let s be a nonvariable subterm of p (which we
write p = r[s]). If there exists a rule (LHS=>RHS) (which we assume has no variables in com-
mon with p), for which there is a most general unifier 8 of LHS and s and g = (#[RHS])8 (the
result of replacing s by RHS and applying the substitution ), then we say p narrows to gq.

A narrowing 1s a sequence of terms p1, p3, ..., p, such that for each i, 1 £i € n—1, p; narrows to
Pi+1. A narrowing is successful if p, is simplified.

Generally speaking, a rewrite system will specify a mechanism for selecting a subterm s from a
given term p, to determine what to narrow. This mechanism is then used successively with the
actual rewriting mechanism to implement narrowing. Below we define NU-narrowing, a special
leftmost outermost narrowing strategy for narrowing grammar.

Definition 2.6: NU-step
p — g, or p narrows to ¢ in a NU-step 7, is defined concisely by the following clauses:

+The significance of the prefix ‘NU-" in ‘NU-step” comes from the fact that we use a special stra-
tegy to select a subterm for narrowing, and this strategy selects terms in a leftmost outermost, or
Normal order, fashion. [/nification is implicitly used left-to-right by this strategy.



nu_step(P,Q) < nonvar(P), (P => Q).
nu_step(P,Q) ¢ nonvar(P), —(P => Q), functor(p,F,N),
functor(Q,F, N), subterm nu_step(P,Q,1,N).

subterm nu_ atep(F,Q,I,N) ¢ arg(I,P,A), arg(I,Q,RA),
plus(I,1,11), subterm nu_step(P,Q,I1,N).

subterm nu step(P,Q,I,N) — arg(I,P,A), arg(I,Q,B),
nu_step(A,B), unify remaining(P,Q,I,N).

unify remaining(_, ,N,N).
unify remaining(P,Q,I,N) ¢ plus(I,1,Il), arg(Il,P,A),
arg(Il,Q,A), unify remaining(P,Q,I1,N).

We can view NU-step as a special leftmost outermost narrowing. The term p narrows to ¢ in a
NU-step if either (p => g) is an instance of some rule (first clause), or if left-to-right unification
of subterms of p followed by the replacement of a subterm by the result of 2 NU-step yields ¢
(second clause). Note that the NU-step definition does not permit a narrowing to begin with a
variable.

We have used a logic program to define NU-step mainly out of interest in conciseness. Note that
the definition is nondeterministic, since the subterm nu step predicate is nondeterministic.
Nondeterminism permits NU-step to act both as an acceptor and as a generator.

Definition 2.7: NU-narrowing
A NU-narrowing is a narrowing p1, p2,... such that for each i, when p; and p;,, both exist, Di
narrows to p;4; in a NU-step.

nu_narrowing (X, X) .
nu_narrowing (X, ¥) & nu_step(X,Z), nu_narrowing(Z,Y).

Definition 2.8: simplification
A simplification is a NU-narrowing p1, py ..., P if p,, is simplified and no other p; is simplified.
simplification(X,X) ¢ simplified(X).

simplification(X,Y) ¢« —simplified(X),
nu narrowing(X,Y), simplified(Y).

NU-narrowing is not just a leftmost outermost narrowing strategy. For instance, given the nar-
rowing grammar rules:

a=>c.
b => [].
c => c.

g(x, (1) => [I.

then there is a NU-narrowing sequence



g(a,b), gf{a, 1}, []
but the only leftmost outermost narrowing is

gla,b), g{e,b), glc,b),

Definition 2.9:

A stream is a list of ground terms. A stream pattern is a term that has a NU-narrowing to a
stream.

2.2, Specifying Patterns with Narrowing Grammar

We illustrate how useful patterns can be developed in narrowing grammar with a sequence of
examples.

Example 2.0 : Regular Expressions
As we suggested earlier, regular expressions can be defined easily with grammar rules:

{X¥+) => X.

(X+) => X, (X+).
(X*) => [].
(X*) => X, (X*).
(X;Y) => X.
(X;Y) => Y.
([1,L) => L.

([xX{Ll]),n2) => [X[(Ll,L2)].

The operators +’ and ‘= define the familiar Kleene plus and Kleene star regular expressions,
respectively. ;¢ is adisjunctive pattern operator, while *,’ defines pattern concatenation.

Example 2.1 : Counting the Occurrences of a Pattern

Suppose we wish to count the number of times an uninterrupted sequence of one or more a’s is
followed by a b in a stream. This pattern can be represented by the regular expression
{[al+, [b]), and we can count the number of its occurrences with the pattern

number{ {[al+, [b]), Total )
if we include the following grammar for number:

number (Pattern, Total) => number (Pattern,Total,().
number (Pattern, Total, Total) => [end of_ file].
number (Pattern, Total,Count) =>

Pattern, number (Pattern,Total,plus(Count,1)).
number (Pattern, Total,Count) =>

[_], number(Pattern, Total,Count).

Here Total is unified with the number of occurrences of pattern in a stream that is matched
with the pattern number (Pattern,Total), and [end of_ file] is a special terminal symbol
that delimits the end of stream. We assume plus(X,1) that yields the value of x+1 when



simplified.

From the example above it is clear that the grammar rules have a functional flavor. Stream
operators are easily expressed using recursive functional programs. In addition, number is
higher-order because it takes an arbitrary pattern as an argument. The definitions for ‘+r, ‘%s,
Y;7, Y, 7, etc., above are also higher-order in that they have rules like

(X+) => X.

which rewrite terms to their arguments.

Example 2.2 : Coroutined Pattern Matching

Suppose we wish to count the occurrences of [c] as well as of ([a]+, [b]). That is, we want
to count the occurrences of multiple patterns in a stream. We use the pattern

number ({[al+, [b])},N1) // number{[c],6N2)
where we include the following grammar for //:

([X{Xs] // [XI1¥s]) => [X|Xa//¥s].
(n /7t = 1.

The operator // takes two patterns as arguments, narrows them to [X|Xs] and [X|Y¥s] respec-
tively, and then yields [x{Xs//¥s]. Thus // is a pattern matching primitive that requires both
argument patterns to generate or accept streams of the same length. This example shows that
multiple patterns in a stream can be simultaneously generated or accepted (i.e., coroutined)
easily with //.

Example 2.3 : Non-Context Free Languages
Consider the following grammart:

s_abc => ab_¢ // a _bec.

ab ¢ => xy(a,b), [el*. .

a be => [a]l*, xy(b,c). .
xy(X,¥Y) => [].

xy (X, ¥) => [X], xy(X, ¥}, [¥].

This grammar defines the non-context-free language {¢"b"c™ 1720} using only context-free-like
constructions. The first rule for s_abe imposes simultaneous (parallel) constraints on streams
generated by the grammar.

3. Compilation of Narrowing Grammar to Prolog

We describe an algorithm to compile narrowing grammars to Prolog programs. It turns out that
SLD-resolution with left-to-right goal selection, the proof procedure commonly used in Prolog,
will implement NU-narrowing on these programs. The compilation of a narrowing grammar
rule into a Prolog clause combines information about the rule and the control of NU-narrowing
when interpreting that rule. One interesting aspect of the compilation algorithm is its use of a

't Fernando Pereira suggested this example.
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suitable ‘equality’ predicate equal (x,¥), which succeeds when x can be narrowed to Y.

Algorithm 3.1 : Compilation of Narrowing Grammar to Prolog

(1) For each n-ary constructor symbol ¢, n 2 0, and for distinct Prolog variables X1, ... X,,, gen-
erate the clause:

simplify( ¢(X¢,.... X)), ¢cXq1,....X,) ).

(2) Foreachrule f(Ly,...,L,)=>RHS,letA,,...,A,,, out be distinct Prolog variables not
occurring in the rule, and generate the clause:

simplify (f(Aq(,...,A,), ,Out) :-
equal(Aq, Ly,
equal(A4,, L,),
simplify (RHS,out) .

Algorithm 3.1 does not deal with ‘impure’ features in narrowing grammar rules, such as cuts.
However, it is not difficult to extend the compilation to include such features.

Definition 3.1 : equal(x,¥)
equal (X,¥) - nu_narrow(X,Y) .

nu narrow(X,X) :- !.
nu_narrow(X,¥Y) :- simplify(X,2},
nu_narrow_subterms (Z,Y) .

nu_narrow subterms(X, Y) :-
functor(X,F,N), functor(Y,F,N),
nu_narrow_subterms (X,Y,0,N).

nu_narrow_subterms{_ , ,N,N).

nu_narrow_subterms (X,Y¥,I,N) :-
plus(I,1,Il1), arg(Il,X,A), arg(Il, Y,B),
nu narrow(A, B),
nu narrow_subterms (X, ¥, I1, N).

The table below lists some narrowing grammar rules together with the Prolog clauses resulting
from their compilationft.

1 Although the code produced by the compiler is not efficient, it can be optimized considerably.
For example, partial evaluation alone will cause many esqual/2 subgoals to be replaced by
unifications or simplify/2 subgoals.



Narrowing Grammar Rules Prolog Clauses

match([},8}) => 5. simplify (match(A,B),C) :-

equal (A, [1),
equal(B,8),

simplify(S,C).
match ([X|L], [X|S]) => simplify (match(A,B),C) :-
match (L, 8) . equal (A, [X|L]),

equal (B, [X]|S8]),
simplify (match(L,S),C).

(X+) => X. simplify((A+),B) :-
equal(a, X),
simplify (X, B) .

(X+) => X, (X+). simplify ({(A+),B) :-

equal(A,X),
simplify ((X, (X+)),B).

([]1,L) => L. simplify((A,B),C) :-
equal (A, []),
ecqual (B,L),
simplify(L,C).
([XIL1],L2) => simplify ((A,B),C) :-
(X[ (r1,L2)]. equal (A, [X|L1]),

equal (B, L2),
simplify ([X| (Ll,L2)],C).

It should be clear that simplify/2 guarantees its result (the second argument) will be
simplified. That is, the function symbol of the result will be a constructor. Also, we can show
that simplify/2 behaves [like NU-narrowing. Consider a derivation from the goal
simplify(f(ty,..5,).Z) which uses the Prolog clause

simplify (f(X1,...,X,), 0ut) :-
equal(Xq, Y1) ,..., equal(X,,, Y,), simplify(RHS, out).

resulting from f(Y4,...Y,) => RHS. In left-to-right Prolog derivation with this clause, the
equal/2 subgoals are satisfied first, each effecting either a unification (first clause of
nu_narrow/2) or a recursive simplification (second clause of nu_narrow/2). These are fol-
lowed by a derivation from the subgoal simplify(RHS,out), which also recursively effects a
simplification of RHS. Concatenating these simplifications, we find that simplify/2 effects a
simplification. More formally:

Theorem 3.1: If X and Y are terms such that simplify(X¥) succeeds, then
simplification(X,Y) has a successful left-to-right SLD-derivation.

Proof :
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We sketch a proof by induction on the length of a successful Prolog-derivation of
simplify(X,Y). Because of the structure of the clauses for simplify/2, there must be a goal in
this derivation that is an instance of simplify(Z.Y) for some term Z not equal to X. Since we
know simplify(ZY) succeeds, then by the induction hypothesis, simplification(ZY) has a
successful derivation. Now, we can show that each of the equal/2 subgoals introduced in the
derivation leads either to a unification or a derivation from a simplify/2 subgoal, and these
inductively give NU-narrowings. Since the composition of these NU-narrowings of arguments
is a NU-narrowing, we can prove inductively that nu_narrewing(X,Z) has a successful deriva-
tion. Combining this with the result above about simplification(Z)Y), we find that
simplification(X.,Y) has a successful left-to-right SLD-derivation.

The converse of the theorem is true if we replace Prolog-derivation by left-to-right SLD-
derivation, and we restrict the use of duplicate variables among arguments on the left hand sides
of narrowing grammar rules in certain ways beyond the restrictions in Definition 2.2. One res-
triction is to require that only terms in normal form be passed to these arguments. This subject is
studied in more detail in [4].

4. What is New about Narrowing Grammar

In this section we summarize several important features of narrowing grammar. Some of these
features are novel in the context of grammar formalisms, while others are not. The combination
of these features is certainly new and interesting, in any event.

4.1. New Model of Acceptance in Logic Grammar

Previously, we have described how grammar rules operate as pattern generators or specifiers. In
this section, we show that they can also operate as acceptors. Qur approach for pattern accep-
tance is to introduce a new pair of narrowing grammar rules specifying pattern matching. The
entire definition is the following pair of rules for match:

match({],S) => 8.
match([X|L], [X[S]) => match(L,S).

match can take a pattern as its first argument, and an input stream as its second argument. If the
pattern narrows to the empty list []. match simply succeeds. On the other hand, if the pattern
narrows to [X{L], then the second argument to match must also narrow to [x|s]. Intuitively,
match can be thought of as applying a pattern (the first argument) to an input stream (the second
argument), in an attempt to find a prefix of the stream that the grammar defining the pattern can
generate.

Pattern acceptance is requested explicitly with match. As a simple example, consider the fol-
lowing derivation illustrating how match works:
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matech (([a]+, [b]), [a,a,b])
match((([al, [a]+), [b]}, [a,a,b])
match({[a]([], [al+)], [b]), [a,a,b])
match([al (([], [al+),[P]}], (a,a,bl)
mateh ((([]1, [a]l+), [B]l}, [a,bl}
match(([a]l+, [b]), [a,b])
match(([a], [b]), [a,bl)
match{[a]| ({1, [b])], [a,bl)
match{([], [P]), [P])

match([b], [bl)

mateh({], [1)

(]

S S A A A A

There is a certain elegance to this; the rules of the grammar by themselves act as pattern genera-
tors, but when applied with match they act like an acceptor, or parser. This
acceptance/generation duality is familiar to users of Definite Clause Grammar [16], and the abil-
ity to employ grammars both as acceptors and as generators has a number of uses [8].

4.2. Higher-order Specification, Extensibility, and Modularity

Narrowing grammar is higher-order. Specifically, narrowing grammar is higher order in the
sense that patterns can be passed as input arguments to patterns, and patterns can yield patterns
as outputs,

For example, the enumeration pattern number(_,_) defined in example 2.1 is higher-order, as
its first argument is a pattern. The whole pattem ([a]+, [b]) can be used as an argument, as in:

number ( ([a]+, [b]), Total ).

It is well known that a higher-order capability increases expressiveness of a language, since it
makes it possible to develop generic functions that can be combined in a multitude of ways [7].
As a consequence, narrowing grammar rules are highly reusable and can be usefully collected in
a library. In short, narrowing grammar is modular. Narrowing grammar is also extensible, since
it permits definition of new grammatical constructs, as the number and // examples showed
earlier.

4.3. Lazy Evaluation, Stream Processing, and Coroutining

Leftmost outermost reduction is also called normal-order reduction, and sometimes lazy evalua-
tion. This name comes from the basic observation that outside-in evaluation of an expression
tends to evaluate arguments of function symbols only on demand — i.e., only when the argument
values are needed. That is, outside-in evaluation is ‘lazy’.

Narain showed that compilation like that in section 3 is a technique for implementing lazy
evaluation [13, 14]. Thus narrowing grammar rules are compiled to Prolog clauses in such a way
that, when SLD-resolution with left-to-right goal selection interprets them, it directly simulates
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leftmost outermost narrowing, or lazy evaluation.

Lazy evaluation is intimately related with a programming paradigm referred to as stream pro-
cessing [15]. Note that in this paper, a stream pattern is a term that will yield a list of ground
terms under lazy evaluation. We are not aware of previous work connecting stream processing
and grammars, although the connection is a natural one. Lazy evaluation and stream processing
also have intimate connections with coroutining [9]. Coroutining is the interleaving of evalua-
tion (here, narrowing) of two expressions. It is applicable frequently in stream processing. For
example, narrowing of the stream pattern

([al+, [B])

interleaves the narrowing of [a]+ with the narrowing of (_, [b]). The sample narrowing of
this pattern in section 1 shows the actual interleaving — first [a]+ is narrowed for two steps, then
(_. [b]) for one step, then [a]+ for two steps, and finally (_, [b]) for two steps. The effect of
leftmost outermost narrowing of the combined stream pattern is precisely to interleave these two
narrowings.

A specific advantage of lazy evaluation in parsing, then, is that coroutined recognition of multi-
ple patterns in a stream becomes accessible to the grammar writer. The coroutining rules

([XI1Xs] // [X|¥s]) => [X|Xs//¥s].
(11 77 t1y => 11.

make explicitly coroutined pattern matching possible. Essentially // narrows each of its argu-
ments, obtaining respectively (xIxs] and [x|¥s]. Having obtained simplified terms, it
suspends narrowing of xs and vs until further evaluation is necessary. An immediate advan-
tage of lazy evaluation here is reduced computation. Without lazy evaluation, both arguments
would be completely simplified before pattern matching took place; failure to unify the heads of
these completely evaluated arguments would then mean that many unnecessary narrowing steps
on the tails of the arguments had been performed.

5. Comparison with Definite Clause Grammar

In this section we compare narrowing grammar with Definite Clause Grammar (DCG), a
widely-used formalism of logic grammar. We show how pure DCG can be translated into nar-
rowing grammar and how narrowing grammar and DCG differ. We also point out some limita-
tions of first-order logic grammars.

5.1. Narrowing Grammar and Definite Clause Grammar

All pure narrowing grammar rules can be ultimately translated to pure Prolog clauses. As a
consequence, the benefits DCG offers over things like Augmented Transition Networks listed in
[16] are also enjoyed by narrowing grammar.

We show how a DCG rule can be translated into a narrowing grammar rule describing the same
language.

How to Translate Definite Clause Grammar to Narrowing Grammar
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(1) Essentially, DCG rules can be translated to narrowing grammar rules by changing all
occurrences of -->to =>and by including the narrowing grammar definition for , ¢ as in
section 2.2.

([1,L) => L.
([X|TL1],12) => [X]|(L1,L2)].

(2) Disjunction (*; ) in DCG has the same semantics as in narrowing grammar but the latter
can be defined at the grammatical level:

(X;Y) => X,

(xX;y) => ¥.

(3) Metamorphosis grammar [5] permits rules of the form

LHS, T —--> RHS
where 145 is a nonterminal and 7 is one or more terminals. We can capture the semantics
of this rule in narrowing grammar by defining a constructor replace (x,¥) and one more
rule for match as follows:

match ([replace (X, Y) |L],S) => match(L, (¥, match(X,S})).

and transform the metamorphosis grammar rule to

LHS => [replace(RHS,T)].
Note, however, that with narrowing grammar 7 can be any pattern, not just a stream of ter-
minals,

Example 5.1

Consider the following MG and NG rules which accept all strings of [a]’s and [b]’s which
have an equal number of [a]’sand {b]’s.

ns --> {[]. ns => [].

ns --> na, ns, nb. ns => na, ns, nb.

na —--> [a]. na => [a].

na, [term(nb)] --> nb, na. na => {replace((nb,na),nb)].
nb --> [b]. nb => [b].

nh --> {termi{nb)].

The [tem(nb)] ‘terminal’ permits the MG to treat the nonterminal nb temporarily as a termi-
nal. Note that this artifice is not needed with NG.

A derivation showing how match works with the constructor symbol [replace( , )] is
shown:
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match(ns, [b,al])

match{(na,ns,nb), {b,al)
match(([raplace({nb,na),nb)],ns,nb}, [b,a]l)
match((ns,nb), (ab,match{(nb,na), [b,al}))
match(([],nb), (nb,match{(nb,na), [b,al})))
match (ab, (nb,match((nb,na), {b,al}))}
match{[b]), {(nb,match{{nb,na), (b,al)))
match([bl, ([b},match{(nb,na), [b,al)))
match({[b], [b|match((nb,na), [b,a])]}
match([], match((nb,na), [b,al})
match( (nb, na}, [b,al)}

match({[b),na), [b,al)

mateh ([bl([],na)], [b,al)

mateh{{[],na), [a])

match(na, [a])

match([a], {a])

match ([], []1)

[

N T A R A e N A A

5.2. Limitations of First-order Logic Grammars

The usual method for compiling DCG to Prolog does not permit direct specification of grammar
rules of the form:

goal(X) --> ...,X,...

where X is a variable. Therefore, it is hard to write DCG rules that behave like number given
earlier. This is a basic limitation of first-order logic grammars.

Abramson [2] has addressed this limitation by introducing a meta-nonterminal symbol, written
meta(X), where X may be instantiated to any terminal or nonterminal symbol. During parsing,
an X is to be recognized at the point where meta(X) is used in a grammar rule. Abramson sug-
gested two ways to implement mera(X). The first method makes an interpretive metacall wher-
ever meta(X) is used. (This is a special case of the approach used by the phrase/3 metapredi-
cate in Quintus and Sicstus Prolog.) The other approach is to preprocess the rules containing
meta(X) so as to generate a new set of rules with no calls to mera(X). However, this preprocess-
ing can generate extra nonterminals and rules.

The same problem was pointed out in [12], where Moss proposed a special translation technique

by using a single predicate name for non-terminals. For instance, Moss translates the DCG rule
goal(X) --> X

to the Prolog clause

nonterminal (goal(X),$0,8) :- nonterminal(X,S0,8).

There is one final limitation. Even with the techniques suggested by Abramson and Moss, the
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lazy evaluation or coroutining aspects of narrowing grammar are not easily attained with first-
order logic grammars. To attain them, a new evaluation strategy is needed for these grammars,
implemented via either a meta-interpreter or a compiler like that in section 3.

6. Discussion and Conclusion

In this paper, we have shown how narrowing grammar, together with match, comprises a new
formalism for language analysis. Narrowing grammar combines concepts from logic program-
ming, rewriting, lazy evaluation, and logic grammar formalisms such as DCG. All narrowing
grammar rules can be compiled to Prolog clauses in such a way that, when SLD-resolution with
left-to-right goal selection interprets them, it directly simulates a kind of leftmost outermost nat-
rowing called NU-narrowing.

Both narrowing grammar and DCG have a theoretical foundation in first-order logic. Since
DCG can be translated directly to narrowing grammar, the benefits DCG offers over things like
Augmented Transition Networks listed in [16] are enjoyed by narrowing grammar. Although we
have shown how a pure DCG rule can be translated to a narrowing grammar rule, translation the
other way is not trivial. We have also illustrated by examples that some problems are difficult to
express with DCG but are very easy to express with narrowing grammar. ‘Coroutined’ matching
of patterns is among these.

Narrowing grammar is modular, extensible and highly reusable, so saving rules in a library
makes sense. These grammars extend the expressive power of first-order logic grammars, by per-
mitting patterns to be passed as arguments to the grammar rules. As a consequence, some com-
plex patterns can be specified more easily.

The main issue of implementation here that we have not addressed is efficiency. An interesting
open problem is to devise improvements for the (relatively inefficient) implementation given in
this paper. Efficient implementations are possible in many cases. For example, when we know
we will use mateh, the definition

pattern => ([al+, [b]).
can be replaced by

match (pattern,8) => t1(8).
tl({[a{8]) => t2(8).
t2([al|8]) => t2(8}.

t2(S) => t3(8).

t3([bls)) => 8.

More work on the issue of efficiency appears in [4].

Beyond standard applications of grammar, narrowing grammar has potential in new areas
including specification, analysis, and verification of concurrent systems. It can be used in
‘history-oriented’ or ‘object-oriented’ specification of concurrent systems. In [3] we demon-
strate this in more detail. Given a set of actors (automata, concurrent objects, etc.) A1,....4, we
can produce narrowing grammars with starting patterns S,,...,5, for these, and then use
S17/7.../7S, as a specification of valid histories for the entire system. To our knowledge, this



-15-

aspect of narrowing grammar is unique.
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