Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

RADIX-4 SQUARE ROOT WITHOUT INITIAL PLA

Milos D. Ercegovac March 1989
Tomas Lang CSD-890013

Radix-4 Square Root without Initial PLA

Milo3 D. Ercegovac and Tomas Lang

Computer Science Department
3732-C Boelter Hall
School of Engineering and Applied Science
University of California, Los Angeles

213/825-5414

e-mail: milos@cs.ucla.edu

Radix-4 Square Root without Initial PLA

Abstract

A radix-4 square root algorithm using redundancy in the partial residuals and the result is
presented. Unlike other similar scheme it does not use a table-lookup or PLA for the initial step.
The scheme can be integrated with division. It performs on-the-fly conversion and rounding of
the result, thus eliminating a carry-propagate step to obtain the final result. The selection func-
tion uses 4 bits of the result and 8 bits of the estimate of the partial residual. The paper includes
a systematic derivation of the algorithm.

1. Introduction

Several implementations of radix-4 square root have been presented in the literature
[VINE65, GOSL87, FAND87, ZURAS87]. In all these cases a table-lookup or a special PLA is
included for the determination of the first few bits of the result, while another PLA implements
the result-digit selection for the remaining radix-4 digits. In this paper we show that this initial
PLA is not necessary, resulting in a simpler implementation. As in the other designs, the imple-
mentation can be combined with division: the result digit selection function and the recurrence
are identical in all steps.

The operand and result are in floating-point representation. To permit the computation of
the exponent of the result, the exponent of the operand has to be even. To accomplish this, the
mantissa of the operand is multiplied by 1/2 when its exponent is odd. Consequently, the
operand mantissa is in the range [1/4,1). The mantissa of the result is then in the range [1/2,1).

To obtain a fast implementation, as done in [GOSL87, FANDS87, ZURAS7], carry-save
addition is used and the result-digit selection depends on low-precision estimates of the residual
and of the partial result. This requires that the result digit be from a redundant digit-set. As the
other referenced implementations we use the set {-2,-1,0,1,2} to simplify the multiple formation
required by the recurrence.

The signed-digit result is converted on-the-fly to conventional representation. Moreover,
during this conversion on-the-fly rounding is performed [ERCES88].

2. Recurrence and Square Root Step

The algorithm is based on a continued-sum recurrence. We now develop the digit-
recurrence for the algorithm and show the implementation of the corresponding iteration step.

2.1 Recurrence

Each iteration of the recurrence produces one digit of the result, most-significant digit
first. Let us call § [/] the value of the result after j iterations, that is

i
SUl=X54™ . , (1)
C =l

The final result is then

s=Sn]= Y54

i=1
We define an error function € so that its value after j steps is
elj1=x"2-S[j] @

where 1/4 £ x <1 is the operand.

To have a correct result this error has to be bounded. To use a redundant representation
of the result, we allow a positive or negative error such that

47 <g[j]< 47 3)
If a positive final remainder is required, a restoration step is included.

We now transform (2) to ¢liminate the square root operation (add S[j] and obtain the
square). We get

472 _2xa7iS[j1+ S <x <47H 4+ 247 S[j1+ ST
Subtracting § [j]? we obtain
47 x4 Sl <x —S[P<4¥ +2x47 §[j] @

That is, we have to compute S[j] such that x - § [j]2 is bounded according to (4). We
now define a residual (or partial remainder) w so that

wlil=4(x -S[j1?)
From (4) the bound on the residual is
2S[1+47 <w[j]<2S[i1+47)
and its initial condition
w[0]=x (7
In terms of this residual we obtain the recurrence
wl+1 = 4w [j]1 =25 [j]5;4 —s 4y x4 0D ®

Expression (8) is the basic recurrence on which the square root algorithm is based.
2.2 Implementation of Square root step

The square root algorithm consists in performing m iterations of the recurrence (8).
Moreover, each iteration consists of four subcomputations (Figure 1a):

1) One digit arithmetic left-shift of w[j] to produce 4-w[/].

2) Determination of the result digit $;+1- To do this a result-digit selection function is
used. The value of the digit s;,, is selected so that the application of the recurrence produces a
w [j+1] that satisfies the bound (6). The function has as arguments w[;] (an estimate of 4w [j])
and S'[;) (an estimate of S[;]) and produces s j+1- That is,

sin =F WL SUD ©®

3) Formation of F =-2S[j1s;,; — 54,470 and S[j+11 =S [j] + 5,471,

4) Subtraction of F' from 4w [/] to produce w[j+1].

The four subcomputations are executed in sequence as indicated in the timing diagram of
Figure 1b. Note that no time has been allocated for the arithmetic shift since it is performed just
by suitable wiring. Moreover, the relative magnitudes of the delay of each of the components
depend on the specific implementation.

wlj]

'

Stil S . Left Shift
w
¥ 4w[j]
Result-digit
Selection
S+l ‘
On-the-Fl -
anvgrsio}; §——o——p Multiple Generator
l F
\ 4

S{j+1]

, Selection

Carry-Save Adder

v

wij+1]

(a)
Result-
digit
F CSA

Conversion

(b)

Figure 1. (a) Square root step, (b) Timing

To have a fast recurrence step we use a carry-save adder and a result-digit selection func-
tion that depends on low-precision estimates of the residual and of the partial result. To achieve
this, it is necessary to have a redundant representation of the result-digit. In particular, we use
the symmetric signed-digit set

s;€{-2,-1,0,1,2} (10)

because it allows a simpler implementation of the adder input F. Moreover, the signed result-
digit makes it necessary to use an on-the-fly conversion to produce S {;j] in a conventional form
for the formation of F.

2.3 Implementation of Square Root Algorithm

As indicated, the square root algorithm consists of m iterations of the recurrence. The
implementation of this algorithm can be ftotally sequential, where the hardware of the step is
reused for all the iterations and the residual is updated in a register (Figure 2a); totally combina-
tional, where the hardware for the step is replicated (Figure 2b); or a combination of both, where
the step hardware is replicated & times and this superstep is reused m/k times (Figure 2c). Spe-
cially in the combinational implementations, pipelining can be used so that several operations
can use the hardware at the same time, with the corresponding increase in throughput. The selec-
tion of one of these alternatives is influenced by cost, speed, and throughput considerations.

3. Result-digit Selection Function

We now present the design of the result-digit selection function. This function deter-
mines the value of the result digit s5;,, as a function of the residual w(j] and the partial result

S[/1.

There are two fundamental conditions that must be satisfied by a selection function: con-
tainment and continuity. These conditions determine a selection interval for each value of s, ,,,
from which alternative result-digit selections can be defined.

3.1 Containment Condition and Selection Intervals
One basic requirement for the result-digit selection is that the selection has to be made in
a way that produces a next residual that is bounded. This leads to the containment condition,

which we now develop.

Let the bounds of the residual w[j] be called B and B, that is,

BLi1<wli1<Bj] (an

X

' s

SQRT Step j+1 » 50

wij+1]

A 4
| Residual Register |

w(j]
(a)

X

'

SQRT Step 1 —> 5

l wfl]

SQRT Step 2 > §

‘ w[2]

v

SQRT Step n —— S,

(b)

Figure 2 Square root implementation: (a) Totally sequential ,
(b) Totally combinational

X

!

SQRTStepl f—— 5441

:

SQRT Step 2 ——9 Sits2

SQRT Step k — S+ 1)k

v wi(i+1)k]

| Residual Register |

wlik]

(c)

Figure 2 cont. (¢) Combined implementation

Note that these bounds depend on j, unlike in division, where they are constants.

Define the selection interval of 4-w|[j] for 5; = k to be [L;,U.]. Thatis, L, (U,) is the
smallest (largest) value of 4-w[j] for which it is possible to choose s5;,) =k and keep w[j+1]
bounded. Therefore,

L1<aw[j1SUL] —» B+ <4w[j1-2S[ik -k U*D<Bj+1]] = a2
Consequently,
Ulj1=BL+11+28[jlk +£%470*D L [j1=B[i+1]+ 2SIk +£2470*D g3

We now can determine B [/] and B[j] because they are the upper bound of the interval
for k=2 and the lower bound for k=-2, respectively. That is,

Usli1=4B1j] Lofj1=4BLj]
Introducing these values in (13) we get

B[j+1]+2S[j1x2+ 224 U*D = 4B] (14)

B[j+1]-2S[j1x2+22470*D = 4B /]

This results in

4

EU]=%-S[}']+34*J; (15)

= Ao 44
Blj]l= 3SU]+94

To show that (15) is correct it is sufficient to replace in (14). Note that, in contrast to
division, the bounds vary with j. These bounds satisfy the bound on the residual of (6).

The containment condition is obtained from (13) and (15). It states that the selection in-
terval for s;,, = k is given by the expressions

Urljl= %S [+1]+ %4-0“) +2S [k + k240D

Since S[j+1] =S [j1+ kx47U*D we get

U li1=2S 11tk + %) ok + %)24*0“’ 168
Similarly,
vy . 2 2 2 _U+]_)
LkU]—ZSU](k—-:;)*'(k-?)’-‘ (16b)

The square-root recurrence, the residual bounds, and the selection-interval bounds can be
represented in Robertson’s diagram (Figure 3). This diagram has as axes the shifted residual
4w|[/j] and the next residual w(j+1]. It represents the recurrence by the lines with parameter

sjqp=k for k=-2,..2 and the residual bounds by the rectangle w([j+1]1=B[j+1],
w(+D)=B[j+1],4w[j]= 4B [/1, and 4w[j] =4B[j]. The selection interval for Sis1=k isob-
tained from the projection of the corresponding line on the 4w [] axis.

Another diagram that contains information more useful in the design of the result-digit
selection function is the residual vs. partial result plot, called the R-PR plot (Figure 4). It is simi-
lar to the P-D plot, used in division: it has as axes the partial result S[/] and the shifted residual
4w]. The bounds of the selection intervals U/, and L, are ploted as lines.

3.2 Continuity Condition and Overlap Between Selection Intervals
A second requirement for the selection intervals is the continuity condition. It states that

for any value of 4w [j] between 48 [f] and 4B f7] it must be possible to select some value for the
result digit. This can be expressed as

Uk—l 2 Lk - 4-m (17 -

Moreover, to use estimates of 4w [f] and of S [] for the result-digit selection, it is neces-
sary to have an overlap between the adjacent selection intervals. For the square-root operation
with digit-set {-2,-1,0,1,2} the overlap is

Upy =L, = %(23 [j]+ (2k—1)4"0U+D)y (18)

Note that the overlap depends on S[j], on &k, and on j. We will analyze the different
cases later and show that there is sufficient overlap to use estimates for the result-digit selection.

wij+1]

Blj+1]

, —» dw([j]
4Bj] / / 48]
[/
La[7]

Blj+ U]

Figure 3. Robertson's diagram

4w(3]

r'y
600 +
Uy
400 =+
Uy
2.00 ///A "2
- UO
Ly
0.00 >
U S[3]
L
200 \\\ O
Us
400 <+ La
L
600 1 2

Figure 4. PD Diagram (j=3)

3.3 Result-digit selection for residual in carry-save form

We now determine the result-digit selection function using an estimate of the shifted resi-
dual obtained by truncating the carry-save form.

The truncation of the shifted residual in carry-save form to ¢ fractional bits produces an
estimate w with error satisfying

0<dw(jl—-w <2x2™* (19)

as shown in Figure 5.

Consequently, to have a correct result the basic requirement is that if we choose s 1=k
for an estimate W, then this selection has to be acceptable for the interval

dwljle [w, w+27 ¢ (20)

The result-digit selection function we develop is of the "staircase” type as illustrated in
Figure 6a. Such a function is defined by selection constants m; (k) which are used for partial
result interval S [} € [S;, S;.,), where §; = 271 + ix27%). That is, for that interval we choose

Sj+1=k if m,(k)Su'f <m,-+1(k)

The set fm; (k) 1 0<i < (2‘5“1—1) and -2 £k <2} defines the result-digit selection func-
tion.

If the selection constants have a precision of ¢ fractional bits, that is

m;(k)=A;(k)2™
where A; (%) is an integer, we get from the containment and continuity conditions, and (20)
Ai (k)2" 2max(Lk(Si), Lk (Si+l)) (21a)

A; &)~ 127 + 27V <min U, _((S)), Up_1(Si11) 21b)

- The second expression has to hold because for (A; (k)-1) we want to choose Si=k-1.
These expressions are illustrated in Figure 6b.

t

XXXX XXXXXXXXX
XXXX XXXXEXKXXXX

<2x2-t

Figure 5. Truncation error

4w(j]
r'§
mi(2)
mi(1)
mi(0)
» S
Sii Si Sin
(a)
mik) = A (k)2 ¥

Si Sis1

Figure 6. (a) Staircase selection - a fragment,
(b) Conditions on selection constants

Consequently, the main relation used for obtaining the corresponding (staircase) result-
digit selection is

A (k)27 2 max (L (S;), L (S;.1) (22)

A; ()27 <min(U,_y(5;), Upoi(S:40)

where U/ = U - 27",

The values of & and ¢ are obtained by trial and error. To reduce the number of trials,
lower bounds are obtained from the need for a sufficient overlap, as described in [ERCES89].

For the radix-4 case with digit-set {-2,...,2} we have from (16)

Ualj1=2S [[Ix(8/3) + (8/3)247U*D) L[] =28 [j1x(4/3) + (4/3)247U+D

U U1=2S[Ix(5/3) +(53)%47 9D Ly[j1=28 [jIx(1/3) + (1/3)%470+D
Uolj1=2S[1x(2/3) + (232479 L([j]1=-28 [[1x(2/3) + (2/3)%474*D
U_ilj1==2S [Ix(3) + (13Y%47U*D L[] =-2S [jIx(5/3) + (5/3)247U*D
U_y[j1= =25 [1x(43) + (434700 L[] =-2S [j]1x(8/3) + (8/3)4U*D

Since these limits depend on j, the result-digit selection might vary with the value of ;.
We now consider the different cases.

Since the maximum digit value is 2, it is necessary to have
§o= 1

to be able to represent values of 5 > 2/3, Consequently, $[0] =1, which leads to 5, = {0,~1,-2}
(tohave s < 1).

Therefore, for j=0 we obtain,

U _;[0] = -2x1x(1/3) + (1/9)(1/4) = —(23/36)

Lo[0] = -2x1x(2/3) + (4/9)(1/4) = —(44/36)

This results in a possible m(0) =—1.

Similarly,

U _,[0] ==2x1x(4/3) + (16/9)(1/4) = —(80)/(36)

L_1[0] = -2x1x(5/3) + (25/9)(1/4) = =(95)/(36)

which results in a possible m(—1)=-5/2. Since ~5/2=-90/36 we get a minimum value of
27 =(90-80)/36 > 1/4.

For j =1 we can have 5,={-2,-1,0,1,2}. Moreover, since s; ={-2,-1,0} and S{0] =1
the possible values of S[1] are 1/2, 3/4, 1. A lower bound of =3 is obtained [ERCE89]. For this
value, Table 1 shows the corresponding values of L, and (}k and a result-digit selection function
that satisfies (22).

Table 1. Result-digit selection for j=1

Slll=12 S[1i=34 S[11=1

~

Ly U, 208/144, 247144 | 304/144,367/144 400/144, 487/144
m(2) n 9/4 3

L, Uy | 49144,82/144 | 73/144,130/144 | 97/144,178/144

m(1) 12 314 1
Le. U, . -140/144, -89/144 | -188/144, -113/144
m(0) - -3/4 -1
LU, - -335/144, -290/144 | -455/144, -386/144
m(-1) - -9/4 -3

Note that it is not possible to select 5, <0 when S[1]=1/2, because this would make
S{2] < 1/2.

For j=2 we obtain lower bounds of &=4 and r=3 (see [ERCE89]). We now develop the
result-digit selection using these values. Since we use 8 =4 and the granularity of § [2] is 1/16,
we use exact values instead of intervals. Table 2 shows the corresponding values of L, and U,
and a possible result-digit selection. The term U is

2 1
Ue=Ur-7%

Table 2. Result-digit selection for j=2

5; 8/16 9/16 1016 11116 1216 1316 14/16 15/16 16/16
Ly U, (x%) 784,913 | 880,1033 | 976,1143 | 1072,1253 | 1168,1363 | 1264,1473 | 1360,1583 | 1456,1693 | 1552, 1803
m(2) 32 74 74 2 9/4 L77) 5n 1/4 3
L, U, (x%) 193,316 | 217,34 | 241,412 265, 460 289, 508 333 556 357, 604 381, 652 405,700
m(1) 12 1”2 12 12 314 3/4 1 1 1
Lo t}_,(x?}g) -380,-263 | -428,-287 | -476,-311 | -524,-335 | .572,-359 | 620,-383 | -668,-407 | 716,431 | -754,-455
m(0) - 12 -3/4 -3/4 34 -1 -1 -1 -1
L, U,z(xg%) -935,-824 | -1045,-920 | -1155,-1016 | -1265,-1112 [-1375,-1208 | -1485,-1304 | -1595,-1400 | -1705,-1496 | -1815, 1592
m(-1) 714 2 -2 514 -5 SR 1174 3

For j 2 3 we use 6=4 and 1=4 [ERCE89]. Moreover, to make the function independent of
J (only dependent on S'[j]) we use

_ 2
Le[j1<2S[1Gk=2/3) + (k=2/3)%474 = L*, + iﬁg’)—-
Uelj1> 28 [1(k+2/3)
and
k 2 1 0 1 2
"g? 2 | 1naa | 130e | 578 | 1m0 | 16

We get Table 3. For simplicity, in the table we include L*, instead of L, ; however, for
the result-digit selection it is necessary to take into account the additional term. Because this
term is relatively small (with respect to 27'), the only limitation introduced is that m; (k) cannot
be equal to L*;.

10

Table 3. Result-digit Selection for j>3

15,.5:.1) 8169716 | 9/1610/16 | 10/1611/16 | 11/1612/16 | 12/1613/16 13/16 1416 1416 15/16 | 15/16 16/16*
LS DU S | 3,78 | 5i,29716 11/6, 97148 2, 107/48 13/6, 39116 773, 127/48 15/6, 137/48 8/3, 49/16
m; (2) 25/16 14 15/8 17/8 914 51 11/4 3
LY (S, 0WUo(S) | 3/8,29/48 | 5712, 1116 | 11/24,37/48 112, 41/48 13724, 15/16 | 712, 49/48 5/8, 53/48 2, 19116
m(l) 12 12 in 314 34 314 1 1
L*o(S)U (i) | 28,716 | -3/4,-23/48 | -566,-25M8 | -11/12,-916 | -1, -2048 | -13/12,-3148 | %6, -11/16 -5/4, 3548
m;(0) 12 -5/8 -3/4 374 -3/4 1 -1 -1
L* SV o(Sie1) | -53,-25/16 | -15/8, -83/48 | -25/12,-91/48 | -55/24,-33/16 | -15/6,-107/48 | 65024, -115/48 | 35112, -41716 | -75724, -133/48
m;(-1) -13/8 -29/16 2 -9/4 974 5 1174 3

* includes 16/16

Since we want a single result-digit selection (independent of j), we now need to match
the result-digit selections for j=0, j=1, j=2, and j>3. We take as a basis the selection for j>3
and compare the corresponding entries with those for j=2, j=1, and j=0. When the entries are
different we adjust them to satisfy all cases. We get Table 4. The only case we cannot match is
the value m (—1)=-5/2 for j=0 (for S[0] = 1), since for the other values of j it is -3. A simple
solution is to apply S [0)=13/16 instead of 1 for the result-digit selection; this requires 3 AND
and 3 OR gates, as shown in Figure 7. Note that the most significant bit of S represents the cases

(Ag, A1) =(1,0) and (A, A) = (0,1). Moreover, to eliminate S, we change 1000 to 0111.

Table 4. Single Result-digit Selection (for all values of ;)

[5:5:,1) | 8/169/16 | 9/16 1016 | 10716 11716 | 11/16 12/16 | 12716 13/16 | 13116 14/16 | 14/16 15/16 | 15/16 16/16*
m;(2) 25/16 714 1573 178 9/4 77} 2178 238
m;(1) 12 12 12 3/4 34 3/4 1 1
m;(0) 12 -5 -3/4 -3/4 -3/4 1 1 1

m1) | -138 -29/16 2 -17/8 974 512 -11/4 2378

* inclodes 16/16

11

_ : MSD part of 4w{j]
stepj#0 T
Y \|/ 8 48
Ao CPA
Aj
3 Result
(Digit
— Selection
w
AY) S3 Sa \4
3
| P Comb.
-~ - ™ Network
S[]
43
\ 4
Ji+1

Figure 7. Result-digit selection implementation

4. Generation of adder input F
The third adder input has value
F L]} =-25 U]Sj+1 - sj?kl 4_'(j+l)
To obtain F {j] it is necessary fo convert S{j] to conventional radix-2 representation

(since s; is signed-digit). This conversion is done on-the-fly using a variation of the scheme
presented in [ERCES87}. It requires that two conditional forms A [j] and B[] are kept, such that

Alj1=S1j]
B[j1=S[j1-47

These forms are updated with each result-digit as follows:

-~

. Aljl+5;,470D if 55,20
. ALY+ (j—DaU*D if 5,50

.

The implementation of this conversion requires two registers for A and B, appending of
one digit, and loading. For controlling this appending and loading, a shift register K is used, con-
taining a moving 1. This implementation is shown in Figure 8.

In terms of these forms, the value of F and the corresponding bit-strings are

Fij]
;41 Value Bit-string
1 2A[j]1-479*Y | @-.-aall
2 | dA[j1-4xa YD | 7--.31100
-1 | 2B(j)+7x47UtD | p--ipp1ld
2 | 4B[j1+12x47U*D | b ... p1100

where a - -+ ga and b - - - bb are the bit-strings representing A [j] and B [], respectively.

12

Afj] B{j

Register K
A d]
v v {20 2 / 2 K
Sier — Load Control — Load Control Siv1 = Load Control
v S+t v Y
Register A Register B . Register C
Alj] l B(j]
Sjis1 ——— F Generator 2ero Select&Jam Sn+1
' '
Ffj tn]

Figure 8. Network for generating F and rounding

Figure 8 shows a block diagram for the generation of F .
5. On-the-fly conversion and rounding

The result digit obtained from the result-digit selection logic is in signed-digit form. As
mentioned in the previous section, the partial result is converted on-the-fly to conventional form
to use it in the formation of F. Consequently, the final result in conventional form is obtained
from register A .

In addition, rounding of the result might be required. The most used type of rounding,
rounding-to-nearest, is usually done as follows {[FAND87]. First, n+1 digits of the result are
computed for an n-digit rounded result. Then, a restoration step is performed to obtain a posi-
tive residual; to achieve this, the sign of the last residual is determined and the result decrement-
ed by one in the least significant position if the sign is negative. Since the representation of the
partial residual is redundant (carry-save), the sign has to be obtained from this redundant
representation; the process i$ similar in delay, but simpler in amount of hardware, to a carry-
propagate addition that converts the residual to conventional representation. The sign of the
residual is then used to decrement the n+1-digit result; this can be done by a subtraction or by
using the decremented form available from the on-the-fly conversion. Finally, the (unrounded)
result is rounded by, possibly, incrementing it by 1. This incrementation requires a carry-
propagate addition. The process is costly both in hardware and in time.

To simplify the hardware required for rounding and increase its speed, in [ERCE88] we
describe three on-the-fly rounding methods that are combined with the conversion. They are as
follows:

1) Rounding to nearest. In this case the first steps of computing an additional digit and
finding the sign of the residual are also required. However, neither the restoration step nor the
actual rounding require a carry-propagate addition because they can be performed on-the-fly if a
third form is computed on-the-fly during the conversion. The method can be summarized as fol-
lows. The rounded result with n digits called ¢t[n] is

Cn] i (upq—sign)=2
tin]l=1A[n] if -1<(s,,—sign)<1 4
Br] jf (Sp4q —Sign) -2

where A [n] is the converted result with n digits, B[n]=A{n]~2",C[n]=A[n]+27", and
Sn+1 18 the (n+1)-nd signed-digit of the result. Moreover, to have unbiased rounding to nearest it
is necessary to set to zero the least significant bit of the result when |s,,,| =2 and the last resi-
dual (remainder) is zero.

13

The forms A and B are produced for the conversion as discussed in the previous section.
To be able to do the rounding we need to produce also the form C. It is updated as follows:

A1+ Gy + DAV i 5. >

CUI=A B iy 4 3xaGD if sj,=-2

This updating is also done by appending and loading, as shown in Figure 8.

In addition, it is necessary to have a network to detect the sign of the remainder from its
redundant representation. The most straightforward implementation uses a carry-propagate adder
to convert to nonredundant representation; this is especially attractive if a carry-propagate adder
exists in the arithmetic unit anyhow for other purposes. In some cases, it might be better to have
a special network for this sign detection, either because a carry-propagate adder is not part of the
unit or because connection to this adder is slow or complicates the bussing structure. The main
component of this sign detection network is the generating of the carry into the last bit; this net-
work follows the standard carry-skip or carry-lookahead techniques.

Finally, the detection of zero remainder is needed for the unbiased rounding to nearest.
This detection can follow a conversion of the final residual to irredundant, if such a conversion is
used for sign detection, or another special circuit can be used [CORTS8].

2) Rounding without sign detection. As a second method for rounding we consider the case in
which the sign of the remainder is not detected. This results in a simpler and faster implementa-
tion, but with a somewhat larger error. As described in [ERCE&8], the rounding rule to produce
the minimum error possible (for the digit set {2,...,2}) is

tfn]=A[n]

Consequently, in this case (n+1)-th bit of the result does not have to be computed, nei-
ther is there need for sign detection, detection of zero, nor computation of C. The rounding is
unbiased but with an error bounded by +(2/3)4™", which is larger than the error of rounding-to-
nearest ((1/2)47™").

3) Rounding with estimate of sign of remainder. As a compromise between the previous two
methods it is possible to use an estimate of the sign of the remainder and then use the rounding
rules of method 1 above. The estimate is computed using a few most-significant bits of the
redundant remainder. More specifically, if & bits of the remainder are used the error is
47271 4+ 278, The value of k would be selected to achieve both an acceptable error and a fast
and simple implementation. As an example, for k = 8, the error is 47" (27! + 278}, which is less
than 1% larger than the error of rounding to nearest. Moreover, the rounding could be performed
in one step time instead of in about four, which would be required for full rounding to nearest.

14

6. Overall implementation and timing
The overall implementation at the block-diagram level is shown in Figure 9. The cycle
time is

Teyete =

yele = Yresult_digit select {8DItCPA + 12—input network }

*1r_generse 14-t0—1 multiplexer }
+1tcsa {3—to—2 carry —save adder }

+ 1,04 (register loading }

This is comparable to the cycle time of a radix-4 division with carry-save adder.

References

[CORTS8] J. Cortadella and J.M. Llaberia, "Evaluating A+B=K conditions in constant time", Proc. of the
International Conference on Circuits and Systems, Helsinki, 1988.

[ERCE87a] M.D. Ercegovac and T. Lang, "On-the-Fly Conversion of Redundant into Conventional
Representations”, IEEE Transactions on Computers, Vol. C-36, No.7, July 1987, pp.895-897.

[ERCE88] M.D. Ercegovac and T. Lang, "On-the-fly Rounding for Division and Square Root", Computer
Science Department UCLA, Report CSD-880071, September 1988.

[ERCE89] M.D. Ercegovac and T. Lang, Square Root Algorithms and Implementations, monograph in
preparation, 1989.

(FANDB87] 1. Fandrianto, " Algorithm for High Speed Shared Radix-4 Division and Radix-4 Square Root,"
Proc, 8th Symposium on Computer Arithmetic, 1987, pp. 73-79.

[GOSL87] 1.B. Gosling and C.M.S. Blakeley, "Arithmetic unit with integral division and square-root”, -
IEE Proceedings, Vol. 134, pt. E, no.1, January 1987, pp. 17-23.

[TAYLSS] G.S. Taylor, "Radix 16 SRT Dividers with Overlapped Quotient Selection Stages”, IEEE
Proc. of 7th Symposium on Computer Arithmetic, 1985, pp. 64-73.

[VINE65] M. B. Vineberg, "A Radix-4 Square-Rooting Algorithm”, Report No. 182, Department of
Computer Science, University of Illinois, Urbana-Champaign, June 1965.

[WILL87] T.E. Williams et al., "A Self-Timed Chip for Division", Proc. Stanford VLSI Conference, (Ed.
Losleben), MIT Press, 1987, pp.75-95.

[ZURAS87] J.H. Zurawski and J.B. Gosling, "Design of a High-Speed Square Root, Multiply, and Divide
Unit," IEEE Transactions on Computers, vol. C-36, January 1987, pp. 13-23.

15

Si1 X - argument

l l !£
S -rounded result | A, B&C Residual Registers
Registers 4 Wi
and &
—» Control "::m #{ RESULT
4 ». » DpiGIT
. Fij > # SELECTION
sign zero g 8
X S+l
Sign & Zero [¢
Detection Y vy
l Carry-Save Adder]4
wi+1 | |

Figure 9. Block diagram of the square root scheme
(mantissa part)

