Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A MODULAR NEURAL NETWORK ARCHITECTURE FOR
SEQUENTIAL PARAPHRASING OF SCRIPT-BASED STORIES

Risto Miikkulainen January 1989
Michael G. Dyer CSD-890010

A Modular Neural Network Architecture
for Sequential Paraphrasing of Script-Based Stories

Risto Miikkulainen
Michael G. Dyer
February 1989

Technical Report UCLA-AI-89-02

A MODULAR NEURAL NETWORK ARCHITECTURE FOR SEQUENTIAL
PARAPHRASING OF SCRIPT-BASED STORIES *

Risto Miikkulainen and Michael G. Dyer
Artificial Intelligence Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024
risto@cs.ucla.edu, dyer@cs.ucla.edu

Abstract

We have applied sequential recurrent neural networks to
a fairly high-level cognitive task, i.e. paraphrasing script-
based stoties. Using hierarchically organized modular sub-
networks, which are trained separately and in parallel, the
complexity of the task is reduced by effectively dividing it
into subgoals. The system uses sequential natural language
input and output, and develops its own I/O representa-
tions for the words. The representations are stored in an
external global lexicon, and they are adjusted in the course
of training by all four subnetworks simultaneously, accord-
ing to the FGREP-method. By concatenating a unique
identification with the resulting representation, an arbi-
trary number of instances of the same word type can be
created and used in the stories. The system is able to pro-
duce a fully expanded paraphrase of the story from only
a few sentences, i.e. the unmentioned events are inferred.
The word instances are correctly bound to their roles, and
simple plausible inferences of the variable content of the
story are made in the process,

1 Introduction

Consider the following short story:

John asked the waiter
John gave a large tip.

John went to Leone’s.
for lobster.

Based on our experience, we can fill in a number of
events and paraphrase the story in more detail:

John went to Leons’s. The waiter seated John.
John asked the waiter for lobster. The waiter
brought John the lobster. John ate the lobster.
The lobster tasted good. John paid the waiter.
John gave a large tip. John left Leone’s.

In doing this, we have used our general experience of
restaurants and the stereotypical events that occur in a
visit to a restaurant. Schank and Abelson proposed that
this knowledge of everyday routines is organized in the
form of scripts [Schank and Abelson, 1977). Scripts are

*This research was supported in part by an [TA Foundation
grant, and by the JTF program of the DoD, monitored by JPL.
The first author was also supported in part by grants from
the Academy of Finland, Finnish Cultural Foundation and the
Finnish Science Academy. The simulations were carried out
on equipment donated to UCLA by Hewlett Packard. Special
thanks go to Trent Lange for valuable comments on an earlier
draft of this paper.

schemas of often encountered, stereotypical sequences of
events. Common knowledge of this kind makes it possible
to efficiently perform social tasks such as a visit to a restau-
rant, a visit to a doctor, traveling by airplane, attending
a meeting, etc. People have hundreds, maybe thousands
of scripts at their disposal. Each script may divide further
into different variations, or tracks. For example, there is a
fancy-restaurant track, a fast-food track and a coffee-shop
track for the restaurant script.

In machine understanding of stories based on scriptal
knowledge the script is represented as a causal chain of
events with a number of open roles [Schank and Abel-
son, 1977], [Cullingford, 1978). Applying this knowledge
to a situation requires identifying the relevant script and
matching the roles with the situation. Entering, seating,
ordering, getting food, eating, paying, tipping and leaving
form a causal chain for the restaurant script. The roles in
this script are customer, restaurant, food, quality of food,
size of tip, ete. These roles are filled with John, Leone’s,
lobster, etc. in the story above. Once the script has been
recognized and the roles have been instantiated, the sen-
tences are matched against the events in the script. Events
which are not mentioned in the story but are part of the
causal chain can be inferred. For example it is plausible to
assume that John ate the lobster, the lobster tasted good,
etc,

The causal chain is a sum of all restaurant experiences
and remains stable, whereas the role bindings are different
in each application of the seript. This distinction suggests
a neural network approach for representing stories. The
causal chain of everits is learned from exposure to a num-
ber of restaurant stories, and is stored in the long-term
memory of the network, i.e. in the weights. The role bind-
ings are represented as unit activities.

This paper describes a system which was trained to para-
phrase script-based restaurant stories. Our main goal was
to show that neural networks have the right properties for
representing and applying script-like knowledge. Inferring
unmentioned events, inferring the most likely role fillers,
and disambiguating pronoun references emerge naturally
in the network approach. We also wanted to demonstrate
that the network can be trained with natural language
input and output and without hand-coded microfeature
information. The network “reads™ the story sequentially,
word by word, and produces the paraphrase word by word.
The distributed represeniations of the words are developed
by the network itself while it is learning the paraphrasing
task. The third goal was to devise a scheme for binding

New represantations

fnput pattern

el el

[l Input layer:
i Modify reprasentations

Lexicon Pravious hidden layer:

Hidden layer Sequence mamory

Qutput layer:
Form error signal

Teaching pattern

Figure 1: Sequential FGREP-module.

a large number of different fillers to their corresponding
roles. By concatenating a unique identification with the
prototype representation developed during training, an ar-
bitrary number of instances of the same word type can be
created. Lastly, it was necessary to divide the task into
meaningful, simpler subtasks and develop a modular ar-
chitecture which could be trained more efficiently.

2 System architecture

2.1 Sequential recurrent FGREP - a building
block

The sequential recurrent extension of the FGREP-
mechanism (Forming Global Representations with Ex-
tended backPropagation, [Miikkulainen and Dyer, 1988b])
presented here is based on a basic three-layer backward er-
ror propagation network {figure 1). The network learns the
processing task by adapting the connection weights accord-
ing to the standard backpropagation equations {Rumethart
et al., 1986, pages 327-329]. At the same time, represen-
tations for the input data are developed at the input layer
according to the error signal extended to the input layer.
Input and output layers are divided into assemblies and
several concepts are represented and modified simultane-
ously.

The representations are stored in an external lexicon net-
work. A routing network forms each input pattern and the
corresponding teaching pattern by concatenating the lexi-
con entries involved in input and teaching concepts. Thus
the same representation for each concept is used in dif-
ferent parts of the backpropagation network, both in the
input and in the output.

The process begins with a randomly generated lezicon
containing no pre-encoded information. During the course
of learning, the lexical representations adapt to reflect the
implicit regularities of the task. Single units in a resulting
representation for a word do not necessarily have a clear
interpretation, but the representation pattern as a whole
is meaningful and can be claimed to code the meaning of
that word. The representations for words which are used
in similar ways become similar.

Event parser

script-siots out

Laxicon

Word generator

Event generator
Networks preducing the paraphrase of the story

Figure 2: Performance configuration.

Sequential input and sequential output recurrent
FGREP networks have essentially the same structure, and
are similar to the one described in [Elman, 1988), and also
used by St. John and McClelland [St. John and McClel-
land, 1988), and by Servan-Schreiber, Cleeremans and Me-
Clelland [Servan-Schreiber et al., 1988]. A copy of the hid-
den layer at time step t is saved and used along with the
actual input at step t+1 as input to the hidden layer. The
previous hidden layer places the current input in context,
essentially serving as sequence memory. During learning,
the weights from the previous hidden layer to the hidden
layer proper are modified as usual according to the back-
propagation mechanism.

In a sequential input network, the actual input changes
at each time step, while the teaching pattern stays the
same. The network is forming a stationary representation
of the sequence. In a sequential output network, the ac-
tual inp..: is stationary, but the teaching patt..i: changes
at each step. The network is producing a sequential in-
terpretation of its input. In sequential recurrent FGREP
both networks are also developing representations in their
input layers.

2.2 Connecting the building blocks in DISPAR

The DISPAR system (DIStributed PARaphraser) consists
of two parts (figure 2). The first part reads in the story,
word by word, into the internal representation, and the
second part produces a word-by-word fully expanded para-
phrase of the story from the internal representation. Each
part consists of two sequential recurrent FGREP-modules,
one for reading/producing the sentences and the other
for reading/producing the words of each sentence. We

Previous hidden layer

Hidden layer

b Output layer
John l want I l I ‘ Lacne's
Agent Act Recipient Patient Patient-attr Location

Case-role representation of the sentence
Figure 3; Word parser network.

Stotfill . ¢ i
Track Custmr Restr Seater Order Food Taste Tip Pay
tancy| sohn fLecnes|waiter]|waiterfobsted good Jiarge fwaite

v Hidden layer revious hidden layer

Ll |

< Qutput layer
John l want I I l l[.aonaa

Agent Act RecipntPatient P-attr Location

Figure 4: Event generator network.

call these modules the word parser/word generator and
the event parser/event generator networks (presented in
greater detail in figures 3-6). During performance, the
whole system is a chain of four networks, each feeding its
output into the input layer of the next network. The input
and output of each network consist of distributed repre-
sentations of words, which are stored in a global lexicon.

2.3 Performance phase

Let us present the system with the first sentence of the
story, John went to Leone’s. The task of the word
parser network is to form a stationary case-role represen-
tation of this sentence (figure 3). There is an assembly
of units at the output layer for each case role, and the
filler of each role is represented by the activity pattern
at that assembly. The cotrect representation for the first
sentence is agent=john, act=went, location=Leone’s. Es-
sentially, the word parser network is performing the same
task as that of [McClelland and Kawamoto, 1986} and the
FGREP-system [Miikkulainen and Dyer, 1988b], but using
sequential input.

Word by word, the representations are fetched from the
dictionary and loaded into the input assembly of the word
parser network. The activity is propagated to the output
layer. The activity pattern at the hidden layer is copied to
the previous-hidden-layer assembly, and the next word is
loaded into the input layer. The case-role representation
of the sentence thus gradually forms at the output. After a
period is input, ending the first sentence, the final activity
pattern is copied and used as the first input to the event

" lnput sentences one at a time

Agent Act Recipnt Patient P-attr Location
John I want I] l lLaonnsl

Y Hidden layer Previous hidden layer

.

L Qutput layer
fancyl John lL-omnI\uictr]—ua!.ter]iobsce{ good llarqeluaite
Track Custmr Restr Seater Order Food Taste Tip Pay

Slatfill ; {1t

Figure 5: Event parser network.

" Case-role representation of the sentence

Agent Act Recipient Patient Patient-attr Location
John | went { i | | ceoners]
+ Hidden layer fevious hidden layer

"Outpul layar
John

Qutout words one at 4 time

Figure 6: Word generator network.

parser network (figure 5). This network receives the case-
role representations one at a time, and forms the slot-filler
representation of the whole story (i.e. the script) at its
output layer, in the same manner.

The final result of reading in the story is the slot-filler as-
signment at the output of the event parser network. In the
case of our example story, track=fancy, customer=John,
restaurant=Leone’s, seater=waiter, etc. This completely
specifies the events of the script, and we can train the ~ec-
ond part of the system to paraphrase the story from this
slot-filler information. The idea is simply to reverse the
process of reading in.

The event generator network (figure 4) receives the com.

plete slot-filler representation of the story as its input.
and produces the case-role assignment of the first -en-
tence of the story as its output. This cutput is fed 1uto

the word generator network (figure 6), which produces the
distributed representation of the first word of the first ~rn-
tence as its output. Again, the hidden layer of the word
generator network is copied into the previous-hidden-iayer
assembly, and the next word is output. After the last net-
work produces a period, indicating that it has completed
the sentence, the hidden layer of the event generator net-
work is copied into its previous-hidden-layer assembiy. and
the event generator network produces the case-role repre-
sentation of the second sentence. The process is repeated
until the whole story has been output.

Lexicon

o | B3

Event generator Word generalor
Networks preducing the paraphrase of the story

Figure 7: Training configuration.

2.4 Training phase

The four networks are trained in their tasks separately but
simultaneously (figure 7). The input and the teaching pat-
terns for each network are formed by fetching the current
representations of each input and output word, case-role
filler and secript-slot filler from the lexicon. The activity
is propagated to the output layer, error signals are formed
and propagated back, changing the weights according to
the backpropagation rules. At the input layer, the cur-
rent input representations are changed according to the
FGREP-method. The new representations of the input
words are loaded back into the lexicon.

The word representations are initially all random. In
the course of training, they are developed simultaneously
by all four networks. Each modifies the representations
to improve its performance in its task, and the represen-
tations evolve to reflect the underlying regularities of the
task, When several networks are developing the same rep-
resentations, the requirements of the different tasks are
combined. The resulting representations reflect the total
use of the words.

The networks are trained with compatible data. The
set of teaching patterns of one network is exactly the same
as the set of input patterns of another network. Even if
the learning is less than complete, the networks perform
well together when connected. Erroneous output patierns
are simply noisy input to the next network, and neural
networks in general tolerate, even filter out noise very effi-
ciently.

Unique for
each instance

Devaioped for the
prototype during training

[I |

Figure 8: Representation of a word instance

2.5 Extending the vocabulary

The representations develop to reflect the underlying regu-
larities of the task, as has been noted before and discussed
at length in [Miikkulainen and Dyer, 1988a]. If two words
are used in similar ways in the training data, their rep-
resentations become similar. It can be argued, that the
meaning of a word is manifested in how the word is used.
If two words are used exactly the same, there cannot be
any difference in their meaning. The representation re-
flects the use of the word, and therefore, can be said to
encode the meaning of the word as well.

It is reasonable to assume that no two words are used
exactly in similar ways in real world situations, and in prin-
ciple, two words should always be distinguishable. If there
is any difference in the usage, the FGREP process will de-
velop different representations for the words, Keeping the
representations separate when training an Al system with
artificially generated data is problematic, though. The sys-
tem should be able to handle a large and preferably open-
ended set of customers, foods, restaurants, etc. without
confusing them, but generating a training set which would
allow enough differences to develop between their represen-
tations is unwieldy. If the paraphrasing system is allowed
to develop similar representations for different customers.
for example, it cannot keep role bindings straight, but al-
ternates between different customer names when produc-
ing the story.

One way to avoid this problem is to designate a sub-
set of the representation components for the surface level
identification of the word. The representation now con-
sists of two parts: the content part, which is developed in
the FGREP process and which codes the pragmatics of the
word, and the ID part, which is unique for exch instance
of the same word type (figure 8).

In the training phase, only a single prototype of role
words like customer, foed, and restaurant is developed.
The network is trained to accept any ID-part. The first
twenty percent of the representation units of the prototype
words are set up randomly for each story, and the nctwork
is required to produce the same pattern in its output role
assemblies.

In the performance phase, it is now possible to create
new instances of customers, food, and restaurants simply
by concatenating a unique ID with the content part of
the developed prototype. The number of, for instance,
customers the system can handle is unlimited in principle.
but the role binding becomes increasingly weaker when the
1Ds become more similar.

The same technique can be extended to all words in the
training data. In this case the network is trained only
with word types (e.g. customer, versus, say, John). In the
performance phase, several pragmatically equivalent words
can be used to instantiate the word type. This technique
allows us to tremendously increase the size of the vocab-
ulary while having only a small number of pragmatically
different words at our disposal. Even though in principle
each word has a unique meaning (i.e. each word is its own
type), this allows us to approzimate the meaning of a large
number of words by dividing them into equivalence classes.

3 Experiments

3.1 Training data

The stories were generated from the following three skele-
tons. These stories represent three tracks of the restaurant
script: fancy-restaurant, coffee-shop, and fast-food.

Fancy-restaurant track :
Customer went to fancy-restaurant.
Waiter seated customer.
Customer asked the waiter for fancy-food.
Waiter brought customer the fancy-food.
Customer ate the fancy-food.
The fancy-food tasted good.
Customer paid the waiter.
Customer gave a large tip.
Customer left fancy-restaurant.

Coffee-shop track :
T Customer went to coffse-shop.
Customer seated customsr.
Customer asked the waiter for coffes-shop-food.
Waiter brought customer the coffee-shop-food.
Customer ate the coffee-shop-food.
The fancy-food tasted good/bad,
Customer paid the cashier.
Customer gave a large/small tip.
Customsr left coffee-shop.

Fast-food track :

Customer went to fast-food-restaurant.
Customer asked the cashier for fast-food.
Cashiexr brought customer the fast-food.
Customer paid the cashiex.

Customer seated customer.

Customexr ate the fast-food.

The fast-food tasted bad.

Customer gave no tip.

Customer left fast-food-restaurant.

The event sequences are somewhat different in different
tracks. Notice that there are certain regularities: the food
is always good in a fancy-restaurant, and always bad in a
fast-food restaurant. If the food is good, the size of the
tip is large, and if it is bad, small, except in the fast-food
restaurant where no tip is given. The system should be
able to use these dependencies to fill in unmentioned roles.

Each sentence in the input ends with a period, and the
network is trained to produce a petiod at the end of each
sentence. The period is used to segment the input and the
output.

3.2 Implementation

Each subnetwork waa trained separately on a different HP
9000/350 workstation, each accessing the representation
file over the network. It is essential that all the networks
are trained simultaneously, so that the final representations
reflect the processing requirements of all networks. On the
other hand, the number of epochs trained need not be the
same for all networks.

The learning is fastest if both the weights and the rep-
resentations are updated on-line, i.e. after each backprop-
agation iteration. This becomes unwieldy when the net-
works are trained on separate machines, and it was neces-
sary to use batch-mode update instead. The current rep-
resentations were read at the beginning of each epoch, the
gradient was accumulated throughout the epoch, and in
the end the gradient was added to the current representa-
tions in the file (which might have been updated by another
network in between). This technique is slower because the
weights adapt to the current representations during the
epoch, and the information is thrown away when new rep-
resentations are read in. If a smaller learning rate is used
for the representations than for the weights, the represen-
tations change more slowly and the problem is not as se-
vere. However, the slower learning is more than offset by
the speedup of using four processors in parallel. The com-
plete process is about three times faster than on a single
machine with on-line update.

The networks were trained for about two days with a
0.1 weight learning rate, and for another four days with
0.01. The learning rate for the representations was 1/10 of
the weight learning rate. Word representations consisted
of 15 units and each network’s hidden layer of 50 units.
The word parser and generator networks iterated for about
2,000 epochs while the event parser and generator networks
went through 5,000 epochs at the same time. Most of the
training effort was expended on preparing the system for
the different IDs. If IDs had not been used and represen-
tations for different customers, foods, and restaurants had
been developed separately, the same average error level
would have been achieved in about two days.

3.3 Paraphrasing incomplete stories

Each output activity pattern produced by the word gener-
ator network was compared to the representations in the
lexicon and the word whose representation was the nearest
(in Euclidian distance of normalized vectors) was found.
The sequence of these words was taken as the output story
of the network.

The training corpus consisted of complete stories, and
the system was trained to reproduce the story exactly as
it was input. An interesting question is how well the sys-
tem can fill in the events of a story which consists of only
a few sentences, like the one in the Introduction. It turns
out that the system performs very well in this respect.
Stories of “natural” length, like our example, are para-
phrased correctly to their full extent. The quality of the
food (good or bad) is inferred correctly if the size of the
tip is mentioned in the story, and vice versa. If there is

6

fancy—track
coffee—shop-track
fast-food—track
fancy-restaurant

caoffea-restaurant

Figure 9: Final representations

not enough information to infer the filler of some role, an
activity pattern is produced which is intermediate between
the possible choices. For example, if the story consists of
only the sentence John went to McDonald’s, the size of
the tip is inferred (no tip), and an intermediate represen-
tation develops in the food-slot. In paraphrasing the story
it seems as if one of the possible fast-foods is chosen at
random. But this choice is usually consistent throughout
the story, because all the sentences are produced from the
same pattern in the food-slot.

The strong filling-in capability of the system is partly
due to the fact that there is very little variation in the
training sequences. In general, a network which builds a
stationary representation of a sequence may be quite sen-
sitive to omissions and changes in the sequence. Filling in
the missing items is a form of generalization. A similar
generalization in a non-sequential network such as [Mc-
Cleiland and Kawamoto, 1986] or [Miikkulainen and Dyer,
1988b] would be required when a number of input assem-
blies are left blank. But it is exactly this lack of variety in
the sequence which makes up scripts - they are stereotypi-
cal sequences of events. Interestingly, it follows that filling
in the unmentioned events is an easy task for a sequential
network system such as DISPAR.

3.4 Representations

Some of the regularities of the stories are clearly visible
in the representations that develop during training (fig-
ure 9). [Good, bad] and also [large, small] are almost
identical. If these words are used symmetrically in the data
{i.e. good always with large, bad always with smallin all
the same contexts), they actually become identical. The
system can then easily produce correct output patterns
for these words, but they cannot no longer be separated.
Some asymmetry in their use is necessary, and we chose to
use good always in fancy-restaurants and bad in fast-food-

restaurants. This provides enough difference so that the
words can be kept separate.

Other groups of somewhat similar words are the foods
and the restaurants. There are a number of differences
in the contexts where they occur, and consequently their
representations become more distinct.

The system learns to output the period quite early in
the training. Very seldom is a sentence produced with-
out a period in the end. On the other hand, in the early
stages sentences are often ended prematurely with a pe-
riod, and after that, only periods are output. This occurs
because the representation for the period is modified at the
end of every sentence, and reading it in should not change
the output. Its representation evolves to the most neutral
representation, i.e. it contains many components close to
0.5. This representation makes the period a default output
when the network cannot handle the input.

3.5 Role binding

Prototypes were developed for the role words customer,
fancy-tfood, coffee-shop-food and fast-food. The
first three units of the representation were used as the ID.
In the performance phase these were set orthogonally and
the system was tested with 18 three sentence stories con-
sisting of the entering, tipping and leaving events. Qut of
the 828 output words the system produced 97% correctly.
The system had the most errors in the customer words, of
which 91% were correct. The average error at the output
layer of the each network was 0.035, 0.038, 0.030 and 0.047
(random values would give a 0.3 average error; unit activ-
ity values range between 0 and 1). Further training was
still improving the performance at that point.

It is interesting to follow the operation of the system
while it is reading in a story. The role bindings of a sen-
tence (and a story as well) begin as undifferentiated pat-

terns, representing a combination of all the possible bind-
ings at that point. When the next word is input, some
of the ambiguities are removed and correct patterns are
formed in the corresponding assemblies. Often the sen-
tence representation is complete before the sentence is fully
input. This occurs because the system was required to
produce the complete sentence representation after each
input word. The intermediate output patterns are aver-
ages of the possible complete patterns, weighted by how
often they have occurred. Expectations are coded both in
the weights and in the word representations.

What is especially interesting is that, once a role bind-
ing (e.g. customer=john) is selected in an earlier event
in the script sequence, it is maintained throughout para-
phrase generation. Thus, DISPAR performs plausible role
bindings - en essential task in high-level inferencing and
postulated as very difficult for PDP systems to achieve
[Dyer, 1988].

4 Discussion

It would be possible to treat the story completion task as
a pattern completion problem, and use a single, flat back-
propagation network without teaching at the intermediate
levels. The computations, however, would be very expen-
sive and the system would not scale up. By using separate
modules, we are effectively dividing a complex task into
managable subgoals, which is generally a very efficient way
to reduce complexity. We can read and produce a story of
any length sequentially and cause the system to develop
a meaningful internal representation, which can then be
used by other systems, e.g. a question answering network.

The event networks contain the general semantic and
scriptal knowledge which is needed for inferencing. The
word networks form the specific language interface. This
makes it possible to change the function of the system in
a modular fashion. For instance, note that when a story
is read into the internal representation, the only informa-
tion that gets actually stored are the role bindings. The
knowledge of the events in the story is in the weights of the
network which paraphrases it. It is possible to train differ-
ent networks to paraphrase the story from the same role
bindings in a different style or detail, even in a different
language.

Once the script has been instantiated and the role bind-
ings fixed there is no way of knowing which of the events
were actuaily mentioned in the story. What details are
produced in the paraphrase depends on the training of the
output networks. This result is consistent with some psy-
chological data on how people remember stories of famil-
iar event sequences [Bower et al., 1979]. The distinction
of what was actually mentioned and what was inferred be-
comes blurred. Questions or references to the events which
were not mentioned are often answered as if they were part
of the story.

As discussed before, it seems that no two words are used
exactly the same way, and consequently, no two words
should have exactly the same representation. On the other

hand, it seems that people also have an additional mecha-
nism that separates the words at the sensory level if nec-
essary. The two words sound different, and look different
when printed, and people are able to use this information
to keep them apart. This is what fixing a subset of the
representation components achieves. We have essentially
added a sensory tag for each word, which has no intrinsic
meaning but it distinguishes the word from all other sim-
ilar words. This tag is enough for our system to keep the
words separate for role binding,

5 Future work

Pronoun reference is not a particularly hard problem in
understanding script-based stories. We do not get con-
fused when reading e.g.: The waiter seated him. He
gave him a menu. He ordered lobster. The events
in the story are stereotypical and once the role binding
has been done, the reference of the pronoun is unambigu-
ous. It should be possible to train the network to tolerate
pronouns in the stories. Some of the occurrences of the ref-
erents can be replaced by he, she or it, and very likely the
representation for these words will develop into a general
actor, food etc.

A mechanism should be developed for representing mul-
tiple scripts and their interactions (e.g. a phone script
or robbery script occurring within a restaurant script).
The simplest approach is to represent the different scripts
on the same unit assemblies, very much like the different
tracks are represented in the current system. An extra as-
sembly might indicate the general class of the script (e.g.
food service, travel, etc.), and the assemblies represent dif-
ferent roles depending on the class. We could also use
distributed representations for the roles and scripts. In-
stantiation of a script would now have the form of a tensor
product “cube” [Dolan and Smolensky, 1988]. One face of
the cube stands for the script class, one for the role, and
one for the filler. It is possible to represent multiple simul-
taneously active scripts in the same cube. Scripts can be
partially activated and their boundaries become less rigid.

In a more advanced script applier we should also have
mechanisms for handling script transitions, interference
and distractions [Schank and Abelson, 1977]. We should
be able to create new scripts and tracks in a self-organizing
fashion, where often encountered sequences of events grad-
ually become rigid stereotypical memories. The current
architecture does not lend itself very easily to these exten-
sions.

In addition to paraphrasing the story, it should be pos-
sible to develop other output functions with little modi-
fication. Answering questions about the story would be
a most interesting extension. This could be inplemented
as a separate network which receives as its input the slot-
filler representation of the story plus the representation of
the question which has been read in sequentially by the
first network. This network outputs a representation of
the answer sentence, which can then be output word by
word using the output network. Using the previous hid-
den layer of the answer-producing network as the context

to the question, we could model context effects on ques-
tion answering. [Lehnert, 1978). Propagating the question
to the slot-filler representation could have an effect on the
ambiguous slots, i.e. the questions could modify the mem-
ory {Dyer, 1983}.

6 Conclusion

We have applied sequential recurrent neural networks to
a fairly high-level cognitive task, i.e. paraphrasing script-
based stories. Using four hierarchically organized modular
subnetworks, which are trained separately and in parallel,
the complexity of the task is reduced by effectively divid-
ing it into subgoals. The system uses sequential natural
language input and output, and develops its own 1/O rep-
rescntations for the words. The representations are stored
in an external global lexicon, and they are adjusted in the
course of training by all four subnetworks simultaneously,
using the FGREP-method. The representations develop to
tmprove the system’s performance in the task and therefore
reftect the underlying regularities of the task.

The role bindings are represented as activity patterns,
while the information about the sequence of events is
stored in the weights. By concatenating a unique identifi-
cation with the representation developed during training,
an arbitrary number of instances of the same word type
can be created and used in the stories. The system is able
to infer events which are lefi unmentioned in the story, and
make stmple plausible inferences of the varigble content of
the story.

References

[Bower ef al., 1979] G. H. Bower, J. B. Black, and T. J.
Turner. Scripts in text comprehension and memory.
Cognitive Psychology, 11:177-220, 1979.

[Cullingford, 1978] R. E. Cullingford. Script Applica-
tion: Computer Understanding of Newspaper Stortes.
Technical Report 116, Yale University, Department of
Computer Science, 1978. Ph.D. dissertation.

(Dolan and Smolensky, 1988] Charles P. Dolan and Paul
Smolensky. Implementing a connectionist production
system using tensor products. In David S. Touretzky,
Geoffrey E. Hinton, and Terrence J. Sejnowski, edi-
tors, Proceedings of the Second Connectionist Models
Summer School, Morgan Kaufmann Publishers, Inc.,
Los Altos, CA, 1988,

[Dyer, 1983] Michael G. Dyer. In-Depth Underslianding:
A Computer Model of Integrated Processing for Nar-
rative Comprehension. MIT Press, Cambridge, MA,
1983.

[Dyer, 1988] Michael G. Dyer. Symbolic NeuroEngineer-
ing for natural language processing: a multilevel re-
search approach. Technical Report UCLA-AI-88-14,
Computer Science Department, University of Califor-
nia, Los Angeles, 1988. To appear in J. Barnden and
J. Pollack (Eds.) Aduvances in Connectionist and Neu-
ral Computation Theory, Ablex Publ. (in press).

[Elman, 1988] Jeffrey L. Elman. Finding Structure in
Time. Technical Report 8801, Center for Research in
Language, University of California, San Diego, 1988.

[Lehnert, 1978] Wendy G. Lehnert. The Process of Ques-

tion Arswering. Lawrence Erlbaum Associates, Hills-
dale, NJ, 1978.

[McClelland and Kawamoto, 1986] James L. McClelland
and Alan H. Kawamoto. Mechanisms of sentence pro-
cessing: assigning roles to constituents. In James L.
McClelland and David E. Rumelhart, editors, Par-
allel Distributed Processing: Erplorations in the Mi-
crostructure of Cognition. Volume II: Psychological
and Biological Models, MIT Press, Cambridge, MA,
1988,

[Miikkulainen and Dyer, 1988a] Risto Miikkulainen and
Michael G. Dyer. Encoding input/output representa-
tions in connectionist cognitive systems. In David S.
Touretzky, Geoffrey E. Hinton, and Terrence J. Se-
jnowski, editors, Proceedings of the Second Connec-
tionist Models Summer School, Morgan Kaufmann
Publishers, Inc., kaus-addr, 1988,

{Miikkulainen and Dyer, 1988b] Risto Miikkulainen and
Michael G. Dyer. Forming global representations
with extended backpropagation. In Proceedings of
the IEEE Second Annual International Conference on
Neural Nelworks, IEEE, 1988,

[Rumelhart et al., 19868] David E. Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. In David E.
Rumelhart and James L. McClelland, editors, Par-
allel Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition. Volume [: Foundations,
MIT Press, Cambridge, MA, 1986.

[Schank and Abelson, 1977] Roger Schank and Robert
Abelson. Scripts, Plans, Goals, and Understanding
- An Inquiry into Human Knowledge Structures. The
Artificial Intelligence Series, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1977.

[Servan-Schreiber et al., 1988] David Servan-
Schreiber, Axel Cleeremans, and James L. McClel-
land. Learning Sequential Structure in Simple Recur-
rent Networks. Technical Report, Computer Science
Department, Carnegie-Mellon University, 1988,

[St. John and McClelland, 1988] Mark F. St. John and
James L. McClelland. Applying contextual con-
straints in sentence comprehension. In David S.
Touretzky, Geoffrey E. Hinton, and Terrence J. Se-
jnowski, editors, Proceedings of the Second Connec-
tionist Models Summer School, Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1988.

