- Computer Science Department Technical Report
University of California
l.os Angeles, CA 90024-1596

SUPPORT FOR FAULT TOLERANCE IN VLS| PROCESSORS

Marc Tremblay January 1989
Yuval Tamir CSD-890009

To be presented at the
International Symposium on Circuits and Systems
Portland, Oregon, May 1989.

SUPPORT FOR FAULT TOLERANCE IN VLSI PROCESSORS §

Marc Tremblay and Yuval Tamir

Computer Science Department
University of California, Los Angeles, California 90024
U.S.A.

ABSTRACT

Fault tolerance techniques are used to allow computer
systems 10 continue cormrect operation despite component
failure. Hardware-supported concurrent error-detection and
limited fault tolerance in system components, as implemented
by coding or replication, are often required. Detection latency
can be reduced by increasing the visibility of internal module
state using compressed ‘‘signatures’’ of internal values. Thus,
encoders, decoders, comparators, and data compression
circuitry are of critical importance in fault-tolerant VLSI
systems. In this paper we describe altemnative implementations
of such circuits and various ways in which they can be
comnected in VLSI modules. We also describe possible
performance enhancements through the use of a technique,
called micro rollback, which allows error detection to be
performed in parallel with inter-module communication. As a
concrete example, we present area and performance
measurements of alternative microarchitectures and circuits that
can be used to add detection and correction to a VLSI RISC
processor we are implementing.

1. Introduction

Using fault tolerance techniques the reliability of
computer systems can be increased beyond the reliability of the
underlying hardware components. Errors generated by faulty
components are detected and recovery procedures correct the
errors. High-speed error-detection circuitry is needed to detect
errors as soon as they occur and prevent the spread of erroneous
data throughout the system. In many applications the
performance penalty of system-wide recovery cammot be
tolerated so it is desirable for modules 1o include mechanisms
for rapid correction of most internal errors (i.e., local recovery).

Possible errors in VLSI chips include: corruption of the
contents of storage clements, incorrect results produced by
computation modules (e.g., an ALU), and corruption of data
and control signals (e.g., buses). These errors are the result of
ransient or permanent faults due to design and fabrication
flaws (e.g., marginal timing, incorrect dosage of ion implants),
environmental factors (e.g., noise, radiation), and wear-out
mechanisms (e.g., electromigration) [3].

Many of the techniques used to detect and correct errors
caused by hardware faults rely on a few basic components:
encoders, decoders, comparators, and data compression
circuitry. In a VLSI processor, coding can provide error
detection and correction of data in the register file and other

+This research iz supported by Hughes Aircraft Company and the State of
Californis MICRO program.

storage (e.g. PSW, caches, TLB). For example, single-bit
parity detects odd errors in registers, while Error Correcting
Codes (ECC), such as Hamming code, provide error correction
capabilities [6]. Check bits must be computed every time
storage is modified, and verified whenever storage is accessed.
In many modemn processors a modification or access of the
register file can occur every cycle, thus requiring low latency
and high throughput for the circuits generating and verifying
check bits, To achieve higher coverage and to detect errors in
other modules (not just storage), duplication and comparison
can be used [8] at either the module or chip level. To minimize
detection latency, the values of internal nodes of modules
should be compared each cycle. This can be accomplished
without adding numerous extra pins, by '‘compressing’’ the
values of the nodes into signatures which are then
compared [5]. Since the comparison is done every cycle,
compression and comparison must also be performed with low
latency and high throughput.

The modules needed to implement the error detection
and correction techniques described ahove, namely encoders,
decoders, comparators, and data compression circuits, are often
based on Exclusive OR (XOR) gates. Alternative
implementations of multi-input XOR gates are presented in in
Section 2. The different implementations are evaluated with
respect to performance, area, and noise margins. The
evaluation is performed in the context of the microarchitecture
of a VLSI RISC processor where such modules might be used
for error detection and correction.

In Section 3 we describe and evaluate circuits for
implementing Error Correcting Codes (ECC) based on
Hamming Code, in which code generation and error correction
require multiple parity circuits. Through proper choice of
high-speed parity circuits and the specific code to be used
(M-code [6]), fast correction and check bit generation are
achieved.

In Section 4 we discuss the comparators and data
compression circuitry needed for implementing duplication and
comparison. When the two modules whose outputs are being
compared are on different chips, compressing the data and
sending it off chip for comparison may introduce significant
delays in systern operation. This potential performance penalty
can be greatly reduced using a technique, called micro
roflback (9], that allows detection to be performed in paraliel
with normal system operation. We show that micro rollback
can be used to support local recovery without the need for ECC
circuilry.

[Implementation of Multi-Input XOR Gates

As mentioned earlier, multi-input XOR gates are key
building blocks for many emror detection and cormrection
techniques. For example, single bit parity, which is often used
for detecting errors in data words, is generated and verified by
XORing all bits in a data word. Similarly, the check bits in
error detection and correction codes based on Hamming codes
are generated and verified by computing the parity (XOR) of a
subset of the bits in the word [6].

In this section we describe and evaluate several different
implementations of muli-input XOR gates. Owr
implementation technology is double-metal 2y CMOS
(MOSIS SCMOS design rules with A=14). The evaluation
criteria are speed, size, and noise margins. We show that the
most appropriate XOR implementation cannot be selected
without considering the specific use of the circuit: where on the
chip it is connected, pitch matching with other circuits, use for
single bit parity or for multiple check bits in an error-correcting
code, etc. As a specific example, we discuss the use of the
multi-input XOR gates in error detection and correction
circuitry that will be utilized in a fault-tolerant VLSI RISC

processor being designed at UCLA.
=14
*14 —
X %y p—X2
Xy x0r x3
—*
Tl

X2

Figure 1: Static XOR

Jﬁnxll ﬁzﬁs ﬁu\is -ﬁcﬁv -ﬁsﬁs Xrorrx Iluxlu Irdfs
LI I L I L L

parity
Figure 2: 16-input Tree of XORs

A. Static Implementation

An M-input XOR gate can be implemented as a
l-logzM level tree of 2-input XOR gates (see Figure2). A
possible implementation of the 2-input XOR gates, using static
logic, 18 presented in Figurel. In a VLSI layout non-
rectangular modules are undesirable since it is often impossible
to *‘pack’’ them efficiently on the chip and significant chip arca

k0 O e e h e e s e o
L L L L T0 | L]

parity
Figure 3: Compact Layout of a 16-input Tree of XORs

is wasted. However, the layout of a binary tree can be
compressed to only two rows of | M/2| cells by slightly
modifying the design of the basic cell, and by reorganizing the
layout as shown in Figure 3.

If the XOR gate is to be used for generating and
checking the parity for data being transmitted over a bus, the
“pitch’ of the circuit must match the pitch of the bus. Our
processor has a two-port register file with a pitch of 39 A. The
basic 2-input static XOR gate was laid out to match this pitch of
78 A for every two bits. Given the fixed pitch, the only
flexibility is with respect to the size of the cell in the direction
of the bus. For the static XOR cell, this size, henceforth called
stride, is 25 A. For the complete tree, the stride is twice the
stride of the basic cell plus some routing, which adds up to 70A.
A 32-bit parity is generated in 5ns.

do=1 d1=0 dy=1 dyn=1
Vdd’ 01 ll 21 31L
; X)Xo = S0

Figure 4 : Chain of Switching Cells

...............................

lo I_d’ | 00
I r_m .0,

Figure 5: Switching Cell

B. Dynamic Pass Gate Chains

An M-input XOR gate can be created using a chain of M
switching cells[7] as shown in Figure 4. The switching cell
(Figure 5) consists of four pass gates that have the capability o
either interchange the inputs so that Og¢=17, and O, =/, if
D; =1 or to leave them intact if D; = 0. The inputs [, and [, of
the leftmost cell are connected to Vdd and GND respectively.
For a data word of M bits, with Z ones, the logic one signal
entering the first cell will be interchanged Z times and will pass
through the cells M-Z times. If Z is even then the outputs of
the right-most cell will be Og=1, @, =0, if Z is odd, the
outputs will be 0y=0,0,=1.

Alernative implementations of multi-input XOR gates using
pass gate chains are investigated in the rest of this section.

N-Chain. The simplest implementation of a switching
cell uses four N-transistors (Figure 6). Four such cells
connected serially produce a result (the parity of four bits) with
a delay of 1.5ns. The delay of this circuit grows quadratically
with the number of cellsa[7). Hence, to compute the parity of a
32-bit word, buffers are inserted in the chain after every four
cells 1o obtain a total delay of 10ns. The basic switching cell
has a stride of 274, The pitch of the switching cell is 32A in
order o leave 28)\ for the buffer for each four cells. Since an
inverter is needed to provide D; and 5, for each cell, the siride
of the circuit is 48% (18\ for the inverters, 3lamba for
intercormections), Owr simulations indicate that if the chain is
implemented in an N-well process, the logic 1 levels at the
internal nodes of the chain are degraded from Vdd to 3.6 volis
because a logic 1 is passed through N-transistors. The following
three methods improve the noise margins of the internal nodes
at the expense of a small increase in area (stride).

D, D;

1 L

1

Figure 6: Switching Cell Implemented with N-transistors

N-Precharged Chaln. It is possible to avoid passing a
lIogic one through N-transistors by precharging the entire chain
to one and discharging nodes through the N-transistors.
(Figure 7). In order to minimize the size of the cell,
precharging is done through N-transistors. The voltage of the
precharge signal has to be at least equal to Vdd + Vik, so that
the nodes are charged to a proper logic one voltage level. A
precharge signal of up to 7 volts may be needed. To eliminate
the need for a second power supply, *‘bootstrapping’® can be
used to generate this signal from a nominal voltage Vdd [4].
Bootstrapping requires a ‘‘bootstrap’™ capacitance that is
several times larger than the capacitance of the nodes that are to
be charged to the high voltage. For this circuit, the precharge
signal is applied to the gates of 64 transistors so the boot
capacitor must be more than 100 times larger than the minimum
size transistor. The noise margins are restored to normal levels
and the delay for computing a 32-bit parity is 11ns (with
buffers in the chain). The suide of the circuit increases by 29%
for larger basic cells and for routing a precharge signal to ail
the cells (the size of the bootstrap circuitry is not included).

Dy D; precharge
N —
5
N — .

Figure 7 : N-precharged XOR Cell

P-Precharged Chatn. The requirement for a high
precharge signal can be eliminated by precharging the chain
through P-Transistors (Figure 8). In the layout each pair of
adjacent cells share a precharge signal and well. Because of the
presence of interlaced wells in the chain, the stride of the
complete chain increases by 19% over the N-precharged chain.
On the other hand, the noise margins are normal and the
bootstrap circuit is eliminated. The delay to compute the parity
through 32 switching cells and 8 buffers remains 11ns.

D, D precharge

=+ N
5V

.

| »

Figure 8 : P-precharged XOR Cell

Dualchain. The switching cell can be implemented
using full ransmission gates (Figure 9). The noise margins are
then maintained at proper levels but the stride of the circuit is
35% larger than the P-precharged chain. The speed is degraded
due to the added capacitance at each node.

; Dy

B
C_fb<
]
o
[A

Figure 9 : Dual-Chain XOR Cell

Using Sense Amplifiers. Davis[1] proposed an
implementation of a multiple-input XOR gate using a 2-level
tree of 8-input XOR gates (Figure 10). Sense amplifiers speed
up the calculation of intermediate results (Figure 11), providing
fast computation at the expense of area and poor noise margins.
The sense amplifier cell contains significantly more logic than
the switching cell, and has to be made ‘‘narrow’’ to match the
pitch of the data bus, resulting in a substantial increase of the
stride. Including the routing necessary for pitch matching and
two levels of logic and an inverter for D;, D; we obtain a stride
of 140A. The sense amplifier design can be use serially in order
to avoid the two level structure, but the delay becomes
proportional 1o the size of the chain, making the delay to go
through a 32-cell chain 8ns.

The characteristics of the different XOR gate
implementations are shown in Table 1. The circuits are
designed to match the pitch of the bus of our processor. The
table includes the stride of each basic cell and of the complete
circuits, the circuit delay, and the noise margins.

8 infu:s

Sinfuts

8 infuts

Singuts
IIIIIIII[_‘T[

[= Switching Celi
__—l = Sense Amp.
Figure 10: Tree of 8-input XOR with Sense-Amp.

Pa:iry

ch

D
b -

} -li 4
i
PP
Figure 11: Chain of XORs with Sense Amplifier
Implementation of a 32-bit XOR Gate
. Cell Circuit Noise
Implementation Stride | Stride Delay Margins
o Static tree 25 A 70 A 5ns | normal
Chain + buffers
N-chain 273 48 & 10ns poor
N-precharged* 35 62 A ilns | normal
P-precharged 43 % 704 | 1lns | normal
Dual-chain 63 A 841 16ns | normal
« Chain + Sense-A.
2-level 40 A 1402 | 4.5ns poor
1-level 40 A 76 A 8ns poor
* without bootstrap circuitry

Table 1: Characteristics of each Implementation

III. Error Correction Circultry

The XOR circuits described in the previous section can
be used for error detection with a single parity bit. A simple
method for correcting errors locally, without resorting to
system-wide recovery, is to use emor comection codes
(ECC)[6]. In this section we discuss error comecting codes
based on Hamming Code, which are commonly used to detect
and cormect errors in storage elements[6]. The check bits of
these codes are generated and verified using multi-input XOR
gates, Each check bit is generated by XORing a different
subset of the data bits. When storage is accessed, the same
subsets and their corresponding check bits are XORed to
produce a syndrome which is used to correct some errors and
flag others (e.g., multiple bit error) as uncorrectable [6].

This section focuses on circuits which provide single
error correction and double error detection (SEC-DED). The
measurements presented are based on a SEC-DED code for a

Data Bits | Check Bits

111111111122222222223313 33333 3
i | 01234567890123456789012345678901 |12 34 56 7 8
Cgo| 11111111111111 1
c,| 11111 111111111 1
C,| 1 1111 1111 11111 1
¢l 1 1 111 1 11 111 111 1
C, 1 11 111 111 1111 1
Cs 1 1 111 1 111 11111 1
Ce 1 1 11 1 11 11111 1

Table 2: M-Code Parity Check Matrix for 32-bit Words

Data Bits Check Bits
dod, dydad, dagla) €9C1€aC3C4CxC
- Zh
: N
1%
M-code D |
Generation P
NN
. V7
{ lor2Errors |
g ! |
Decoders
—

]

Corrected Word
Figure 12: Error Detection and Correction

32-bit word. We use a subset of Hamming code, called
Maintenance code (M-code){6]. Both Hamming and M-code
require XORing several bits to obtain the check bits but M-code
has the advantage that the maximum number of bits to XOR is
smaller, resulting in faster operation. For example, for a 32-bit
word, check bits are generated by XORing at most 14 bits,
while Hamming code as used in{1] requires XORing up to 32
bits. Table 2 represents the parity check matrix for a 32-bit
word. Each row contains the bit positions o be XORed 1o
generate each check bit. Since seven check bits are needed for
a 32-bit word, seven rows of XOR gates are required. A block
diagram of the circuitry is shown in Figure 12.

Since seven rows of XOR gates are needed when using
M-code, minimizing the stride of each multi-input XOR gate
becomes more critical than when there is only one row for
single-bit parity. Since the inputs to each XOR gate are not
necessarily adjacent, a static implementation (Figure 3) is not
appropriate — it requires excessive routing. If area is the main
concerm, N-chain XOR gates, without precharging, can be used.
For a wide pitch (583), the stride of each N-chain can be
reduced to 194 and the check bits can be computed in 3.8ns.
XOR gates based on P-precharged chains can be used if normal
noise margins are needed. To maximize speed, XOR gates

based on N-chains with sense amplifiers can achieve a delay of
2.5ns (two level tree, two sets of seven bits in the first level).

When a data word is accessed, a seven-bit syndrome is
generated by XORing all the bits in each row, including the
check bits. To differentiate between single-bit and double-bit
errors, an XOR of the syndrome is generated [6]. If the result
is one, there is a single-bit error and correction can be
performed. If the result is zero, and the syndrome bits are not
all zero, a double-bit error is signaled.

For single-bit error correction, the erroneous bit is
identified by the syndrome. Using a decoder and a controlled-
inverter (XOR gate), the faulty bit can be flipped (see Figure
12). Table 3 shows the areas and correspondings delays for
three different implementations.

Area and Delay of ECC Clircuits (pitch = 391)
Circuit Area Delay
® generation of check bits
- N-chain 26208042 | 3.8nms
- P-precharged 409344 32 4ns
- Sense-amp. 394368 A% | 2.5ns
e identification of the error | 217562 2ns
e decoding + correction 259584 A2 5ns
» (otal
- N-chain 54342022 | 10.8ns
- P-precharged 690684 A2 lins
- Sense-amp. 675708 A% | 9.5ns

Table 3: Arca and Delay of ECC Circuitry (one bus)

The datapath in many microprocessors is based on two
parallel buses whose data bits are interleaved. Two
simultaneous reads from the register file are usually supported.
In order to simultaneously detect errors on both buses, the
stride of the ECC circuitry has to be significantly increased.
Specifically, the detection subcircuit (seven multi-input XORs
and a XOR for the syndrome) must be doubled. If, once an
error is detected, multiple phases are available for correction,
one syndrome decoder can be shared by both buses and
comrection can be done sequentially. The correction circuitry
must also be doubled. In our design, with a bus pitch of 394
and XOR gates implemented as P-precharged chains, the stride
of the detection circuitry is 3284, the decoder is 147A, and the
comrection is 61A. For two buses, sharing the decoder can
decrease the total stride from 1070A to 9334,

For data in the register file, the ECC circuitry can be
connected between the register file and the ALU. If it is
cormected '‘serially’’ the processor cycle time must be
stretched to accommodate the added delay. Much of this
performance penalty can be avoided by comnecting the ECC
circuitry in parallel with the datapath. The data from the
register file is sent to the ALU without waiting for the result of
ECC. The ECC circuitry must be fast so that if an emor is
detected, it is possible to abort the operation before there is
permanent damage to the processor state.

IV. Duplication and Comparison

Using duplication and comparison it is possible to
achieve high-coverage error detection for all types of
modules[8,2]. Two identical modules process the same
information in parallel and some of their output pins are
compared every cycle (Figure 13). In this section we described
the circuits needed for duplication and comparison. These
imnclude comparators as well as data compression circuitry
necessary to reduce the pin requirements when the two modules
whose outputs are compared are on different chips. We show
how etror correction can be performed in a system based on
duplication and comparison by transferring state from the
fault-free module to the faulty module.

A. Compression

It is often impossible or undesirable to duplicate large
VLSI modules, such as processors, on the same chip.
Duplication and comparison with such modules requires using
at least two chips. Hence, comparison is limited to the
information available at the pins. Since many of the results
computed by the processor do not immediately appear at the
pins, if the comparison is based only on values available at the
pins, the system is likely to have long detection latencies. This
problem can be solved by including internal information, such
as the output of the ALU, the PSW, and various state registers
in the comparison. The number of bits to compare may easily
add up to one hundred, requiring many extra pins. In order to
reduce the number of bits to be transmitted across pins to the
comparator, the values on internal nodes can be ‘‘compressed,”
leading to large reduction in pin bandwidth requirements with
small reductions in coverage [5].

Processor 1 Processor 2
Insernal Internal
State State
z'_ljloo bits -:-I’ 100 bits
Compression Compression
14 bits 14 bity

Comparator

Figure 13: Processors Running in PBuplex Mode

There are many possible ways t ‘‘compress’’ data (5].
In the context of this discussion, a simple and effective data
compression technique is to use several parity bits computed
across the data ‘‘word’’ 10 be compressed. For example, for a
32-bit word, we can compute a 4-bit ‘'signature” by
constructing four interleaved parity chains, each consisting of
eight bits from the word. Each chain includes every fourth bit
in the word. The implementation of this interleaved parity
scheme uses the circuits already described in Section 2. Given
two 32-bit errors, one correct and one erroneous, a large
percentage of errors can be detected by comparing the 4-bit
signatures of the two words: all single bit errors, any odd
number of bit errors, and many nultiple bit adjacent errors. For
random multi-bit errors, 93.75% of the errors will be detected.

A d-bit signature of a 32-bit word can be generated in
3ns using four 8-input P-precharged chains (Figure 14). The
four chains can be compressed into one chain where every
fourth cell is connected through metal lines. For a pitch of 3¢ 4
we obtained a stride of 1334, which includes an inverter, a
precharge line, and internal routing.

bbbbbb bb :‘-." 14
(VY VB * » » (7B %

Chains of XORs

vt
camgrassed
WOr

Flgure 14: Interlaced Parity used for Compression

5
+

a=h

T

A

31
1
Ibo 15y by

Figure 15: A 32-input Comparator
B. Comparison

A comparator can be implemented using the design
shown in Figure 15. We designed the layout of a 32-input
comparator to match the pitch of the datapath and its stride is
443, The output of the comparisen is computed in 5.8ns.

C. Mlcro Rollback and Error Correction

The necessity of off-chip transmission of data for
comparison increases the error detection latency beyond the
point where the processor can be interrupted and its last
instruction restarted if an error is detected. Several clock
phases are necessary for compressing the data, sending the
result off-chip, latching the data in the comparator, comparing
the inputs, sending the outcome back to the processor, and
laiching in the result. We have previously introduced a
technique, called micro rollback, which allows VLSI modules
to roll back their state to its value several clock cycles
earlier[9}. With this technique, it is possible to begin
processing information several cycles before its validity is
verified, since if it tums out to be erroneous, its effects can be
undone. In a system that sepports micro rollback, duplication
and comparison across chip boundaries can be supported with
minimal performance penalty.

Tn a system based on duplication and comparison with
micro rollback, local recovery from most errors can be
supported without conventional ECC circuitry. When the
outputs of the two modules differ, the modules are rolled back
several cycles. If the error was caused by a transient fault on,
for example, the buses or ALY, it is unlikely to recur when the
last few cycles are “‘repeated.” If the error was caused by a
transient fault in storage (e.g. register file), recovery requires
copying the valid state from the fault-free module to the faulty

module. In order to identify which module is faulty, each
module must be capable of local detection of errors in storage.
This requires parity encoders and decoders on each module.
However, as discussed in sections 2 and 3, the area for single-
bit parity generation and verification is less than 10% of the
area for ECC circuitry. Furthermore, this techniques allows
recovery from many ermrors that carmot be handled by
conventional SEC-DED codes.

V. Summasry

Most fault-tolerant systems require that key components,
such as VLSI processors, include significant local ermror
detection and correction capabilities. The circuits that provide
these capabilities are typically encoders, decoders, comparators,
and data compressors. These circuits must provide low latency,
high throughput cperation in order to be able to perform checks
every cycle and prevent emoneous information from
propagating throughout the system. Multi-input XOR gates are
critical building-blocks for many of these circuits.

We have described several implementations of XOR
gates: a tree of static XOR gates, a compact N-chain, two
precharged chains and a dual-chain that provide normal noise
margins, and a fast implementation based on sense amplifiers.
The discussion included major tradeoffs (speed, area, noise
margins, pitch matching) in the implementation of circuits for
generating parity, for computing ECC check bits, for correcting
errors, and for compressing and comparing data.

We discussed a few of the interrelationships between the
microarchitecture of the processor and the appropriate choice
for detection and correction circuitry. We described how
duplication and comparison across chip boundaries can be used
for high-coverage error detection and cormrection with minimal
performance penalty. The key featres of this scheme are
**compression’’ and comparison of the values on internal nodes
as well as on buses and the use of a technique, called micro
rollback, which allows error detection and correction to be
performed in parallel with intermodule communication.

References

1. H. L. Davis, “*A 70-ns Word-Wide 1-Mbit ROM With On-Chip
Error-Correction Circuits,'” JEEE Journal of Solid-Siate Circuits
SC-20(5), pp. 958-963 (October 1985).

Advanced Micro Devices, Am29000 Streamlined Instruction
Processor User's Marnual, 1987.

E. A. Doyle, **How Pans Fail,"" JEEE Spectrum 18(10), pp. 36-
43 (October 1981).

L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of
VLSI Circuits, Addison-Wesley (1985).

E. J. McCluskey, *‘Built-In Seif-Test Techniques,’* JEEE Design
and Test 2(2), pp. 21-28 (April 19835).

T. R. N. Rao and E. Fujiwara, Error-Conirol Coding for
Computer Systems, Prentice Hall (1989).

M. Sievers and D. A. Rennels, **An LSI Totally Self-Checking
Hamming Coded Memory Interface,"” Interaational Symposium
on Circuits and Systems, pp. 1176-1179 (May 1982).

Y. Tamir and C. H. Séquin, **Self-Checking VLSI Building
Blocks for Fault-Tolerant Multicomputers,”” [Iniernational
Conference on Computer Design, pp. 561-564 (November 1983).

Y. Tamir, M. Tremblay, and D. A. Rennels, ‘“The
Implementation and Application of Micro Roilback in Fault-
Tolerant VLSI Systems,'” I8th Fault-Tolerant Computing
Symposium, Tokyo, Japan, pp. 234-239 (June 1988).

z

b

- SR

