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Abstract

A database instance is not an arbitrary collection of data, but rather many correlations ex-
ist among data items. The notion of statistical rules is introduced as a means of expressing such
relationships. We demonstrate that statistical rules can be utilized in the query optimization pro-
cess. In selectivity factor estimation, for example, statistical rules can actually be used to intro-
duce relevant attributes the same manner as exact rules in semantic query optimization. Other
uses of statistical rules include the enhancement of parallelism in database machines, and pro-

viding incomplete/quick answers as well as more informative responses.

We quantify the notion of how to measure the "inexactness” of a statistical rule using an
entropy measure. The lower the entropy or uncertainty of a rule, the better the rule is. Based on
such a measure, we show that constructing statistical rules using a "greedy" algorithm will result

in a reasonable, although perhaps not optimal rule.






1. Introduction

Query optimization can be regarded as the problem of selecting an efficient evaluation
plan to process a query (usually expressed in logical terms) from among the alternative plans
which can be carried out in the physical database. Conventional query optimization methodolo-
gies approach this problem by integrating a large number of techniques, ranging from algebraic
transformations of queries to the optimization of access paths and the storage of data on the file

system level.

In order for an optmizer to select an efficient access path query, fairly accurate selectivity
estimates must be available. In [6], simple statistics, such as the miniumum and maximum
values of an attribute, are used to estimate selectivity factors. However, using such simple statis-
tics will produce good selectivity estimates only if the attribute values are uniformly distributed.
Since attribute values can have other distributions, it is suggested that [5] histogram can be used
to more accurately estimate selectivity factors. In [5], the problem of building equi-depth histo-

gram on a single attribute has been well studied.

For queries involving multiple attributes, most database systems assume that attributes
are independent [13]. This assumption leads such systems to systematically overestimate the
costs of queries and thus to select query plans that substantially increase the queries’s processing
time. In [13], the concepts of Schur concavity and majorization are used to efficiently estimate
the cost of a query when the queried attribute is correlated with the clustering attribute. Howev-
er, the optimizer has to maintain a representative block access distribution that can be modified
based on the type of query it is presented with. Thus, if there is a large variety of queries, it is

not clear how "representative" this empirically tabulated block access distribution can be.

Another approach to this attribute dependence problem is to extend the idea of single-

attribute histogram [12] to histograms of multiple dimensions. There are two potential draw-



backs with multi-dimensional histograms. First, as the number of dimensions increases, the
problem of storing this large multi-dimensional structures becomes increasing difficult, especial-
ly if we want to keep them in main memory. Second, although we expect many correlations ex-
ist among data items in a database, it is very unlikely that these correlations occur uniformly
across the data. Thus, multi-dimension histograms may not be an efficient way to capture such

correlations.

In this paper, we suggest the notion of statistical rules to capture the correlations among
data items. An example of a statistical rule may take the following form:

R1: "80% of employees who earn over $35000 are engineers".
It basically says if there are 1000 employees who earn more than $35000, 800 of them are en-
gineers. Notice that information is not exact or precise with respect to characterizing particular
individuals. Given an employee who earns over $35000, and R1, we cannot tell whether he is an
engineer or not. One of the contribution of this paper is to quantify the notion of "inexactness”
in a statistical rule using an entropy measure. With such an measure, we can compare statistical-
ly rules and construct rules that are more informative or better captured the correlations among

data items.

There is a similarity between statistical rules and semantic rules used in query optimiza-
tion. They both reflect certain correlations existed among data items in a database. But seman-
tic rules are exact rules in the sense that they imposes or ascribe a certain property to all or none
of the individuals in a set of entities. For example,

ER1: "All employees who earn over $35000 are engineers"
is an exact version of R1. Recent research in semantic query optimization [1,2,3] has demon-
strated the advantage of incorporating semantic knowledge about database in the optimization
process. The process of semantic query optimization can be described in two phase: the query

transformation phase and the query plan selection phase. In the query transformation phase,



semantically equivalent queries are generated. It is in the transformation of queries that seman-
tic rules are involved. Statistical rules fail to be of use here because of their inexactness. In the
query plan selection phase, however, we discover that statistical rule can be very helpful. As
will be seen later, the manner in which statisical rules are used requires that they closely, but not
necessarily precisely, reflect the current instance of the database. Thus, update is much less of a

problem than in the case of exact rules.

The organization of the paper is as follows. Section 2 describes through examples, the
role of statistical rules in query optimization. Section 3 studies quantitatively the preciseness or
information content of such statistical rules. Section 4 suggests other interesting, non-
conventional applications in which statistical rules are important. Section 5 summarizes the pa-

per.

2. The Role of Statistical Rules in Query Optimization

In this section, we will demonstrate some uses of statistical rules in query optimization.
Before we do that, we need to be more specific about the kind of statistical rules that we are in-
terested in. Consider, for example, a richer version of the statistical rule R1

R2:  Engineers salary profile:

Salary Range Ratio of Engineer : Employee
[5000-15000] 1:20
[15000-35000] 1:3
[35000-70000] g8:10

Notice that the third entry in R2 is actually the same as R1. In fact, the three entries of R2 can
also be regarded as three different statistical rules. But since they form a partition on salary
range, we group them together as one rule. Now if the salary of employees actually ranges from
$5000 to $70000, we call R2 complete. For convenience, we will, from here on, deal with com-

plete statistical rules, although the same ideas also apply to all statistical rules. From another



perspective, R2 can be seen as approximating how dense the engineers are with respect to all
employees in various salary ranges. In the next section, we illustrate how this information can

be used in query optimization.

2.1 Selectivity Factor Estimation

In the query selection phase, the cost of carrying out each query plan is estimated and the
one with the lowest estimated cost is selected. In estimating the cost of evaluating a query plan,
it has been pointed out [6] that an estimation of the number of tuples satisfying a condition can
be very useful. Now we show that statistical rules can actually help in making such an estima-
tion. Let us begin with a simple example. Suppose, as before, we have the
Employee (employee_name, job category, salary, education , - - + ) relation and a complete sta-
tistical rule R2. Further suppose we have a five-bucket equi-depth histogram [5] describing the
distribution of attribute salary. Say the number of employees in each bucket is 360 and the
widths of the buckets are:

[5000-20000], [20000-30000], [30000-40000], [40000-500001, [50000-70000]

We are interested in the number of engineers who earn over $30000. Given R2 and the above

histogram as the only available information, we can estimate that approximately 60+720 en-
gineers earn over $30000. First, from R2, we know that % of the employees who earn between

35000-30000

40000—30000 such em-

$15000 and $35000 are engineers. Then, from the histogram there are 360 x

ployees. Thus, we estimate 60 engineers earn between $30000 and $35000. The 720 can be ob-
tained similarly. Notice that in the above estimation, we have assumed that engineers are uni-
formly distributed within the salary range [15000-35000]. This raises an important question of
how accurate the estimate is or how much information R2 carries. Intuitively, it would seem
that the larger the number of intervals the salary range is being partitioned into, the more accu-

rate we get. However, a more interesting question is: if we are given the opportunity to choose a



fixed number of intervals, how should they be chosen and how do we quantify their preciseness?

We will address all these issues later in Section 3.

Now consider a more complicated example. Suppose in addition to R2, we also have

R3:  PhD salary profile:

Salary Range Ratio of PhD : Employee
[5000-40000] 0:-
[40000-70000] 2:3

The first entry implies no PhD earns less than 40000. We want to estimate the number of tuples
in the Employee relation satisfying the conditions: job_caregory = engineer and
education = PhD. From R2 and R3, we see that engineers and PhID’s can be related somehow
through their salaries. The second and third column of Table 1 below shows the average number

of engineers and PhD’s in different salary ranges. They are calculated from R2, R3 and the

salary histogram.
Salary Range Engineers PhD’s Max Min
5000-20000 52 0 0 0
20000-30000 120 0 0 0
30000-40000 204 0 0 0
40000-50000 288 240 240 168
50000-70000 288 240 240 168

Table 1. Combined Salary Profiles of Engineers and PhD’s

The third and fourth column are respectively the maximum number and minimum number of
PhD engineers. It is easy to see that the maximum number of PhD engineers cannot exceed ei-
ther the number of engineers or the number of PhD’s. The minimum, on the other hand, is the
minimum intersection of the two. In this case, since each salary range has 360 employees, the
Min for salary ranges [40000-50000] and [50000-70000] is 288 + 240 — 360. Thus, the total
number of Employee tuples satisfying the conditions must be no less than 336 and no greater

than 480. If only the distributions of engineers and PhD’s are known, the best that can be said



about the number of PhD engineers is that it is between 0 and 480.

In this last example, the attribute salary is not even mentioned in the selection conditions
of the Employee relation and it may not appear anywhere in the query. It is only by the use of
statistical rules that we can introduce it to the query optimization process. Let us call such attri-
butes relevant attributes [1]. Note that conventional semantic query optimization also involves
the introduction of relevant attributes to a query, but with the restriction that the rules being util-
ized there are exact. Another important observation is that there is no requirement that the
relevant attribute has to be in the same relation. From the above example, there is no reason
why it should be. More specifically, if the salary attribute is not in the Employee relation, the
same selectivity factor estimation can be carried out. Further, a heuristic for generating relevant
attributes in [1] suggests it is preferable if such attributes are contained in relations mentioned in
the original query. The rationale behind this is that otherwise an extra join may be required,
which may be proven expensive. In our case, since we are only estimating selectivity factors, no

join is involved and thus the warning does not apply here.

2.2 Concurrent Operations

The accurate estimation of selectivity factors [6] is unarguably one of the most important
issues in query optimization. In the last section, we demonstrate that statistical rules can actually
help in providing better selectivity estimates. However, the benefit we can obtain from such
rules is more far reaching, and we will further explore their use in this section. Their benefit in

less conventional applications will be discussed in Section 4.

Consider a simple database machine with hardware configuration as shown in Figure 1.
It consists of a high bandwidth communication network interconnecting a number of basic com-

ponents. Each basic component has a processor and a disk, which is used for database storage.
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Associated with each processor is some amount of local memory, We assume that communica-

tion cost is negligible and the cost of processing a query is still measured in 1/O operations.

Let us begin with a simple example. Suppose we have to perform a selection operation
on one relation followed by a join with some other relation. Say our familiar Employee relation
is the first relation and job_category = engineer is the desired selection and let us call the other
relation R. Assume that the Employee relation has its attribute salary as the only clustered in-
dex. Further, assume that the relations Employee and R reside on components A and B respec-
tively, where A and B are interconnected by the communication network. Now suppose a query
optimizer suggests, perhaps based on selectivity factor, that the selection operation should be
performed in component A and the results of the selection should then be sent to component B
for the join operation. If the query is evaluated as planned, we show in Figure 2a, the I/O opera-
tions of components A and B as a function of time. The shaded region represents the time during

which I/O operations are being performed.

Note it is possible that the I/O operations of the two components may exhibit very little
concurrency. First, since job category is not indexed, a segment scan will have to be performed
on the Employee relation to select the engineers. Now if engineers are sparse at the beginning of
the segment and become increasingly more dense towards the end, a lot of the join operations,
which account for most I/0’s in component B, can only occur in the latter part of the segment
scan. This is illustrated in Figure 2a. Since attribute salary is the only clustered index, statisti-
cal rule R2 provides exactly this information. If R2 is available to the optimizer, the segment
scan can be done in such a way that component B will be kept busy all the time. More
specifically, instead of scanning a segment in its physical order, we can make use of the informa-
tion provided by statistical rules, like R2, partition the segment into a number portion and scan
those portions with higher selectivity factor first. Figure 2b shows the time savings involved if

such information is utilized.



Now consider another example. To facilitate more efficient processing of queries, rela-
tions in database machines are usually horizontally partitioned across a number of disks in the
system. For example, a hash function can be applied to the attribute job category of each tuple
in our Employee relation to select a storage component. The resulting partition may have en-
gineers in one component, managers in another component and secretaries in still another com-
ponent, The main purpose of partitioning data across a number of components is to exploit any
potential parallelism, Say we want to join another relation R with our Employee relation. All
that is required is to send R to each component which contains a fragment of the Employee rela-

tion and the join operation can take place concurrently.

Suppose, for a slightly more complicated case, we are to select employees whose salary
is above $35000 before joining with R. Assume that there is a strong correlation between job
category and salary; for instance, most engineers earn over $35000, while only few others do.
Let us call the relation after the selection operation: the High Pay Employee relation. The dis-
tribution of the number of High Pay Employee tuples in each component is highly uneven, If
the join is performed, the component containing engineers will certainly have the majority of
work, and parallelism cannot be fully exploited. Of course, if such information is available in
advance to the query optimizer, the engineer High Pay Employee tuples can be partitioned and
sent to other components before the join is carried out. Again, statistical rules like R2 can pro-

vide such information.

3. Statistical Rules

In Section 2, we demonstrated several potential uses of statistical rules in query optimiza-
tion. But we have not addressed the questions: (i) how does one decide which attributes to relate
via statistical rules? (ii) what criteria do we use to measure the "goodness” of the rules? (iii)

how do we construct the rules? We will suggest, in some detail, approaches to questions (ii) and



(iii) in this section. As for (i), we will only give a few brief comments. In any particular
domain of application, it is very likely that there exists certain relationships among different at-
tributes. Statistical rules are intended to capture or summarize the relationships among those at-
tributes that are highly correlated. For example, the job category and the salary of an employee
is highly correlated; whereas, the social security\number and the salary of an employee 1s prob-
ably not correlated at all. The first question basically asks how to acquire these sets of highly
correlated attributes. An obvious way is, of course, to rely on the domain expert to supply the

information. Another way is to extract the information automatically [&].

Suppose job category and salary are highly correlated attributes, we can construct rules
like R2 for each job category. However, with a different partitioning of the salary range, we can
also have

R2’:  Engineers salary profile:

Salary Range Ratio of Engineer : Employee
[5000-30000] 1:4
[30000-50000] 1:2
[50000-70000] 8:10

The obvious question is "which is a better rule?" This is exactly question (ii) mentioned earlier.
Intuitively, the closer the ratios are to O or 1, the more informative the rule is. For example,
given an employee with salary range [S0000-70000], we are almost sure that he is an engineer.
On the other hand, it is very uncertain whether an employee with salary range [30000-50000] is
an engineer or not. We will introduce a formal measure of "goodness", and describe approaches

to construct such "good" rules in the next two subsections.
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3.1 Information Measure

Let us restate the problem more abstractly and be explicit about the kind of information
we want to measure. Consider a continuous range, say [0,10], and ten samples such that each
sample takes on a value from the range. There are two types of sample, marked and unmarked.
Figure 3 shows an example distribution of the samples on the range. Now suppose the range is
partitioned into intervals and for each interval we are given the ratio of the marked samples to
the total number of samples in that interval. Notice that this is exactly the same as a statistical
rule. If there are k intervals, we call it an k-interval statistical rule. The information of interest
1$ given the statistical rule and the position of a sample, what can be said about the state of the
sample, that is, marked or unmarked? If the range in Figure 3 is partitioned into three intervals,

I1, 12 and I3 as shown, the question above can be answered exactly. For the two-interval parti-

tion, given that a sample is in interval J1, we can only say that there is a 'le probability that the

sample is marked. Similarly, given that a sample is in interval J2, the probability that the sample

is marked is —36-. Apparently, the latter partition has more uncertainty with respect to this

marked/unmarked question. Next we try to quantify this uncertainty.

Informally, in the language of probability theory, a ratio of marked/unmarked samples in
a given interval can be viewed as describing a finite probability space, composed of two mutual-
ly exclusive events E | and F, and their associated probabilities. E; is the event that a randomly

selected sample from the interval is marked and its associated probability is

_ number of marked samples in the interval
total number of samples in the interval

whereas, E, is the event that the sample is not marked and its associated probability

pa=1-=p;. Itis well-known [7] that entropy

H@i.p2)=—(p1logp, +pylogp,)

-11-
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is a very suitable measure of the uncertainty involved. First of all, we see immediately that
H(p1,p2) =0 if and only if one of p{,p; is one and the other is zero. But this is just the case
where there is no uncertainty as to its outcome. In all other cases the entropy is positive. Furth-

ermore, it is obvious that the case with most uncertainty is the one with equally likely outcomes,

thatis, py =p, = %, and indeed, in this case, the entropy assumes its largest value [9]

H(p1,py)Slog 2=H(5,3)

When the marked/unmarked question is asked, we assume that the samples are chosen with
equal probability. Thus the probability that the sample is in a particular interval is equal to the
fraction of samples in that interval. Thus if we are interested in the average uncertainty in-
volved, a weighted average of the uncertainties of all intervals is appropriate. In fact, this is ex-

actly the definition of conditional entropy.

Definition 3.1 Let S and R be two finite probability spaces with events {5;}
(i=1,2,--+,n) and {R} (k=1,2, - ,m), respectively. Then the conditional entropy of
the space S averaged over the space R is

HR(S)= 3 p(Ry) Hp(S)
k=1

Here, S is the probability space for describing whether a sample in a given interval is marked or
unmarked; R; is the event that a randomly picked sample belongs to the k-th interval; and

Hp, (8) is the uncertainty associated with the k-th interval. Defining S and R accordingly for the

two-interval statistical rule in Figure 3, we get

_ 4 g1 3 6 773 35
HR®)=2H(E, 2+ SHE,2)=0811

-13-



More formally, we have the following definition:

Definition 3.2 let S be a statistical rule with sample size n. For each interval T;

(i=12,---,n")of S, m; out of s; samples are marked. Then the entropy for S is
1 m; ;
HS)=— Y s; H(—,1- —)
n o 8 8

It is not difficult to see that statistical rules with equal number of intervals can have very

different entropies.

3.2 Minimum Entropy Approach

Now the problem of interest here is:

OPTIMAL STATISTICAL RULE

We are given a continuous range, and a collection of samples in which each sample takes on
a value from that range. For a fixed number of intervals, find the statistical rule that has the
minimum entropy.

Since the number of intervals is fixed, the various statistical rules corresponds to different ways

of partitioning the range. If » is the sample size and m is the number of desired intervals, the

number of possible statistical rules is [n—ll]‘ Even for a moderate sample size and a small
m_

number of intervals, the number of statistical rules precludes enumeration. Let us study the OP-
TIMAL STATISTICAL RULE problem carefully and see if there is any way to reduce the
number of statistical rules that we have to examine. If the samples are distributed as shown in

Figure 4, and a two-interval OPTIMAL STATISTICAL RULE is desired, it should be obvious

that the partition point has to occur between the marked and unmarked sample.

-14-
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Lemma 3.1 If the marked and unmarked samples form two groups (Figure 4), the partition

Proof:

point of a two-interval OPTIMAL STATISTICAL RULE must occur between the
groups.

It is easy to see that if the partition point is in between the group, the entropy of that
statistical rule is 0. Otherwise, it is greater than 0.

Note that any statistical rule with partition point satisfying this property can be utilized to answer

the marked/unmarked question exactly. Otherwise, the answer can only be given probabilistical-

ly. The next lemma concerns a slightly more complicated case.

Lemma 3.2 If the marked and unmarked samples forms three groups (Figure 5), the parti-

Proof:

tion point of a two-interval OPTIMAL STATISTICAL RULE must occur between
groups.

Figure 5 shows three groups of samples. Group I has a unmarked samples, group II
has » marked samples and group III has ¢ unmarked samples. Our goal is to show
that as the partition point varies, the entropy plot, as shown in the figure, has two
minima, both of which occurred between groups.

Let
Ey = a+b+y 1% b , a-+y LY H 0 ’c-—y)
a+b+c at+b+y a+b+y a+b+c c—y c-y
_ a+b+y b o b aty 1 a+y
a+b+c a+b+y £ a+b+y a+b+y at+b+y

be the entropy if Y is the partition point. Assume y is continuous for the moment,
and differentiate Ey with respect to y

dEy 1 a+b+y
= log
dy a+b+c a+y

Thus, as y grows the entropy increases. By symmetry, as y” grows the entropy also
increases.

Let
a+x I X a + c+b-—x b—x c
a+b+c a+x’ a+x a+b+c c+b—x’ c+b—x

Exy =

Assume x is continuous and its range (0,b). Differentiate Ey with respect to x and

-16-



equate it to zero, we discover that Ey has only one maximum when

x= [ a ]b
atc

Thus, the entropy plot must have two minima as shown, and the partition point of a
two-interval OPTIMAL STATISTICAL RULE must occur between groups.

We can generalize this observation to the following theorem.

Theorem 3.1 Any partition point for an OPTIMAL STATISTICAL RULE has to occur
between a marked and an unmarked sample.

Proof: Similar to Lemma 3.2.

Note that Theorem 3.1 significantly reduce the search space for the OPTIMAL STATISTICAL

RULE. If the marked and unmarked samples formed n” groups, the number of statistical rules

J where m, again, is the number of desired intervals. Under almost
m —_—

. . |n
we have to examine 1s [

all practical situations, n” would be much smaller than the sample size n. However, for a
moderate n” and a small of number intervals, the number of statistical rules is probably still too

large to enumerate.

A possible approach here is to consider a relaxed version our original problem; that is,
we do not insist on obtaining an OPTIMAL STATISTICAL RULE. If such is the case, a
"greedy” algorithm will probably lead to “good", although perhaps not optimal solutions. In
fact, we are able to show that for the worst case behavior, the relative error resulted from the
"greedy" algorithm is always less than two. The algorithm involves combining adjacent inter-

vals, which is defined as follows.

-17-



Definition 3.3 Let S be a statistical rule. For each interval T; (i = 1,2, - - - ,n") of S, m; out
of 5; samples are marked. Suppose T, and T;,, are two adjacent intervals of S. We combine
intervals T; and T}, in S to form a new statistical rule §” such that for each interval

T; 1€i<y
Ti,= Tj+Tj+1 i=j
Tin j<i<n'

Thus, for interval T}, m; +m; of s;+ 5,4 samples are marked. Combining more than
two adjacent intervals can be generalized accordingly.

It is important to see that as intervals are being combined, information is lost and entropy or un-

certainty increases.

Proposition 3.1 Let § be a statistical rule with sample size n. For each interval T;
(i=1,2,---,n") of S, m; out of 5; samples are marked. Suppose T; and T;,; are
two adjacent intervals of S and T; and T;,; are combined to form a new statistical

rule $”. Then
H(S) < H(S")
S5+ 5; m; +m; m; +m;
Proof: Consider ~ H(S)—H(S)= 4 g2 1y 0704
$i+Sin §j+ 841
S n; i S m; n;
——JH(“L,I—-i)“ ;+1H( j+1’1_ j+1
§; 8y h Si+1 Sivl

Notice also that for any linear function f (), it can be shown

m;+m; m;j m;

j j+1 J J+1
(si+8;41y F ( ——) =8 f(—=)+5;1 f( )
Foj+h 5;+ i1 i 5; J

AYES|

Since H (+) is concave, H (§") — H(S) = 0 and the proposition follows.

Next we present the algorithm. We made use of Theorem 3.1 to obtain the initial statistical rule
S;n,. In each iteration, the number of intervals is being reduced by one and the stepwise increase

in entropy is kept to a minimum.

-18-



Input: A statistical rule S;, with n” intervals (T;, 1 €i £n")
Qutput: A statistical rule S,,, with m intervals (m < n”")

begin
Sout = Sin;
while the number of intervals in S, is greater than m do
begin
combine intervals T; and T 41 in Sy, to form S,u’ such that
H (S, — H (S, is minimum;
(comment: break ties arbitrarily)
Sour = Sout”
end
end

Fig 5. Greedy Heuristic for OPTIMAL STATISTICAL RULE

If n” =m + 1, the "greedy" algorithm outputs the optimal solution. Suppose n’=m + 2.
The optimal solution can involve the combination of three consecutive intervals; or, it can in-
volve the combination of two distinct pairs of adjacent intervals. It is easy to see that the
"greedy” algorithm will always find the optimal solution if the latter is the case. Now let us con-
sider the former and study its worst case behavior. Assume an initial statistical rule S, with n’
intervals (T;, 1 <i <n’). Suppose the OPTIMAL STATISTICAL RULE involves combining
three consecutive intervals T, T4 and T .25 and the "greedy” algorithm instead combines in-

tervals T, and 7,4, followed by 7, and T,4,. For convenience, let us define the following sta-

tistical rules. From §;,

i combine intervals T, Ty, 41 and T3 to form Spp;

i, combine intervals T, and T}, ,; to form S,

iii, combine intervals T, 4 and 7 42 to form Spp, ;

v. combine intervals T, and Ty 41 followed by T, and T, 1 to form S, ;
V. combine intervals T, and T4y to form Sy, .

-19-



Lemma 3.3 H(Sopt) 2 max ( H(Soprl )s H(Soptz) )

Proof: Apply Proposition 3.1.

Lemma 3.4 H(Sg) < 2 (min (H(Sgp,)s H(Sppr,)))

Proof: Consider the following two facts:

H(Sy ) — H(Sip) <min (H(Spp, ) — H (Sin), H(Sept,) —H(Sin) ) (D
If (I) is not true, intervals T, and T, will not be selected by the algorithm.
H(Sg) —H (Sg,) Smin (H(Spp,) — H(Sin), H(Sope,) = H(Sin) ) (II)
If (IT) is not true, intervals 7T, and 7,y will not be selected by the algorithm.
Adding (I) and (IT), and the lemma follows.
Lemma 3.5 For n” =m + 2, the worst case relative error for the "greedy” algorithm

is no greater than 2.

Proof: By Lemma 3.3 and 3.4, the worst case relative error

max (H (S,)) < 2 (min (H (Sopr, )y H(Sopry) ) -
min (H(Syp))  max (H(Sep, )y H(Sopr,) )

general result with regard to the worse case behavior of the "greedy” algorithm.

Now if n” =m + 3, the optimal statistical rule may involve the combination of three consecutive
intervals and the combination of another distinct pair of adjacent intervals; whereas, the "greedy"
algorithm may involve the combination of three distinct pairs of adjacent intervals. If this is the
case, it is easy to see that Lemma 3.5 can be applied and show that the relative error is still no
greater than 2. On the other hand, if the optimal statistical rule involves the combination of four

consecutive intervals, Lemma 3.5 can also be extended accordingly. Now we state our more

Theorem 3.2 The relative error resulted from the "greedy” algorithm is no greater than 2.

Proof: By induction and simple extension of Lemma 3.5.
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Thus, if we do not insist on obtaining an OPTIMAL STATISTICAL RULE, the "greedy"” algo-

rithm will probably lead to reasonable and efficient solution.

4. Other Potential Applications

In this section, we explore other potential applications of statistical rules in less conven-

tional environments.

4.1 Sound and Incomplete Answers

So far, our concern has been on a conventional query answering system. That is, in
response to a query, the system has to return a sound and complete answer [11]. An answer is
sound if every listed entity satisfies the query conditions. It is complete if every entity satisfying
the query conditions is listed in the answer. Under most circumstances, a user will prefer a
sound answer, as decisions based on unsound answer may turn out to be disastrous. However,
the same is not necessarily true for a complete answer. In a real-time application, for example, a
user may not have the luxury of waiting for a complete answer. Or it may simply be the case
that we have an impatient user. Whatever the reason may be, one possibility is to allow the user
to specify the minimum proportion or percentage of the answer he wants, and the system is to

speedily return the partial answer.

One feasible approach to quickly obtain a portion of the answer is to adopt and extend
the concept of semantic query optimization. The idea is to consider subsumed queries instead of
equivalent queries. By subsumed queries, we mean queries that are éomained by the original
query. And we are only interested in those that can be efficiently evaluated. Let us illustrate by

an example. Consider the Employee relation and again assume that the attribute job_category is
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the only clustered indexed. We also have statistical rule R2. Now suppose the query is

"Who earn more than $400007" (75%)
The percentage at the end of the query merely says that the user wants speedy reply to three
quarters of the answer. From the third entry in R2, we know that 80% of the employees who
earn more than $35000 are engineers. Thus we can form a subsumed query

"Who are the engineers that earn more than $400007"
Since job category is a clustered index, this last query can be answer very efficiently. Now the
question whether the answer to the subsumed query contains no less than 75% of the answer to
the original query depends on the how accurate the statistical rule R2 is. If there are a Jot of em-
ployees who eam between $35000 and $40000 and almost all of them are engineers, then it is
possible that less than 75% of the employees who earn more than $40000 are engineers. Howev-

er, the more informative the statistical rule is, the less likely this is to occur.

4.2 Informative Responses

An enumeration of individual objects is not always the best means of information ex-
change. It has been pointed out [11] that, for user responses, a desirable property is succinct-
ness. For example, in response to the query

"Who earns more than $300007"
instead of having a list of names of all employees who satisfy the query, we can have answer of

the form

w800 : 100 "
1000 engineers + 100 managers

It basically says all managers and 800 out of 1000 engineers earn more than $30000. Notice that
engineers and managers are concepts representing a set of individuals and they both belong to
the same class, job category, in this case. In a database context, we can interpret job category as

an attribute and engineers and managers as values belonging to that attribute. The intuitive ap-
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peal of such answers lies in its succinctness. Still, given an individual in any job category, we
can with some degree of certainty, whether he eams more than $30000 or not. There is no rea-
son why the same idea cannot apply to an attribute with a continuous domain. In such a case, a
statistical rule such as R2 can then be the answer to the query
"Who are the engineers?”

Again, given an engineer in a certain salary range, we have an indication whether he satisfies the
query or not. The obvious questions are how good the statistical rules are and how they can be
constructed as answers to queries. But these are just the same issues we already discussed in the

previous section.
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5. Conclusions

We identify two types of rules in a database: rules that are exact and rules that are inexact
or statistical. It is well known by now that exact rules can be used in semantic query optimiza-
tion. We suspect that the number of exact rules one can extract from a database is probably lim-
ited. On the other hand, there is no doubt that many correlations exist among data items. These
correlations are usually not exact and can only be expressed by statistical rules. Fortunately, we
demonstrate that these statistical rules can be utilized in the query optimization process. In
selectivity factor estimation, statistical rules can actually be used to introduce relevant attributes
the same manner as being done by exact rules in semantic query optimization. Other use of sta-

tistical rules includes the enhancement of parallelism in database machines.

The "goodness" of a statistical rule, in general, is'a vague notion. We quantify such no-
tion using the entropy measure. The lower the entropy or uncertainty of a rule, the better the
rule is. Based on the such a measure, we show that constructing statistical rules using a "greedy"
algorithm will result in a reasonable, although perhaps not optimal rule. We also outline some
less conventional applications in which statistical rule can be useful. These include

incomplete/quick answer and more informative kind of responses.
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