Computer Sclence Department Technical Report
University of Calltornia
Los Angeles, CA 90024-1596

THE TANGRAM PROJECT:
PUBLICATIONS 1987-88

Richard R. Muntz January 1989
D. Stott Parker CSD-890003
Geraid J. Popek

The Tangram Project:
Publications 1987-88

Richard R. Muntz
D. Stott Parker
Gerald J. Popek

Computer Science Department
University of California
Los Angeles, CA 90024-1596

The Tangram Project at UCLA is aimed at the development of an environment for
modeling of dynamic systems. It is an integration of DBMS and KBMS technology with
distributed processing techniques. It is supported by DARPA, as contract F29601-87-
C-0072. This Is a summary of technical reports issued over the first year of the project,

LA

Table of Contents

OVERVIEW ..ottt sttt ss s s s s s sses s sasssssneseseses s 2
STREAM DATABASE PROCESSINGcccovermrienirnnsessinseseesesseseronns 3
LANGUAGE SUPPORT ..ot ssssssssss s sasessssesssstssssssessssaseas. 10
COMPUTER SYSTEM PERFORMANCE MODELINGcccooovvueiernene. 14
CONSTRAINT-BASED MODELINGcoovverereeceeeecteesercs e scssaes 18

1. OVERVIEW

TANGRAM: PROJECT OVERVIEW
Richard R. Muntz, D. Stott Parker
CSD-880032 (39pp.)

April 1988

Today, most computers are used for the modeling of real-world systems.
Demands on the extent and quality of the modeling are growing rapidly. There is
an ever-increasing need for environments in which one can construct and evaiu-
ate complex models both quickly and accurately.

Successful modeling environments will require a cross-disciplinary combination of
different technologies:

System modeling tools
Database managemant
Knowledge base management
Distributed computing

None of these technologies by itself provides all that is needed. A modeling
environment must offer high-speed retrieval and expioration of knowledge about
systems, as well as integration of diverse information sources with existing
modsling tools.

Tangram is a distributed modeling environment being developed at UCLA. It is
an innovative Prolog-based combination of DBMS and KBMS technology with
access to a variety of modsling tools.

-3-

2. STREAM DATABASE PROCESSING

THE TANGRAM STREAM QUERY PROCESSING SYSTEM
D. Stott Parker, Richard R. Muntz, Lewls Chau
CSD-880025 (28pp.)

March 1988

Tangram is an environment for modeling. It supports development and manage-
ment of models, simulation of models, analysis of simulation output and analysis
of models in general. Ilts current focus is on computer system performance
modeling.

Modeling applications routinely generate large quantities of simulation data, and
analysis of this data requires a system that differs in significant ways from exist-
ing database systems. The data often takes the form of time series, and there-
fore query processing requires both stream processing techniques and heavy
numerical computations (e.g., basic statistical and time series analysis) beyond
ordinary aggregates.

One of the driving concepts behind Tangram has therefore been the combination
of large-scale data access and data reduction with a powerful programming
environment. The Tangram environment is based on Prolog, extending it with a
number of features, including process management, distributed database access,
and generalized stream processing.

This paper describes the Tangram Stream Processor (TSP), the part of the
Tangram environment performing query processing on large streams of data. The
paradigm of transducers on streams is used throughout this system, providing a
‘database-flow’ (database dataflow) computation capability.

shorter version in Proceedings of the Sixth International Conf. on Data Engineer-
ing, Los Angeles, CA, February, 1989.

A THEORY OF DIRECTED LOGIC PROGRAMS AND STREAMS
D. Stott Parker, Richard R. Muntz

CSD-880031 (31pp.)

April 1988

For some time it has been recognized that logic programmers commonly write
directed predicates, i.e., predicates supporting only certain input and output pat-
terns among their arguments. !n many logic programming implementations,

-4-

programmers are encouraged to use ‘mode declarations’ to announce this direct-
edness, both as a matter of style and as a directive for compiler optimization.

A common application of directed programming is stream or list processing. Pro-
grams that operate on streams or lists usually have specific input and output
arguments. More generally, directed predicates can represent functions, with
specific inputs and outputs.

We present a new declarative formalism for directedness in logic programming
systems. The formalism is based on the use of partial ordering constraints rather
than unification. Semantics of the resulting system are rigorously definable, and
extend ordinary logic program semantics in a natural way.

The approach to directed logic programs presented here will probably provide
higher performance than is possible with undirected programs. Furthermore, the
approach provides perspective relating diverse concepts such as predicate
‘modes’, functional computation, constraint processing, and stream processing.

shorter version in R.A. Kowalski and K.A. Bowen (eds.), Logic Programming, MIT
Press, 1988, pp. 620-650.

IMPLICIT REPRESENTATION FOR EXTENSIONAL ANSWERS
Chung-Dak Shum, Richard Muntz

CSD-880067 (17pp.)

August 1988

An exhaustive list of atomic objects is not always the best means of information
exchange. This paper concerns the implicit representation of extensional
answers. Expressions for answers are given in terms of concepts and individu-
als. Exceptions within individual concepts are allowed.

Two criteria are defined as measures of the goodness of such expressions: (i)
minimizing the number of terms, (ii} positive terms preferred over negative terms.
Expressions satistying these two criteria are called optimal expressions. It is
shown that under a strict taxonomy of concepts, any two optimal expressions for
an extensional answer share the same set of terms. The inductive proof elicits
an algorithm for obtaining such expressions.

Generalizing the strict taxonomy of concepts to a join-semilattice of concepts
eliminates the term uniqueness property and also makes the problem of finding
an optimal expression intractable. The problem under multiple taxonomies,
although it involves a restricted type of join-semilattice, remains intractable.

in L. Kerschberg (ed.),Expert Database Systems, Benjamin Cummings, 1989, pp.
497-522,

AN INFORMATION-THEORETIC STUDY ON AGGREGATE RESPONSES
Chung-Dak Shum, Richard Muntz

CSD-880068 (12pp.)

August 1988

An enumeration of individual objects is not always the best means of information
exchange. This paper concerns the probiem of providing aggregate responses to
database queries.

An aggregate response is an expression whose terms are quantified concepts.
The tradeoff between the conciseness and preciseness of an aggregate
response is studied. Conciseness is measured by the length (the number of
terms) of an expression, and preciseness is measured by the entropy or the
amount of uncertainty associated with the expression. For a given length, an
expression with the minimum amount of entropy is called optimal.

Under a one-level taxonomy with the same cardinalities for all leaf concepts, the
problem of finding an optimal expression can be solved inexpensively. An
efficient heuristic is also proposed for the general one-level taxonomy. For a tax-
onemy of more than one level, an efficient heuristic is suggested which experi- -
ments indicate yields good solutions. '

in Proc. International Conf. on Very Large Databases, Los Angeles, CA, August
29-September 1, pp. 479-490, 1989.

ASPEN: A STREAM PROCESSING ENVIRONMENT
Brian K. Livesey, Richard R. Muntz

CSD-880080 (26pp.)

October 1988

In this paper, we describe ASPEN, a concurrent stream processing system.
ASPEN is novel in that it provides a programming model in which programmers
use simple annotations to exploit varying degrees and types of concurrency. The
degree of concurrency to be exploited is not fixed by the program specification or
by the underlying system. Increasing or decreasing the degree of concurrency to
be exploited during execution does not require rewriting the entire program, but
rather, simply re-annotating it.

Examples are given to illustrate the varying types of concurrency inherent in pro-
grams written within the stream processing paradigm. We show how programs
may be annotated to exploit these varying degrees of concurrency. We briefly
describe our implementation of ASPEN.

ASPEN: A STREAM PROCESSING ENVIRONMENT
Brian K. Livesey

CSD-880098 (120pp.)

December 1988

Stream processing is an ideal paradigm for data-intensive applications. The solu-
tions to a rich and varied set of problems that are, at best, awkward to express in
other paradigms, can be expressed elegantly within the stream processing para-
digm. Furthermore, stream processing presents an execution model in which
such problems can be solved efficiently.

This thesis describes ASPEN, a stream processing environment. A programming
language cailed Log(F) is extended to make it an appropriate language for
expressing stream processing programs. The thesis focuses on those exten-
sions that provide support for concurrent processing and access to distributed
data.

The approach is novel in that the programming model allows the determination of
the granularity of concurrency to be separated from the actual coding of the pro-
gram. The degree of concurrency to be exploited is not fixed by the program
specification or by the underlying system. Simple annotations allow the program-
mer to specify varying degrees of concurrency. Increasing or decreasing the
degree of concurrency exploited during execution does not require rewriting the
entire program, but rather, simply re-annotating it.

Several examples are given o illustrate the varying types of concurrency inherent
in programs written within the stream processing paradigm. Examples are given
which demonstrate how programs may be annotated to exploit these varying
types and degrees of concurrency. The implementation of ASPEN is also
described.

STREAM DATA ANALYSIS IN PROLOG
D. Stott Parker

CSD-890004 (54pp.)

January 1989

Today many applications routinely generate large quantities of data. The data
often takes the form of a time series, or more generally just a stream - an
ordered sequence of records. Analysis of this data requires stream processing
techniques, which differ in significant ways from what current database query
languages and statistical analysis tools support today. There is a real need for

better stream data analysis systems.

Stream analysis, like most data analysis, is best done in a way that permits
interactive exploration. It must support ‘ad hoc' queries by a user, and these
queries should be easy to formulate and run. It seems then that stream data
analysis is best done in some kind of powserful programming environment.

A natural approach here is to analyze data with the stream processing paradigm
of transducers (functional transformations) on streams. Data analyzers can be
composed from collections of functional operators (transducers) that transform
input data streams to output streams. A modular, extensible, easy-to-use library
of transducers can be combined in arbitrary ways to answer stream data analysis
queries of interest.

Prolog offers an excellent start for an interactive data analysis programming
environment. However most Prolog systems have limitations that make develop-
ment of real stream data analysis applications challenging.

We describe an approach for doing stream data analysis that has been taken in
the Tangram project at UCLA. Transducers are implemented not directly in Pro-
log, but in a functional language called Log(F) that can be translated to Prolog.
With Log(F), stream processing programs are straightforward to develop. A by-
product of this approach is a practical way to interface Prolog and database sys-
tems,

STREAM PROCESSING: AN EFFECTIVE WAY TO INTEGRATE Al AND DBMS
D. Stott Parker

CSD-890005 (11pp.)

January 1989

We present a novel approach for integrating Al systems with DBMS. The
‘impedance mismatch’ that has made this integration a problem is, in essence, a
difference in the two systems’ models of data processing. Our approach is to
aveoid the mismatch by forcing both Al systems and DBMS into the common
mode| of stream processing.

By a stream here we mean an ordered sequence of data items. Stream process-
ing is a waell-known Al programming paradigm in which functional operators
(which we call ‘transducers’) are combined to obtain arbitrary mappings from
streams to streams. The stream processing paradigm can be, and has been,
applied equally well as an Al programming model and as a query processing
model in databases.

We argue first that, in practice, the relational model of data is actually the stream

model. The pure relational modei cannot capture important aspects of relational
databases such as column ordering, duplicate tuples, tuple ordering, and access
paths, while the stream model does so naturally.

We then describe the approach taken in the Tangram project at UCLA, which
integrates Prolog with relational DBMS. Prolog is extended to a functional
language called Log(F) that facilitates development of stream processing pro-
grams. The integration of this system with DBMS is simultaneously elegant, easy
to use, and relatively efficient.

shorter version in Proceedings of the Sixth international Conf. on Data Engineer-
ing, LLos Angeles, CA, February, 1989.

STATISTICAL RULES: A NOTION OF DATABASE ABSTRACT
AND ITS ROLE IN QUERY PROCESSING

Chung-Dak Shum, Richard Muntz

CSD-890007 (25pp.)

January 1989

A database instance is not an arbitrary collection of data, but rather many correla-
tions exist among data itams. The notion of statistical rules is introduced as a
means of expressing such relationships. We demonstrate that statistical rules can
be utilized in the query optimization process. In selectivity factor estimation, for
example, statistical rules can actually be used to introduce relevant attributes the
same manner as exact rules in semantic query optimization. Other uses of sta-
tistical rules include the enhancement of parallelism in database machines, and
providing incomplete/quick answers as well as more informative responses.

We quantify the notion of how to measure the “inexactness” of a statistical rule
using an entropy measure. The lowsr the entropy or uncertainty of a ruls, the
better the rule is. Based on such a measure, we show that constructing statisti-
cal rules using a "greedy” algorithm will result in a reasonable, although perhaps
not optimal rule.

3-WAY HASH JOIN QUERY PROCESSING IN
DISTRIBUTED RELATIONAL DATABASE SYSTEMS
Scott E. Spetka, Gerald J. Popek

CSD-890008 (17pp.)

January 1989

initial distribution of relations as well as storage structures and organization have

-9.

an important impact on performance and the appropriate choice of processing
techniques for database operations. Consideration of data distribution for parti-
tloned relations used in hash join processing lead us to experiment with a new
algorithm for processing 3-way join queries in a distributed system.

Database cacheing is also important for performance of distributed database
management systems. An important goal is to provide an algorithm that can
complement existing algorithms to provide sufficient generality to operate in a
network transparent environment where the location of available resources may
be changing, and to use those resources effectively. We present a new algorithm
for processing 3-way join queries that can take advantage of cacheing by provid-

ing improved performance when data is not ideally distributed for some other
algorithms,

-10-

3. LANGUAGE SUPPORT

LOG({F): A NEW SCHEME FOR INTEGRATING REWRITE RULES,
LOGIC PROGRAMMING AND LAZY EVALUATION

Sanjal Narain

CSD-870027 (18pp.)

July 1987

We present LOG(F), a new scheme for integrating rewrite rules, logic program-
ming, and lazy evaluation. First, we develop a simple yet expressive rewrite rules
system F* for representing functions. F* is non-Noetherian, i.e., an F* program
can admit infinite reductions. For this system, we develop a reduction strategy
called select and show that it possesses the property of reduction-completeness.
Because of this property, select exhibits a weak form of lazy evaluation.

We then show how to implement F* in Prolog. Specifically, we compile rewrite
rules of F* into Prolog clauses in such a way that when Prolog intereprets these
clauses, it directly simulates the behavior of select. Since it is not necessary to
change Prolog, it is possible to do lazy evaluation efficiently. Since Prolog is
already a logic programming system, a combination of rewrite rules, logic pro-
gramming and lazy evaluation is achieved.

IMPROVING CLAUSE ACCESS IN PROLOG

D. Stott Parker, Thomas W. Page, Richard Muntz
CSD-880024 (7pp.)

March 1988

One of the weakest aspects of Prolog is in its access to clauses. This weakness
is lamentable as it makes one of Prolog’s greatest strengths, its ability to treat
programs as data and data as programs, difficult to exploit. This paper proposes
modifications to Prolog and shows how they circumvent important problems in
Prolog programming in a practical way. For example, the proposed modifications
permit Prolog programs that perform efficient database query (join) processing,
coroutining, and abstract machine interpretation. These modifications have been
used successfully at UCLA, and should be easy to implement within any existing
Prolog system.

-11 -

LOG(F): AN OPTIMAL COMBINATION OF LOGIC
PROGRAMMING, REWRITING, AND LAZY EVALUATION
Sanjal Naraln

CSD-880040 (176pp.)

June 1988

A new approach for combining logic programming, rewriting, and lazy evaluation
is described. It rests upon subsuming within logic programming, instead of upon
extending it with, rewriting, and lazy evaluation.

A non-terminating, non-deterministic rewrite rule system, F* and a reduction stra-
tegy for it, select, are defined. F*is shown to be reduction-complets in that salect
simplifies terms whenever possible. A class of F* programs called Deterministic
F* is defined and shown to satisfy confluence, directedness, and minimality.
Confluence ensures that every term can be simpiified in at most one way. Direct-
edness eliminates searching in simplification of terms. Minimality ensures that
select simplifies terms in a minimum number of steps. Completeness and
minimality enable select to exhibit, respectively, weak and strong forms of lazi-
ness.

F* can be compiled intoc Horn clauses in such a way that when SLD-resolution
interprets these, it directly simulates the behavior of select. Thus, SLD-resolution
is made to exhibit laziness. LOG(F) is defined to be a logic programming system
augmented with an F* compiler, and the equality axiom X=X. LOG(F) can be
used to do lazy functional programming In logic, implement useful cases of the
rule of substitution of equals for equals, and obtain a new proof of confluence for
combinatory logic.

EXECUTABLE TEMPORAL SPECIFICATIONS WITH FUNCTIONAL GRAMMARS
H. Lewis Chau, D. Stott Parker

CSD-880046 (20pp.)

June 1988

The Stream Pattern Analyzer (SPA) is one part of the Tangram Stream Query
Processing System being developed at UCLA. It uses functional grammars to
specify pattern analysis for streams of data.

Parallel execution events in a distributed system may be captured in an event
stream for analysis. Given a set of functional grammar rules, SPA can analyze
arbitrarily complex behavior patterns in this stream. At the same time a SPA
grammar can act as a declarative specification of valid event histories.

We define a simple but powerful scheme that coroutines recognition of multiple
patterns in an event stream. Propositional temporal logic queries can be

-12-

expressed in SPA in terms of predefined temporal operators such as eventually,
implies, not_until, etc. Thus complex history-oriented specifications can be
developed easily.

Functional grammar rules by themselves act as pattern generators or specifiers,
and can be used to develop parsers by compilation to Log(F). Log(F) is a combi-
nation of Prolog and a functional language called F*. We describe a simple algo-
rithm to compile functional grammars to Log(F), and prove its correctness.

PX REFERENCE MANUAL, VERSION 0.2
Ted Kim

CSD-880079 (47pp.)

October 1988

This manual describes an interface to the X Window System for Prolog. The X
Window System is a network-based window system providing a desktop style of
user interface and graphics. PX provides a low level interface to X for Prolog
similar to that provided by “Xlib” for the C language. PX is designed for use with
version 11 of the X Window System. Higher level interfaces (such as toolkits) are
built on top of this one and are outside the scope of this document.

PX is implemented in the C language using the C language foreign function inter-
face from Quintus Prolog. Almost any Prolog which supports the Quintus style
interface can use this package with few restrictions. In particular, SICStus Prolog
was used in the development of this system. This document is a reference
manual. As such, it is not a tutorial or user’'s guide to X or Prolog.

FUNCTIONAL LOGIC GRAMMAR:

A NEW SCHEME FOR LANGUAGE ANALYSIS
H. Lewis Chau, D. Stott Parker

CSD-880097 (16pp.)

December 1388

We present a new kind of grammar. 1t combines concepts from logic program-
ming, rewriting, lazy evaluation, and logic grammar formalisms such as Definite
Clause Grammar (DCG). We call it Functional Logic Grammar,

A functional logic grammar is a finite set of rewrite rules. It is efficiently execut-
able, like most logic grammars. In fact, fu~ctional logic grammar rules can be
compiled to Prolog and executed by existing Prolog interpreters as generators or
acceptors. Unlike most logic grammars, functional logic grammar also permits

-13.

higher-order specification and modular composition.

This paper defines functional logic grammar and compares it with the successtul
and widely-used DCG formalism in logic programming. We show that pure DCG
can be easily translated into functional logic grammar. Functional logic grammar
enjoys the advantages of DCG, as well as its first-order logic foundation. At the
same time, functional logic grammar ranks higher in aspects such as expressive-
ness and modularity, and permits lazy evaluation.

-14-

4. COMPUTER SYSTEM PERFORMANCE MODELING

A NOTE ON THE COMPUTATIONAL COST OF THE
LINEARIZER ALGORITHM FOR QUEUEING NETWORKS
Edmundo de Souza e Sliva and Richard R. Muntz
CSD-870025 (15pp.)

July 1987; revised February 1988

Linearizer is one of the best known approximation algorithms for obtaining
numeric solutions for product form queueing networks. In the original exposition
of Linearizer, the computational cost was stated to be O(MK3) for a model with
M queues and K job classes. We show in this note that with some straightfor-
ward algebraic manipulation Linearizer can be modified to require only O(MK?2)
computational cost.

We also discuss the space requirements for Linearizer and show that the space
can be reduced to O{MK) but with some increased computational cost.

To appear, IEEE Transactions on Computers, 19889.

AN OBJECT ORIENTED METHODOLOGY FOR
THE SPECIFICATION OF MARKOV MODELS
Steven Berson, Edmundo Sllva, Richard Muntz
CSD-870030 (23pp.)

July 1987

Modelers wish to specify their models in a symbalic, high level language while
analytic techniques require a low level, numerical representation. The translation
between these description levels is a major problem.

Wae describe a simple, but surprisingly powarful approach to specifying system
level models based on an object oriented paradigm. This basic approach will be
shown to have significant advantages in that it provides the basis for modular,
extensible modeling tools. With this methodology, modeling tools can be quickly
and easily tailored to particular application domains. An implementation in Pro-

log, of a system based on this methodology and some example applications are
given.

-15-

ANALYTIC MODELING METHODOLOGY FOR EVALUATING THE
PERFORMANCE OF DISTRIBUTED, MULTIPLE-COMPUTER SYSTEMS
Alex Kapelnikov

CSD-870061 (201pp.)

November 1987

In this dissertation, we describe an analytic modeling methodology for evaluating
the performance of distributed, multiple-computer systems. The concepts and
techniques of this methodology are useful for the approximate analysis of a wide
range of distributed computing environments and communication networks. The
main strategy of our approach is to segregate, as much as possible, the model of
the “logical” behavior of an application (a program or a process) from the model
of its underlying execution environment. For representing program behavior,
graph-based techniques are used, while extended queueing networks are utilized
for modeling system architectures. The solutions of both types of models are
combined to estimate the performance of a distributed system in executing some
selected applications.

To illustrate the practical application of the methodology introduced in this disser-
tation and provide an indication of its expected accuracy level, we have included
two case studies.

A MODELING METHODOLOGY FOR THE ANALYSIS

OF CONCURRENT SYSTEMS AND COMPUTATIONS

Alex Kapelnikov, Richard R. Muntz, and Milos D. Ercegovac

in M.H. Barton, E.L. Dagless, G.L. Reijns (eds.), Distributed Processing,
Elsevier Science Publishers, pp. 465-479, 1988.

In this paper, we describe a novel modeling methodology for evaluating the per-
formance of distributed, multiple-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel
implementation of a program (or transaction) in a distributed environment. These
tools are based on an amalgamation of queusing network theory and graph
models of program behavior. Hierarchical application of heuristic optimization
techniques facilitates the analysis of large and complex programs. A realistic
example is used to illustrate the practical application of our methodoiogy.

-16-

A DISTRIBUTED ALGORITHM TO DETECT A GLOBAL STATE

OF A DISTRIBUTED SIMULATION SYSTEM

Behrokh Samadl, Richard R. Muntz, D. Stott Parker

in M.H. Barton, E.L. Dagless, G.L. Reijns (eds.), Distributed Processing,
Elsevier Science Publishers, pp. 19-34, 1988.

in this paper, we describe a novel modeling methodology for evaiuating the per-
formance of distributed, multiple-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel
implementation of a program (or transaction) in a distributed environment. These
tools are based on an amalgamation of queusing network theory and graph
models of program behavior. Hierarchical application ot heuristic optimization
techniques facilitates the analysis of large and complex programs. A realistic
exampie is used to illustrate the practical application of our methodology.

DISTRIBUTED SHARED MEMORY IN A LOOSELY COUPLED
DISTRIBUTED SYSTEM (EXTENDED ABSTRACT)

Brett D. Fleisch

in Proceedings COMPCON Spring 88, San Francisco, CA,
February-March 1988, pp.182-184.

In this work we describe new implementation experiences with a distributed
shared memory system implemented in a loosely coupled distributed system.
Our goal was to investigate the feasibility of distributed shared memory (dsm) in
an operating system kernel. Li (1986) demonstrated the feasibility of such a sys-
tem outside of the kernel with a number of numaeric applications, but it remained a
relatively open question as to how well dsm performs for a variety of non-numaric
applications and what the effects of dsm are on other kernel services. The
organization of dsm we describe resembles a cross-processor segmented paging
system. Our talk relates implementation experiences and preliminary perfor-
mance results. We plan to report results from experiments with symbolic compu-
tation, which emphasizes rearragement of data, where often the sequence of
operations is highly data dependent and less amenable to compile time analysis
than numerical computation. One general goal of this work is to describe a set of
software primitives and to identify hardware featurses that can be used to support
the conversion of applications from nondistributed shared memory to distributed
shared memory. These features may include hints, user advice, control primi-
tives, and architectural modifications that will improve functionality and perfor-
mance.

-17 -

BOUNDING AVAILABILITY OF REPAIRABLE COMPUTER SYSTEMS
Richard Muntz, Edmundo Sllva, A. Goyal

CSD-880070 (26pp.)

September 1988

Markov models are widely used for the analysis of availability of
computer/communication systems. Realistic models often involve state space
cardinalities that are so large that it is impractical to generate the transition rate
matrix let alone solve for availability measures. Various state space reduction
methods have been developed, particularly for transient analysis. In this paper
We present an approximation technique for determining steady state availability.
Of particular interest is that the method also provides bounds on the error.
Examples are given to illustrate the method.

-18 -

5. CONSTRAINT-BASED MODELING

SET CONTAINMENT INFERENCE AND SYLLOGISMS
Paolo Atzeni, D. Stott Parker

CSD-870022 (34pp.)

March 1987

Type hierarchies and type inclusion (isa) inference are now standard in many
knowledge representation schemes. In this paper, we show how to determine
consistency and inference for collections of statements of the form

mammal isa vertebrats.

These containment statements relate the contents of two sets (or types). The
work here is new in permitting statements with negative information: disjointness
of sets, or non-inclusion of sets. For example, we permit the following state-
ments also:

mammal isa non(reptile)
non(vertebrate) isa non{mammal)
not(reptile isa amphibian)

Binary containment inference is the problem of determining the consequences of
positive constraints P and negative constraints not(P) on sets, where positive
constraints have the form P. X g Y. Negations of these constraints therefore
have the form not(F): X n non(Y) = O, so positive constraints assert contain-
ment relations among sets, and negative constraints assert that two sets have a
non-empty intersection.

Wae show binary containment inference is solved by rules essentially equivalent to
Aristotle’s Syllogisms. Necessary and sufficient conditions for consistency, as
well as sound and complete sets of inference rules, are presented for binary con-
tainment. The sets of inference rules are compact, and lead to polynomial-time
inference algorithms, so permitting negative constraints does not result in intrac-
tability for this problem.

To appear, Theoretical Computer Science, 1988.

-19-

PARTIAL ORDER PROGRAMMING
D. Stott Parker

CSD-870067 (80pp.)

December 1987

We introduce a programming paradigm in which statements are constraints over
partial orders. A partial order programming problem has the form

minimize u

subjectio u, vy, updvy, -
where u is the goal, and uy 3v, u3Av,, - - - is a collection of constraints called
the program. A solution of the problem is a minimal value for 4 determined by

values for uy, v, etc. satisfying the constraints. The domain of values here is a
partial order, a domain D with ordering relation 2.

The partial order programming paradigm has interesting properties:

(1) it generalizes mathematical programming, dynamic programming, and
computer programming paradigms (logic, functional, and others) cleanly,
and offers a foundation both for studying and combining paradigms.

(2) It takes thorough advantage of known results for continuous function-
als on complete partial orders, when the constraints involve expressions
using only continuous and monotone operators. These programs have an
elegant semantics coinciding with recent results on the relaxation solution
method for constraint problems.

(3) It presents a framework that may be effective in modeling of complex
systems, and in knowledge representation for cognitive computation prob-
lems.

ON CONSTRAINT-ORIENTED ENVIRONMENTS
FOR CONTINUOUS SYSTEMS SIMULATION
Richard A. Huntsinger

CSD-880018 (10pp.)

March 1988

Sets of simultaneous differential equations and sets of queries on those equa-
tions are naturally expressible as constraint networks in the constraint satisfaction
modeling paradigm. Further, relaxation enhanced to exploit typed valued con-
straints provides a procedurai semantics for such constraints which in the best
case reduces to propagation, and in the worst case performs comparably to other
paradigms. Accordingly, constraint satisfaction is advocated as the paradigm of
choice on which to base continuous systems simulation environments.

-20 -

Examples are presented illustrating constraint network characterizations of con-
tinuous systems models, and their corresponding procedural semantics.

REPRESENTATION TRANSFORMATION IN
CONSTRAINT SATISFACTION SYSTEMS
Richard Huntsinger

CSD-880020 (11pp.)

March 1988

A practical class of constraint satisfaction systems operate on relaxable
representations of the form N =f(N), where N is a set of variables, and the
declarative semantics is the set of instantiations of N which preserve the equality.
In general, relaxation provides a complete procedural semantics for only a subset
p of such representations. Of interest, then, is the set of transformable represan-
tations a o p in which for each representation M, e a there exists a determinable
transformation T: o — p such that the declarative semantics of M, is identical to
that of T (M,).

Relaxable representations for which £ (V) is a polynomial are transformable, each
corresponding to a transform of the form N = (f (W)N")Vin+D) where n is a func-
tion of the degree and coefficients of the polynomial. This observation provides
some intuition about more general transformations, applicable to the implementa-
tion of powerful (complete over a superset of p) constraint satisfaction systems.

PARTIAL ORDER PROGRAMMING: EXTENDED ABSTRACT
D. Stott Parker

CSD-880086 (7pp-)

October 1988

Wae introduce a programming paradigm in which statements are constraints over
partial orders. A partial order programming problem has the form

minimize u
subjectto uyJvy, uzdvy, -

where u is the goal, and u Ivy, u;3v,, -+ is a collection of constraints called
the program. A solution of the problem is a minimal value for u determined by
values for u;, v, etc. satisfying the constraints. The domain of values here is a
partial order, a domain D with ordering relation 2.

-21-

The partial order programming paradigm has interesting properties:

(1) It generalizes mathematical programming and also computer program-
ming paradigms (logic, functional, and others) cleanly, and offers a foun-
dation both for studying and combining paradigms.

(2) It takes thorough advantage of known results for continuous functionals
on complete partial orders, when the constraints involve expressions using
only continuous and monotone operators. The semantics of these pro-
grams coincide with recent results on the relaxation solution method for
constraint problems.

(3) It presents a framework that may be effective in modeling, or
knowledge representation, of complex systems.

in Proceedings of the Sixteenth ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, Austin, Texas, January 11-13, 1989.

OPTIMIZATION BY NON-DETERMINISTIC, LAZY REWRITING
Sanjal Narain

CSD-880092 (19pp.)

November 1988

Given a set S and a condition C we address the problem of determining which
members of S satisfy C. One useful approach is to set up the generation of S as
a tree, where each node represents a subset of S. If from the information avail-
able at a node, we can determine that no members of the subset it represents
satisty C, then the subtree rooted at it can be pruned, or not generated. Thus,
large subsets of S can be quickly eliminated from consideration. We show how
such a tree can be simulated by interpratation of non-deterministic rewrite rules,
and its pruning simulated by lazy evaluation.

